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Abstract
Using recently developed tools from space-adiabatic perturbation theory, in particular
the construction of a non-equilibrium almost-stationary state, we give a new proof that
the Kubo formula for the Hall conductivity remains valid beyond the linear response
regime. In particular, we prove that, in quantum Hall systems and Chern insulators,
the transverse response current is quantized up to any order in the strength of the
inducing electric field. The latter is introduced as a perturbation to a periodic, spectrally
gapped equilibrium Hamiltonian by means of a linear potential; existing proofs of
the exactness of Kubo formula rely instead on a time-dependent magnetic potential.
The result applies to both continuum and discrete crystalline systems modelling the
quantum (anomalous) Hall effect.

Keywords Linear response · Quantum Hall effect · Space-adiabatic perturbation
theory · Non-equilibrium almost-stationary state · Chern marker

Mathematics Subject Classification 81Q15 · 81Q20 · 81V70

1 Introduction andmain results

The mathematical understanding of transport properties of quantum system is a fun-
damental question in the mathematical physics of condensed matter and still to date
provides a stimulating challenge. The interest in this line of research has increased
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further after the discovery of “exotic” transport phenomena of topological origin,
most notably the quantum Hall effect, where a 2-dimensional electron gas subject to
a perpendicular magnetic field displays a transverse current in response to an induc-
ing in-plane electric field of strength ε: at zero temperature, the conductivity for this
transverse current can be computed by Kubo’s formula at least in the linear response
regime [26] and appears experimentally to be quantized (in appropriate physical units)
to astounding precision [45]. More recently, a similar topological transport has been
observed in Chern insulators, where time-reversal symmetry is broken by a different
mechanism than an external magnetic field [7, 11, 12, 19]: this phenomenon is then
called quantum anomalous Hall effect. New results are also pushing the study of topo-
logical transport and of the corresponding bulk-boundary correspondence to systems
at positive temperature [14], but we will stick to the zero-temperature situation in the
present paper.

The formula by Kubo expresses the transverse Hall current j as

j = ε σHall + O(ε2),

where σHall ∈ (e2/h) Z is expressed in terms of equilibrium quantities (see below),
involving in particular the Fermi projection �0 onto occupied energy levels; at posi-
tive temperature, this state would be replaced by a Fermi–Dirac distribution. Within
the one-particle picture, as reviewed in [18], the quantization of the Hall conductiv-
ity has been understood mathematically by establishing its connection first with the
Chern number of the Fermi projection from differential geometry [1], then with its
non-commutative generalization, theConnes–Chern character (see [6] and references
therein); the current physical literature [8, 10, 24] addresses this quantity under the
name of (local) Chern marker. Recent mathematical efforts have managed to extend
results in this direction also to the setting of electrons interacting on a lattice [4, 17,
20, 38, 44]. We refer the reader to the recent review [21] for further comments on the
(mathematical) literature on the Kubo formula.

The topological nature of the Hall conductivity σHall is believed to be responsible
for its stability and robustness, making it universal, that is, independent of specific
features of the model. Furthermore, its geometric origin is responsible also for the fact
that the validity of the Kubo formula extends well beyond linear response: indeed,
the conductivity associated with the transverse current of Hall systems is known to be
equal to σHall up to arbitrarily high orders in the strength ε of the perturbing electric
field, that is,

j = ε σHall + O(ε∞). (1.1)

The existing literature on this property was initiated by the heuristic magnetic flux
insertion argument proposed by Laughlin in a cylindrical geometry [27], which was
later elaborated in a rigorous way for many-body electron gases in the continuum
[25] or discrete [5] setting. These proofs focus on a related quantity, namely the Hall
conductance, defined as the (linear) response of the current intensity to the voltage
drop: in two dimensions, this quantity agrees with the Hall conductivity σHall defined
above, see [2]. In the magnetic-flux-insertion argument, the inducing electric field
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is modelled by a slowly varying time-dependent magnetic potential: this allows to
follow time-adiabatically the insertion of this magnetic flux in the ground state. Klein
and Seiler [25] then make use of the geometric interpretation of σHall to conclude
the validity of (the Hall-conductance analogue of) (1.1), at least up to averaging over
time and over the inserted magnetic flux. Instead, Bachmann et al. [5] obtain an
analogous statement (in the context of lattice spin systems with local interactions and
observables) avoiding magnetic-flux averaging and the geometric argument, at the
expense of exploiting the integrality of a certain Fredholm index related to the Hall
conductance. Both approaches rely on the assumption that this magnetic flux insertion
does not close the gap of the unperturbedHamiltonian.More in general, in the standard
time-adiabatic approach to charge transport [3, 4, 9, 15, 30, 38] the “global properties”
of the unperturbed model are left invariant by the slowly varying perturbation: for
example, the operator domain of the perturbed Hamiltonian is time-independent [3]
and in infinite volume ergodicity is preserved by some form of covariance [9].

In this paper, we manage to prove the above-mentioned remarkable property
of the Hall conductivity (Theorem 4.1) avoiding the magnetic flux insertion alto-
gether and in particular the use of time-adiabatic perturbation theory. To model the
equilibrium system, we employ the one-particle approximation and use a spectrally
gapped (insulating) crystalline Hamiltonian H0; this could be a discrete, tight-binding
Hamiltonian, or a continuum (magnetic) Schrödinger-type operator. Contrary to the
above-mentioned references, the external electric field will then be introduced by the
addition of a linear potential to the equilibriumHamiltonian, closer to how experimen-
tal setups for the quantum Hall effect were originally performed. More concretely, we
will define the perturbed Hamiltonian as H ε = H0−ε Y , where ε is a small parameter
connected to the intensity of the electric field, which points in the y-direction. Notice
in particular that the perturbation −ε Y is an unbounded operator, even relatively to
the unperturbed Hamiltonian H0, thus the domain of H ε does depend on ε; moreover,
the perturbation breaks periodicity and closes the initial spectral gap of H0.

