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Abstract
We derive a number of spectral results for Dirac operators in geometrically nontrivial
regions in R

2 and R
3 of tube or layer shapes with a zigzag-type boundary using the

corresponding properties of the Dirichlet Laplacian.
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Quantum waveguide
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1 Introduction

In contrast to the Schrödinger case, a physical motivation to study Dirac opera-
tors describing particles confined to specific regions was missing for a long time.
It appeared for the first time in the 1970s in connection with the attempt to explain
the quark confinement by means of the so-called bag models [7, 16]. A different and
stronger motivation came three decades later with the discovery of graphene [34].
Although the electrons in a graphene sheet are nonrelativistic, their behaviour can be
effectively described by the two-dimensional Dirac equation. Moreover, it appeared
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that different boundary conditions are of interest in this model depending on the way
the graphene specimen is cut from a planar sheet. These applications caused an increas-
ing mathematical interest on these types of Dirac operators, see, e.g. [2, 4, 5, 28, 35]
for studies on their self-adjointness and basic spectral properties.

From the mathematical point of view, relations between the shape of the region on
which a given operator acts and its spectral properties belong to the most classical
questions, and for operators such as the Laplacian there is a huge number of results.
The corresponding problem for Dirac operators attracted attention only very recently,
cf. [1, 8, 32], andmany questions remain open. A particular class of problems concerns
a confinement to unbounded regions of a nontrivial geometry. For the Laplacian, or
more generally, for Schrödinger operators, it is known that such a confinement can
induce a nontrivial discrete spectrum; this problem has been thoroughly analysed.
For a broad overview, we refer to the monograph [19] summarizing results of many
research papers; particular stronger results will bementioned in the appropriate places.

It was noted that the spectrum of the two-dimensional Dirac operator with a partic-
ular type of boundary conditions, called ‘zigzag’ by the physicists, can be related to
the spectrum of the corresponding Dirichlet Laplacian [36]; this fact and its analogue
in three dimensions attracted attention recently [14, 24]. The zigzag boundary condi-
tions in a graphene quantum dot emerge from the termination of a lattice, when the
direction of the boundary is perpendicular to the bonds. The aim of the present paper is
to use these results in combination with the mentioned knowledge about the Laplacian
spectra in regions of tube or layer type to derive a number of new spectral results for
the corresponding Dirac operators. In the next section, we state in Theorem 2.1 the
indicated spectral correspondence and present the needed geometric preliminaries.
After that, we will derive our main results for the two- and three-dimensional case in
Sects. 3 and 4, respectively. We stress that our aim here is to demonstrate that a num-
ber of spectral results for Dirac operators in unbounded regions can be obtained by
such a translation, not to strive for stating the conclusions under the weakest possible
assumptions. Results on the Laplacian spectrum obtained under weaker hypotheses
translate to the Dirac setting analogously.

2 Preliminaries

2.1 Definition of the operator and its spectrum

First, let us introduce the Dirac operator with zigzag boundary conditions and let us
start with the two-dimensional setting. Denote by σ1, σ2, σ3 ∈ C

2×2 the Pauli spin
matrices defined by

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. (2.1)

For x = (x1, x2) ∈ C
2, we will often use the notation σ · x := σ1x1 + σ2x2 and, in

this vein, σ · ∇2 = σ1∂1 + σ2∂2. Next, let � ⊂ R
2 be an open set and let m, c ∈ R

with m ≥ 0 and c > 0. Then, the Dirac operator with zigzag boundary conditions is
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the differential operator Hm,� in L2(�; C
2) defined by

Hm,� f = ( − icσ · ∇2 + mc2σ3
)
f =

(
mc2 −ic(∂1 − i∂2)

−ic(∂1 + i∂2) −mc2

)
f ,

dom Hm,� =
{
f = ( f1, f2) ∈ L2(�; C

2) : (∂1 + i∂2) f1 ∈ L2(�), f2 ∈ H1
0 (�)

}
,

(2.2)

where H1
0 (�) = C∞

0 (�)
‖·‖H1(�) .We use here the units inwhich� = 1, cf. Remark 2.2.

In order to introduce the three-dimensional Dirac operator with zigzag-type bound-
ary conditions, define the Dirac matrices α1, α2, α3, β ∈ C

4×4 by

α j =
(
0 σ j

σ j 0

)
, j ∈ {1, 2, 3}, and β =

(
I2 0
0 −I2

)
, (2.3)

where σ j are the Pauli spin matrices and I2 is the 2 × 2-identity matrix. Similarly as
above,we use for x = (x1, x2, x3) ∈ C

3 the notationα·x = α1x1+α2x2+α3x3 and, in
this sense,α·∇3 = α1∂1+α2∂2+α3∂3 and also sometimesσ ·∇3 = σ1∂1+σ2∂2+σ3∂3.
Let� ⊂ R

3 be open.Then, choosing again units such that� = 1, the three-dimensional
Dirac operator with zigzag-type boundary conditions is for m, c ∈ R with m ≥ 0 and
c > 0 the differential operator acting in L2(�; C

4) defined by

Hm,� f = ( − icα · ∇3 + mc2β
)
f =

(
mc2 I2 −icσ · ∇3

−icσ · ∇3 −mc2 I2

)
f ,

dom Hm,� =
{
f = ( f1, f2) ∈ L2(�; C

4) : (σ · ∇3) f1 ∈ L2(�; C
2),

f2 ∈ H1
0 (�; C

2)
}

.

(2.4)

The basic spectral properties of Hm,� in the two- and in the three-dimensional case
are summarized in the following theorem. In order to formulate it, we denote by−��

D
the Dirichlet Laplacian in � ⊂ R

d , d ∈ {2, 3}.
Theorem 2.1 For anym ≥ 0 and c > 0, the operator Hm,� is self-adjoint. Its spectrum
is

σ(Hm,�) =
{
mc2

}
∪

{
±c

√
λ + (mc)2 : λ ∈ σ(−��

D)
}

and the following is true:

(i) mc2 ∈ σess(Hm,�).
(ii) If m 	= 0, then −mc2 /∈ σp(Hm,�).

(iii) Let r = 1 for d = 2 and r = 2 for d = 3. For λ > 0, one has ±c
√

λ + (mc)2 ∈
σp(Hm,�) with multiplicity rk if and only if λ ∈ σp(−��

D) with multiplicity k.

Proof The statements for space dimension d = 3 follow from [24, Theorem 3.4]
noting that the operators Am in [24] and our Hm,� are connected by Hm,� = cAmc,
cf. Remark 2.2.

The statements for d = 2 follow with the same arguments as in [24, Theorem 3.4].
We also refer to the proof of [14, Theorem 2.4], where the claims are shown in the
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case of bounded C∞-domains with compact boundary and c = 1; for this one has
to note that the operator D0,0,2 in [14] is the orthogonal sum of H̃m,� and Hm,R2\�,
while D0,0,−2 in [14] is the orthogonal sum of Hm,� and H̃m,R2\�, where H̃m,� and

H̃m,R2\� are given as in Remark 2.3.

