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Abstract
We provide an algorithm that factorizes one-dimensional quantum walks on an arbi-
trary but fixed cell structure into a protocol of two basic operations: a fixed conditional
shift that transports particles between cells and suitable coin operators that act locally
in each cell. This allows to tailor quantum walk protocols to any experimental set-up
by rephrasing it on the cell structure determined by the experimental limitations. We
give the example of a walk defined on a qutrit chain compiled to run on a qubit chain.

Keywords Quantum walk · Banded operator · Factorization theory ·
Unitary lattice dynamics · Cell structure · Shift–coin protocol
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1 Introduction

In this paper, we demonstrate an algorithm that factorizes any one-dimensional quan-
tum walk into a finite “protocol” of shift and coin operations within a given cell
structure. Such a factorization is of fundamental importance for the understanding
of single-particle dynamics in discrete time and space and closes an important gap
between two different perspectives. Only the two together give a complete under-
standing and allow to decide whether a given task be achieved with available building
blocks. The description of the tasks is by axiomatic conditions “from without”. The
corresponding definition of a quantum walk in this perspective is that of a one-step
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unitary operator on a lattice system satisfying a locality condition. Many overarching
results, like the topological classification of walks with symmetries [10, 11, 13, 14] or
the idea of quantum fields emerging from discrete automata [6, 7, 17, 27], are based on
just such an axiomatic characterization. On the other hand, one may take a construc-
tive approach to quantum walks, defining the class of quantum walks constructively
“from within” in terms of a few available operations. This is the natural approach for
experimental implementation. Also, the construction of explicit models as analogues
of condensed matter systems [5, 9, 19, 26, 30, 33, 41] and the design of quantum
walk-based algorithms [1, 2, 35, 40, 44] follows this approach.

Only when the two approaches are demonstrably equivalent, one is sure that no
road blocks to implementation have been overlooked. The strongest way of showing
this equivalence is a compilation algorithm, which produces from any abstractly given
walk a factorization into a sequence of operations. In this paper, we provide such
a compilation method, breaking a general walk into two kinds of operations: coins,
rotating each cell separately, and the conditional shift. The shift is specified by singling
out one basis vector in each cell and then shifting only these components. The shift
operation and the cell structure, with cells of dimension 2 ≤ d < ∞, will be arbitrary
but fixed throughout.

Clearly, every shift–coin protocol is a quantum walk according to the axiomatic
definition. For the converse, only partial results existed. In the translation-invariant
setting, Fourier transformationmaps any quantumwalk to a finite-dimensional unitary,
which then can be factorized into shifts and coins via techniques that were originally
developed for filter banks [20, 28, 45]. These techniques basically use the factorization
theorem for polynomials in the Fourier parameter and are hence limited to translation-
invariant or periodic cases. A technique overcoming this limitation was given in [22].
It provides a factorization using a grouping of the system into sufficiently large cells.
For this technique, the cell structure has to be adapted to the task, and possibly suitably
redefined. In terms of a given cell structure, the resulting “shifts” could require very
large jumps. In contrast, the algorithm described in this paper takes the cell structure
together with nearest neighbour shifts as given. The only assumption is that the jump
length of the walk is uniformly bounded by a known constant.

A shift–coin decomposition is required for a number of theoretical tasks. Firstly,
to couple walks to gauge fields, such fields are implemented as commutation phases
of the shift operators [12, 15, 16, 21]. Secondly, one would like to consider a walk
as the one-particle sector of an interacting system, known abstractly as a quantum
cellular automaton (QCA) [3, 18, 39]. The best construction for this [45] uses exactly
a decomposition as provided in our paper. The analogy between walks and QCAs was
a guiding idea in [22] and also includes an extremely versatile compilation method for
QCA implementations using an ancillary system. This works for any lattice dimension
[4]. However, since it essentially requires a doubling of the system, it can be exper-
imentally too demanding. One can hope for an extension of our results to the QCA
setting which would make do without such additional workspace.