Our argument for the proof of (1.1) relies on two main tools:

(1) by treating the linear electric potential as a space-adiabatic perturbation [41, 43]
(see also [40] for earlier related works), we are able to construct a non-equilibrium
almost-stationary state (NEASS), in the sense of [35, 44], which in the adiabatic
regime well approximates the physical state of the system once the dynamical
switching drives the Fermi projection out of equilibrium [36] (see the discussion
at the end of Sect. 2);

(2) the connection of the conductivity associated with the current flowing in the
NEASSwith its topological valueσHall is realized by aChern–Simons-like formula
(Proposition 4.4), similar to that used in [25].

By definition, the NEASS is unitarily conjugated to the equilibrium Fermi projec-
tion (see property (SA1) below): this structure is reminiscent of the “magnetic gauge
transformed projection” of [25], as well as of the “dressed ground state” of [5], with
the main difference that the unitary conjugation is defined here by employing space-
adiabatic rather than time-adiabatic perturbation theory. The NEASS was constructed
in [35] up to first order in ε in the same context that we will employ; using arguments
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from [44], we extend this construction to arbitrarily high orders in ε (Theorem 3.1), a
result which is interesting in its own right.

Since we deal with extended systems, a prominent role is played by the trace per
unit volume τ(·), which is used to compute expectation values of extensive observables
in (non-)equilibrium states: for example, the charge current which flows in the NEASS
�ε equals (for carriers of unit charge)

τ(i[H0, X ] �ε),

and the quantized value of the Hall conductivity can be expressed (in appropriate
physical units for which e = � = 1) as

σHall = i τ
(
�0

[[�0, X ], [�0, Y ]]) ∈ 1

2π
Z,

if the electric field is applied, say, in direction y, and the transverse current is measured
along direction x . To ensure the well-posedness of all traces per unit volume that
need to be considered, we restrict ourselves to the setting of crystalline systems and
periodic operators (that is, operators which commute with translations by crystalline
shifts in a Bravais lattice) and introduce certain operator algebras of such operators
(see Sect. 2.2). The heart of the proof is, however, of “algebraic” nature, and therefore,
we believe that it may be generalized to apply to settings which also include ergodic
disorder (at least under a mobility spectral gap assumption), in which the relevant
operators satisfy only a covariance property when shifted by lattice translations (see,
e. g. [9] for a framework of this type).

Finally, let us comment on the applicability of our result to spin transport. The
discovery of topological insulators in the early 2000s stimulated the study of topo-
logical transport of spin, for example in the quantum spin Hall effect. When spin is a
conserved quantity, namely when the spin-torque operator i[H0, Sz] vanishes, a spin
current operator can be defined as J z = i[H0, X ] Sz , and the response of this current
to an external electric field can be also studied. As it is easily realized, this setting
essentially amounts to two “copies” of a quantum Hall system (one corresponding to
charge carriers with “up” spin, and one to those with “down” spin), and our result
applies to this spin-filtered charge transport as well, leading to the quantization of the
Hall conductivity in each spin channel separately. A much richer and mathematically
more challenging situation would be to consider systems in which spin is not con-
served, for example due to the presence of Rashba spin–orbit coupling in the model.
With similar techniques to the ones presented in this paper, one can show that, as
explained in Remark 4.5, even in this situation there is no generation of spin torque in
the NEASS, namely that τ(i[H0, Sz] �ε) = O(ε∞) [31]. Instead, while formulæ for
the (appropriate generalization of) spin conductivity have been already investigated
analytically [34, 35] and numerically [39] within linear response, the existence of
possible power-law correction to these formulæ remains to be studied. We postpone
this investigation to future work.

The paper is structured as follows: Section 2 details the class of models to which
our result applies. Section 3 provides the construction of the NEASS to all orders in
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ε, generalizing the results of [35] beyond the linear regime. Section 4 finally contains
the proof of our main result stating the validity of the Kubo formula for the Hall
conductivity to arbitrarily high orders of ε. The Appendices contain, for the readers’
convenience, someproperties of the trace per unit volume and of the inverseLiouvillian
of a gapped Hamiltonian, which are used throughout the paper.

2 Model andmathematical framework

2.1 Crystalline structures and periodic operators

The quantum systems we will be analyzing have a crystalline structure, meaning that
their configuration space X is invariant under translations by vectors in a Bravais
lattice �. We will address both continuum and discrete models on the same footing: in
d-dimensions, by a continuum configuration space wemeanX = R

d , while a discrete
configuration space is a discrete set of points. In both cases, it can be assumed that the
Bravais lattice � is spanned over the integers by a basis {a1, . . . , ad} ⊂ R

d .
The Hilbert space for a quantum particle with N internal degrees of freedom (say,

spin) will be

H:=L2(X ) ⊗ C
N � L2(X , C

N ).

A prominent feature of this Hilbert space is the possibility to define (self-adjoint)
position operators:

(X jψ)(x):=x j ψ(x), 1 ≤ j ≤ d.

The above definition of course makes sense only on a suitable (maximal) domain
D(X j ) ⊂ H.

The crystalline structure of the configuration space is lifted to a symmetry of the
one-particle Hilbert space, namely we assume that there is a unitary representation
T : � → U(H), γ 	→ Tγ , by translation operators. Let us note that, in the presence of
uniformmagnetic fields, these operators could bemagnetic translations [46], assuming
a commensurability condition on the magnetic flux per unit cell and the quantum of
magnetic flux. These considerations are relevant for quantum Hall systems, which are
included in our framework under the above-mentioned commensurability hypothesis.
The case of non-commensuratemagnetic fluxes could be treated bymeans ofmagnetic-
covariant perturbation theory [40], which would require some slightly more involved
analysis—see the discussion in Remark 3.2.