In order to show the claims, introduce in L2(�) the differential operators Tmin and
Tmax by

Tmin f := −ic(∂1 − i∂2) f , dom Tmin = H1
0 (�),

and

Tmax f := −ic(∂1 + i∂2) f , dom Tmax =
{
f ∈ L2(�) : (∂1 + i∂2) f ∈ L2(�)

}
.

Then, as in [36, Proposition1] oneverifies that the operatorTmin is closed,Tmax = T ∗
min,

and one can write

Hm,� =
(
mc2 Tmin

Tmax −mc2

)
.

One finds in the sameway as in [24, Proposition 2.2 and Theorem 3.4] that TmaxTmin =
−c2��

D and that 0 ∈ σess(TminTmax); cf. also [36] for similar arguments. Hence,
one can apply [24, Proposition A.2] to obtain the claimed results also in the two-
dimensional case. ��
Remark 2.2 The expression of the spectral points in [14, 24] was stated as a mathemat-
ical result, with all the physical constants except the mass equal to one. Reintroducing
the speed of light, we prefer to use the above indicated form, having in mind that the
‘full’ expression should be

± �c

√(mc

�

)2 + λ (2.5)

which is dimensionally correct; to see that it is sufficient to realize that λ has the
dimension of inverted squared length, the same as the first term in the square root
(recall that �

mc is the Compton wavelength), and the energy of the free nonrelativistic

particle confined to the region � with Dirichlet boundary is λnr = �
2

2mλ.

Remark 2.3 In three dimensions, one has f = ( f1, f2, f3, f4) ∈ dom Hm,� ⊂
L2(�; C

4), formally speaking, if the boundary conditions f3|∂� = f4|∂� = 0 hold,
while there are no restrictions to f1, f2. Let H̃m,� be the Dirac operator defined via the
formal boundary conditions f1|∂� = f2|∂� = 0, and no restrictions are imposed to
f3, f4. Then, it is not difficult to show that H̃m,� is unitarily equivalent to −Hm,�, so
all the results obtained in this paper for Hm,� can be translated to corresponding results
for H̃m,�, cf. [24, Lemma 3.2]. We remark that the counterpart of H̃m,� in dimension
two can be analysed using the same arguments as in the proof of Theorem 2.1 and
similar results as in dimension three hold.

2.2 2D geometry

The object of our interest is spectral properties of Hm,� for regions � having the form
of tubes and layers. Let us describe their geometry starting from two-dimensional bent
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strips of a fixed width d = 2a. The key role is played by the strip axis, which is a
curve 	 of infinite length in R

2 without angles and self-intersections, in other words,
graph of a function 	 : R → R

2 satisfying |	̇(s)| = 1 for all s ∈ R; with an abuse
of notation we employ the same symbol for both. We always exclude the trivial case
and assume that 	 is not a straight line.

At each point of 	 we take the segment of the normal of length 2a centred at the
curve; the strip � = �	,a is then the union of these segments. It can be equipped with
natural curvilinear coordinates which are the arc length s of 	 and the normal distance
u of a strip point from the curve, so that its Cartesian coordinates are

x(s, u) = ξ(s) − uη̇(s), y(s, u) = η(s) + uξ̇ (s), (2.6)

where dot means derivative with respect to the arc length and the functions ξ, η rep-
resenting the parametric expression of 	 satisfy ξ̇2 + η̇2 = 1. In other words, �	,a is
the image of a straight strip,

�	,a := (
x(�0), y(�0)

)
, �0 := R × (−a, a). (2.7)

Using the coordinate functions ξ, η we define the signed curvature γ of 	 by

γ (s) := (η̇ξ̈ − ξ̇ η̈)(s),

which coincides up to the sign with the curvature understood as the inverse radius of
the osculation circle to the curve, |γ | = (ξ̈2 + η̈2)1/2. For bent strips, we assume that

(a) 	 isC4-smooth and the curvature γ togetherwith γ̇ and γ̈ tend to zero as |s| → ∞,

(b) the map (x, y) : R × (−a, a) → �	,a is injective.

Condition (b) means that the strip does not intersect itself; a condition necessary for
the injectivity is that uγ (s) > −1 holds for all (s, u) ∈ R × (−a, a). The curvilinear
coordinates s, u are by construction locally orthogonal: if the above inequality holds
for (s, u) ∈ R ×[−a, a] and we regard the closure of �	,a as a Riemannian manifold
with a boundary, its metric tensor is diagonal with the transverse component guu = 1
and the longitudinal one gss equal to g := (1+uγ )2. This alsomeans that the Jacobian
of the transformation (2.7) is equal to

√
g = 1 + uγ .

The knowledge of γ is crucial because it allows us to reconstruct the curve, uniquely
up to Euclidean transformations, and, mutatis mutandis, the strip of a fixed halfwidth.
Specifically, one uses the quantity β(s2, s1) := ∫ s2

s1
γ (s) ds which means the angle

between tangent vectors at the respective points of 	 to get for a fixed s0 ∈ R

ξ(s) = ξ(s0) +
∫ s

s0
cosβ(s1, s0) ds1, η(s) = η(s0) −

∫ s

s0
sin β(s1, s0) ds1. (2.8)

Infinite strips of a fixed width are not the only regions in which the relation between
the geometry and the spectrum can be studied. A case of interest, for instance, are loop-
shaped strips of a fixed width 2a built over a Jordan curve of length L > 0 referring to
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a map 	 : T → R
2 where T is a one-dimensional torus of circumference L . Again,

we identify 	 with an arc length parametrization of the curve. To adapt hypotheses (a)
and (b) to this situation, one has to replace R by the factor space R/[0, L), or more
specifically, to assume that

(a) for loops: 	 is C4-smooth on T and 	(k)(0) = 	(k)(L), 0 ≤ k ≤ 4,
(b) for loops: the map (x, y) : T × (−a, a) → �	,a given by (2.6) is injective.

Returning to infinite strips, we will also consider weak deformations of straight
strips ofwidthd > 0. For simplicity,we studyonly the case of a one-sidedperturbation,
i.e. the strip

�β f :=
{

(x, y) ∈ R
2 : 0 < y < d+β f (x)

}
(2.9)

with the deformation parameterβ ≥ 0 and a fixed f ∈ C∞
0 (R)with supp f ⊂ [−b, b].

