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Abstract
The tenfold way provides a strong organizing principle for invertible topological
phases of matter. Mathematically, it is intimately connected with K -theory via the
fact that there exist exactly ten Morita classes of simple real superalgebras. This con-
nection is physically unsurprising, since weakly interacting topological phases are
classified by K -theory. We argue that when strong interactions are present, care has to
be taken when formulating the exact ten symmetry groups present in the tenfold way
table. We study this phenomenon in the example of class D by providing two possible
mathematical interpretations of a class D symmetry. These two interpretations of class
D result in Morita equivalent but different symmetry groups. As K -theory cannot dis-
tinguish Morita-equivalent protecting symmetry groups, the two approaches lead to
the same classification of topological phases on the weakly interacting side. However,
we show that these two different symmetry groups yield different interacting classifi-
cations in spacetime dimension 2+1. We use the approach to interacting topological
phases using bordism groups, reducing the relevant classification problem to a spectral
sequence computation.
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1 Introduction

A symmetry-protected topological (SPT) phase is a material which stays in a robust
nontrivial state at zero temperature because it is protected by a symmetry [19]. In
recent years, several mathematical approaches to SPT phases of matter have been
developed. With the simplifying assumption of free particles, the classification of
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fermionic SPTs by K -theoretic methods has been well established [9, 15]. Given
the prominent role 8- and 2-Bott periodicity play in real, respectively, complex K -
theory, it is not surprising that there is a corresponding important phenomenon in free
fermion SPTs. This is called the tenfold way, which is a collection of ten classes in
which physical systemswith topological properties can fall. However, there are several
competing mathematical formalisms to describe the tenfold way. For example, some
formulations of the tenfold way require Hamiltonians to always be charge-conserving
[23], while others allow Bogoliubov-de-Gennes Hamiltonians [1, 15].

In this paper, a general mathematical framework of fermionic symmetry groups G
is developed with the goal to describe what it means for a topological phase to be
protected by an internal symmetry group G. One version of the tenfold way is then
outlined as a collection of ten special fermionic groups that correspond to the ten
symmetry classes in agreement with [8]. Using the language of fermionic groups, it
can be argued that there are other choices of internal symmetry groups that also realize
the tenfold way in some sense. Namely, it turns out that such different approaches to
the tenfold way give equivalent classifications of topological phases in the weakly
interacting approximation. The reason is that the K -theory of a symmetry group only
depends on the representation theory and therefore different symmetry groups with the
same representation theory yield isomorphic groups of free fermion SPT phases. This
is called Morita invariance and justifies that we can talk about the tenfold way in the
free setting.Morita invariance is briefly treated in Sect. 2.3, while furthermathematical
details will be justified in future work [20]. However, Bott periodicity is a K -theoretic
phenomenon and SPT phases involving strongly interacting particles are no longer
expected to be classified by K -theory. Therefore, it is not too surprising that one has
to be more careful implementing the tenfold way in the strongly interacting setting. In
particular, it is essential for computations with strong interactions to know the exact
symmetry groups of the system in the ten cases.

However, for non-experts it can be challenging to find consensus in the literature
about what the symmetry groups are of the ten cases and therefore some caution is
needed when talking about ‘the symmetry group of class X’ for interacting topological
phases. We illustrate this issue by focusing on class D topological superconductors.
The standard way to realize class D is by requiring no symmetries at all and so in
particular no charge conservation; see for example the original work of Altland–
Zirnbauer [1] and Kitaev [15]. This corresponds to the choice of fermionic internal
symmetry group Z

F
2 = {1, (−1)F }. Another description is that class D SPTs have a

particle–hole symmetry C which is complex antilinear on one-particle Hilbert space
and satisfies C2 = 1. As emphasized in [28], there seems to be no agreement in the
literature on the definition of a particle–hole symmetry. Therefore, to interpret this
other description, it is essential to clarify its possible definitions. Some authors work
on the space of Nambu spinors and use the term ‘particle–hole symmetry’ to refer to
the canonical correspondence between particles and holes on Nambu space referred
to as ‘particle–hole conjugation’ in loc. cit. In that case, a condensed matter theorist
saying that there is a particle–hole symmetry is equivalent to a high-energy physicist
saying that there is no symmetry. Indeed, this particle–hole conjugation is always
present (also for class A for example) and is not a symmetry in the sense that there is
no canonical way to second quantize it to nontrivial symmetry on Fock space. Another
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interpretation of the statement that class D has a particle–hole symmetry C is to use
the definition of particle–hole symmetry of loc. cit. where it is defined as a symmetry
that anticommutes with a charge symmetry Q. This results in a different internal
symmetry group which we writeU (1)Q �Z

C
2 . In the weakly interacting setting, it can

be argued that ‘particle–hole symmetry cancels charge’ in a suitable sense. Namely,
the classification results are independent of which of the two internal symmetry groups
are taken because of a Morita equivalence. We will elaborate on these statements and
provide clear definitions in Sect. 2.2.