Being able to factorize any local unitary is highly desirable also from an exper-
imenter’s perspective since shift and coin operations are implementable in various
platforms such as neutral atoms in optical lattices [24], trapped ions [36, 46], light
pulses in optical fibres [37, 38] and photonic waveguide arrays [31, 34]. On the other
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hand, our algorithm provides a concrete method to adapt a given quantum walk to
the experimental set-up at hand. This effectively reduces the required coin dimension
and thereby expands the set of experimentally implementable systems. Moreover, it is
often the case that local operations are cheap, but global operations are costly. It is thus
important to minimize the set of required global operations. Our result achieves this
in the quantum walk setting, where we show that a shift is the only global operation
needed. We demonstrate this by compiling a quantum walk with three-dimensional
coins [8, 23, 43] for systems where the experimental set-up provides only qubit cells.

2 Systems and results

We consider the discrete time dynamics of single particles, so-called quantumwalks,
on the 1D lattice Z “from without”. These systems are described by a unitary operator
W subject to a locality condition on an arbitrary but fixed cell structure

H =
⊕

x∈Z
Hx , (1)

with uniformly bounded cell dimensions 2 ≤ dx < N < ∞. We denote the basis of
suchH by |x, i〉 with x ∈ Z and i = 1, . . . , dx . The locality condition is expressed as
a finite upper bound L < ∞ on the jump length, i.e.

|x − y| > L ⇒ 〈x, i |W |y, j〉 = 0. (2)

Clearly, this abstract point of view is independent of the given cell structure, and
reorganizing the cells leads merely to a different but still finite jump length. We could
thus omit the cell structure altogether and define quantum walks “from without” as
banded unitaries on �2(Z) � H.

Below we provide a factorization algorithm that allows us to compile any such
banded unitary W as a quantum walk “from within”, i.e. as a sequence

W = C0S
n1C1 · · · Sni Ci (3)

of two basic operations that are determined by the cell structure (1): the conditional
shift operator S transports the first basis vector of each cell one cell to the right, i.e.

S = , (4)

and coin operators C that act locally as a dx -dimensional unitary C(x).
Since every quantum walk defined “from within” trivially satisfies the locality

condition (2), the algorithm provides a constructive proof of the equivalence of the
two definitions:
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Theorem 2.1 Let W be a unitary operator on �2(Z). Then, the following are equiva-
lent:

(1) W is banded.
(2) On every cell structure, H = ⊕

x∈ZHx with uniformly bounded cell dimensions
2 ≤ dx < N < ∞, W can be written as a finite product of coin operators and
powers of the conditional shift S as in (3).

The conditional shift S in (4) is defined with respect to a fixed local basis. This
arbitrary choice might be neglected: pick a unit vector ex in each cell Hx and write
e = {. . . , ex−1, ex , ex+1, . . .}. We call a “generalized” conditional shift (with respect
to e) the operator Se such that (1) Seex = ex+1 and (2) Sφ = φ if φ ⊥ ex for all
x ∈ Z. In other words, generalized conditional shifts shift one unit vector of each cell
and leave invariant their complement. This operator is unitary, and

Lemma 2.2 W as in Theorem 2.1 is banded iff it can be written as a finite product of
powers of generalized conditional shifts S j = Se j , i.e.

W = Sn11 · · · Snii . (5)

Proof We show that any product of generalized shifts can be written as a product of
coin operators and powers of the conditional shift S as in (3), and vice versa. This
implies the statement via Theorem 2.1.

First, note that any two generalized shifts Se and S f are unitarily equivalent by a
coin operator. In particular, for every generalized conditional shift Se there is a coin
C such that Se = CSC∗ where S is the conditional shift in (4). Thus, (5) implies (3).

For the converse direction, we have to realize arbitrary coins by generalized shifts.
To this end, let e be a choice of unit vectors, and set fx = λxex for λx with |λx | = 1.
Then, S∗

e S f acts like the identity everywhere except in the one-dimensional subspaces
of each cell spanned by the ex , where it multiplies with the phase μx = λx+1λ

∗
x .