Finally, we may consider also other types of geometric perturbations, for instance,
replacing a smooth bend by a sharply broken or polygonal shape; the simplest example
is an L-shaped strip given by

� :=
{
(x, y) ∈ R

2 : x, y > 0, min(x, y) < π
}

. (2.10)

In such a case the generating curve is polygonal and it makes no sense to ask for
smoothness as in (a), while in analogy with (b) we suppose that the strip does not
intersect itself. Yet another possibility is to couple different strips together. A notable
example is the system of two adjacent strips of widths d1, d2 coupled laterally through
a ‘window’ of width � = 2a in the common boundary, i.e. the set

� = {
(x, y) ∈ R

2 : x ∈ R, y ∈ (−d2, d1)
} \ (

((−∞,−a] ∪ [a,∞))×{0}). (2.11)

We denote d := max{d1, d2}, D := d1 + d2, and set � := d−1 min{d1, d2} as the
parameter describing the asymmetry of the system.

2.3 3D geometry

In three dimensions the variety of tubular regions is larger, and in addition, one can
investigate spectra of Dirac particles confined to layers. As in the previous case, let us
start from bent tubes. Again, if not mentioned differently we always assume that the
generating curve is not a straight line.

Consider an infinite smooth curve 	 inR
3 free of self-intersections, in other words,

graph of a function 	 : R → R
3; we again employ the same symbol for both and

suppose that 	 is parametrized by its arc length, |	̇(s)| = 1. An important role in our
considerations in the three-dimensional case is playedby theFrenet triad frame (t, n, b)
which exists whenever 	̈(s) 	= 0; it allows us to introduce curvilinear cylindrical
coordinates in the vicinity of 	 using the map

x(s, r , θ) := 	(s) − r
[
n(s) cos(θ − α(s)) + b(s) sin(θ − α(s))

]
, (2.12)
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where r , θ are the polar coordinates in the plane normal to 	 at the point s and
α : R → R is a fixed smooth function which describes how the coordinate system
(2.12) rotates with respect to the Frenet frame as we move along the curve; as we will
see, its choice is important unless the tube considered has a circular cross section. As
it is well known, the unit vectors (t, n, b) satisfy, as functions of s, the Frenet formula

⎛
⎝ ṫ
ṅ
ḃ

⎞
⎠ =

⎛
⎝ 0 γ 0

−γ 0 τ

0 −τ 0

⎞
⎠

⎛
⎝ t
n
b

⎞
⎠ ,

where γ, τ are the curvature and torsion of 	, respectively; recall that the knowledge
of these functions allows us again to reconstruct the curve uniquely up to Euclidean
transformations. We suppose that the curve is sufficiently regular and asymptotically
straight,

(c) 	 is C4-smooth, τ, τ̇ , τ̈ are bounded, and the curvature γ together with its first
and second derivatives tend to zero as |s| → ∞.

The importance of the function α stems from the fact that, in contrast to the two-
dimensional situation, the coordinate frame (2.12) need not in general separate the
longitudinal and transverse coordinates which is what we need to employ the ‘straight-
ening trick’ similar to that used in the 2D situation. To see the reason, consider first
the situation when 	̈ does not vanish anywhere and choose a function α satisfying
what the physicists call Tang condition,

α̇ = τ, (2.13)

determining the function up to a constant. Under this constraint, the separation occurs.
Indeed, regarding the vicinity of	 as aRiemannianmanifold, the correspondingmetric
tensor is

(gi j ) =
⎛
⎝ (1 + rγ cos(θ−α))2 + r2(τ −α̇)2 0 r2(τ −α̇)

0 1 0
r2(τ −α̇) 0 r2

⎞
⎠ , (2.14)

cf. [19, Sec. 1.3], becoming diagonal if the condition (2.13) is satisfied. In such a case
we have g := det(gi j ) = r2 (1 + rγ cos(θ−α))2 and g1/2 is the Jacobian of the map
(2.12). In general, however, the Frenet triad may not exist globally and/or its local
parts may not ‘glue’ together smoothly. This occurs, e.g. when the Frenet triad has
one-sided limits at a point s ∈ R where (n, b) are not defined, but those limits do
not match. Fortunately, the validity of condition (2.13) is clearly not affected if the
function α is shifted by a constant. We thus assume that

(d) the coordinate system (2.12) is Tang compatible meaning that (i) the set where
	̈(·) vanishes consists of isolated zeros accumulating at most at infinity, and (ii)
function α is piecewise continuous and such that α̇(s) = τ(s) holds whenever
	̈(s) 	= 0.
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Assumption (d) is convenient to work with, but it should be mentioned that there
are interesting examples where it is not satisfied, as the zero set of 	̈(·) may have
a more complicated structure. A particular case of interest is when 	 has a straight
segment on which its perpendicular parts, (n, b), are not uniquely defined. The global
coordinate system that allows to rephrase the study of −��

D as analysis of an elliptic
operator on a straight tubedoes nevertheless exist beingobtainedby aparallel transport.
The existence of such a relatively parallel adapted frame for C2-smooth curves was
proved in [6] and adapted to the current setting in [27]. In this vein, one can replace
assumption (d) by the hypothesis that

(d’) there is a global coordinate system (2.12) in the vicinity of 	 separating the lon-
gitudinal and transverse coordinates.

For the nontrivial details of assumption (d’), that is only vaguely formulated here,
we refer to [27], where it is elaborated for curves 	 of an even lower regularity. For
us, it is important to remark that the appropriate results in Sect. 4 remain valid when
assumption (d) is replaced by assumption (d’).

The importance of these hypotheses follows from the fact that to define a tube built
over the curve 	 we have to fix its cross section in terms of the transverse part of the
coordinates. We suppose that it is an open precompact set M ⊂ R

2 containing the
origin of the coordinates and we set a := supx∈M |x |; without loss of generality, we
may suppose that M is connected. Using the map (2.12), where we identify points in
M with their polar coordinates, we set

�α
	,M := x(R × M), (2.15)

i.e. we identify the tube with the image of �	0,M := R × M ; we will drop the
superscript and subscript if they are clear from the context. In order to use map (2.12)
to find spectral properties of Hm,�, we have to assume in addition that

(e) the map x in (2.12) is injective,

in other words, that the tube must not intersect itself. It is again not difficult to see
that a‖γ ‖∞ < 1 is sufficient to ensure the injectivity locally, however, its global
validity is a stronger requirement. In contrast to the two-dimensional situation, the
existence of a locally orthogonal system of coordinates in� requires in view of (2.14)
the additional assumption (d) or (d’); assumption (d) can be always satisfied provided
the cross section M is a disc centred at the origin giving us the freedom to choose
the function α with the described license, otherwise it is a restriction to the class of
admissible tubes.

