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Abstract
We generalise the two-sided Bogoliubov inequality for classical particles (Delle Site
et al. in J Stat Mech Theory Exp 083201, 2017 to systems of quantum particles. As in
the classical set-up, the inequality leads to upper and lower bounds for the free energy
difference associated with the partitioning of a large system into smaller, independent
subsystems. Froma thermodynamicmodelling point of view, the free energydifference
determines the finite size correction needed to consistently treat a small system as a
representation of a large system. Applications of the bounds to quantify finite size
effects are ubiquitous in physics, chemistry, material science, or biology, to name just
a few; in particular, it is relevant for molecular dynamics simulations in which a small
portion of a system is usually taken as representative of the idealized large system.
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1 Introduction

Realistic physical systems are far too large for being treated at the level of single
particles in full resolution, and thus, a common approach is to consider small systems
whose computation can be carried out at reasonable computational costs. The implicit
assumption is that the corresponding statistical mechanics and thermodynamics rep-
resent the true physical situations within an acceptable degree of precision when the
finite size effects are negligible in comparisonwith some reference quantity of interest.
While this situation occurs in many fields of physics, chemistry and material science,
a field in which such an approximation is routinely used is molecular simulation [1,
2]. Molecular simulation has made an enormous progress in the latest decades in suc-
cessfully studying classical and quantum particle systems, but without the possibility
of simulating a small system as a representative of an ideal infinite system, its power
would have been modest due to the limitation of computational resources and the
difficulties of data storage [3].

When replacing an infinite or very large system by a considerably smaller subsys-
tem, the modelling error can be large and so can be the statistical error when averages
over finitely many particles are considered [4, 5]. From this perspective, criteria that
allow for a precise estimate of the finite size effects play a key role in the assessment
of the quality of a simulation study. In a previous work [6], we have derived two-
sided Bogoliubov bounds for the interface free energy required for the separation of
a classical infinite system into weakly interacting small subsystems that can be used
as an error indicator of the model fidelity as discussed above. The upper and lower
bounds of the interface free energy provide quantitative and computable error bounds
to quantify the relevance of the size effects. It is moreover possible to derive tight
variational versions of the bounds that can be the basis for systematic improvements
of available approximate bounds.

The aim of this paper is to generalise the bounds of Ref. [6] for classical particle
systems to quantum systems. The classical Bogoliubov bounds rely on a change of
measure of the underlying equilibrium probability measure and the non-negativity
of the relative entropy between these probability measures; the difficulty here is the
non-commutativity of quantum mechanical observables and density operators that
makes a straightforward extension of the reasoning of the classical case difficult. Our
approach that yields an exact quantum mechanical analogue of the classical bounds is
based on the non-negativity of the relative entropy and additional trace inequalities for
non-commuting self-adjoint operators. In contrast to the classical framework, there
are various different (and sensible) notions of relative entropy between the statistical
distributions of quantum systems [7–9]; see also Eq. (1.29) in Ref. [10]. It turns out
that the natural relative entropy analogue for our purposes is the von Neumann relative
entropy that has been introduced byUmegaki [11], since (a) it yields formally the same
bounds as in the classical case and (b) it can be estimated by Monte Carlo methods.
(We emphasize that there are different notions of divergences between probability
measures in the classical case, too, beyond the relative entropy that is also known as
Kullback–Leibler divergence; cf. Ref. [12]).

The paper is organised as follows: We first review the results of Ref. [6] in Sect. 2
and then introduce the von Neumann relative entropy between the statistical opera-
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tors associated with two quantum systems in Sect. 3. Based on the properties of the
von Neumann relative entropy, we derive bounds for the interface free energy in the
quantum mechanical canonical ensemble in Sect. 4. The results are summarised and
briefly discussed in Sect. 6.

