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Abstract
In this paper, we study a solutions existence problem of the following nonlinear sin-
gular Burgers equation

F(u, ε) = u′
t − u′′

xx + uu′
x + εu2 = f (x, t),

where F : � → C([0, π ]× [0,∞)), � = C2([0, π ]× [0,∞))×R, u(0, t) = u(π, t)
= 0, u(x, 0) = g(x), and F , f (x, t), g(x) will be describe in the text. The first
derivative of operator F at the solution point is degenerate. By virtue of p-regularity
theory and Michael selection theorem, we prove the existence of continuous solution
for this nonlinear problem.
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1 Introduction

This paper is a continuation of the work by Medak and Tret’yakov [4, 9] devoted
to solutions existence problem of singular differential equations. Now we study the
structure of solutions of nonlinear Burgers equation of the form:

F(u, ε) = u′
t − u′′

xx + uu′
x + εu2 = f (x, t), (1)

where F : � → C([0, π ] × [0,∞)), � = C2([0, π ] × [0,∞)) × R and u(0, t)
= u(π, t) = 0, u(x, 0) = g(x) for F ∈ C p+1, f (x, t) ∈ C([0, π ] × [0,∞)), g(x)
∈ C2[0, π ]. In our paper, we consider the most interesting for applications periodical
case g(x) = k sin x , so called the oscillating initial condition with small parameter
ε. The aim of our study will be to find such k that depends on ε, so that the above
problem has a solution in the neighborhood of trivial solution (u∗, ε∗) = (0, 0) to
which corresponds k = k∗ = 0 and give analytic approximation of this solution with
the initial condition g(x) = k sin x for small parameter ε.

Nowwe are looking for the solution u(x, t) to (1) in a traditional way by themethod
of separation of variable in the form u(x, t) = v̄(t)ū(x), where v̄(t) = ce−t , ū(x)
∈ C2([0, π ]). In this case, this is a degenerate problem since there exists (u∗, ε∗) =
(0, 0) such that ImF ′

u(u
∗, ε∗) �= Z = C([0, π ] × [0,∞)) (more careful explanation

see in Sect. 4). We apply to it the p-regularity theory [6, 7, 14, 15] and examine
3-regularity. For our purposes, 3-regularity on selected elements is enough.

The problems of the form F(u, ε) = 0, where F : U × M → Z is a sufficiently
smooth nonlinear mapping from a Banach space U × M to a Banach space Z , we
separate into two classes, called regular and irregular. Roughly speaking, regular prob-
lems are those to which implicit function theorem arguments can be applied and the
irregular ones are those to which it cannot, at least not directly.

The basis for our practical applications will be the following analogue of Lyusternik
theorem on tangent cone (see [10]).

Theorem 1 Let F(v, y) ∈ C p+1(U × M), F : U × M → Z, where M is finite-
dimensional space, and U and Z are Banach spaces. Let the mappings Fi (v, y),
i = 1, . . . , p be defined by (8). Assume that F(v∗, y∗) = 0 and ∀ȳ ∈ M, ‖ȳ‖ = 1,
(0, ȳ) ∈ ⋂p

k=1 Ker
k F (k)

k (v∗, y∗) and F is strongly p-regular with respect to M along
every element (0, ȳ), ȳ ∈ M, that is

∥
∥
∥
∥

{
F ′
1(v

∗, y∗) + F ′′
2 (v∗, y∗)[0, ȳ] + · · · + F (p)

p (v∗, y∗)[0, ȳ]p−1
}−1

∥
∥
∥
∥ ≤ C . (2)

(Here {·}−1 denotes right inverse operator).
Then, there exists the continuous mapping v = v(y), y ∈ Vδ(y∗), where Vδ(y∗) is
the neighborhood of y∗, v(y) ∈ C(Vδ(y∗)), for sufficiently small δ > 0 , such that
F(v(y), y) = 0 and

v(y) = v∗ + ω(y), ‖ω(y)‖ = o(‖y − y∗‖), (3)
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‖v(y) − v∗‖ ≤ C
p∑

k=1

‖Fk(v∗, y)‖
1
k
Zk

, ∀y ∈ Vδ(y
∗), (4)

where C > 0—independent constant.