The use of assumptions (d) or (d’) does not mean that noncircular tubes that do not
satisfy it are not of interest; the opposite is true, just they have to be treated by other
means. The case of a particular importance concerns twisted tubes; for simplicity, we
restrict our attention to such tubes built over a straight line. We start again from a
straight three-dimensional tube written as a Cartesian product, �0 = R × M , where
the cross section M ⊂ R

2 has the same properties as before; we exclude the trivial
case of a disc. Writing the element of R

3 as a column, x = (x1, x⊥), we define the
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twisted tube as the image of �0 by an appropriate map, namely

�α := {Rα(x1)x : x ∈ R × M}, (2.16)

where α : R → R is a C2-smooth function with the first and second derivatives
bounded on R, and

Rα(x1) =
⎛
⎝ 1 0 0
0 cosα(x1) sin α(x1)
0 − sin α(x1) cosα(x1)

⎞
⎠ .

Note that �α is nothing but the tube discussed above with γ = τ = 0 and the
rotation α with respect to the tube axis not obeying condition (d).

So far we have considered tubes of a fixed cross section. Another interesting sit-
uation arises when the latter varies locally. Consider a set-valued function x �→ Mx

which assigns to each x ∈ R a precompact, simply connected set Mx ⊂ R
2 and define

� :=
⋃
x∈R

{x} × Mx . (2.17)

We assume that

(f) � is a local deformation of a straight tube: there is a set M ⊂ R
2 and x0 > 0 such

that Mx = M if |x | > x0,
(g) the cross section of � varies in a piecewise continuous manner, that is, apart of a

discrete set of points, to each x ∈ R and ε > 0 there is an open set O � x such that
for any x ′ ∈ O the symmetric difference (Mx \ Mx ′) ∪ (Mx ′ \ Mx ) is contained in
the ε-neighbourhood of the boundary ∂Mx .Moreover, the deformation is supposed
to obey a global bound: there is a precompact N ⊂ R

2 such that Mx ⊂ N holds
for all x ∈ R.

Up to now the generating manifold, the curve over which the tube was built, had
codimension two. Let us turn to the situation when the generating manifold is of codi-
mension one, in other words, it is a smooth surface� in R

3. The task of parametrizing
it is now more complicated as there is no natural system of coordinates one could use.
In general, one employs an atlas to describe the surface geometry, and even if it con-
sists of a single chart, the existence of a diffeomorphism of � to the plane expressed
in terms of geodesic polar coordinates is not guaranteed [23].

For the presentation simplicity, let us assume for a moment that such coordinates
exist, meaning that there is a pole o ∈ � such that the exponential mapping expo :
To� → � is a diffeomorphism; if it is not the case, everything can be rewritten in terms
of suitable local charts. The ‘radial’ coordinate lines are the geodesics emanating from
o and the geodesic circles connect pointswith the samegeodesic distance from the pole.
The surface � is expressed by a map p : �0 → R

3, where �0 := (0,∞) × S1 is the
plane with polar coordinates, S1 being the unit circle; we write q = (s, θ). The tangent
vectors p,μ := ∂ p/∂qμ are linearly independent and their cross-product defines a unit
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normal field n on �. This allows us to define locally orthogonal coordinates in the
vicinity of � as the map

x(q, u) := p(q) + un(q), (2.18)

and the layer of width d = 2a > 0 built over the surface � as the corresponding
image of the straight layer �0 := �0 × (−a, a),

� := x(�0). (2.19)

We assume that the surface is not isomorphic to the xy plane and that

(h) the map (2.18) is C3-smooth and injective on �0, i.e. the layer � does not
intersect itself. In particular, locally the injectivity requires a < ρm :=
(max {‖k1‖∞, ‖k2‖∞})−1, where k j are the principal curvatures mentioned below,
which thus have to be uniformly bounded, ‖k j‖∞ < ∞ for j = 1, 2.

Metric properties of � are derived from those of the generating surface �. Its
metric tensor, gμν := p,μ · p,ν , has in the geodesic polar coordinates a diagonal form,
(gμν) = diag(1, r2), where r2 ≡ g := det(gμν) is the square of the Jacobian of the
exponential mapping which satisfies the classical Jacobi equation

r̈(s, θ) + K (s, θ) r(s, θ) = 0 with r(0, θ) = 1−ṙ(0, θ) = 0, (2.20)

where ṙ denotes the partial derivative of r with respect to s. The Gauss curvature K
appearing in (2.20) together with the mean curvature M are determined in the usual
way: the second fundamental formhμν := −n,μ·p,ν gives rise to theWeingarten tensor
h ν

μ := hμρgρν , where the Einstein summation convention is used at the right-hand

side, and it in turn defines the said twocurvatures by K := det(h ν
μ ) andM := 1

2 tr(h
ν

μ ).
What is important for us are the corresponding global quantities obtained by integrating
with respect to the invariant surface element, dσ := g1/2dq, the total Gauss curvature
K and the quantity M, defined, respectively, by

K :=
∫

�0

K (q) dσ , M :=
(∫

�0

M(q)2 dσ

)1/2

. (2.21)

The latter always exists, being possibly infinite, whileK requires the integral to make
sense which is matter of assumption, cf. (j) below. Recall also that the eigenvalues
of the Weingarten map are the principal curvatures k1, k2 through which the values
of the Gauss and mean curvatures are expressed as K = k1k2 and M = 1

2 (k1 + k2),
respectively.

We used the geodetic polar coordinates for illustrative purposes, however, one
may consider a much wider class of layers built over a surface �, not necessarily
diffeomorphic to a plane, and defined simply as

� :=
{
x ∈ R

3 : dist(x, �) < a
}

(2.22)
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for a given a > 0. The curvatures mentioned above can be defined globally through
local charts of the atlas, which also define a measure on � that can be used to deter-
mine the global quantities of the type (2.21). Assumption (h) is then replaced by the
following weaker requirement:

(h’) � is a C2-smooth, connected and orientable surface embedded in R
3, which is

noncompact and complete, i.e. no geodetic on � is terminated, and the layer built
over it does not intersect itself.

In addition to it, we adopt a couple of geometric assumptions:

(i) The layer is asymptotically planar, that is, K (z), M(z) → 0 for |z| → ∞ in the
sense of the geodetic distance.

Ifwehave the geodesic polar coordinates, thismeans that K (s, θ), M(s, θ) → 0holds
as s → ∞, however assumption (i) makes sense also if the atlas is more complicated,
because the geodetic distance from a fixed point is well defined. Furthermore, we
suppose that

(j) the total Gauss curvature exists, K ∈ L1(�0, dσ).

As in the case of tubes, the parametrization using coordinates (2.18) can also be used
to describe other curved layers of a fixed width, such as those built over a compact
surface without a boundary and periodically curved layers.