2 Two-sided Bogoliubov inequality for classical systems

In this section, we review the key concepts and results of Ref. [6] which are mandatory
for the extension to the quantum case. The interface energy resulting from the sepa-
ration of a large system in independent subsystems, at positive temperature T > 0, is
defined as the difference between the free energy of the system and the free energy
of the uncoupled subsystems. Specifically, we consider a classical system bound to a
volume � ⊂ R

n which is described by a Hamiltonian H : � → R. Assume that H
can be decomposed according to H = H0 +U where H0 := ∑d

i=1 Hi , Hi : �i → R,
�i ⊂ R

n ,
⋃d

i=1 �i = �, is the Hamiltonian describing the d ∈ N non-interacting
subsystems and U : � → R is the coupling energy between those systems. It will
be assumed that the functions H0 and U are continuous, sufficiently fast growing at
infinity and bounded from below. The partition functions Z and Z0 associated with H
and H0 are given by

Z =
∫

�

e−βH(x) dn x and Z0 =
∫

�

e−βH0(x) dn x .

We will refrain from indicating the dependency of the partition function on β, � and
the particle numbers. In the following, we provide definitions and properties that are
required for the final derivation of the upper and lower bounds of the interface energy.

Definition 2.1 (Interface energy) The difference in free energy �F between the cou-
pled system described by H and the uncoupled subsystems described by H0 is called
interface energy, and it is given by

�F := F − F0 = −β−1 log

(
Z

Z0

)

.

We briefly review the situation for a classical statistical ensemble. To this end,
let (�,�, P) be a probability space (or: ensemble) where � = B(�) denotes the
σ -Algebra of Borel subsets of �. For convenience, we consider only probability mea-
sures with probability density function (pdf); specifically, we assume that there is an
integrable, nonnegative function p : � → [0,∞) such that for all A ∈ �, it holds that

P(A) =
∫

A

p(x) dn x .
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Definition 2.2 (Relative entropy) Let f , g : � → [0,∞) be two pdfs on �. Assume
that

∫

{x∈� : g(x)=0}
f (x) dn x = 0.

The relative entropy (also known as Kullback–Leibler divergence K L( f , g))
between f and g is then defined as

R( f , g) :=
∫

�

log

(
f (x)

g(x)

)

f (x) dn x .

In case that the integral of f over the set of zeros of g does not vanish (i.e. if g �= 0 does
not hold almost everywhere on � with respect to the probability measure P induced
by the density f ), one defines R( f , g) := ∞. Note that the definition of R is based
on the limit limx→0 x log(x) = 0.

It is a simple consequence of Jensen’s inequality that R( f , g) ≥ 0, with equality
if and only if f = g holds P-almost everywhere [6].

2.1 Two-sided Bogoliubov inequality

In the following, it will always be assumed that the first argument of the relative
entropy is strictly positive. This implies that null sets of the measure P are Lebesgue
null sets. Let us denote by p and p0 the pdfs of the canonical ensemble associated
with the Hamiltonians H and H0, i.e.

p := 1

Z
e−βH and p0 := 1

Z0
e−βH0 . (1)

The expectation of any integrable random variable (or: observable) O in the respective
ensemble can then be written as

Ep[O] :=
∫

�

O(x)p(x) dn x and Ep0 [O] :=
∫

�

O(x)p0(x) dn x .

Theorem 2.3 (Two-sided Bogoliubov inequality) If the previous assumptions are sat-
isfied, it follows that

Ep[U ] ≤ �F ≤ Ep0 [U ]. (2)

For the full details of the proof, we invite the reader to consult Ref. [6], here we
sketch it only in its essence:
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Proof As H0 and U are continuous functions growing sufficiently fast at infinity, it
follows that U is integrable with respect to the densities p and p0, i.e. the expectation
values are well-defined. Furthermore, p and p0 are strictly positive by construction.
The non-negativity of the relative entropy implies:

0 ≤ R(p, p0) =
∫

�

log

(
p(x)

p0(x)

)

p(x) dn x

=
∫

�

[

log

(
e−βH(x)

e−βH0(x)

)

+ log

(
Z0

Z

)]

p(x) dn x

= −β

∫

�

(
H(x) − H0(x)

)
p(x) dn x − log

(
Z

Z0

) ∫

�

p(x) dn x

= −β

∫

�

U (x)p(x) dn x − log

(
Z

Z0

)

,

that is

Ep[U ] =
∫

�

U (x)p(x) dn x ≤ −β−1 log

(
Z

Z0

)

= �F .