The main goal in the second part of this paper is to show that in the approach
to interacting SPT phases using bordism and invertible field theories of [8] that we
recall in Sect. 3, the two symmetry groups give different classifications. This paper
therefore sheds light on the mechanism of ‘breaking the electromagnetic group U (1)
to Z2 = {±1} through a particle–hole symmetry’; see the discussion in the first
paragraph of [8,section 9]. We do this by computing the relevant bordism groups
using techniques from algebraic topology. The group of invertible field theories with
internal symmetry Z

F
2 is well known and can be easily derived from the spin bordism

groups [8,Corollary 9.81]. We deploy a spectral sequence to compute SPT phases for
the other symmetry group U (1)Q � Z

C
2 in low dimensions. We show in Sect. 4.1

that in spacetime dimension 2 + 1 there are both a Z2-invariant and a Z-invariant for
this internal symmetry group which does not appear in the other classification. With
knowledge of this result, an explicit representative invertible topological field theory
with nontrivial Z2-invariant is constructed, resulting in the partition function given
in Eq. 3. Finally in Sect. 4.2, we give a spacetime on which this partition function is
nontrivial.

Main Result The classifications of interacting SPT phases using bordism groups for
the internal symmetry groups Z

F
2 containing only fermion parity and U (1)Q � Z

C
2

containing both charge and a complex-linear particle–hole symmetry with C2 = 1
are not equal in dimension 2 + 1:

SPT 3
Z
F
2

= Z SPT 3
U (1)Q�Z

C
2

= Z2 ⊕ Z
2.

Possible future research could be extending this result to other symmetry classes
which have been described by different internal symmetry groups such as class AI
(see Sect. 2.2). Another topic is the map from free to interacting SPT phases, which
conjecturally is given by a certain version of the Atiyah–Patodi–Singer η-invariant
[7,conjecture 10.25] [8,remark 9.72] [8,section 9.2.6]. With the choice of symmetry
group Z

F
2 , it is known to be an isomorphism [8,Corollary 9.81]. But other examples

show different behavior, such as the time-reversal-invariant Kitaev chain in dimension
1 + 1 for which it is a surjection Z → Z8. In particular, for the symmetry group
U (1)Q � Z

C
2 , it could be some interesting homomorphism Z → Z2 ⊕ Z

2.
We will make one remark on terminology. In this paper, the phrase ‘SPT phase’

should be understood to mean ‘invertible phase.’ In other words, we will not make
the common assumption that the phase becomes trivial after the symmetry is broken.
A translation to the other convention is easily made by taking the kernel of the map
SPTG → SPT

Z
F
2
given by forgetting the internal symmetry G.
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2 Fermionic symmetries and symmetry classes

2.1 Fermionic symmetry groups

In this section, we will abstract some properties of symmetries of physical systems
involving fermions to arrive at the notion of a fermionic symmetry group. Since the
work of Wigner [26], it has become clear that in quantum mechanics time-reversing
symmetries g have to be treated differently from time-preserving symmetries; they are
anti-unitary instead of unitary operators. Also in quantum field theories in spacetime
dimension d > 1, time-reversing symmetries act anti-unitarily on the many-body
Hilbert space and so their representation theory behaves differently. Additionally,
symmetry groups of fermionic systems have an important datum that one has to keep
track of: the fermion number operator (−1)F . We will assume all symmetries of our
fermionic system are bosonic, so they commute with (−1)F . This discussion results
in the following formal mathematical definition.

Definition 1 A fermionic (symmetry) group is a topological group G together with
a central element (−1)F ∈ G of square one called fermion parity and a continuous
homomorphism θ : G → Z2 = {0, 1} such that θ((−1)F ) = 0. We write Z

F
2 ⊆ G

for the Z2-subgroup1 generated by (−1)F .