Thus, by choosing e appropriately, we can realize any coin operator that multiplies
the one-dimensional subspace of each cell spanned by ex by a phase μx by choosing
an initial condition, say λ0 = 1, and iteratively solve for λx . This is enough to realize
an arbitrary coin C : since the dimensions of the cells are uniformly bounded, we can
diagonalize C locally and write it as a product of at most maxx dimHx pairs S∗

e S f as
above. ��
Remark 2.3 Rephrasing the above, Theorem 2.1 and Lemma 2.2 state that on any cell
structure the group generated by one particular conditional shift togetherwith all coins,
the group generated by generalized conditional shifts and the group of banded unitary
matrices coincide.

3 The algorithm

Given some banded unitaryW , fix some cell structure according to (1), thereby deter-
mining the jump length L in (2). To avoid heavy notation, we choose a pictorial
approach to describe the subroutines in an intuitive way. Our factorization algorithm
consists of five steps:
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3.1 Step 0—deal with non-vanishing indices

In this preparatory step, we bring the walk into a standard form with zero net flow of
information in the sense of Kitaev [25]. This is measured by an integer-valued index
ind (W ) [22, 25], which can be explicitly calculated as

ind (W ) =
∑

x≥0>y

[
tr

(
(Wxy)

∗Wxy
) − tr

(
(Wyx )

∗Wyx
)]

. (6)

Note that by the locality condition onW , the sumon the right side contains only finitely
many terms. Also, ind (W ) does not depend on the position where it is evaluated, i.e.
one can replace the 0 in the formula above by any other lattice site.

Important for our purpose is that the index is additive, i.e. ind (W1W2) = ind (W1)+
ind (W2). Therefore, coins do not contribute to the index. Moreover, ind (S) = 1
so that the walk S−nW , with n = ind (W ), has vanishing index. This allows us to
henceforth assume that the walks we consider have vanishing net information flow,
i.e. ind (W ) = 0.

3.2 Step 1—decouple periodically

Any walk W on the integers with vanishing index can be decoupled into two half-line
walks via a local decoupling [22, Theorem 3], i.e. we can write W as

⎛

⎜⎜⎝

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝
1
1

1
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

⎞

⎟⎟⎠ , (7)

where the first operator on the right acts non-trivially only on a block of 2L cells and
the second one is decoupled into a left and a right part. An explicit algorithm for this
decoupling is found in [10, Section VII.B.]. The size of the block there is determined
by the range of P −WPW ∗, where P is the half-space projection left invariant by the
rightmost factor in (7). In our case, this is indeed a block of L cells to each side of the
cut point.

Due to the locality of the decoupling, we can repeat this periodically every 2L cells
which gives

⎛

⎜⎜⎝

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

⎞

⎟⎟⎠

⎛

⎜⎜⎝

⎞

⎟⎟⎠ , (8)

where the blocks on the right side are of different size since the local dimensions of
the cells they entail vary. Moreover, it is important to note that these blocks act on
overlapping subspaces.

123



85 Page 6 of 12 C. Cedzich et al.

In a sense, the decomposition (8) is already a shift–coin decomposition with a cell
structure given by the blocks, and the first factor a conjugation of the second factor by
an unconditional shift on this cell structure. However, the point of our paper is to work
with a given cell structure, and a particular conditional shift. The remaining steps are
thus necessary to make do with just this given shift and cell structure.

3.3 Step 2—parametrize blocks by elementary unitaries

Each block in (8) is a D×D-dimensional unitary with D depending on the dimensions
of the 2L cells in the block. Every such block can be parametrized as a product of
D(D − 1)/2 “elementary unitaries” [29, 32, 42] of the form

Mnm =

⎛

⎜⎜⎜⎜⎝

1
a b
1

c d
1

⎞

⎟⎟⎟⎟⎠
≡

[(
a b
c d

)]nm
, (9)

which differ from the identity only in the four matrix elements at (n, n), (n,m), (m, n)

and (m,m). These are replaced by the entries a, b, c and d of a unitary 2 × 2 matrix.
We indicate the positions of these elements by the superscript in the matrix M . With
this notation, every block in (8) can be written as

D−1∏

n=1

(
D∏

m=n+1

Mnm

)
. (10)

The basic ingredient in the construction of the elementary unitaries in this decom-
position is an elimination algorithm: first, one sets the (1, D)-th matrix element to
zero by right multiplication with a suitable (M1D)∗. Continuing down the row, this
successively eliminates the first row by right multiplication with

∏D
n=2(M

1n)∗ and
only leaves the pivot element non-vanishing. Applying this to the other rows yields
the factorization in (10). Importantly, this algorithm affects only the block itself and
therefore can be applied simultaneously in each block in (8).