Similarly, by interchanging the arguments of the relative entropy R, one obtains

0 ≤ R(p0, p) = β

∫

�

U (x)p0(x) dn x + log

(
Z

Z0

)

= β Ep0 [U ] + log

(
Z

Z0

)

,

i.e. the desired upper bound

�F ≤ Ep0 [U ].

	

Theorem2.3 is a rigorous and powerful criterion to estimate the amount of statistical

errors stemming from the microscopic nature of a system divided into non-interacting
subsystems. It allows for a quantitative justification of the computation for a small
system instead of a computationally unfeasible ideal system: simulating representative
small subsystems in lieu of the fully coupled system is justified if the interface energy
�F is negligible compared to the energy scale of each subsystem. If the criterion holds,
then the complexity of the molecular simulation is reduced from, roughly, O(

(3N )2
)

toO(
(3N1)

2+· · ·+(3Nd)2
)
where Nk , k = 1, . . . , d, is the number of particles in the

k-th subsystem and N = N1 +· · ·+ Nd . If the criterion does not hold at a satisfactory
level, then one has to revise the model of the system by modifying the interaction
potential U or by changing the size of the subsystems in order to incorporate effects
resulting from the environment [13].
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Remark 2.4 The upper bound on �F is the well-known Bogoliubov inequality or
Peierls–Bogoliubov orGibbs–Bogoliubov inequality [14–16]. It is possible to improve
the bounds using the Gibbs variational principle; specifically, for any integrable ran-
dom variable φ and any positive pdf f , it holds that

Ep[U + β−1φ] − β−1 log
(
Ep0 [eφ]) ≤ �F ≤ E f [U ] + β−1R( f , p0). (3)

3 Statistical operator and quantum relative entropy

The bounds of Theorems 2.3 were proved in the framework of classical statistical
mechanics, the natural question which arises at this point is whether an extension to
quantum systems within the framework of quantum statistical mechanics is possible.
This problem is addressed in this and in the following section. Specifically, in this
sectionwewill proceedwith an elaboration of the framework of quantum statistics that
allows the generalisation of the previous results. The key point in using the statistical
or density operator (also known as density matrix) as the analogue of the phase-space
pdf in the classical case is various trace inequalities that allow us to extend the concept
of relative entropy to an equivalent quantum definition. The notion of relative entropy
for quantum systems is not unique (e.g. Refs. [7, 8]), and it turns out that the suitable
concept for our purposes is the classical definition of Umegaki [11], also termed the
von Neumann relative entropy in quantum information theory [17]; cf. also Ref. [18].

3.1 Some density matrix theory

We start by recapitulating the key concepts of statistical quantummechanics, referring
to the standard textbook of Zeidler [19, Ch. 5.17]. To begin with, we consider a
quantum system on a complex separable Hilbert spaceH. Given an orthonormal basis
(ψn)n∈N ⊂ H and a sequence (pn)n∈N ⊂ R of nonnegative real numbers with the
properties

∀n ∈ N : 0 ≤ pn ≤ 1 and
∞∑

n=1

pn = 1 ,

we refer to	 := (ψn, pn)n∈N as a statistical state of the systemwhere pn is interpreted
as the probability of finding the system in the state ψn . In the following, only mixed
states, characterised by pn < 1 for all n ∈ N, are of interest. If T : H ⊃ dom(T ) → H
is a self-adjoint linear operator representing an observable, we define the expectation
of T in the statistical state 	 by

E	 [T ] :=
∞∑

n=1

pn 〈ψn, T ψn〉 .

Note that the expectation comprises statistical averaging over the weights pn resulting
from the statistical nature of the state 	 as well as quantum-mechanical averaging
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〈ψn, T ψn〉 resulting from the non-deterministic nature of quantum theory [20, Ch.
2.1.1].