An operator A on H is called periodic if [A, Tγ ] = 0 for all γ ∈ �. As is well-
known, the analysis of periodic operators is simplified by the use of the (magnetic)
Bloch–Floquet–Zak representation (see, e. g. [16] and references therein), which intro-
duces the crystal momentum k ∈ R

d as a good quantum number. The (magnetic)
Bloch–Floquet–Zak transform is initially defined on compactly supported functions
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ψ ∈ C0(X , C
N ) ⊂ L2(X , C

N ) as

(UBFZψ)(k, y):=e−ik·y ∑

γ∈�

eik·γ (Tγ ψ)(y) for all k ∈ R
d , y ∈ X . (2.1)

For fixed k ∈ R
d , the function (UBFZψ)(k, ·) is periodicwith respect to the translations

operators; hence, it defines an element in the so-called fiber Hilbert space

Hf :=
{
φ ∈ L2

loc(X , C
N ) | Tγ φ = φ for all γ ∈ �

}

which is equipped with the scalar product inducing the norm

‖φ‖2Hf
:=

∫

C1
dy |φ(y)|2,

where C1 is a fundamental cell for � (see (A.1)). The crystal momentum is effectively
defined up to translations in the dual Bravais lattice �∗, consisting of those λ ∈ R

d

such that λ · γ ∈ 2πZ for all γ ∈ �: indeed,

(UBFZψ)(k + γ ∗, y) = (
�γ ∗ UBFZψ

)
(k, y) for all γ ∗ ∈ �∗,

where (�γ ∗ϕ)(y):=e−iγ ∗·yϕ(y), and � : �∗ → U(Hf), γ ∗ 	→ �γ ∗ , defines a uni-
tary representation. The map defined by (2.1) extends then to a unitary operator
UBFZ : H → H�, where H� ≡ L2

�(Rd ,Hf) is the space of locally-L2, Hf -valued,

�-equivariant functions on R
d . Denoting by B

d a fundamental cell for �∗, the inverse
transformation U−1

BFZ : H� → H is explicitly given by

(U−1
BFZϕ)(x) = 1

∣∣Bd
∣∣

∫

Bd
dk eik·xϕ(k, x).

This transform is useful in the analysis of periodic operators as they become covari-
ant fibered operators on H�: upon the identification

H� ≡ L2
�(Rd ,Hf) ⊂ L2(Rd ,Hf) �

∫ ⊕

Rd
dk Hf ,

one has

UBFZ AU−1
BFZ =

∫ ⊕

Rd
dk A(k), (2.2)

where each A(k) acts on Hf and satisfies the covariance property

A(k + γ ∗) = �γ ∗ A(k) �−1
γ ∗ , for all k ∈ R

d , γ ∗ ∈ �∗.
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2.2 Operator algebras of periodic operators

Since the paper relies on the analysis of periodic operators, we will introduce in this
section the necessary algebras of operators which have a smooth fiber in the Bloch–
Floquet–Zak representation, in an appropriate sense. In the following, H1 and H2
will denote Hilbert subspaces of Hf (possibly endowed with different norms than
the subspace norm) which are left invariant by the action of all momentum-space
translation operators ργ ∗ , γ ∗ ∈ �∗. As we will specify in the next sections, in our
applications such Hilbert spaces will be eitherHf itself, or the domain Df of the fiber
unperturbed Hamiltonian (endowed with the graph norm of the latter).

Definition 2.1 Let L(H1,H2) denote the space of bounded linear operators from H1
toH2, and L(H1):=L(H1,H1). We define

P(H1,H2) :=
{
periodic operators A with smooth fibration

R
d → L(H1,H2), k 	→ A(k)

}

equipped with the norm

‖A‖P(H1,H2) :=max
k∈Bd

‖A(k)‖L(H1,H2) .

We also set P(H1):=P(H1,H1).

Since the Fréchet derivative follows the usual rules of differential calculus, we have
that

(1) P(H1,H2) is a linear space;
(2) P(H1) is a normed algebra, as well as P(H1,H2) if 1 H2 ⊂ H1;
(3) ifH2 ⊂ H1, then for A ∈ P(H2,H1) and B ∈ P(H1,H2) we have

AB ∈ P(H1) with ‖AB‖P(H1) ≤ ‖A‖P(H2,H1)
‖B‖P(H1,H2) .

It is also useful to consider smooth functions in H� ≡ L2
�(Rd ,Hf). As decay

at infinity translates into regularity in k via the Bloch–Floquet–Zak transform, for
example compactly supported functions of x are mapped by UBFZ to smooth functions
of k.

Definition 2.2 We set

C∞
� (Rd ,H1):=

{
ϕ ∈ H� : ϕ(k, ·) ∈ H1 for all k ∈ R

d and ϕ : R
d → H1 is smooth

}
.

This space of smooth functions, which is clearly dense in L2
�(Rd ,H1), is particu-

larly convenient to formulate the invariance of the operator algebrasP(H1,H2) under
the derivations given by the commutation with position operators, as detailed in the
following statement. Its proof can be found in [35, Sect. 3].

1 With this inclusion, we mean also that the inclusion H2 ↪→ H1 is bounded as a map of normed spaces.
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Lemma 2.3 Let A ∈ P(H1,H2). Then

[A, X j ]:=[A, X j ]
∣∣∣U−1

BFZ C∞
� (Rd ,H1)

is in P(H1,H2), and

[A, X j ](k) ϕ(k) = −i∂k j A(k) ϕ(k) for all ϕ ∈ C∞
� (Rd ,H1).

We conclude this section by recalling that the space Bτ∞ of bounded periodic oper-
ators is endowed with a trace-like functional, called the trace per unit volume, defined
equivalently as

τ(A):= 1

|C1| TrH
(
χC1 A χC1

)
or τ(A):= 1

(2π)d

∫

Bd
dk TrHf (A(k)) ,

whenever the right-hand sides make sense (see Proposition A.3). Here, χC1 is the
multiplication operator times the characteristic function of the fundamental cell C1 ⊂
X . Periodic operators of trace-per-unit-volume class define the space Bτ

1 . As we
will see shortly, the trace per unit volume is used to compute expectation values of
extensive observables in the crystalline, periodic setting which we also employ. We
refer the reader to Appendix A and to [35] for a list of the relevant properties of the
trace per unit volume that will be repeatedly used in the paper.