Above theorem is proved in [10]. This is an analogue of the Lyusternik theorem on
the tangent cone, which concerns the existence of continuous solutions of the equation
F(v, y) = 0, where F : U×M → Z ,M is finite-dimensional space,U , Z are Banach
spaces and F(v, y) ∈ C p+1(U × M).

In its proof, we applied theMichael selection theorem (see [11]), which we provide
in the modified form:

Theorem 2 Let U, Z—B-spaces, A ∈ L(U , Z), A is surjective. Then, there exists a
continuous mapping N : Z → U, such that AN (z) = z and ‖N (z)‖ ≤ c‖z‖, z ∈ Z,
where c > 0 is a constant independent of z.

Let us note that from the Banach theorem about surjective operator, we have ‖A−1‖
≤ K (see Definition 6).

Theorem 1 allows the important conclusion about existence solution to Burgers
equation with respect to the boundary conditions. The existence of continuous solu-
tions is interesting, because there are nomany results connectedwith singular problems
(see, for example, [1, 3, 5]).

2 Main constructions in p-regularity theory

In this section, we present some important definitions and theorems of p-regularity
theory to be used in what follows [6, 7, 14, 15].

We are interested in the following nonlinear problem:

F(v, y) = 0, (5)

where the mapping F : W × Y → Z and W , Y and Z are Banach spaces.
Assume that for some point (v∗, y∗) ∈ W × Y , ImF ′(v∗, y∗) �= Z . Let

Z = Z1 ⊕ · · · ⊕ Z p, (6)

where Z1 = cl(ImF ′(v∗, y∗)) and V1 = Z . For V2, we use one of the closed comple-
ment of Z1 in Z (if such one there exists). Let PV2 : Z → V2 be the projector onto V2
along Z1. By Z2, we denote the closure of the linear span of the image of the quadratic
mapping PV2F

′′(v∗, y∗)[·]2. Then, inductively,

Zi = cl(spanImPVi F
(i)(v∗, y∗)[·]i ) ⊆ Vi , i = 2, . . . , p − 1, (7)

where Vi is a choice of closed complement of Z1 ⊕ · · · ⊕ Zi−1, i = 2, . . . , p with
respect to Z , and PVi : Z → Vi is a projector onto Vi along Z1 ⊕ · · · ⊕ Zi−1,
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i = 2, . . . , p with respect to Z . Finally, Z p = Vp. The order p is the minimal number
(if it exists) for which the decomposition (6) holds.
In what follows, we will denote ϕ(0) = ϕ for any mapping ϕ.
Define the following mappings:

Fi : W × Y → Zi , Fi (v, y) = PZi F(v, y), i = 1, . . . , p, (8)

where PZi : Z → Zi is the projection operator onto Zi along Z1 ⊕ · · · ⊕ Zi−1 ⊕
Zi+1 ⊕ · · · ⊕ Z p. Then, the mapping F can be represented as:

F(v, y) = F1(v, y) + · · · + Fp(v, y) (9)

or
F(v, y) = (F1(v, y), . . . , Fp(v, y)). (10)

Denote h = [hv, hy], hv ∈ W , hy ∈ Y .

Definition 1 The linear operator �p = �p(h) : W × Y → Z , defined by

�p(h) = F ′
1(v

∗, y∗) + F ′′
2 (v∗, y∗)[h] + · · · + F (p)

p (v∗, y∗)[h]p−1 (11)

such that for any z = (v, y)

�p(h)[z] = F ′
1(v

∗, y∗)[z] + F ′′
2 (v∗, y∗)[h][z] + · · · + F (p)

p (v∗, y∗)[h]p−1[z],
(12)

is called a p-factor operator depending of h or shortly a p-factor operator if it is clear
from the context.

Definition 2 We say that F is completely degenerate at (v∗, y∗) up to the order p if
F (i)(v∗, y∗) = 0, i = 1, . . . , p − 1.

Remark 1 In the completely degenerate case, the p-factor operator reduces to
F (p)(v∗, y∗)[h]p−1.