In addition to curved fixed-width layers, we can consider flat ones with local defor-
mations such as, for instance,

� f :=
{
x = (y, z) : y ∈ R

2, 0 < z < d + f (y)
}

, (2.23)

where f : R
2 → [0,∞) is a bounded function of a compact support, or layers

with a two-sided bulge. We have other cases of interest, an important one concerns
laterally coupled layers. In analogy with the two-dimensional case, by that we mean
two adjacent flat layers of the widths d1, d2 > 0; we suppose that that their common
boundary contains a ‘window’ in the form of open set W ⊂ R

2, meaning that � has
the form

� = {
(x, y, z) ∈ R

3 : x, y ∈ R, z ∈ (−d2, d1)
} \ (

(R2 \ W) × {0}). (2.24)

3 The geometrically induced spectrum in two dimensions

After these preliminaries we can describe relations between the spectrum of the oper-
ator Hm,� and the geometry of the region � that supports it. We consider first the
two-dimensional situations and the essential spectrum.

Theorem 3.1 We have σess(Hm,�) = (−∞,−εt] ∪ {mc2} ∪ [εt,∞), where

(i) εt = c
√
m2c2 + (

π
d

)2
if� is a bent strip ofwidth d = 2a satisfyingassumptions (a)

and (b).
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(ii) The same is true if � is the weakly deformed strip in (2.9).
(iii) For laterally coupled strips as in (2.11) of the widths d1, d2 > 0 we have εt =

c
√
m2c2 + (

π
d

)2
, where d = max{d1, d2}.

Proof To see (i) we note that by [19, Proposition 1.1.1] we have σess(−��
D) =

[(π
d

)2
,∞). Hence, Theorem 2.1 implies the claim in (i). Items (ii) and (iii) can be

shown in a similar way by using Theorems 1.4 and 1.5 in [19]. ��
However, a nontrivial geometry of � can give rise to a nonvoid discrete spectrum

of Hm,� which is by Theorem 2.1 mirror-symmetric, consisting of eigenvalues ±λ j ,
supposed to be arranged in the ascending and descending order in the positive and
negative part, respectively, multiplicity included.

Theorem 3.2 Let � be a bent strip of halfwidth a satisfying assumptions (a) and (b),
then σdisc(Hm,�) 	= ∅. Furthermore, let {�β} be a family of such strips with the
curvature equal to βγ for a fixed function γ consistent with (a) and (b) such that
γ, γ̇ , |γ̈ |1/2 ∈ L2(R, |s|ds); then for all β small enough Hm,�β has just two simple
discrete eigenvalues ±λ1(β) such that

λ1(β) = c
√
m2c2 + ε(β), (3.1)

where

√( π

2a

)2−ε(β) = β2

8

{
‖γ ‖2 − 1

2

∞∑
n=2

(χn, uχ1)
2�n

∫
R2

γ̇ (s) e−�n |s−s′|γ̇ (s′) ds ds′
}

+O(β3), (3.2)

with �n := π
2a

√
n2−1 , χn(u) := 1√

a
sin πn

2a (u+a), and (·, ·) being the inner product
in L2(−a, a), the sum runs in fact over even n only.

Proof In view of Theorem 2.1, one has to establish the existence of a discrete spectrum
for theDirichlet Laplacian on the bent strip which can be done using a variational argu-
ment, the idea of which belongs to Goldstone and Jaffe, cf. [22] and [19, Thm. 1.1]. To
see the claimed asymptotic expansion, note that −��

D has under the stated assump-
tions by [19, Thm. 6.3] one discrete eigenvalue ε(β) which satisfies (3.2). Together
with Theorem 2.1 this yields (3.1). ��

Wementioned that interesting spectral results can also be obtained for finite strips.A
notable example is an isoperimetric-type inequality for loop-shaped strips of halfwidth
a built over smooth and closed curveswithout self-intersections of afixed length L > 0.
In that case, the essential spectrum of Hm,� consists of a single point, the infinitely
degenerate eigenvalue mc2. The rest of the spectrum is purely discrete accumulating
only at ±∞. Asking about optimization of the ‘smallest’ pair of discrete eigenvalues,
±λ1, for all curves satisfying assumptions (a) and (b) for loops, we get the following
result:
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Theorem 3.3 In this situation, λ1 is uniquely maximized by� in the form of a circular
annulus.

Proof As the problem reduces by Theorem 2.1 to the maximization of the principal
eigenvalue of −��

D, the claim follows from Theorem 1, part (a), and the remark
afterwards in [18]. ��

Theorem 2.1 allows us to get more information about the spectrum of Hm,� for
infinite curved strips than stated above. For instance, an application of Payne–Pólya–
Weinberger inequality proved by Ashbaugh and Benguria [3] yields a lower bound on
the distance between λ1 and the infinitely degenerate eigenvalue mc2. Obviously, the
following bound is the strongest when Hm,� has just one pair of discrete eigenvalues.

Proposition 3.4 Let � be a bent strip of halfwidth a satisfying assumptions (a) and
(b) and suppose that #σdisc(Hm,�) = 2N, then we have

λ1 ≥ c

√
m2c2 + 31−Nb2

( π

2a

)2
, (3.3)

where b2 :=
(

j0,1
j1,1

)2 ≈ 0.394 and jr ,1 is the first zero of the Bessel function jr , r =
0, 1.

Proof By [19, Thm. 3.1] the first eigenvalue of Dirichlet Laplacian in the described
situation is bounded from below by 31−Nb2

(
π
2a

)2. This and Theorem 2.1 imply the
claim. ��

In a similar way as above, one can translate to the Dirac operator setting other
spectral estimates valid for Dirichlet Laplacians in strips, for instance, the Lieb–

Thirring-type inequality for the moments of the sequence
{
c
√(

π
2a

)2 + (mc)2 − εn
}
,

where εn are the nonnegative eigenvalues of Hm,�, cf. [19, Thm. 3.2].
Note further that the effect of geometrically induced binding we are discussing

here is robust; it does not require the strip to have a smooth boundary. As an example,
consider an L-shaped strip in (2.10); in the same way as below, one can also translate
to the Dirac operator setting the results about spectra of more general polygonal ducts
from Section 1.2 of [19].

Proposition 3.5 Let� be given by (2.10). Then,σess(Hm,�)=(−∞,−c
√
m2c2 + 1]∪

{mc2} ∪ [c√m2c2 + 1,∞) and the discrete spectrum consists of a pair of simple
eigenvalues, ±c

√
m2c2 + ε1, where ε1 ≈ 0.9291.

Proof According to Theorem 1.2 and Proposition 1.2.3 of [19] applied with d = π we
have that σess(−��

D) = [1,∞) and −��
D has one eigenvalue given by ε1 ≈ 0.9291.

Thus, an application of Theorem 2.1 yields the claimed results. ��
Another situation where a local modification of a strip geometry may induce the

existence of a discrete spectrum arises when the strip is locally modified as in (2.9).
A general existence result can be stated in a way independent of the cross section
dimension and we state it in the next section, cf. Theorem 4.4. In the two-dimensional
situation we are able to demonstrate the following weak deformation behaviour:
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Theorem 3.6 Let � = �β f be as in (2.9). For small enough β, the discrete spectrum

of Hm,� consists of a pair of simple eigenvalues,±c
√
m2c2 + ε1(β), provided 〈 f 〉 :=∫

R
f (x) dx > 0. They are real-analytic functions at β = 0 satisfying

ε1(β) =
(π

d

)2 − β2π4

d2
〈 f 〉 + O(β3).