Definition 3.1 (Statistical operator) A bounded self-adjoint linear operator ρ : H →
H is called statistical operator if there are numbers (pn)n∈N ⊂ [0, 1] with the
property

∑∞
n=1 pn = 1 and an orthonormal basis (ψn)n∈N ⊂ H such that the action

of ρ on ψ ∈ H is given by

ρψ :=
∞∑

n=1

pn 〈ψn, ψ〉 ψn . (4)

Note that for all m ∈ N,ψm is an eigenfunction of ρ with corresponding eigenvalue
pm , i.e. ρψm = pmψm . Furthermore, there is a one-to-one correspondence between
statistical operators ρ and statistical states 	 given by Eq. (4) (see [19, Ch. 5.17,
Prop. 2]). Statistical operators are trace-class, hence compact. Therefore, they pos-
sess a discrete spectrum of eigenvalues with a corresponding orthonormal system of
eigenvectors (en)n∈N ⊂ H such that

Tr(ρ) =
∞∑

n=1

〈en, ρen〉 =
∞∑

n=1

∞∑

m=1

pm 〈ψm, en〉 〈en, ψm〉 =
∞∑

m=1

pm = 1.

Another relevant operator in this context, which is related to the concept of entropy, is

ρ log ρ : H → H, (ρ log ρ)ψ :=
∞∑

n=1

pn log(pn) 〈ψn, ψ〉 ψn . (5)

(The mapping ρ �→ ρ log ρ is operator convex.) The expectation of an observable T
in a statistical state 	 can now be expressed in terms of the statistical operator ρ as
follows:

Eρ[T ] =
∞∑

n=1

pn 〈ψn, T ψn〉 =
∞∑

n=1

〈ρψn, T ψn〉 =
∞∑

n=1

〈ψn, ρT ψn〉 = Tr(ρT ). (6)

Given a Hamiltonian H : H ⊃ dom(H) → H with associated partition function
Z = Tr(e−βH ) which we assume to be finite, the canonical ensemble is described by
the statistical operator

ρ := e−βH

Tr(e−βH )
= e−βH

Z
.

This is the quantum-mechanical generalisation of the pdf p defined in Eq. (1). A
representation ofρ of the form (4) is given in terms of the eigenfunctions (φn)n∈N of the
Hamiltonian: letting Hφn = Enφn , we have pn = e−βEn /

∑∞
n=1 e

−βEn = e−βEn /Z .
The two-sided Bogoliubov inequality is basically a consequence of the non-

negativity of the quantum-mechanical relative entropy that we define next. For a
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detailed overview of the history and the current mathematical status of the Bogoliubov
inequality for quantum systems, we refer the reader to the textbook by Zagrebnov on
Gibbs semigroups [21].

Definition 3.2 (Relative entropy [11]) Let ρ, σ : H → H be two statistical operators.
Define the quantum-mechanical relative entropy R between ρ and σ to be

R(ρ, σ ) := Tr(ρ log ρ) − Tr(ρ log σ).

The non-negativity of the relative entropy is a direct consequence of Klein’s inequality
that, for two positive trace-class operators A, B : H → H with Tr(A log A) < ∞,
reads (see [22, Lem. 14])

Tr(B log B) ≥ Tr(B log A + B − A). (7)

(For an elementary proof in the finite-dimensional case, see [10, App. A].). If one
sets B = ρ and A = σ , due to the fact that Tr(ρ) = Tr(σ ) = 1 for statistical
operators, and under the assumption that Tr(σ log σ) < ∞ (trivially satisfied whenH
is finite-dimensional, i.e. in applications of molecular simulation) one obtains that:

R(ρ, σ ) = Tr(ρ log ρ) − Tr(ρ log σ) ≥ 0. (8)

It also follows from the strict concavity of the logarithm thatR(ρ, σ ) = 0 if and only
if ρ = σ in the sense that pn = qn for all n ∈ N, for which pn �= 0. The crucial point
of the current idea is that the non-negativity ofR can be used to derive the two-sided
Bogoliubov inequality for statistical operators, as we will discuss next.