Remark 2 For each mapping Fi , we have ([6, p. 145])

F (k)
i (v∗, y∗) = 0, k = 0, 1, . . . , i − 1, ∀ i = 1, . . . , p. (13)

Remark 3 For each mapping Fi , we have in the completely degenerate case

F (i)
i (v∗, y∗)[h]i−1 = PZi F

(i)(v∗, y∗)[h]i−1, i = 1, . . . , p. (14)

This means that F (i)
i (v∗, y∗)[h]i−1 are i-factor operators corresponding to completely

degenerate mappings Fi up to order i . Therefore, the general degeneration of F can
be reduced to the study of completely degenerated mappings Fi , i = 1, . . . , p and
their compositions.
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Let’s introduce the nonlinear operator �p[·]p such that

�p[z]p = F ′
1(v

∗, y∗)[z] + F ′′
2 (v∗, y∗)[z]2 + · · · + F (p)

p (v∗, y∗)[z]p

We can see that �p[h]p = �p(h)[h].
Definition 3 The p-kernel of the operator �p is a set

Hp(v
∗, y∗) = Ker p�p

= {h ∈ W × Y : F ′
1(v

∗, y∗)[h] + F ′′
2 (v∗, y∗)[h]2 + · · · + F (p)

p (v∗, y∗)[h]p = 0}.

Note that the following relation holds:

Ker p�p =
{ p⋂

i=1

Keri F (i)
i (v∗, y∗)

}

.

The p-kernel of the operator F (p)(v∗, y∗) in the completely degenerate case is a
set

Ker pF (p)(v∗, y∗) = {h ∈ W × Y : F (p)(v∗, y∗)[h]p = 0}.

Definition 4 A mapping F is called p-regular at (v∗, y∗) along h (p > 1) if
Im�p(h) = Z (i.e., the operator �p(h) is surjective).

Definition 5 A mapping F is called p-regular at (v∗, y∗) (p > 1) if it is p-regular
along every h ∈ Hp(v

∗, y∗)\{0} or Hp(v
∗, y∗) = {0}.

Let A ∈ L(U , Z) and AU = Z .
Let {·}−1 denote right inverse operator, i.e.,

A−1z = {u ∈ U : Au = z}

and
‖A−1z‖ = inf

u∈U{‖u‖ : Au = z}.

Obviously the operator {·}−1 is multivalued.

Definition 6 Define

‖A−1‖ = sup
z∈Z ,‖z‖=1

inf
u∈U{‖u‖ : Au = z}. (15)

Definition 7 Let F : W × Y → Z = Z1 ⊕ · · · ⊕ Z p. The mapping F(v, y) is called
strongly p-regular at the point (v∗, y∗) if there exist γ > 0 and c > 0 such that

sup
h∈Hγ

‖{�p(h)}−1‖ ≤ c < ∞,
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where

Hγ = {
h = (hv, hy) ∈ W × Y : ∥

∥F (k)
k (v∗, y∗)[h]k∥∥Zk

≤ γ,

∀k = 1, . . . , p, ‖h‖W×Y = 1
}
.

Define the solution set for the mapping F as the set

S = {(v, y) ∈ W × Y : F(v, y) = F(v∗, y∗) = 0} (16)

and let T(v∗,y∗)S denote the tangent cone to the set S at the point (v∗, y∗), i.e.,

T(v∗,y∗)S = {
h ∈ W×Y : (v∗, y∗)+εh+r(ε) ∈ S, ‖r(ε)‖ = o(ε), ε ∈ [0, δ], δ > 0

}

(17)

The following theorems describe the tangent cone to the solution set of equation
(5) in the p-regular case.

Theorem 3 Let W, Y and Z be the Banach spaces, and let the mapping F ∈ C p

(W × Y , Z) be p-regular at (v∗, y∗) ∈ W × Y along h. Then, h ∈ T(v∗,y∗)S.

Theorem 4 (Generalized Lyusternik Theorem, [6]) Let W, Y and Z be the Banach
spaces, and let the mapping F ∈ C p(W × Y , Z) be p-regular at (v∗, y∗) ∈ W × Y .
Then,

T(v∗,y∗)S = Hp(v
∗, y∗). (18)

Let us explain that here (for Banach spaces U and Z ) F ∈ C p(U , Z) means that
F : U → Z is p times continuously Frechét differentiable.

The following Lemma will be important in the study of the surjectivity of p-factor
operators.

Lemma 1 Suppose that Z = Z1 ⊕ Z2, where Z1 and Z2 are closed subspaces in Z,
A, B ∈ L(U , Z), and ImA = Z1. Let P2 also be the projection onto Z2 along Z1.
Then, (A + P2B)U = Z ⇔ (P2B)KerA = Z2.

This lemma is a consequence of the following.