2.3 Themodel

As stated in the Introduction, our goal is to investigate the response of a crystalline
system to the application of an external constant electric field of small intensity. Conse-
quently, a prominent role is played by theHamiltonian H0 of the system at equilibrium,
before the electric field is applied and the response current is probed. Our assumptions
on this unperturbed model, which coincide with those adopted in [35, Sect. 3], are
stated below.

Assumption 2.4 We assume the following.

(H1) The Hamiltonian H0 of the unperturbed system is a self-adjoint periodic oper-
ator on H, bounded from below. Moreover, its fibers H0(k), defined in the
Bloch–Floquet–Zak representation via (2.2), are self-adjoint operators with a
common dense domain Df ⊂ Hf . Finally, we assume that H0 ∈ P(Df ,Hf),
where hereinafterDf is understood to be equipped with the graph norm ‖ · ‖Df

of the operator H0(0).
(H2) We assume the Fermi energy μ ∈ R to lie in a spectral gap of H0. We denote

by �0 = χ(−∞,μ)(H0) the corresponding spectral projector (Fermi projector).
Finally, we assume that2 �0 ∈ Bτ

1 .

2 This assumption is equivalent to require that the fibration k 	→ �0(k) takes values in the finite-rank
projections on Hf . Indeed, in view of the fact that �0 is an orthogonal projection and the smoothness

123



Purely linear response to space-adiabatic perturbations Page 9 of 22    91 

The above assumptions are satisfied by a large class of physically relevant mod-
els, including tight-binding Hamiltonian of common use in condensed matter physics
to model discrete systems, as well as Bloch–Landau operators (under mild regular-
ity assumptions on the electro-magnetic potentials—see e. g. [37, Sect. 3]) used as
continuum models for crystalline systems.

We list below a number of relevant properties which can be deduced from the above
Assumption, in combination with Lemma 2.3, and which will be used repeatedly
throughout the paper. As before, we refer the reader to [35, Sect. 3] for a proof.

Proposition 2.5 Under Assumption 2.4, we have that

(i) for every z ∈ ρ(H0) the resolvent operator (H0 − z1)−1 lies in P(Hf ,Df), and
consequently �0 is in P(Hf ,Df) as well;

(ii) all iterated commutators of H0 with position operators lie in P(Df ,Hf), while
all iterated commutators of �0 with position operators lie in P(Hf ,Df).

Having specified the conditions on the model at equilibrium, we drive the system
out of equilibrium by introducing an external constant electric field. We choose the
direction of this field to be along a preferred coordinate, say y. The perturbation will
then be modelled space-adiabatically by adding a linear potential to the unperturbed
Hamiltonian, namely

H ε:=H0 − εY , (2.3)

where ε ∈ [0, 1] and Y denotes the multiplication operator by the coordinate func-
tion y.

We will be interested in measuring the response to this perturbation of a (possibly
different) coordinate of the charge current operator, say along x : assuming charge
carriers of unit charge,

J :=i[H0, X ], (2.4)

where X denotes the multiplication operator by x . This response will be computed
in an appropriate out-of-equilibrium state, called non-equilibrium almost-stationary
state (NEASS) in [44], that will be constructed in the next section. Conventionally,
a candidate non-equilibrium state would be identified via time-adiabatic perturbation
theory, as follows. Consider the time-dependent perturbed Hamiltonian

H ε,η(t):=H0 − ε f (ηt)Y , for t ∈ R, 0 < η � 1, (2.5)

where f is a switching function, that is f : R → [0, 1] is a smooth map such that
f (s) = 0 for s ≤ −1 and f (s) = 1 for s ≥ 0, and η plays the role of a time-
adiabatic parameter. A natural choice for the non-equilibrium state is the solution of

assumption (H1), it follows that the dimension m(k) of the range of �0(k) is independent of k, i.e.,
m(k) = m ∈ N ∪ {+∞} for all k ∈ B

d . Therefore, by virtue of Proposition A.3(iii) �0 ∈ Bτ
1 is equivalent

to m < ∞.
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the Cauchy problem associated with H ε,η(t) at t = 0 (or any nonnegative time, when
the perturbation is fully on), i. e. ρε,η:=ρε,η(0) where ρε,η(t) solves

{
i ddt ρ

ε,η(t) = [H ε,η(t), ρε,η(t)]
ρε,η(−∞) = �0.

(2.6)

In order to compute the current response τ(J ρε,η) without the need for a time-
adiabatic limit η → 0+, we will exploit the fact that ρε,η is well-approximated by
an η-independent projection, namely the NEASS. More precisely, one can prove [36]
that for all times t ≥ 0 and any nonzero n ∈ N

∣∣τ(A ρε,η(t)) − τ(A �ε
n)

∣∣ = O(εn+1), (2.7)

where�ε
n is the NEASS constructed in the next section. Inequality (2.7) holds for suit-

able observables A (e. g. the charge current operator) uniformly on bounded intervals
in (macroscopic) time and uniformly in an appropriate time-scale interval for η, which
in general depends on the perturbation intensity ε. The same inequality was already
shown in the context of interacting fermions on finite lattices in [44, Proposition 3.2,
Theorem 5.1], and remains valid in the thermodynamic limit under a uniform spectral
gap assumption [22] or under a spectral gap hypothesis only in the bulk [23]. For a
more detailed comparison between the standard time-adiabatic approach to electronic
transport and the NEASS paradigm, see [31, Sects. II.A & II.B].

3 Construction of the NEASS to all orders

In this section,wegeneralize the construction of thenon-equilibrium almost-stationary
state (NEASS), realized up to the first order in ε in [35, Section 4], to all orders,
following the construction performed in the context of interacting models on lattices
by [44] (see [4, 38] for related statements in time-dependent adiabatic perturbation
theory). For every n ∈ N the NEASS, denoted by �ε

n , is determined uniquely (up to
terms of order O(εn+1)) by the following two properties:

(SA1) �ε
n = e−iεSε

n �0 eiεS
ε
n for some bounded, periodic and self-adjoint

operator Sε
n ;

(SA2) �ε
n almost commutes with the Hamiltonian H ε, namely [H ε,�ε

n] = O(εn+1).