4 Two-sided quantum Bogoliubov inequality

Assume again that the Hamiltonian H can be decomposed according to H := H0 +U
and define

ρ0 := e−βH0

Z0
, Z0 := Tr(e−βH0) and ρ := e−βH

Z
, Z := Tr(e−βH ). (9)

Using linearity of the trace and Tr(ρ) = 1, we observe that

R(ρ0, ρ) = Tr
[
ρ0

(
log(e−βH0) − log(Z0)

)]
− Tr

[
ρ0

(
log(e−βH ) − log(Z)

)]

= −β Tr(ρ0H0) − log(Z0) + β Tr(ρ0H) + log(Z)

= β Tr
(
ρ0(H − H0)

)
+ log

(
Z

Z0

)

= β Tr(ρ0U ) + log

(
Z

Z0

)
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which, together with inequality (8) implies the upper bound �F ≤ Eρ0 [U ], with
�F = −β−1 log(Z/Z0). This is the famous Peierls–Bogoliubov inequality [14–16];
see also [10, App. A].

The proof of the lower bound of the two-sided Bogoliubov inequality proceeds
along the same line, using the reversed relative entropy R(ρ, ρ0) ≥ 0:

R(ρ, ρ0) = Tr
[
ρ
(
log(e−βH ) − log(Z)

)]
− Tr

[
ρ
(
log(e−βH0) − log(Z0)

)]

= β Tr
(
ρ(H0 − H)

)
+ log

(
Z0

Z

)

= −β Tr(ρU ) − log

(
Z

Z0

)

.

This entails the lower bound Eρ[U ] ≤ �F . We summarize the calculation in the
following theorem; an alternative proof, based on the differentiation of the exponential
operator, can be found in [21, Sec. 3.4; cf. Cor. 3.22 and Remark 3.23].

Theorem 4.1 Let the partition functions Z0, Z > 0 in (9) be finite and U = H − H0,
with Eρ0 [U ] < ∞ and Eρ[U ] < ∞. Then,

Eρ[U ] ≤ �F ≤ Eρ0 [U ]. (10)

Independently of the proof one may choose, an innovative aspect that needs to be
underlined is that Theorem 4.1 can actually be applied to molecular simulations of
quantum systems and to define the error due to finite size approximations which are
unavoidable in simulations (above all in simulations of quantum systems). In the
language of simulations, the theorem prescribes the calculation of the average energy
at the interface of the subsystems in which a large system of reference is divided. The
calculation must be carried for: (a) when the subsystems interact through the standard
particle-particle interactions (which essentially corresponds to the calculation of an
ideal surface energy in the large system of reference) and (b) in case the subsystems
are non-interacting (which corresponds to effectively running separate simulations of
smaller sizes). In Sect. 5, wewill discuss themain features of a computational protocol
for typical situations occurring in molecular simulations and specify explicitly the
quantities involved, highlighting the practical utility of the result above.

4.1 Obtaining sharper bounds

The inequalities can be sharpened by using the upper bound of the Peierls–Bogoliubov
inequality and the Golden–Thompson trace inequality. Specifically, we have:

Lemma 4.2 (Gibbs variational principle) Let M1(H) be the set of Hermitian positive
trace-class operators on H with unit trace (i.e. statistical operators). Further, let
σ ∈ M1(H) and W be any self-adjoint positive operator on a suitable (dense) subspace
of H, with compact resolvent, such that −β−1 log σ + W is a self-adjoint positive
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operator on the domain of −β−1 log σ . Then,

− β−1 log Tr
(
elog σ−βW

)
= inf

γ∈M1(H)

{
Tr(γ W ) + β−1R(γ, σ )

}
. (11)

If Tr(σ log σ) < ∞ and Tr(e−βW W ) < ∞, the infimum is attained at

γ ∗ = elog σ−βW

Tr
(
elog σ−βW

) . (12)

Proof We consider the upper bound �F ≤ Eρ0 [U ] in (10) where, without loss of
generality, we may assume that Tr(e−βH0) = 1, such that Z0 = 1.