Lemma 2 Suppose that Z = Z1 ⊕ Z2, where Z1 and Z2 are closed subspaces in
Z, A1, A2 ∈ L(U , Z), A1U ⊂ Z1, and A2U ⊂ Z2. Then, (A1 + A2)U = Z iff
A1KerA2 = Z1 and A2KerA1 = Z2.

The proof is obvious. Lemma 1 follows from Lemma 2 if we put A1 = A and
A2 = P2B.

Lemma 3 is the generalization of lemma 1.

Lemma 3 [8]Let A1, A2, . . . , Ap ∈ L(U , Z), Z = Z1⊕· · ·⊕Z p. Let Im
k Ak = Zk,
where 
k : Z → Zk is a projection operator from the space Z onto Zk along
Z1 ⊕ · · · ⊕ Zk−1 ⊕ Zk+1 ⊕ · · · ⊕ Z p, k = 1, . . . , p and 
1A1 = A1. Then

(

1A1 + 
2A2 + · · · + 
p Ap

)
U = Z ⇔ (


p Ap
)
⎛

⎝
p−1⋂

i=1

Ker
i Ai

⎞

⎠ = Z p.
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3 Auxiliary p-factor implicit function theorems

Now, we consider two theorems, which are the modification of analogical theorems
in [6].

Theorem 5 (The p-order implicit function theorem for nontrivial p-kernel) Let W,
Y and Z be Banach spaces, F ∈ C p+1(W × Y ) → Z, F(v∗, y∗) = 0, Fi (v, y),
i = 1, . . . , p be defined by (8) and the p-factor operator �p(h) be given by (11).

Assume that there exists an element h̄ ∈ ⋂p
r=1 Ker

r F (r)
rv (v∗, y∗), ‖h̄‖ = 1 such that

Im�p(h̄) = Z, that is the mapping F is p-regular along the element h̄. Then for a
sufficiently small α > 0, ν > 0 and δ = αν p there exists the continuous mapping
ϕ(y) : Uδ(y∗) → Uν(v

∗) and constant K > 0 such that the following hold:

1. ϕ(y∗) = v∗;
2. F(ϕ(y), y) = 0 for all y ∈ Uδ(y∗);
3. ϕ(y) = v∗ + h(y) + v(y), where h(y) = γ (y)h̄, γ (·) : Uδ(y∗) → R and γ (·) is

arbitrary, continuous function such that

‖y − y∗‖ 1
p

α
1
p

≤ γ (y) ≤ ν.

Moreover, v(y) satisfies

‖v(y)‖W ≤ K
p∑

r=1

‖Fr (v∗ + h(y), y)‖Zr
γ (y)r−1 (19)

for all y ∈ Uδ(y∗), γ (y) �= 0, or

‖v(y)‖W = O(γ 2(y)). (20)

The proof of the above theorem is similar to the proof of analogous theorem in [6].

Remark 4 Estimate (19) can be replaced by the following

‖v(y)‖ ≤ K
p∑

r=1

‖Fr (v∗ + h(y), y)‖
1
r
Zr

y ∈ Uδ(y
∗), y �= y∗. (21)

The following theorem is some generalization of Theorem 5.

Theorem 6 Let W, Y and Z be Banach spaces, F ∈ C p+1(W × Y ) → Z, F(v∗, y∗)
= 0, Fi (v, y), i = 1, . . . , p be defined by (8) and the p-factor operator�p(h) be given

by (11). Assume that there exists an element h̄ ∈ ⋂p
r=1 Ker

r F (r)
r(v,y) (v

∗, y∗), ‖h̄‖ = 1,
h̄ ∈ W × Y , h̄ = (h̄v, h̄ y), h̄ y = 0 such that Im�p(h̄) · (0 × Y ) = Z, that is the
mapping F is p-regular along the element h̄. Then for a sufficiently small α > 0,
ν > 0 and δ = αν p there exists the continuous mapping ϕ(y) : Uδ(y∗) → Uν(v

∗)
and constant K > 0 such that the following hold:
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1. ϕ(y∗) = v∗;
2. F(ϕ(y), y) = 0 for all y ∈ Uδ(y∗);
3. ϕ(y) = v∗ + h(y) + v(y), where h(y) = γ (y)h̄ y , γ (·) : Uδ(y∗) → R and γ (·) is

arbitrary, continuous function such that

‖y − y∗‖ 1
p

α
1
p

≤ γ (y) ≤ ν.