Here O(εn+1) is understood in the sense of the operator norm.

Theorem 3.1 Consider the Hamiltonian H ε = H0 − εY where H0 satisfies Assump-
tion 2.4. Then, there exists a sequence {A j } j∈N ⊂ P(Hf ,Df) such that, setting for
any n ∈ N

Sε
0 :=0 and Sε

n :=
n∑

j=1

ε j−1A j ∈ P(Hf ,Df) for n ≥ 1 , (3.1)
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we have that

�ε
n :=eiεSε

n �0 e
−iεSε

n satisfies [H ε,�ε
n] = εn+1[Rε

n,�ε
n] (3.2)

where the map [0, 1] � ε 	→ Rε
n ∈ P(Hf) ⊂ Bτ∞ is bounded.

Proof We start by computing

[H ε,�ε
n] = eiεSε

n

[
e−iεSε

n H0e
iεSε

n − εe−iεSε
n Y eiεSε

n ,�0

]
e−iεSε

n .

Hence, it suffices to choose the operators A j in such a way that there exists Rε
n

uniformly bounded in ε with

[
e−iεSε

n H0e
iεSε

n − εe−iεSε
n Y eiεSε

n ,�0

]
= εn+1

[
e−iεSε

n Rε
ne

iεSε
n ,�0

]
. (3.3)

Consider the Taylor expansion in λ near λ0 = 0 of the expression

e−iλSε
n BeiλSε

n .

Evaluating such expansion at λ = ε, one obtains for some ε̃ ∈ [0, ε]

e−iεSε
n BeiεSε

n =
n∑

k=0

εk

k!L
k
Sε

n
(B) + εn+1

(n + 1)!e
−iε̃Sε

nL n+1
Sε

n
(B)eiε̃Sε

n

=:
n∑

j=0

ε j B j + εn+1Bn+1(ε).

On the first line, we use the notation LA(B):= − i[A, B], we denoted by L k
A(B)

the k nested commutators [−iA, [. . . , [−iA, [−iA, B]] . . . ]] for k ≥ 1 and we set
L 0

A(B):=B. On the second line, we collected in B j all the terms of order ε j , 0 ≤
j ≤ n, coming from the power expansion of Sε

n as in the statement, while Bn+1(ε)

contains contributions from higher-order powers of ε and still defines a uniformly
bounded function of ε. In particular, each of these coefficients is expressed as nested
commutators involving (possibly different) Aμ’s with B: for example

B0 = B, B1 = −i[A1, B], B2 = −1

2
[A1, [A1, B]] − i[A2, B].

We apply the expansion above to B = H0 and a similar expansion, up to order
n − 1, to B = Y . We will therefore denote the corresponding coefficients by H0, j and
Y j , respectively. Notice that the presence of an extra factor of ε in the perturbation
H ε − H0 = −εY shifts the indices of the coefficients Y j by one in the following
equations.
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Plugging all the expansions into (3.3) yields

n∑

j=1

ε j [
H0, j − Y j−1,�0

] + εn+1 [
H0,n+1(ε) − Yn(ε),�0

]

= εn+1[e−iεSε
n Rε

ne
iεSε

n ,�0] (3.4)

(notice that the sum on the left-hand side starts from j = 1 as for j = 0 we get
[H0,0,�0] = [H0,�0] = 0). Thus, it suffices to determine A1, . . . , An in such a way
that for all j ∈ {1, . . . , n}

0 = [
H0, j − Y j−1,�0

]
. (3.5)

To this end, it is convenient to notice that

H0, j = LA j (H0) + L j−1 = −LH0(A j ) + L j−1

where L j−1 involves commutators of H0 with the operators Aμ withμ < j . Therefore,
if we assume that A1, . . . , A j−1 have been already determined, then L j−1 is given and
only A j is still unknown in the above equality: this suggests to determine A1, . . . , An

recursively.
Let us first start then by determining A1 from (3.5). Since L0 = 0 and Y0 = Y , the

equation for A1 reads

0 = [−LH0(A1) − Y ,�0] �⇒ [LH0(A1),�0] = LH0([A1,�0]) = −[Y ,�0].

Notice that the operator [Y ,�0] is off-diagonal with respect to the decomposition
H = Ran�0 ⊕ (Ran�0)

⊥, i.e.,

[Y ,�0] = [Y ,�0]OD where TOD:=�0 T �⊥
0 + �⊥

0 T �0 = [[T ,�0],�0
]

(we denote by �⊥
0 :=1 − �0 the orthogonal projection on (Ran�0)

⊥). As is well-
known (see Appendix B) the LiouvillianLH0 is invertible on such operators, yielding

[A1,�0] =
[

AOD
1 ,�0

]
= L −1

H0
(−[Y ,�0]).

Taking a further commutator of both sides with �0, we conclude

AOD
1 =

[[
AOD
1 ,�0

]
,�0

]
=

[
L −1

H0
(−[Y ,�0]),�0

]
= −L −1

H0
(YOD).

The above considerations hence determine uniquely the off-diagonal part of A1; we
may then choose to set

AD
1 :=0.
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For 1 < j ≤ n, we are then required to solve

0 = −LH0

([
A j ,�0

]) + [
L j−1,�0

] − [
Y j−1,�0

]

�⇒ [
A j ,�0

] = L −1
H0

([
L j−1,�0

] − [
Y j−1,�0

])

or, arguing as above,

AOD
j = L −1

H0

(
D j−1

)
where D j−1:=

(
L j−1 − Y j−1

)OD
.

Observe that L j−1 andY j−1 are determinedby thepreviously computed A1, . . . , A j−1.
Once again, we choose A j to be purely off-diagonal, that is,

AD
j :=0.

In conclusion, we have determined

Sε
n =

n∑

j=1

ε j−1A j = L −1
H0

(
n−1∑

�=0

ε� D�

)

∈ P(Hf ,Df).