The upper bound can then be recast as

− β−1 log Tr
(
elog ρ0−βU

)
≤ Tr(ρ0U ) . (13)

Introducing the new potential V = U − β−1 log ρ0 turns the last inequality into

− β−1 log Tr
(
e−βV

)
≤ Tr(ρ0V ) + β−1 Tr(ρ0 log ρ0) . (14)

Note that ρ0 is arbitrary, in that the inequality holds for any combination of density
operators ρ0 ∈ M1(H) and semibounded observable V onH; therefore, we write (14)
in what follows as

− β−1 log Tr
(
e−βV

)
≤ Tr(γ V ) + β−1 Tr(γ log γ ) (15)

for any density operator γ , where equality is obtained either by setting γ =
e−βV /Tr(e−βV ) for a given V , or by setting V = −β−1 log γ when γ is given.
Shifting the potential by V �→ V + β−1 log σ =: W for some density operator
σ ∈ M1(H) and applying the Golden–Thompson rule

Tr
(
e−(A+B)

)
≤ Tr

(
e−Ae−B

)
(16)

that holds for every pair A, B of self-adjoint, positive operators on a suitable (dense)
subspace ofH, such that B is relatively bounded by A, with A-bound for B being less
than 1 and both e−A and e−B being trace-class (see [23, Thm. 1]; cf. [24, Thm. 4] or
[25, Thm. 2]), we obtain

−β−1 log Tr
(
σe−βW

)
≤ −β−1 log Tr

(
elog σ−βW

)
≤ Tr(γ W ) + β−1R(γ, σ ).

where we used Eq. (15) in the second step. Hence,

− β−1 log Tr
(
σe−βW

)
≤ Tr(γ W ) + β−1R(γ, σ ). (17)

123



Two-sided Bogoliubov inequality to estimate finite size… Page 11 of 17 97

To show that equality can be attained, note that the right-hand side is operator convex in
γ and consider a non-decreasing sequence (Wn)n∈N of bounded self-adjoint operators
with Wn → W in the sense of strong resolvent convergence [26]. Further assume
Tr(σ log σ) < ∞ and Tr(e−βW W ) < ∞, and define the sequence (γn)n∈N of density
operators

γn = elog σ−βWn

Tr
(
elog σ−βWn

) , n ≥ 1. (18)

By [27, Prop. 10.1.13] and the boundedness assumption for Wn , this implies strong
convergence ‖Wnh − W h‖ → 0 for any h ∈ H and with ‖ · ‖ denoting the norm on
H. Then, R(γn, σ ) < ∞ for all n ≥ 1, and, by Fatou’s Lemma (that entails lower
semi-continuity of the trace), we have

inf
n≥1

{
Tr(γn W ) + β−1R(γn, σ )

} = inf
n≥1

{
Tr

(
elog σ−βWn (W − Wn)

)

Tr
(
elog σ−βWn

) − β−1 log Tr
(
elog σ−βWn

)
}

≤ −β−1 log lim inf
n→∞ Tr

(
elog σ−βWn

)

≤ −β−1 log Tr
(
elog σ−βW

)
.

This, together with (17), shows that the infimum in (11) is attained at

γ ∗ = elog σ−βW

Tr
(
elog σ−βW

) . (19)

	

Remark 4.3 The relative boundedness assumption underlying the Golden–Thompson
inequality (16) basically states that the extra potential W in (17) is a small pertur-
bation of the Hamiltonian −β−1 log σ (e.g. for σ ∝ exp(−βH0)) that preserves
self-adjointness.

TheGibbs variational principle (11) has a dual form, knownby the nameofDonsker-
Varadhan variational principle that expresses the relative entropy by a maximisation
over observables:

Lemma 4.4 Under the assumptions of Lemma 4.2, it holds for all γ, σ ∈ M1(H) with
finite relative entropy R(γ, σ ) < ∞ that

R(γ, σ ) = sup
θ≤0

{
Tr(γ θ) − log Tr

(
elog σ+θ

)}
(20)

where the supremum is over all self-adjoint negative operators defined on a dense
subspace of H.

Proof Setting θ = −βW in (17) and noting that the resulting lower bound forR(γ, σ )

is operator concave in θ yields the desired statement. 	
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We can now combine Lemmas 4.2 and 4.4 with the inequality

�F ≤ Eγ [U ] + β−1R(γ, ρ0) ,

that, by Lemma 4.2, holds for an arbitrary density matrix γ . Then by Theorem 4.1,
we obtain after setting σ = ρ0 and W = U in (17) and (20):

Corollary 4.5 Under the assumptions of Theorem 4.1, it holds

sup
V ≥0

{
Eρ [U − V ] − β−1 log Tr

(
elog ρ0−βV

)}
= �F = inf

γ∈M1(H)

{
Eγ [U ] + β−1R(γ, ρ0)

}
.