We remark that the algorithm described in [29, 32, 42] actually does more: it aims
at a parametrization of arbitrary unitaries by Euler angles in each hyperplane, while
we are merely interested in the decomposition (9).

3.4 Step 3—factorize elementary unitaries into shifts and coins

The previous step reduces our task towriting eachMnm as a shift–coin sequence on the
given cell structure. To this end, we embed Mnm into H by padding it with identities
on both sides and take the indices n,m as basis labels in the given cell structure, i.e.
n = |x, i〉 and m = |y, j〉.

We distinguish two cases: either n andm belong to the same cell, i.e. x = y. In this
case, Mnm acts locally in the given cell structure, i.e. it is already a coin. Otherwise,
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Mnm straddles two cells with distance k = y − x �= 0. Then, the factorization of
Mnm requires the use of the conditional shift Sk . To implement Mnm as a shift–coin
sequence, we start from a coin at y of the form

CM =
⎛

⎝
a b
c d

1

⎞

⎠ , (11)

where a, b, c, d are the matrix elements of Mnm as in (9). Then, we conjugate CM

with Sk , which translates the basis element |y, 1〉 to the correct cell at x . Last, we
conjugate with a coin C that swaps basis elements in the cells at x and y according to

C |x, i〉 = |x, 1〉 and C |y, j〉 = |y, 2〉 (12)

and acts trivially otherwise. Combining these conjugation steps yields the sequence
of shift and coin operations

Mnm = C†S−kCM SkC . (13)

Let us illustrate this algorithm by implementing an elementary unitary M13 on the
cell structure C2 ⊕ C

2 where k = 1:

1 ⊕ CM =
⎛

⎝

⎞

⎠ Sk−→
⎛

⎝

⎞

⎠ C−→
⎛

⎝

⎞

⎠ = M13.

By adapting the swapping coin C accordingly, we can similarly factorize the other
elementary unitaries M23, M24 and M14 on C

2 ⊕ C
2.

Applying this to each elementary unitary in the product (10) yields a factorization
for eachblock in (8). In this factorization, the shift powers k are boundedby2L . In some
intermediate stage, neighbouring cellsmight be involved, but for the factorizationgiven
here it is understood that all coin operators of the neighbouring blocks are set to1. Then
in a sequence like (13), the shifts to neighbouring blocks are immediately reversed.
In this way, the neighbouring blocks serve as workspace, which is left unchanged by
the whole sequence.

3.5 Step 4—assemble

The total number of factors in the factorization of the blocks is infinite, because in
(8) there are infinitely many blocks. However, we can parallelize the steps. Since, by
definition, a coin is a unitary that is block diagonal with respect to the cell structure,
coins in different cells can be executed in parallel. The shifts are anyhow global
operations.
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In order to get a global factorization, we first separate each factor in (8) into even
and odd blocks

⎛

⎜⎜⎝

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1

W-1

1

W1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

W-2

1

W0

1

⎞

⎟⎟⎠ . (14)

Asdiscussed at the endof the previous step, this suffices to ensure that the factorizations
of that step can be written with global shifts, but do not interfere with each other.
However, the detailed shift sequence depends on the cell structure of each block.
The same unitary, considered as a banded matrix but with respect to different cell
structures, may already be a coin in one structure but may require a resolution into
shifts and coins in another. This can be cured by introducing “blank cycles” of the
form (13) but with 1 coins. The blank cycles are also compatible with using just the
neighbouring blocks as workspace. Thus, we get a fixed “shift skeleton” from which
each factorization cycle picks just the shifts needed. Due to the upper bound N on the
dimension of the cells, there are only finitely many cell structures for blocks of 2L
cells, and therefore only finitely many shift sequences that need to be unified.