The discrete spectrum is empty if 〈 f 〉 < 0 as well as in the critical case, 〈 f 〉 = 0,
if β is small and 8b < d

√
3. On the other hand, a pair of weak bound states exists for

〈 f 〉 = 0 if

‖ f ′‖2
‖ f ‖2 <

24

9 + √
117+48π2

π2

d2

and there are positive constants c1, c2 such that

c1β
4 ≤

(π

d

)2 − ε1(β) ≤ c2β
4.

Proof The results are obtained by Theorem 2.1 and a variational method for analysing
the spectrumof theDirichlet Laplacian in�. Thefirst claim follows fromTheorem6.51

of [19] which reproduces the result obtained in [12], the behaviour in the critical case
follows from [19, Theorem 6.9]. ��

For laterally coupled strips described at the end of Sect. 2.2 we have the following
result:

Theorem 3.7 Let� be given by (2.11). Then, we have σdisc(Hm,�) 	= ∅ for any � > 0.

The eigenvalues ±c
√
m2c2 + ε j (�) are simple with ε j (�) ∈ ((

π
D

)2
,
(

π
d

)2)
which are

continuously decreasing functions of �; the number of the discrete eigenvalues of Hm,�,

of both the positive and negative ones, is 2
(
max

{
1,

⌊
�
d

√
1−(1+�)−2

⌋}
+ N

)
with

N ∈ {0, 1}. As for the weak-coupling case, there are positive constants c1, c2 such
that

c1�
4 ≤

(π

d

)2 − ε1(�) ≤ c2�
4

holds for all sufficiently small positive window widths �.

Proof First, it follows from Theorem 1.5 of [19] that σdisc(−��
D) 	= ∅, the same

result allows us to estimate positions of the eigenvalues ε j (�) and the critical values
of � at which eigenvalues emerge from the continuous spectrum. The weak-coupling
asymptotics is a consequence of Theorem 6.10 of [19]. The application of Theorem 2.1
yields then the claimed results about the spectrum of Hm,�. ��
1 This result in [19] contains a misprint, 〈 f 〉 has there an extra square.
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Before leaving the two-dimensional case, let usmention onemore interesting exam-
ple. This � consists of two strips, for simplicity both of the width π , crossing at the
right angle. In analogy with Proposition 3.5 one can check that Hm,� has then a pair
of simple eigenvalues ±c

√
m2c2 + ε1, where ε1 ≈ 0.66. A new feature here is the

existence of a pair of eigenvalues ±c
√
m2c2 + ε2 with ε2 ≈ 2.73 which are embed-

ded in σcont(Hm,�) as one can check using a simple argument combing scaling and
symmetry considerations, first proposed in [37].

4 The geometrically induced spectrum in three dimensions

Let us pass to the three-dimensional situation, starting again from the essential spec-
trum of the Dirac particle confined to a tube or layer.

Theorem 4.1 We have σess(Hm,�) = (−∞,−εt] ∪ {mc2} ∪ [εt,∞), where

(i) εt = c
√
m2c2 + μ1, where μ1 is the principal eigenvalue of the Dirichlet Lapla-

cian −�M
D , if � is a bent tube of cross section M satisfying assumptions (c)–(e).

(ii) The same is true if � is a locally deformed tube satisfying assumptions (f) and (g).
(iii) The same is true for the twisted tube (2.16) provided the derivative α̇ is compactly

supported.
(iv) If, on the other hand, the tube is periodically twisted outside a compact region,

α̇(x1) = β for all |x1| large enough,wehave εt =c
√
m2c2 + inf σ(−�M

D − β2∂2ϕ),

where ϕ is the polar angle associated with the transverse variable x⊥.
(v) εt = c

√
m2c2 + (π

d )2 if � is a curved layer of width d = 2a satisfying assump-

tions (h), (i).
(vi) The same is true for the bulged layer (2.23).
(vii) For laterally coupled layers as in (2.24) of the widths d1, d2 > 0 we have εt =

c
√
m2c2 + (π

d )2, where d = max{d1, d2}.
Proof In viewofTheorem2.1, the claims follow from the essential spectrumproperties
of the corresponding Dirichlet Laplacians. For claim (i), one has by [19, Prop. 1.3.1]
that σess(−��

D) = [μ1,∞), by [19, Thm. 1.4] the same is true under the assumptions
in (ii). If the tube is twisted, it is straightforward to check that −��

D is unitarily
equivalent to Hα̇ := −�M

D − (α̇(x1)∂ϕ + ∂x1)
2 on L2(�0), cf. [19, Sec. 1.7.1]. If α̇

is compactly supported, this operator acts as −�
�0
D outside a compact set and claim

(iii) follows. If the tube is periodically twisted, Hα̇ is unitarily equivalent to the direct
integral

∫ ⊕
R

h(p) dp, where

h(p) = −�M
D + (p − iβ∂ϕ)2 (4.1)

and σ(Hα̇) = σess(Hα̇) = [inf σ(h(0)),∞) [19, Prop. 1.7.3]. The essential spectrum
is preserved under compactly supported perturbations which gives claim (iv).

For curved layers satisfying assumptions (h) and (i) we know from [26] that the
essential spectrum of −��

D covers the interval [( π
2a )2,∞). For claims (vi) and (vii)

we can refer to the proof of Theorem 4.5 in [19] and to [19, Thm. 4.7], respectively. ��
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What is again more interesting is the discrete spectrum of Hm,� induced by the
geometry of�. If it is nonvoid, by Theorem 2.1 it is mirror-symmetric, σdisc(Hm,�) =
{±λ j }, where we suppose the positive part to be arranged in the ascending order,
multiplicity included.

Theorem 4.2 Let � be a bent tube of cross section M satisfying assumptions (c)–(e),
thenσdisc(Hm,�) 	= ∅. Furthermore, let {�β} be a family of tubeswith the cross section
M and torsion τ fixed and the curvature equal to βγ for a fixed function γ consistent
with (c) such that γ, γ̇ , γ̈ ∈ L1(R, |s|ds); then for all β small enough Hm,�β has just
two discrete eigenvalues ±λ1(β), each of multiplicity two, such that

λ1(β) = c
√
m2c2 + ε(β), (4.2)

where

√
μ1 − ε(β) = β2

8
‖γ ‖2 − β2

16

∞∑
n=2

∫
M×M

dydy′ χ1(y)χ1(y
′)χn(y)χn(y

′) (4.3)

× √
μn − μ1

∫
R2

hs(s, y) e
−√

μn−μ1|s−s′| hs(s′, y′) dsds′ + O(β3).