Moreover, v(y) satisfies

‖v(y)‖W ≤ K
p∑

r=1

‖Fr (v∗ + h(y), y)‖Zr
γ (y)r−1 (22)

for all y ∈ Uδ(y∗), γ (y) �= 0, or

‖v(y)‖W = O(γ 2(v)). (23)

The difference between Theorems 5 and 6 is that in Theorem 5 we take derivation
with respect to v, but in Theorem 6 with respect to (v, y).

4 Solutions to Burgers equations

In this section, we will present the main result of this work.
Consider the Burgers equation

F(u, ε) = u′
t − u′′

xx + uu′
x + εu2 = 0, (24)

F : � → C([0, π ] × [0,∞)) where F is sufficiently smooth (at least up to order
p + 1) and u(0, t) = u(π, t) = 0.

We will apply Theorem 6 denoting

F(v, y) = F(u, ε), v := u, y := ε, (25)

The following result will hold

Theorem 7 The mapping F(u, ε) is 3-regular along h̄ = (h̄u, 0ε), where h̄u
= e−t sin x. Moreover, for sufficiently small α > 0, ν > 0, ε ∈ (−αν3, αν3) and

k(ε) ∈
[

ε
1
3

α
1
3
, ν

]

there exists continuous solution of (24) in the following form

u(x, t, ε) = γ (ε)h̄u + y(x, t, ε), (26)

u(x, 0) = k(ε) sin x, (27)

where γ (ε) is some continuous function such that γ (ε) = O(k(ε)) and ‖y(x, t, ε)‖
= o(ε

1
3 ).
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Proof We introduce the mapping 
(u, ε, k) and equation


(u, ε, k) = (F(u, ε), u(x, 0) − k sin x) = 0 (28)

with boundary conditions u(0, t) = u(π, t) = 0.
Here (u∗, ε∗, k∗) = (0, 0, 0) is the trivial solution of this equation and the tangent

cone goes out from this point. Note that the analysis of the first derivative of the
mapping 
 comes to the analysis of 3-regularity of the mapping F .

Denoting u′
t − u′′

xx by Lu (parabolic operator) and u′
x by ∂

∂x u (operator of differ-
entiation), we obtain

F(u, ε) = Lu + u
∂

∂x
u + εu2 = 0. (29)

Denote by F ′
u , F

′
ε partial derivatives of F with respect to u, ε and analogically

higher-order partial derivatives by F ′′
uu , F

′′
uε, F

′′
εu , F

′′
εε, F

′′
uuu , F

′′
uuε, . . ., etc.

We have
F ′(u, ε) = (

F ′
u(u, ε), F ′

ε(u, ε)
)
, (30)

where

F ′
u(u, ε)(·)u = L(·)u + (·)u ∂

∂x
u + u

∂

∂x
(·)u + 2εu(·)u (31)

and
F ′

ε(u, ε)(·)ε = (·)εu2. (32)

Note that
F ′
u(0, 0)(·)u = L(·)u (33)

and

KerF ′
u(0, 0) = {

u ∈ C2([0, π ] × [0,∞)) : Lu = 0, u(0, t) = u(π, t) = 0
}
. (34)

Taking into account the Fourier method of solving second-order partial differential
equations and bearing in mind that we are looking for at least one solution we can
determine

KerF ′
u(0, 0) = span

{
2√
π
e−t sin x

}

. (35)

The image of the operator F ′
u(0, 0) is defined as follows:

ImF ′
u(0, 0) = {

z ∈ C([0, π ] × [0,∞)) : ∃u ∈ C2([0, π ] × [0,∞)) F ′
u(0, 0)u = z,

u(0, t) = u(π, t) = 0
}

= {
z ∈ C([0, π ] × [0,∞)) : ∃u ∈ C2([0, π ] × [0,∞)) Lu = z,

u(0, t) = u(π, t) = 0
}
.

We will look for a solution to the equation F(u, ε) = 0 in the form

u(x, t) = e−t ū(x). (36)
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Then
Lu = −e−t ū − e−t ū′′

xx = −e−t(ū + ū′′
xx

)
(37)

One can show that the boundary value problem

Lu = −e−t(ū + ū′′
xx

) = e−t sin x, u(0, t) = u(π, t) = 0,

i.e.,
ū′′
xx + ū = − sin x, ū(0) = ū(π) = 0,

does not have a solutions.
Therefore, the operator F ′

u(0, 0) is not surjective and

ImF ′
u(0, 0) �= C([0, π ] × [0,∞)) = Z .