The coins needed between any two shifts are now simply direct sums of the appro-
priate coin choices in each block. Often they will be 1, namely for all blank cycles
and alternatingly for the even and odd blocks. This may seem wasteful but ensures
that the whole operation can be parallelized in finitely many global steps.

This concludes our description of the algorithm and thus the proof of Theorem 2.1.

4 Example

An important application of the above algorithm is to tailor a given quantum walk to
another architecture that is determined by experimental constraints. As an example,
we show how the so-called “three-state” quantum walk discussed in [8, 23, 43] can
be realized in a set-up with qubit cells. As the name suggests, this walk is defined on
a Hilbert space with three-dimensional cells as the shift–coin protocol

W = S1S
†
3C (15)

where S1 = S as in (4) and S3 shifts the third basis vector in each cell. As coin we
choose for all x the three-dimensional Grover matrix

C(x) = 1

3

⎛

⎝
−1 2 2
2 −1 2
2 2 −1

⎞

⎠ , (16)

but the following analysis applies with appropriate changes for arbitrary choices of the
local coins. The index of W vanishes by ind (W ) = ind (S1) + ind (S†3) = ind (S1) −
ind (S3) = 0, such that we can directly start with Step 1. To decouple W , we
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capitalize on the hemiolic relation between the old and the new cell structure, where
two three-dimensional cells are interpreted as three two-dimensional cells, i.e.

On the new C
2-cells, W has jump length L = 2 such that Step 1 gives a decou-

pling every 2L = 4 new cells. However, by the hemiolic relation between the old and
the new cell structure we can also decouple every 2L cells in the old cell structure
where L = 1. It thus suffices to consider blocks that contain only 3 instead of 4 new
cells. One possible periodic decoupling according to (8) results in the blocks

⎛

⎜⎜⎝

1
σ1

1
σ1

⎞

⎟⎟⎠ =
⎛

⎝

⎞

⎠ = [σ1]23[σ1]56 (17)

acting on Hx−1 ⊕ Hx ⊕ Hx+1 (x ∈ 3Z) with respect to the C2-cells, and

1

3

⎛

⎜⎜⎜⎜⎜⎜⎝

2 2 −1
2 −1 2

−1 2 2
2 2 −1
2 −1 2

−1 2 2

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎝

⎞

⎠ , (18)

acting Hx ⊕ Hx+1 ⊕ Hx+2.
The parametrization by elementary unitaries of the first block can be read off

directly. Applying the algorithm described in Step 2 and in [29, 32, 42], the second
block is parametrized by the elementary unitaries M12 = [H ]12, M14 = [A]14 and
M24 = [σ1H ]24 for the first 3×3 block, and analogouslyM45 = [H ]45,M46 = [A]46
and M56 = [σ1H ]56 for the second 3 × 3 block, where H = (σ1 + σ3)/

√
2 is the

Hadamard coin and

A = 1

3

(
2
√
2 1

−1 2
√
2

)
. (19)

Hence, the blocks (18) are parametrized as

⎛

⎜⎜⎝

⎞

⎟⎟⎠ =

H⎛

⎜⎜⎝

⎞

⎟⎟⎠

A⎛

⎜⎜⎝

⎞

⎟⎟⎠

σ1H⎛

⎜⎜⎝

⎞

⎟⎟⎠

H⎛

⎜⎜⎝

⎞

⎟⎟⎠

A⎛

⎜⎜⎝

⎞

⎟⎟⎠

σ1H⎛

⎜⎜⎝

⎞

⎟⎟⎠ .