The bosonic group Gb of a fermionic group G is defined to be G/Z
F
2 . We write

Gev := ker θ for the symmetries that preserve the direction of time.

Example 2 (class DIII) The fermionic group denoted Z
T ,F
4 is the group Z4 generated

by an element denoted T (time reversal). We take both θ and (−1)F to be nontrivial,
so that θ(T ) = 1 is time-reversing and T 2 = (−1)F .

Example 3 Let G = Pin−(d) denote the Pin-group; the nontrivial double cover of
O(d) in which lifts of reflections in O(d) have negative squares. It has a canonical
square one central element (−1)F := −1 ∈ Pin−(d). The map Pin−(d) → Z2
labeling the two path components of Pin−(d) defines θ . It is given by the composition

Pin−(d) → O(d) → Z2,

where the first map is the double cover and the second map is zero if det A = 1 and
one if det A = −1. Taking d = 1 recovers the last example. The above discussion
generalized straightforwardly to G = Pin+(d).

Example 4 (class AII) We lay out one possible physical interpretation of the last
example for d = 2 as the internal symmetry group of class AII topological insulators.
Pick an orthonormal basis {γ1, γ2} of R

2 and also denote by γ1, γ2 ∈ Pin−(2) lifts of
reflections along these vectors. Then, there is an isomorphism of topological groups

Pin−(2) ∼= U (1)Q�Z
T F
4

Z
F
2

, where Z4 acts on U (1) by complex conjugation after the

1 We adopt the physicist’s convention in this paper and write sub- and superscript letters on groups to
remind ourselves of the physical meaning the groups play.
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quotientmap toZ2 andwe quotiented out the diagonalZ2-subgroup. The isomorphism
is given by T := γ1, i Q := γ1γ2. More precisely, the U (1) subgroup consists of
elements of the form eibQ = cos b + γ1γ2 sin b for 0 ≤ b < 2π . Physically, we can
interpret this symmetry group to consist of time reversal T of square (−1)F and charge
Q such that the spin–charge relation holds, by which we mean the following. Focus
on a = π , then since we quotiented out ZF

2 , the group element eiπQ becomes fermion
parity. Now consider a particle of charge n ∈ Z; a vector v inside an irreducible
representation V of U (1)Q with winding number n, equivalently Qv = nv. Then, n
is odd if and only if v is fermionic, i.e., (−1)Fv = −v.

Note that fermionic internal symmetry groups in these examples are strictly speak-
ing only spatially internal in the sense that they act trivially on a spatial slice, but not
on spacetime. However, such groups seem to be called internal symmetry groups in
the physics literature nonetheless and so we will adopt this language.

2.2 Same class, different symmetry groups

In this section, we address the fact that some symmetry classes in the tenfold way table
have different realizations in different frameworks. The main example in this paper
is the case of class D. In most references, a topological superconductor is described
as having ‘no symmetries’ (more precisely, only fermion parity is present) [1,section
II.A], [8, 13] [27,section 2.2] [15]. In particular, the Hamiltonians involved are not
necessarily charge-conserving. In other words, the internal fermionic symmetry group
is Z

F
2 . However, other references (mainly in the mathematical physics community)

instead claim that the protecting symmetry group contains both a charge symmetry
Q and a particle–hole symmetry C that acts anti-unitarily on one-particle Hilbert
space [9, 23]. Such references are often motivated to make the tenfold way table of
Schnyder–Ryu–Furusaki–Ludwig [17,Table 1] into a theorem. It might be tempting
to interpret class D in this table as assuming an additional particle–hole symmetry on
top of the charge symmetry Q in class A. However, class D is described using BdG
Hamiltonians acting on Nambu space in their paper, while class A is described by
one-particle Hamiltonians acting on one-particle Hilbert space. Therefore, classes A
and D should not be compared in this way.

To make this discussion concrete, we formulate the subtle difference between these
two approaches in the language of Bogoliubov-de-Gennes Hamiltonians. The starting
point is a Nambu spaceW of not-necessarily-charged fields, which is a complex vector
space equipped with two structures:

1. a nondegenerate symmetric complex-bilinear form {., .} : W ×W → C giving the
canonical anti-commutation relations;

2. a complex antilinear involution� : W → W preserving the nondegenerate bilinear
form given by exchanging particles and holes. Following [28], we will call this
particle–hole conjugation and remark that some others refer to � as a ‘particle–
hole symmetry,’ a term that has a different definition in this article, see below.