This implies that Z = Z1 ⊕ V2, where Z1 = ImF ′
u(0, 0) and V2 = Z⊥

1 .
The projector PV2 : Z → V2 can be described as

PV2 z = 2√
π
e−t sin x < z,

2√
π
e−t sin x >

= 4

π
e−t sin x

∫ ∞

0
e−tdt

∫ π

0
z(τ, t) sin τdτ.

z ∈ Z .

This implies that

Z2 = span
(
ImPV2F

′′(0, 0)[·]2) = span

{

z(x, t) ∈ Z : z(x, t)

= 4

π
e−t sin x

∫ ∞

0
e−tdt

∫ π

0
F ′′(0, 0)[p(τ, t)]2 sin τdτ,

p(τ, t) ∈ C2([0, π ] × [0,∞))

}

⊆ V2.

Let us evaluate the second derivative of the mapping F

F ′′(u, ε) = ((
F ′′
uu(u, ε), F ′′

uε(u, ε)
)
,
(
F ′′

εu(u, ε), F ′′
εε(u, ε)

))
, (38)

where

F ′′
uu(u, ε)(·)u(·)u = (·)u ∂

∂x
(·)u + (·)u ∂

∂x
(·)u + 2ε(·)u(·)u, (39)

F ′′
uε(u, ε)(·)u(·)ε = 2u(·)u(·)ε, (40)

F ′′
εu(u, ε)(·)ε(·)u = 2u(·)ε(·)u, (41)

F ′′
εε(u, ε)(·)ε(·)ε = 0. (42)
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From this, we obtain

F ′′(u, ε) =
((

2
∂

∂x
+ 2ε, 2u

)

, (2u, 0)

)

,

F ′′(0, 0) =
((

2
∂

∂x
, 0

)

, (0, 0)

)

and

Z2 = span
(
ImPV2F

′′(0, 0)[·]2) = span

{

z(x, t) ∈ Z : z(x, t)

= 4

π
e−t sin x

∫ ∞

0
e−tdt

∫ π

0
2

∂

∂τ
h2u sin τdτ

}

.

Substituting hu = se−t sin τ , where s ∈ R, we get

Z2 = {0}, V3 = (Z1 ⊕ {0})⊥,

since
∫ π

0
sin2 τ cos τdτ = 0.

We continue

PV3 z = 2√
π
e−t sin x < z,

2√
π
e−t sin x >

= 2√
π
e−t sin x

∫ π

0

∫ ∞

0
z(τ, t)

2√
π
e−t sin τdτdt, z ∈ Z .

Z3 = span(ImPV3F
′′′(0, 0)[·]3) = span

{

z(x, t) ∈ Z : z(x, t)

= 2√
π
e−t sin x

∫ π

0

∫ ∞

0
F ′′′(0, 0)[p(τ, t)]3 2√

π
e−t sin τdτdt,

p(τ, t) ∈ C2([0, π ] × [0,∞))

}

⊆ V3.

Let us evaluate the third derivative of the mapping F :

F ′′′(u, ε) = (((F ′′′
uuu, F

′′′
uuε), (F

′′′
uεu, F

′′′
uεε)), ((F

′′′
εuu, F

′′′
εuε), (F

′′′
εεu, F

′′′
εεε)))

F ′′′
uuu(·)u(·)u(·)u = 0, F ′′′

uuε(·)u(·)u(·)ε = 2(·)ε(·)u(·)u,
F ′′′
uεu(·)u(·)ε(·)u = 2(·)u(·)ε(·)u, F ′′′

uεε(·)u(·)ε(·)ε = 0,

F ′′′
εuu(·)ε(·)u(·)u = 2(·)u(·)ε(·)u, F ′′′

εuε(·)ε(·)u(·)ε = 0,

F ′′′
εεu(·)ε(·)ε(·)u = 0, F ′′′

εεε(·)ε(·)ε(·)ε = 0 (43)
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and
F ′′′(u, ε) = F ′′′(0, 0).