As each A j and then Sε
n are inverse Liouvillians of off-diagonal operators inP(Hf) by

virtue of Lemma 2.3, they are naturally inP(Hf ,Df) as claimed (see Proposition B.1).
With this definition of Sε

n , it follows by construction that (3.4) will be satisfied if we
set

Rε
n :=eiεSε

n
(
H0,n+1(ε) − Yn(ε)

)
e−iεSε

n .

Clearly, this remainder term is uniformly bounded as a function of ε with values in
P(Hf) in view of the previous discussion on H0,n+1(ε) and Yn(ε). ��
Remark 3.2 Clearly the expression �ε

n = eiεSε
n �0 e−iεSε

n can be used also to obtain a
Taylor expansion for the NEASS in powers of ε:

�ε
n = �0 + ε �1 + ε2 �2 + · · · + εn �n + εn+1�reminder(ε). (3.6)

The coefficients �� in the above expansion are computable in terms of the A j ’s in the
statement of Theorem 3.1: more specifically,�� will be determined from A1, . . . , A�.
As these A j ’s are determined inductively as in the proof (that is, A1, . . . , A� determine
A�+1), it is also clear that the above Taylor expansions for the NEASS’s �ε

n and
�ε

n+1 coincide up to order εn . Explicit expressions for the coefficients in this Taylor
expansion are in any case not needed for the proof of our main Theorem 4.1 in the
next section.

The order-by-order construction of�ε
n as an expansion in powers of ε as in (3.6), or

rather the construction of an “almost-invariant subspace” for the perturbed dynamics
which is associated with a projection�ε expressed as an asymptotic power series in ε,
is at the heart of the original approach to space-adiabatic perturbation theory [40, 41,
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43]. It is worth noting that the coefficients of the Taylor expansion (3.6) coincide with
what one would obtain from this order-by-order construction. The almost-invariant
subspace can be produced also under weaker hypotheses than the ones we formulate
in Assumption 2.4: in particular, Nenciu [40, Theorem 4.1] showed that, aside from
certain typical domain specifications that ensure the self-adjointness of H ε and from
the spectral gap condition, it is sufficient to assume that the operator-valued map
t 	→ ei Y t (H0 − i1)−1 e−i Y t is norm-differentiable sufficiently many times. This
condition amounts to the boundedness of iterated commutators of (the resolvent of)
H0 and Y : in view of Lemma 2.3 and of Proposition 2.5, in the periodic setting
this is essentially equivalent to our Assumption 2.4 on the unperturbed Hamiltonian,
which is instead formulated as a smoothness condition of its Bloch–Floquet fibers
with respect to the crystal momentum. Nenciu’s assumption is more general and can
be verified in a larger class of models, which could include e. g. periodicity-breaking
disordered potentials or a constant magnetic field of incommensurate flux per unit cell.
To simplify our analysis and to make a closer connection to the recent literature on
the NEASS [35, 38, 44], we decided, however, to concentrate only on translationally
invariant models falling in the operator algebras described in Section 2.2, leaving to
future investigations the technical details needed to adapt our proofs to more general
settings.

We conclude this section with some immediate consequences from the previous the-
orem, which will be used in the next section.

Corollary 3.3 Consider the Hamiltonian H ε = H0 − εY where H0 satisfies Assump-
tion 2.4. Then we have that for every n ∈ N

(i) the operator (�ε
n)⊥H ε�ε

n = εn+1(�ε
n)⊥ Rε

n�ε
n lies in Bτ

1 and the map [0, 1] �
ε 	→ (�ε

n)
⊥ H ε�ε

n ∈ Bτ
1 is bounded;

(ii) for Sε
n as in (3.1), the operator eiεSε

n −1 lies in P(Hf ,Df) and the map [0, 1] �
ε 	→ eiεSε

n − 1 ∈ P(Hf ,Df) is bounded;
(iii) the NEASS operator �ε

n lies in P(Hf ,Df) and the map [0, 1] � ε 	→ [X ,�ε
n] ∈

P(Hf) is bounded.

Proof (i) The statement is an immediate consequence of (3.2), the fact that
�ε

n (�ε
n)

⊥ = (�ε
n)

⊥ �ε
n = 0, and the fact that �ε

n is unitarily equivalent to
�0, implying that it is a projection in Bτ

1 by hypothesis (H2).
(ii) In view of (3.1) Sε

n ∈ P(Hf ,Df), thus [35, Lemma 6.4] implies the thesis.
(iii) By using Proposition 2.5(ii), [35, Lemma 6.4] and the Leibniz rule, we obtain

that [X ,�ε
n] ∈ P(Hf) and its norm is bounded uniformly in ε.

��

4 Validity of the Kubo formula beyond the linear regime

We are finally able to state our main result.
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Theorem 4.1 Consider the Hamiltonian H ε = H0 − εY where H0 satisfies Assump-
tion 2.4. Then for every n ∈ N we have that

τ(J �ε
n) = ε σHall + O(εn+1),

where J is the charge current operator in (2.4), the NEASS �ε
n is as in the statement

of Theorem 3.1, and

σHall:=iτ(�0 [[�0, X ], [�0, Y ]]).

The above Theorem states that the conductivity associated with the response of the
current operator J is given by the Hall conductivity σHall, a quantity which is defined
only through the equilibrium Fermi projection �0 and which emerges at the linear
level (Kubo formula), up to orders which are arbitrarily high in the strength of the
perturbing electric field. The result thus establishes the validity of the Kubo formula
for this conductivity also beyond linear response.

The proof of the above theorem relies on a number of intermediate steps, which we
detail first.

4.1 A useful proposition

As a first tool to be used in the argument for the main Theorem 4.1, we prove the
following

Proposition 4.2 Let P be a projection on H such that P ∈ P(Hf) ∩ Bτ
1 . Assume that

the operator A is such that P AP ∈ P(Hf). Then for all j ∈ {1, . . . , d} the trace per
unit volume of the commutator [P AP, P X j P] is well-defined and

τ([P AP, P X j P]) = 0.