There is an induced Hilbert space structure on W given by 〈w1, w2〉 = {�(w1), w2}.
A free BdG Hamiltonian is then a self-adjoint operator H on W which anticommutes
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with�. AG-symmetry2 is a representation R ofG onW which commutes with H and
� and preserves {., .}. Since fermion parity (−1)F ∈ G should act by −1 on single
fermions we also require it to acts by −1 on W .

The situation most familiar to condensed matter theorists is where there is a unit
charge3 representation of U (1)Q on W which commutes with � and preserves {., .}.
In that case, there is a splitting of Nambu spinors W ∼= V ⊕ V ∗ into charge Q = ±1
eigenspaces for a one-particle Hilbert space V of electrons. We can then interpret
W as consisting of creation operators a†v creating a particle v ∈ V and annihilation
operators aφ for φ ∈ V ∗. Note that since � commutes with eibQ and � is antilinear,
� and Q anticommute. Under the isomorphism W ∼= V ⊕ V ∗, we can get that � is
induced by the Riesz–Fréchet isomorphism RF : V ∼= V ∗ and {., .} is the natural
pairing between V and V ∗. A BdG Hamiltonian becomes a self-adjoint operator on
W of the form

H =
(

h � ◦ RF−1

−RF ◦ � −RF ◦ h ◦ RF−1

)
,

where we need h : V → V self-adjoint and � : V → V to satisfy �† = −� for H
to be self-adjoint. Note that the current U (1)Q-representation

eibQ = eib ⊕ e−ib : V ⊕ V ∗ → V ⊕ V ∗

we are considering on W is a U (1)Q-symmetry if and only if � = 0. This is the
charge-conserving case in which H comes directly from a one-particle Hamiltonian
h : V → V . However, in a superconducting system, H does not have to be charge-
conserving. This is the case in which the internal symmetry group G = Z

F
2 consists

of nothing but fermion parity.
We will now discuss what happens when a particle–hole symmetry is included

in addition to U (1)Q . We call a symmetry C ∈ G a particle–hole symmetry if it
anticommutes with Q [28,definition (2.1)]. Since C exchanges V and V ∗, we can use
� to get a corresponding operator 	 := �C |V : V → V on one-particle Hilbert space
that anticommutes with h and again squares to one. This is called the pseudosymmetry
associated with C . To get a symmetry group equivalent to class D, 	 is required to be
anti-unitary and square to one. Equivalently, since � is anti-unitary, we require C to
be unitary and C2 = 1. Since C is C-linear, we get

ebiQC = Ce−bi Q .

The result is therefore that there is a U (1)Q � Z
C
2 -symmetry where the action of

Z
C
2 = 〈C : C2 = 1〉 on U (1)Q is by complex conjugation. Since all group elements

involved act unitarily on W and hence on positive energy Fock space, the Z2-grading

2 For this discussion, we will restrict ourselves to time-preserving symmetries and so G will be a fermionic
group with trivial θ .
3 A representation R of U (1)Q is called of unit charge if only representations of weight ±1 occur in the

decomposition into irreducibles, i.e., R(ebiQ) = cos b + R(i Q) sin b.
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θ is trivial. Finally, to make U (1)Q � Z
C
2 into a fermionic group, we have to choose

the central element (−1)F of square 1. We will take it to be −1 � 1 ∈ U (1)Q � Z
C
2 ,

thereby assuming the spin–charge relation in a similar fashion to example 4. We will
briefly discuss what changes in our results if we do not assume the spin–charge relation
at the end of Sect. 4.1. In the next section, we will argue that the difference between
the two symmetry groups Z

F
2 and U (1)Q � Z

C
2 does not matter for the classification

in the weakly interacting regime, but it does matter for strongly interacting phases as
we will see in Sect. 4.1.

By comparing with the case without symmetries above, we can conclude that

1. a BdG system with Z
F
2 -symmetry consists of a complex Hilbert space W together

with an anti-unitary operator � : W → W such that �2 = 1 and a self-adjoint
operator H : W → W which anticommutes with �.