Note that
F (4)(u, ε) = 0,

and V3 = Z3, PV3 z = 
Z3 z.
Therefore, we will show that the mapping F is 3-regular on some elements that

belong to the 3-kernel of the 3-factor operator and next we will describe the solutions
of Burgers equation.

Now let us take p(τ, t) = (hu, hε). For such defined vector p(τ, t) the following
relations hold:

F ′′′(0, 0)[p(τ, t)]2 = (
4hεhu, 2h

2
u

)
, (44)

F ′′′(0, 0)[p(τ, t)]3 = 6h2uhε. (45)

Substituting hu = se−t sin τ , where s ∈ R and bearing in mind that
∫ π

0 sin3 τdτ

= 4
3 we get

Z3 = span

{

z(x, t) ∈ Z : z(x, t) = 2√
π
e−t sin x

∫ π

0

∫ ∞

0
6h2uhε

2√
π
sin τdτdt

}

= span

{
2√
π
e−t sin x

}

= KerF ′
u(0, 0),

3-factor operator

∀[hū, hλ] ∈ C2([0, π ] × [0,∞)) × R

�3(h)[hū, hλ] = �3((0, 0), [hu, hε])[hū, hλ]
= Lhū + 2√

π
e−t sin x

∫ π

0

∫ ∞

0
(4hεhuhū + 2h2uhλ)

2√
π
e−t sin τdτdt

and 3-kernel of 3-factor operator �3(h)

Ker3�3(h) =
{

h = [hu, hε] ∈ C2([0, π ] × [0,∞)) × R :

Lhu + 2√
π
e−t sin x

∫ π

0

∫ ∞

0
(6h2uhε)

2√
π
e−t sin τdτdt = 0

}

.

Taking into account the equation

∫ π

0
sin3 τdτ = 4

3
,
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and fact, that hu = ce−t sin τ , since hu ∈ KerF ′
u(0, 0), c ∈ R , we solve the following

equation of unknowns c, hε:

4

π
e−t sin xhε

∫ π

0

∫ ∞

0
6c2e−3t sin3 τdτdt = 0. (46)

From here we get c = 0 or hε = 0 and the locus Ker3�3(h) we describe clearly as
follows:

Ker3�3(h) = {
(ce−t sin x, 0)

} ∪ {(0, ε)}, ‖(hu, ε)‖ = 1,

where hu is equal ce−t sin x or 0.
Nowweverifywhether the 3-factor is surjective ontoC([0, π ]×[0,∞)) for element

H belongs to the 3-kernel of the 3-factor operator.
Let H = (hu, hε) = (ce−t sin x, 0). We examine that

∀z ∈ C([0, π ]×[0,∞)) ∃[
h̄ū, h̄λ

] ∈ C2([0, π ]×[0,∞))×R �3(H)
[
h̄ū, h̄λ

] = z.
(47)

Using Lemma 3, i.e., putting z = z3 = a 2√
π
e−t sin x ∈ Z3, we find the element

h̄ū = be−t sin x ∈ KerF ′
u(0, 0). We obtain

2√
π
e−t sin x

∫ π

0

∫ ∞

0

(
4 · 0 · ce−t sin τ · h̄ū + 2

(
ce−t sin τ

)2
h̄λ

) 2√
π
e−t sin τdτdt

= a
2√
π
e−t sin x, (48)

∫ π

0

∫ ∞

0
2(ce−t sin τ)2h̄λ

2√
π
e−t sin τdτdt = a, (49)

h̄λc
2 4

3
√

π

∫ π

0
(sin3 τ)dτ = a, (50)

h̄λ = 9a
√

π

16c2
, c �= 0. (51)

Therefore, (h̄ū, h̄λ) = (be−t sin x, 9a
√

π

16c2
) for any b and c �= 0. Then, 3-factor

operator �3(H) is surjective for H �= (0, 0). This implies that the mapping F is
3-regular at the point (0, 0) with respect to the element H = (ce−t sin x, 0).

It turns out that the mapping F is not 3-regular at the point (0, 0) with respect to
the element H = (0, ε). We show it in Appendix. But for the existence of solutions,
regularity on selected elements is enough.

Now we consider the equation 
(u, ε, k) = 0, i.e., to find the mapping u(x, t, ε)
and k(ε) such that


(u(x, t, ε), ε, k(ε)) = 0 ⇔
[
F(u(x, t, ε)) = 0,
u(x, 0, ε) = 0.