Proof We observe that

[P AP, P X j P] = [P AP, X j ] − [P AP, XOD
j ]

where XOD
j refers to the off-diagonal decomposition of the operator X j with respect

to the projection P , and the equality is first established on the dense subspace
U−1
BFZC∞

� (Rd ,Hf). Proposition A.3(iv) implies that the first summand on the right-
hand side has vanishing trace per unit volume, since P AP ∈ P(Hf) ∩ Bτ

1 . On the
other hand, the second summand is Bτ

1 in view of the hypothesis that P ∈ P(Hf)∩Bτ
1

(see Lemma 2.3); invoking Lemma A.2, we conclude that its trace per unit volume
vanishes. ��
Remark 4.3 Observe that the above Proposition does not apply to the operator A = Xi ,
i �= j ; indeed (compare e. g. [33, Eq. (2.15)])

[P Xi P, P X j P] = P
[[P, Xi ], [P, X j ]

]
P,
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where the equality is first established on U−1
BFZC∞

� (Rd ,Hf). Therefore, the trace per
unit volume τ([P Xi P, P X j P]) equals (up to a factor 2π i) the Chern marker of the
projection P , which may very well be nonzero (cf. the discussion in the Introduction).

As we saw in the statement of the main result, the Chern marker of the Fermi pro-
jection �0 defines the linear response coefficient σHall. It is worth mentioning that, in
the present context of periodic operators, the (non-)vanishing of the Chern marker has
been linked to the (non-)existence of localized orthogonal Wannier functions span-
ning the Fermi projection�0 [13, 32, 37]. In a more general setting, where periodicity
is broken, one can still define a generalized notion of Wannier basis for an isolated
spectral island, but the relation of its existence with the Chern marker remains to be
fully understood. In fact, while the existence of a generalized Wannier basis (with
suitable localization) has been shown to imply the vanishing of the Chern marker (see
[28, 33]), the converse implication [29] remains a challenging and interesting line of
research.

4.2 Chern–Simons formula

Following the previous Remark, we prove an analogue of the Chern–Simons formula,
well rooted in differential geometry and bundle theory, whichwas exploited in [25] in a
context similar to ours. There, the Hall conductance is related to theBerry curvature of
an adiabatic spectral projection, viewedas adifferential 2-formon the torus ofmagnetic
fluxes: the Chern–Simons formula then describes how the Berry curvature changes by
an exact form under unitary conjugation of the associated projection, and therefore,
its integral over the torus of fluxes is left unchanged under such transformations. Our
Chern–Simons formula similarly establishes the invariance of the Chern marker of a
projection under suitable unitary conjugations.

Proposition 4.4 (Chern–Simons formula). Let P ∈ P(Hf)∩Bτ
1 be a projection and

U ∈ P(Hf) be unitary. Define PU :=U PU−1. Then

τ([PU Xi PU , PU X j PU ]) = τ([P Xi P, P X j P]).

Proof Write

U−1[PU Xi PU , PU X j PU ]U
= [PU−1XiU P, PU−1X jU P]
= [P Xi P, P X j P] + [

PU−1[Xi , U ]P, P X j P
]

+ [
P Xi P, PU−1[X j , U ]P

] + [
PU−1[Xi , U ]P, PU−1[X j , U ]P

]
.

Notice now that, with the standing assumptions, the operators U−1[Xi , U ] and
U−1[X j , U ] are in P(Hf) by virtue of Lemma 2.3. Using Proposition 4.2 and
Lemma A.2, the conclusion follows. ��
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4.3 Proof of theorem 4.1

First of all, notice that by the very definition of the current operator J in (2.4) and the
construction of the NEASS �ε

n in Theorem 3.1

J �ε
n = i[H0, X ]

(
eiεSε

n − 1
)

�0 e
−iεSε

n + i[H0, X ]�0 e
−iεSε

n ,

where each summand on the right-hand side is in Bτ
1 . Indeed, for the first summand

observe that

[H0, X ] ·
(
eiεSε

n − 1
)

· �0 · e−iεSε
n ∈ P(Df ,Hf) · P(Hf ,Df) · Bτ

1 · P(Hf)

⊂ P(Hf) ∩ Bτ
1 ,

by applying Proposition 2.5(ii), Corollary 3.3(ii), and hypothesis (H2). Similarly, for
the second summand note that

[H0, X ] · �0 · �0 e
−iεSε

n ∈ P(Df ,Hf) · P(Hf ,Df) · Bτ
1 · P(Hf) ⊂ P(Hf) ∩ Bτ

1 .

In view of the cyclicity of the trace per unit volume, Corollary 3.3(i) and Corol-
lary 3.3(iii), we have that3

τ
([H0, X ]�ε

n

) = τ
(
�ε

n[H ε, X ]�ε
n

)

= τ
([�ε

n H ε�ε
n,�ε

n X�ε
n])

+ εn+1 τ
(
�ε

n Rε
n

(
�ε

n

)⊥
X�ε

n − �ε
n X

(
�ε

n

)⊥
Rε

n�ε
n

)

= τ
([�ε

n H ε�ε
n,�ε

n X�ε
n])

+ εn+1 τ
(
�ε

n

[[�ε
n, Rε

n], [X ,�ε
n]]�ε

n

)

= τ
([�ε

n H0�
ε
n,�ε

n X�ε
n])

− ε τ
([�ε

nY�ε
n,�ε

n X�ε
n])

+ εn+1 τ
(
�ε

n

[[�ε
n, Rε

n], [X ,�ε
n]]�ε

n

)

(4.1)

where the term carrying the prefactor εn+1 is uniformly bounded in ε. Observe that in
view of Corollary 3.3(ii) and Proposition 2.5(i) we have that

�ε
n H0�

ε
n = �ε

n H0 · (eiεSε
n − 1)�0e

−iεSε
n + �ε

n H0 · �0e
−iεSε

n

∈ P(Hf ,Df) · P(Df ,Hf) ⊂ P(Hf),

thus Proposition 4.2 implies that the first summand on the right-hand side of (4.1)
vanishes. On the other hand, by Corollary 3.3(ii) the unitary eiεSε

n is in P(Hf), there-
fore Proposition 4.4 and Remark 4.3 imply that the second summand in (4.1) can be

3 We are allowed to perform all the following algebraic manipulations since the range of UBFZχC1 is

contained in C∞
� (Rd ,Hf ) (see Definitions 2.2 and A.1).
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rewritten as

−ε τ([�ε
nY�ε

n,�ε
n X�ε

n]) = ε τ([�0X�0,�0Y�0])
= ε τ(�0

[[�0, X ], [�0, Y ]]�0).