(4.4)

In this expression μn are the eigenvalues of −�M
D and χn are the corresponding

normalized eigenfunctions; the function hs := rγ τ sin(θ − α) + r γ̇ cos(θ − α) is
integrated over dy = rdrdθ .

Proof By [19, Thm. 1.3], which can be checked by a variational method, one has
σdisc(−��

D) 	= ∅. Hence, by Theorem 2.1 also the discrete spectrum of Hm,� is
nonempty, which shows the first claim. Moreover, for � = �β with sufficiently small

β the Dirichlet Laplacian −�
�β

D has by [19, Thm. 6.3] exactly one simple discrete
eigenvalue ε(β) that satisfies (4.3). Hence, by Theorem 2.1 (iii) Hm,�β has only the
pair of discrete eigenvalues, each having multiplicity two, given in (4.2). ��

Proposition 3.4 has a three-dimensional analogue:

Proposition 4.3 Let� be a bent tube of cross section M satisfying assumptions (c)–(e)
and suppose that #σdisc(Hm,�) = 4N, then we have

λ1 ≥ c
√
m2c2 + 31−Nb3μ1, (4.5)

where b3 :=
(

π
j3/2,1

)2 ≈ 0.489 with j3/2,1 being the first zero of the Bessel function

j3/2.

The result again comes fromTheorem2.1 and [19,Thm. 3.1].Other spectral features
ofLaplacians such as theLieb–Thirring-type inequality for themoment of the sequence
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{μ1−εn} [19, Thm. 3.2], where εn are the nonnegative eigenvalues of−��
D, translate

to the Dirac operator setting as well.
Passing from curved strips and tubes to straight but locally deformed ones, one can

adapt for our purpose Theorem 1.4 of [19] and obtain with Theorem 2.1:

Theorem 4.4 Let � be the locally deformed tube (2.17) satisfying (f) and (g). The
discrete spectrum of Hm,� is empty if Mx ⊂ M for all x ∈ R. On the other hand,
if Mx ⊃ M for each x ∈ R and there is an interval where Mx \ M has a nonzero
measure, then σdisc(Hm,�) 	= ∅.

No general existence claim can be made if the deformation of a three-dimensional
tube is ‘sign changing’, however, in analogy with the two-dimensional case of The-
orem 3.6 one naturally conjectures that for gentle deformations the positivity of the
added volume will be decisive for the existence of a mirror pair of bound states of
Hm,�.

Let us turn to twisted tubes. In contrast to bending, twisting gives rise to effective
repulsion, and as such stabilizes the spectrum. Theorem 1.8 of [19], based on [17],
see also [25], yields in a similar flavour as above the following result which is useful
to compare to Theorem 4.2:

Theorem 4.5 Let� satisfy assumption (c) and (e). Assume further that the cross section
M has a C2 boundary and is not a disc centred at the origin. Moreover, suppose that α
in (2.12) is a continuously differentiable function which violates the condition α̇ = τ

such that α̇ is compactly supported, not identically equal to zero and has a bounded
derivative. Then, there is an ε > 0 such ‖γ ‖∞ +‖γ̇ ‖∞ < ε implies σdisc(Hm,�) = ∅.

By Theorem 4.1(iv) a periodic twist changes the essential spectrum of Hm,�. Given
the fact that the effective repulsion grows stronger with the twist velocity β, one may
expect that a local change of the twist of the correct sign could give rise to the existence
of bound states. This is indeed the case. Consider a straight twisted tube (2.16) with
the cross section M which is not a disc centred at the origin, has a C2-boundary, and
moreover,

α̇(x1) = β − δ(x1), (4.6)

where δ : R → R is a bounded function supported in an interval [−a, a] for some
a > 0.

Theorem 4.6 In the described situation, σdisc(Hm,�) 	= ∅ holds provided

∫
R

(
α̇2(x1) − β2) dx1 < 0. (4.7)

Moreover, the claim remains valid even when the integral (4.7) vanishes provided that
α̇(x1) + β > 0 holds whenever |x1| ≤ a and α̈ ∈ L2(−a, a).

Proof By Theorems 1.9 and 1.10 in [19], one has under both assumptions in the
theorem that σdisc(−��

D) 	= ∅. Hence, by Theorem 2.1 also σdisc(−Hm,�) 	= ∅. ��
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Remark 4.7 Using the result of [9] one can also prove the absence of the discrete
spectrum in the regime opposite to (4.7). A related open question is whether Hm,� has
resonances corresponding to their Schrödinger counterparts [10, 11].

Let us pass to operators Hm,� supported by layers. If� is curved but asymptotically
planar, we have the following result:

Theorem 4.8 Let � be a layer of halfwidth a satisfying assumptions (h’)–(j), then
σdisc(Hm,�) 	= ∅ holds if one of the following conditions is satisfied:

(i) The total Gauss curvature satisfies K ≤ 0. This happens, in particular, if the
generating surface � is not conformally equivalent to the plane so that � is not
simply connected.

(ii) The halfwidth a is small enough and∇gM ∈ L2
loc(�), where∇g refers to covariant

derivatives on the manifold (�, g).
(iii) M = ∞ and ∇gM ∈ L2(�).
(iv) � has a cylindrical symmetry; if K > 0 we have #σdisc(Hm,�) = ∞.

Proof By Theorem 2.1 the claim is true if we can establish the existence of discrete
eigenvalues of −��

D under the respective assumptions. In the first three points, this
follows from [19, Thm. 4.2] which is based on [13]. In particular, the first one provides
a universal existence result for layers which are not simply connected. This follows
from the Cohn-Vossen inequality, K ≤ 2π(2 − 2h − e), where e is the number of
ends of � and h is its genus, i.e. the number of ‘handles’; once it is nonzero, we have
always K < 0, cf. [19, Corollary 4.2.1]. In the last point, the claim is a consequence
of Theorems 4.3 and 4.4 in [19] and a corollary of the former. ��
Remark 4.9 (a) There are various other sufficient conditions for the existence of the
discrete spectrum of −��

D, see [30] or [33], which ensure in the same way that
σdisc(Hm,�) is nonvoid. In the same vein, one may ask whether Theorem 2.1 has
a higher-dimensional analogue which could be used in combination with the results
of [29, 31].

(b) The trial functions used to establish claim (iv) of the last theorem have compact
supports which can be chosen arbitrarily far from the symmetry axis. This shows that
the result remains valid if such a cylindrical layer is locally deformed. An example is
a conical layer, cf. [19, Example 4.2.3] and [20].