(20)

Thus, in Step 3 we only need to consider [σ1]23 onHx−1 ⊕Hx ⊕Hx+1 and [A]13,
[σ1H ]23, [H ]45 and [A]46 on Hx ⊕ Hx+1 ⊕ Hx+2, since the remaining elementary
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unitaries are already coins. [σ1]23 is realized by CM = σ1 at x , k = 1 and swapping
coins at x − 1 and x . The shift–coin factorizations of the elementary unitaries in (20),
with k = y − x �= 0, are parametrized by the following data:

CM (x) k C(x)

[A]13 A(x + 1) 1 σ1(x + 1)
[A]46 A(x + 2) 1 σ1(x + 1)
[σ1H ]23 Hσ1(x) −1 1

[H ]45 σ1Hσ1(x + 1) −1 1

Since the cells have constant dimension, in Step 4 these block factorizations can
be performed in parallel with a common “shift-skeleton”.

5 Summary and outlook

We provided a concrete algorithm to factorize any one-dimensional quantum walk
into a finite product of shift and coin operations on any given cell structure. This
closes a long-standing gap in the understanding of such systems, but also has practical
implications: on the one hand, it allows to adapt a given walk to any experimental
set-up and, on the other, to either optimize with respect to the cell dimensions or the
jump length.

An interesting direction for future work is to optimize the length of the shift–coin
protocols. One option that jumps to the eye is to homogenize a given cell structure
by “filling up” each cell by locally adding innocent bystanders until all cells have the
same dimension. This, however, would violate the assumption of a given fixed cell
structure.

Acknowledgements C. Cedzich was supported in part by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under the grant number 441423094. T. Geib and R. F. Werner acknowledge
support from the DFG through SFB 1227 DQ-mat.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that there is no conflict.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


An algorithm to factorize quantum walks into shift and… Page 11 of 12 85

References

1. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: SODA. SIAM, pp. 1099–
1108 (2005). arXiv:quant-ph/0402107

2. Apers, S., Sarlette, A., Ticozzi, F.: Simulation of quantum walks and fast mixing with classical pro-
cesses. Phys. Rev. A 98, 032115 (2018). arXiv:1712.01609

3. Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019).
arXiv:1904.12956

4. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci.
77(2), 372–378 (2011). arXiv:0711.3975

5. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk.
Phys. Rev. B 86(19), 195414 (2012). arXiv:1208.2143

6. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Free quantum field theory from quantum cellular
automata. Found. Phys. 45(10), 1137–1152 (2015). arXiv:1601.04832

7. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free
evolution in one dimension. Ann. Phys. 354, 244–264 (2015). arXiv:1212.2839

8. Boettcher, S., Pughe-Sanford, J.L.: Renormalization of discrete-time quantumwalkswith a non-Grover
coin. J. Stat. Mech. 2018(3), 033103 (2018). arXiv:1709.06414

9. Cedzich, C., Fillman, J., Geib, T., Werner, A.H.: Singular continuous Cantor spectrum for magnetic
quantum walks. Lett. Math. Phys. 110, 1141–1158 (2020). arXiv:1908.09924

10. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: The
topological classification of one-dimensional symmetric quantum walks. Ann. Inst. H. Poincaré 19(2),
325–383 (2018). arXiv:1611.04439

11. Cedzich, C., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy
invariants for translation invariant symmetric quantum walks on a chain. Quantum 2, 95 (2018).
arXiv:1804.04520

12. Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. J. Math.
Phys. 60(1), 012107 (2019). arXiv:1808.10850

13. Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Chiral Floquet systems and quantum walks at half
period. Ann. Inst. H. Poincaré 22(2), 375–413 (2021). arXiv:2006.04634

14. Cedzich, C., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Bulk-edge corre-
spondence of one-dimensional quantum walks. J. Phys. A (2016). arXiv:1502.02592

15. Cedzich, C., Rybár, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum
walks in electric fields. Phys. Rev. Lett. 111, 160601 (2013). arXiv:1302.2081

16. Cedzich, C., Werner, A.H.: Anderson localization for electric quantum walks and skew-shift CMV
matrices. Commun. Math. Phys. 387, 1257–1279 (2021). arXiv:1906.11931

17. D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information pro-
cessing. Phys. Rev. A 90(6), 062106 (2014). arXiv:1306.1934

18. Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020). arXiv:1904.13318
19. Fillman, J., Ong, D.C., Zhang, Z.: Spectral characteristics of the unitary critical almost-Mathieu oper-

ator. Commun. Math. Phys. 351, 525–561 (2017). arXiv:1512.07641
20. Gao, X., Nguyen, T.Q., Strang, G.: On factorization of m-channel paraunitary filterbanks. IEEE Trans.