]

(52)

Element h̃u = (h̄u, 0, 1) ∈ Ker
′(0, 0, 0) ∩ Ker3
(3)
3 (0, 0, 0) and the mapping 


is regular along h̃u .
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By Theorem 6 for all ε ∈ (−αν3, αν3) and for all γ (ε) such that ε
1
3

α
1
3

≤ γ (ε) ≤ ν

and by Michael selection theorem, we obtain the continuous solution in the following
form [

u(x, t, ε)
k(ε)

]

= γ (ε)h̃u + y(x, t, ε) =
[

γ (ε)h̄u + y1(x, t, ε)
γ (ε) · 1 + y2(x, t, ε)

]

(53)

such that F(u(x, t, ε), ε) = 0, u(x, 0, t) − k(ε) sin x = 0.

From here if γ (ε) = k(ε) + o(k(ε)), then for all k(ε) ∈
(

ε
1
3

α
1
3

)

, there exists

γ (ε) = k(ε) + o(k(ε)) such that u(x, t, ε) = h̄u + ỹ(x, t, ε).
This completes the proof. ��
For the Burgers equation of the form

F(u, ε, f ) = u′
t − u′′

xx + uu′
x + εu2 − f (x, t) = 0,

u∗ = 0, ε∗ = 0, f ∗ = 0, (54)

where F : � × C([0, π ] × [0,∞)) → C([0, π ] × [0,∞)) and u(0, t) = u(π, t) = 0,
without loss of generality, consider the homogeneous initial condition u(x, 0) = 0.
We will apply Theorem 6 denoting F(v, y) = F(u, ε, f ), v := (u, f ), y := ε.

Note that the kernel KerF ′(0, 0, 0) is determined by solution to

u′
t − u′′

xx − f (x, t) = 0,

which we denote by ū(x, t, f ). Then

h̄ = (ū(x, t, f ), 0ε, f (x, t)) ∈ KerF ′(0, 0, 0) ∩ Ker3PF ′′′(0, 0, 0) = Ker3�3(h)

and

ū(x, t, f ) =
∫ t

0

∫ π

0
G(x, ξ, t, τ ) f (ξ, τ )dξdτ,

where G(x, ξ, t, τ ) is Green’s function (see, for example, [12, 13]).
Then the following result will be hold.

Theorem 8 (Classical case) Themapping F(u, ε, f ) is 3-regular along h̄u and for α, ν

sufficiently small, ε ∈ (−αν3, αν3) and ‖ f (x, t)‖ ∈
(

ε
1
3

α
, ν

)

there exists continuous

solution of (54) in the following form

u(x, t, ε, f ) = ū(x, t, f ) + y(x, t, ε, f ), (55)

where
‖y(x, t, ε, f ‖ = o(ε

1
3 ). (56)

The proof for Theorem 8 is similar to Theorem 7.
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5 Conclusion

Our research was inspired by works [9, 10]. We obtain analytical formulas for solv-
ing the nonlinear Burgers equation of the form (1) based on the p-regularity theory.
Additionally by Theorem 1 and Michael selection theorem 2, we conclude that there
exists a continuous solution.

Analogously may be investigated the following equations

u′
t − εu′′

xx + uu′
x + φ(u) − f (x, t) = 0, (57)

u′
t − u′′

xx + εuu′
x + φ(u) − f (x, t) = 0 (58)

and other, where φ(k)(0) = 0, k = 1, . . . , p (see [2]).
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Appendix

For the clarity of the calculations, we show that the mapping F from Theorem 7 is
not 3-regular at the point (0, 0) with respect to the element H = (0, ε). Let H =
(hu, hε) = (0, ε). We examine that

∀z ∈ C([0, π ]×[0,∞)) ∃[
h̄ū, h̄λ

] ∈ C2([0, π ]×[0,∞))×R �3(H)
[
h̄ū, h̄λ

] = z.
(59)

Using Lemma 3, i.e., putting z = z3 = ae−t sin x ∈ Z3, we must find the element
h̄ū = be−t sin x ∈ KerF ′

u(0, 0). We obtain

0 = ae−t sin x (60)
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But the above equation has no solutions. Then, 3-factor operator �3(H) is not
surjective. This implies that the mapping F is not 3-regular at the point (0, 0) with
respect to the element H = (0, ε).
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