The claim (iv) of Theorem 4.8 shows an important difference between curvature-
induced bound states in tubes and layers. The former case is of a local character, while
for layers the global geometry plays a role. This is connected with the fact that a tube
can fully be ‘straightened’ using curvilinear coordinates (2.12), while in layers the
metric tensor of � remains always present. As a consequence, for instance, it is not
guaranteed that a ‘gentle’ perturbation will give rise to a single bound state of −��

D
as we recalled in the previous remark. From this reason, we restrict our attention to
locally curved layers for which K = 0 and consider, e.g. the family of surfaces

�β := p(R2), p(x;β) = (
x, β f (x)

)
, (4.8)
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where f : R
2 → R is a given C4-smooth function. For the sake of simplicity, we

suppose that f is zero outside of a compact set; the conclusions extend to situations
where f togetherwith its derivatives up to the fourth order has suitable decay properties
at infinity [19, Thm. 6.4]. We have the following claim:

Theorem 4.10 Let {�β} be a family of layers of halfwidth a built over the surfaces
(4.8). Then, Hm,�β has for all β small enough exactly one pair of discrete eigenvalues
±λ1(β), each having multiplicity two, behaving as

λ1(β) = c

√
m2c2 +

( π

2a

)2 − e2w(β)−1
, (4.9)

where

w(β) = −β2
∞∑
n=2

(χ1, uχn)
2
( π

2a

)4
(n2−1)2

∫
R2

|m̂0(ω)|2
|ω|2 + (

π
2a

)2
(n2 − 1)

dω+O(β3) ;
(4.10)

here {χn} are the normalized eigenfunctions of the Dirichlet Laplacian on (−a, a),
moreover, (·, ·) is the inner product in L2(−a, a) and m̂0 is the Fourier image of
m0 := 1

2� f .

Remark 4.11 Returning to the dimensional consideration of Remark 2.2 we note that
w(β) is dimensionless as it should be. On the other hand, Theorem 6.4 of [19] on
which we rely is again stated as a mathematical result; properly speaking the last
term in the square root of (4.9) should read − 1

L2 e
2w(β)−1

, where L is the quantity
fixing the length scale. This does not change the principal conclusion, namely that the
weak-coupling behaviour of these bound states is the same as for two-dimensional
Schrödinger operators, with an exponentially small gap. The same conclusions can be
made about the weak-coupling gap in Theorems 4.14 and 4.15.

Proof of Theorem 4.10 According to [19, Thm. 6.4] the discrete spectrum of −��β

consists under the given assumptions of one simple eigenvalue
(

π
2a

)2 − e2w(β)−1
with

w(β) satisfying (4.10). This and Theorem 2.1 (iii) imply the claim. ��
In contrast to the two-dimensional situation little is known about spectral properties

of sharply broken layers. Using the result of [15] we get in a similar way as above a
result about the ‘octant’, or ‘Fichera’ layer, which can be regarded as a counterpart to
the L-shaped strip, namely the region

� := {(x, y, z) ∈ R
2 : x, y, z > 0, min(x, y, z) < π}.

Proposition 4.12 One has σess(Hm,�) = (−∞,−c
√
m2c2 + ε∞] ∪ {mc2} ∪

[c√m2c2 + ε∞,∞), where ε∞ ≈ 0.93 refers to the L-shaped planar strip of the
width π in Proposition 3.5. The discrete spectrum of Hm,� consists at most of a finite

number2 of eigenvalues of the form ±c
√
m2c2 + ε j with ε j ∈ (0, ε∞).

2 In [15] a numerical argument is used to show that the discrete spectrum is nonempty.
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The isoperimetric-type inequality of Theorem 3.3 has a three-dimensional ana-
logue. Consider a layer of a fixed halfwidth a built over a compact surface � without
a boundary. The essential spectrum of Hm,� consists again of a single point, the
infinitely degenerate eigenvalue mc2, and the rest of the spectrum is purely discrete
accumulating only at ±∞. We take the family of all such layers of halfwidth a satis-
fying assumption (h) and such that the area of the surface � is fixed, and ask about
optimization of the ‘smallest’ pair of eigenvalues, ±λ1.

Theorem 4.13 In this situation, λ1 is uniquely maximized by layers built over a spher-
ical �.

Proof What matters is again by Theorem 2.1 the principal eigenvalue of −��
D, and

therefore, the claim follows from Theorem 1, part (b), in [18]. ��
Returning to infinite layers, consider now locally deformed ones of the type (2.23)

with a compactly supported function f ∈ C∞
0 (R2). As before a local protrusion

creates bound states:

Theorem 4.14 Let f ≥ 0. If there is an η > 0 and an open W ⊂ R
2 such that

f (x) > η for x ∈ W , σdisc(Hm,�) 	= ∅. Moreover, if f is replaced by β f with f not
necessarily positive, but such that 〈 f 〉 := ∫

R2 f (x) dx > 0, the operator Hm,� has
for all sufficiently small β > 0 just one pair of discrete eigenvalues, ±λ1(β), each
having multiplicity two, and

λ1(β) = c

√
m2c2 +

(π

d

)2 − e2w(β)−1
, w(β) = −β

π

d2
〈 f 〉 + O(β2). (4.11)

Proof First, by [19, Theorems 4.5] one has σdisc(−��
D) 	= ∅, which implies with

Theorem 2.1 (iii) that σdisc(Hm,�) 	= ∅. To see the second claim, we note that by
Theorem 6.63 in [19] the operator −��

D has, for sufficiently small β, exactly one
discrete eigenvalue

ε(β) =
(π

d

)2 − e2w(β)−1

with w(β) given as in (4.11). Hence, Theorem 2.1 implies also the second claim. ��
Let us finally consider the laterally coupled layers. The essential spectrum of them

is given by Theorem 4.1(vii). In this case, the existence of a discrete spectrum is easy
to establish but the weak-coupling result is less precise than in the previous cases:

Theorem 4.15 Let W be an open bounded set and let � be defined by (2.24) with
d = max{d1, d2}; wheneverW is nonempty, σdisc(Hm,�) 	= ∅. Moreover, ifW = βM
with M open and nonempty, the operator Hm,� has for all sufficiently small β > 0
just one pair of discrete eigenvalues, ±λ1(β), each having multiplicity two, and there
are positive c1, c2 such

e−c2β−3 ≤ c

√
m2c2 +

(π

d

)2 − λ1(β) ≤ e−c1β−3
. (4.12)

3 This result in [19] contains the same misprint as [19, Theorem 6.5], an extra square of 〈 f 〉.
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Proof First, by [19, Theorem 4.7] one has σdisc(−��
D) 	= ∅. Moreover, if W = βM

with M open and nonempty, then [21, Theorem 3.1] implies that for sufficiently small
β > 0 there is only one discrete eigenvalue ε(β) of −��

D that satisfies

e−c2β−3 ≤
(π

d

)2 − ε(β) ≤ e−c1β−3
.

Hence, all claims in the theorem follow from Theorem 2.1 (iii). ��
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