Signal Process. 49(7), 1433–1446 (2001)
21. Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric

quantum walks with individual atoms. Phys. Rev. Lett. 110, 190601 (2013). arXiv:1302.2094
22. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and

cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012). arXiv:0910.3675
23. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112

(2005). arXiv:quant-ph/0507207
24. Karski, M., Förster, L., Choi, J.M., Alt, W., Widera, A., Meschede, D.: Nearest-neighbor detec-

tion of atoms in a 1d optical lattice by fluorescence imaging. Phys. Rev. Lett. 102, 053001 (2009).
arXiv:0807.3894

25. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006).
arXiv:cond-mat/0506438

26. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks.
Phys. Rev. A 82(3), 033429 (2010). arXiv:1003.1729

123

http://arxiv.org/abs/quant-ph/0402107
http://arxiv.org/abs/1712.01609
http://arxiv.org/abs/1904.12956
http://arxiv.org/abs/0711.3975
http://arxiv.org/abs/1208.2143
http://arxiv.org/abs/1601.04832
http://arxiv.org/abs/1212.2839
http://arxiv.org/abs/1709.06414
http://arxiv.org/abs/1908.09924
http://arxiv.org/abs/1611.04439
http://arxiv.org/abs/1804.04520
http://arxiv.org/abs/1808.10850
http://arxiv.org/abs/2006.04634
http://arxiv.org/abs/1502.02592
http://arxiv.org/abs/1302.2081
http://arxiv.org/abs/1906.11931
http://arxiv.org/abs/1306.1934
http://arxiv.org/abs/1904.13318
http://arxiv.org/abs/1512.07641
http://arxiv.org/abs/1302.2094
http://arxiv.org/abs/0910.3675
http://arxiv.org/abs/quant-ph/0507207
http://arxiv.org/abs/0807.3894
http://arxiv.org/abs/cond-mat/0506438
http://arxiv.org/abs/1003.1729


85 Page 12 of 12 C. Cedzich et al.

27. Mallick, A., Chandrashekar, C.: Dirac cellular automaton from split-step quantumwalk. Sci. Rep. 6(1),
1–13 (2016). arXiv:1509.08851

28. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574
(1996). arXiv:quant-ph/9604003

29. Murnaghan, F.D.: The Unitary and Rotation Groups, vol. 3. Spartan Books (1962)
30. Perrin, H., Fuchs, J.-N., Mosseri, R.: Tunable Aharonov–Bohm-like cages for quantum walks. Phys.

Rev. B 101, 235167 (2020). arXiv:1910.00845
31. Peruzzo, A., Lobino, M., Matthews, J.C., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y.,

Ismail, N., Worhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks
of correlated photons. Science 329, 1500–1503 (2010). arXiv:1006.4764

32. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary
operator. Phys. Rev. Lett. 73, 58–61 (1994)

33. Sajid, M., Asbóth, J.K., Meschede, D., Werner, R.F., Alberti, A.: Creating anomalous Floquet–Chern
insulators with magnetic quantum walks. Phys. Rev. B 99, 214303 (2019). arXiv:1808.08923

34. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-
particle bosonic-fermionic quantumwalk via integrated photonics. Phys.Rev. Lett.108, 010502 (2012).
arXiv:1106.5713

35. Santha, M.: Quantum walk based search algorithms. In: Proceedings TAMC’08, pp. 31–46. Springer,
Berlin (2008). arXiv:0808.0059

36. Schmitz,H.,Matjeschk, R., Schneider, C., Glueckert, J., Enderlein,M.,Huber, T., Schaetz, T.: Quantum
walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009). arXiv:0904.4214
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