(21)

In particular, we have the family of two-sided bounds that is valid for any positive
observable V on H and any density matrix γ ∈ M1(H):

Eρ[U − V ] − β−1 log Tr
(
elog ρ0−βV

)
≤ �F ≤ Eγ [U ] + β−1R(γ, ρ0). (22)

By the Golden–Thompson inequality, Eq. (22) implies

Eρ[U − V ] − β−1 logEρ0

[
e−βV

]
≤ �F ≤ Eγ [U ] + β−1R(γ, ρ0) (23)

where the lower bound can in general not be attained, unless H0 and V commute
since in this case it holds that Tr(elog ρ0−βW ) = Eρ0 [e−βW ]. If the operators do not
commute, the left-hand side may be smaller than the right-hand side, so Eq. (23)
yields a slightly weaker lower bound. Finally, note that the bounds of Theorem 4.1 are
a special case obtained by setting V = 0 and γ = ρ0.

5 Sketch of the computational protocol for molecular simulations

A typical situation where an optimal criterion for the separation of a large system into
smaller independent subsystems is of particular importance occurs in the determination
of the optimal size of the simulation box for a molecular liquid at a given molecular
density. In principle, one needs a large number of molecules so that at the electronic
level, microscopic properties such as spectroscopic responses linked to, e.g. molecular
bonding are well-described. However, the cost of a large simulation often goes beyond
the available computational resources, and thus, one needs to choose a system as small
as possible while still being able to reasonably reproduce the properties of interest.

The criterion given in Theorem 4.1 can be used to define the optimal size of the
simulation box for electronic properties of a molecular liquid. Figure 1 illustrates a
typical setup of this kind for a static situation, and the example below treats the simple
case of partitioning a large system into two smaller subsystems; the extension to several
subsystems is straightforward. In the current example, the electronic Hamiltonian (in
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Fig. 1 The simulation box of a
molecular liquid (e.g. water).
The upper part schematically
illustrates the large system with
domain � and full Hamiltonian
H , while the lower part
illustrates the partitioning of the
large system into two
independent subsystems with
domains �1 and �2 and
corresponding Hamiltonians H0

1
and H0

2 . The two subsystems
can be treated in separate
simulations

atomic units) of the whole system in the domain � takes the form

H = −1

2

N∑

i=1

∇2
i +

∑

1≤i< j≤N

1

|ri − r j | −
M∑

I=1

N∑

i=1

Z I

|RI − ri | (24)

where N is the total number of electrons, M the total number of nuclei and Z I the
charge of the I -th nucleus; ri and RI denote the positions of the electrons and nuclei,
respectively. The question is whether the approximation of considering only one of
the subsystems, e.g. the one defined in the domain �1, would be sufficient to properly
address the local electronic properties, and thus to avoid to include the rest of the box
which occupies the domain �2.

The above question is equivalent to the problem of determining the degree of inde-
pendence of the two subsystems with respect to the larger system of reference as
expressed by Theorem 4.1. In this context, the Hamiltonian for the system in the
domain �1 reads

H0
1 = −1

2

n∑

i=1

∇2
i +

∑

1≤i< j≤n

1

|ri − r j | −
W∑

I=1

n∑

i=1

Z I

|RI − ri | (25)

where n is the number of electrons and W is the number of nuclei in �1. Similarly,
the Hamiltonian for the system in the domain �2 is given by

H0
2 = −1

2

m∑

i=1

∇2
i +

∑

1≤i< j≤m

1

|ri − r j | −
Y∑

I=1

m∑

i=1

Z I

|RI − ri | (26)

where m is the number of electrons and Y is the number of nuclei in �2. Then, the
operator U appearing in Theorem 4.1 for the given instantaneous partitioning of the
system takes the form

U =
n∑

i=1

m∑

k=1

1

|ri − rk | −
Y∑

K=1

n∑

i=1

ZK

|RK − ri | −
W∑

I=1

m∑

k=1

Z I

|RI − rk | (27)
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with ri ,RI ∈ �1 for all i = 1, . . . , n and I = 1, . . . , W , and rk,RK ∈ �2 for all
k = 1, . . . , m and K = 1, . . . , Y .