This concludes the proof. ��

Remark 4.5 It is worth pointing out that in the context of spin transport at zero tem-
perature, which is relevant for the quantum Hall spin effect, one can use a similar
argument to prove the vanishing of the spin torque in the NEASS up to O(ε∞) [31].
Specifically, denoting by Sz the operator representing the z-component of the spin,
defined as

Sz :=1L2(X ) ⊗ sz, where sz = σz/2 is half of the third Pauli matrix,

[31, Theorem III.4] shows that under the same hypotheses of Theorem 4.1 one has
that for every n ∈ N

τ
(
i[H0, Sz] �ε

n

) = O(εn+1).

In other words, the spin torque operator i[H0, Sz] has an expectation in the NEASS
which vanishes at any order in ε. This result validates the claim in [42] that “one is
often interested in a particular component of the spin, and the corresponding torque
component can vanish in the bulk on average […] This is certainly true for the many
models used for the study of the spin-Hall effect”.
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Appendix A. Trace per unit volume

Here we recall the definition and the main properties of the trace-per-unit-volume
functional (for further details, see [35, Sect. 2] and references therein). For any L ∈
2N + 1, we define

CL :=
⎧
⎨

⎩
x ∈ X : x =

d∑

j=1

α j a j with |α j | ≤ L/2 ∀ j ∈ {1, . . . , d}
⎫
⎬

⎭
(A.1)

and χL :=χCL , denoting the orthogonal projection onH which multiplies by the char-
acteristic function of CL . In particular, the set C1 is called a fundamental cell.
We say that an operator A acting in H is trace class on compact sets if and only if
χK AχK is trace class for all compact sets K ⊂ X 4.

Definition A.1 (Trace per unit volume). Let A be an operator acting in H such that
A is trace class on compact sets. The trace per unit volume of A is defined as

τ(A):= lim
L→∞

L∈2N+1

1

|CL | Tr(χL AχL), (A.2)

whenever the limit exists.

Themost relevant properties of the trace per unit volume are presented in the following
results, whose proofs can be found in [35, Sect. 2]. We detail an argument only for
Proposition A.3(iv), which is not present in the above reference.
We introduce the vector spaces

Bτ∞ := {bounded periodic operators on H} ,

Bτ
1 := {

A ∈ Bτ∞ such that ‖A‖1,τ :=τ(|A|) < ∞}
.

We recall that Bτ
1 is invariant by left and right multiplication by elements of Bτ∞ ⊃

P(Hf). Similarly to the standard trace, the trace per unit volume is (conditionally)
cyclic.

Lemma A.2 (Cyclicity of the trace per unit volume). If A ∈ Bτ
1 and B ∈ Bτ∞, then

τ(AB) = τ(B A).

The next result collects all the essential properties of the trace per unit volume.

Proposition A.3 (i) Let A ∈ Bτ
1 . Then

Tr(|χL AχL |) < ∞ ∀ L ∈ 2N + 1.

In particular, we have that A is trace class on compact sets.

4 Notice that in the discrete case this condition is automatically satisfied for any operator A because the
range of χK is finite-dimensional.
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(ii) Let A be periodic and trace class on compact sets. Then τ(A) is well-defined
and

τ(A) = 1

|C1| Tr(χ1Aχ1).

(iii) Let A be a periodic and bounded operator acting on H. Denoting by

UBFZ AU−1
BFZ =

∫ ⊕

Rd
dk A(k)

its Bloch–Floquet–Zak decomposition, assume that A(k) is trace class and that
TrHf (|A(k)|) < C for all k ∈ B

d . Then

Tr(χ1Aχ1) = 1

|Bd |
∫

Bd
dk TrHf (A(k)).

(iv) Let A ∈ P(Hf) ∩ Bτ
1 . Then τ([A, Xi ]) is well-defined and τ([A, Xi ]) = 0 for

every 1 ≤ i ≤ d.

Proof (iv) By Lemma 2.3, we have that [A, Xi ] ∈ P(Hf). Observe that the operator

χL [A, Xi ]χL = χL AχL XiχL − χL XiχL AχL is trace class on compact sets,

by applying PropositionA.3(i) and noticing thatχL XiχL is bounded. Thus, Propo-
sition A.3(ii) implies that

|C1| · τ([A, Xi ]) = Tr(χ1[A, Xi ]χ1) = Tr(χ1Aχ1Xiχ1 − χ1Xiχ1Aχ1),

where both summands inside the trace are trace class because χ1Aχ1 is trace class.
The cyclicity of the standard trace concludes the proof. ��

Appendix B. Inverse Liouvillian

Here we recall the expression of the inverse Liouvillian L −1
H0

, associated with the
unperturbed Hamiltonian H0, and its relevant properties.

We look for the solution B to the equation LH0(B) = −i[H0, B] = A, where
A = AOD ∈ P(Hf) is off-diagonal with respect to the decompositionH = Ran�0 ⊕
(Ran�0)

⊥. We state in the following Proposition, whose proof can be found in [35,
Subsection 6.2], the solution to this problem, which traces back at least to [3, Equation
(2.11)] (see also [25, Equation (A10)]).

Proposition B.1 Under Assumption 2.4, let A ∈ P(Hf) be such that A = AOD with
respect to �0. Then, the unique off-diagonal solution in P(Hf ,Df) to the equation

LH0(B) = −i[H0, B] = A on U−1
BFZL2

�(Rd ,Df),
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is given by

B = L −1
H0

(A):= 1

2π

∮

C
dz (H0 − z1)−1 [�0, A] (H0 − z1)−1. (B.1)
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