With the partitioning of � defined above, the calculation of the quantities in The-
orem 4.1 can be done through the density matrix ρ� of the full reference system
corresponding to the Hamiltonian H in the whole domain � while the density matrix
corresponding to the two non-interacting subsystems ρ1,2 = ρ�1 ⊗ρ�2 is determined
by ρ�1 and ρ�2 calculated in two separate simulations on �1 with H0

1 and on �2 with
H0
2 , respectively. Equation (10) then implies

Eρ� [U ] ≤ �F ≤ Eρ1,2 [U ]. (28)

Furthermore, the definition of the operator U shows that the interactions with respect
to the electronic degrees of freedom are only of one-body and two-body form; thus,
the density matrix representations needed for the calculations are one-body and two-
body reduced density matrix terms, that is, three-dimensional electron densities and
the two-body electron–electron correlation (for example given by the electron radial
distribution function g(|r− r′|)). Such quantities are routinely computed in electronic
structure calculations and numerical schemes for quantum chemistry, e.g. Kohn–Sham
Density Functional Theory [28], Quantum Monte Carlo [29] and high level quantum-
chemical techniques [30]. Inmolecular dynamics simulations, the statistics is enlarged
by repeating the procedure and considering several instantaneous, uncorrelated con-
figurations along the molecular trajectory of the system.

If the mean coupling energies Eρ� [U ] and Eρ1,2 [U ] per molecule (i.e. divided by
the number of atoms) have values of the order of the characteristic energy scale of the
quantity of interest, such as the molecule–molecule energy bond per molecule, then
one can conclude that themodel error due to the chosen size of the (isolated) simulation
box is too large. Conversely, when Eρ� [U ] and Eρ1,2 [U ] have values much smaller
than the physical quantity of reference, one can reasonably trust in the simulation
setup chosen. Once an optimal box size is determined, according to the protocol
suggested here, this information can be used in all the successive simulations for the
same quantities of interest. In perspective, one may be able to extend this idea to the
definition of the optimal size of the quantum region in quantummechanical/molecular
mechanical simulation where a quantum region is embedded into a larger classical
molecular systems [31], or to the determination of the corrections required in the
computational technique of molecular fragments where large polyatomic molecules
such as polymers are divided into independent fragments and treated independently via
quantum-chemical calculations [32], a technique which seems to be very promising
for calculations on (futuristic) quantum computers [33].

6 Discussion and conclusions

Large systems of particles in fully atomistic resolution are a computational challenge
for numerical simulations. The routinely used approximation is to treat small systems
as representatives of large systems under the assumption that the influence of finite
size effects is negligible in the computation of physical and chemical quantities of
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interest. The latter assessment requires precise and rigorous criteria of controlling these
effects, otherwise modelling artefacts may easily deteriorate the predictions that can
be obtained from finite systems. This work continues the efforts that were undertaken
in a previous paper, in which a general criterion to precisely estimate the effect of
finiteness of the system was developed for classical systems. Here, the extension to
quantum systems is made by introducing the operator formalism for the equivalent
classical quantities, namely, the statistical operator which is formally equivalent to the
classical phase-space probability distribution and the von Neumann relative entropy
that is commonly used in quantum information theory.

In doing so, we have proved a two-sided Hilbert space version of the well-known
Bogoliubov inequality that is applicable to simulation of infinite-dimensional quantum
systems, regardless ofwhether these systems are fermionic or bosonic. The bounds can
be useful in connection with electronic structure calculations for open systems where
finite size effects are often amajor burden in the development of efficient computational
models [34–36], or they can be used for bosonic and semiclassical systems in path
integral molecular dynamics simulations, in which the control of finite size effects is
the current bottleneck for applications in many fields of interest [37–40].
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