2. a BdG system with U (1)Q � Z
C
2 -symmetry consists of a complex Hilbert space

V together with an anti-unitary operator 	 : V → V such that 	2 = 1 and a
self-adjoint operator h : V → V which anticommutes with 	.

These two pieces of data are in canonical mathematical bijection. Therefore, from
the perspective of free fermions, it is mathematically equivalent to consider systems
with Z

F
2 -symmetry and systems withU (1)Q � Z

C
2 -symmetry. The origin of this is an

equivalence between the representation theory of Z
F
2 and the representation theory of

U (1)Q � Z
C
2 called a Morita equivalence, which we will discuss in more detail in the

next section.
However, this canonical mathematical bijection does not seem to have any physical

interpretation, a statement on which we will now elaborate. First observe that since
	 and � are pseudosymmetries, they map positive energy modes to negative energy
modes and so are strictly speaking not symmetries. In more details, suppose H :
W → W is gapped with its Fermi energy shifted to zero. Then, W = W+ ⊕ W−
separates into positive andnegative energymodes4. TheBdGHamiltonian gets second-
quantized to an operator Ĥ : ∧

W+ → ∧
W+. It is free in the sense that it is

quadratic in annihilation and creation operators. If we have a symmetry g : W → W
it second quantizes to an operator ĝ : ∧

W+ → ∧
W+ which commutes with Ĥ .

On the other hand, � and 	 exchange W+ and W− and so only define operators∧
W± → ∧

W∓. However, since a pseudosymmetry 	 : V → V has a canonical
corresponding symmetry C , this symmetry can then be second quantized to a genuine
symmetry of the second-quantized Hamiltonian Ĥ on positive energy Fock space.
Therefore, working with pseudosymmetries is physically justified. However, applying
this procedure in the case where 	 := � will lead to a trivial symmetry since �2 = 1.
Therefore, unlike the pseudosymmetry 	 which naturally corresponds to a genuine
particle–hole symmetry C , the operator � cannot be interpreted as a symmetry of the
second-quantized theory.

To the reader more familiar with the high-energy physics language, the above story
can be briefly translated to the language of spinors in high-energy physics as follows.
Since we are not necessarily assuming charged particles, the starting point is the real

4 In case there is also charge conservation, this splitting is typically not related to the splittingW ∼= V ⊕V ∗.
Instead W+ = V+ ⊕ V ∗−, where V± are the ±-energy modes of the one-particle Hamiltonian.
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Hilbert space M of Majorana fields (note that we need Majorana because we do not
assume charge conservation).We complexify this space to get a complex Hilbert space
W = M⊗RCwith canonical complex conjugation� and a symmetric nondegenerate
complex-bilinear form

{w1, w2} = 〈�(w1), w2〉.

To end this section, we briefly also discuss the example of class AI. According to
some references such as [9] and [8], the internal symmetry group is U (1)Q � Z

T
2 in

which now the generator T ∈ Z
T
2 is anti-unitary. One other way to realize class AI

that seems natural from a physical perspective was already given in the original paper
of Altland–Zirnbauer [1]: It includes time reversal, charge and spin. We then arrive
instead at a fermionic symmetry group which roughly 5 looks like

G = SU (2) ×U (1)Q � Z
FT
4

Z
F
2 × Z

F
2

,

where the quotient is to ensure that the fermion parities of all three factors are identified.
In particular, we chose to assume both the spin–charge and spin–statistics relations in
this symmetry group. Independent of the exact form of G, it is not isomorphic to the
group U (1)Q � Z

T
2 .

We argue in the next section that two different choices of symmetry groups can be
mathematically equally good to describe some symmetry classX if their representation
theory is sufficiently similar for the K -theory classifications to agree. However, this
reasoning breaks down for interacting phases, since these no longer depend only on
the K -theory. It would be interesting to work out the difference between these two
approaches to class AI in the interacting setting similar to how we handle class D in
Sect. 4.1.

2.3 Morita equivalence of internal symmetries

The two internal symmetry groups Z
F
2 and U (1)Q � Z

C
2 of class D that have been

proposed in the last section are different, but they are similar in the sense that they have
equivalent representation theory in a suitable sense. Mathematicians call this Morita
equivalence, and this turns out to be good enough to have the same classification of SPT
phases in the weakly interacting limit. This is because K -theory is Morita-invariant.

More precisely, let us focus on the real representation theory of these internal
symmetry groups needed to describe individualMajorana fermionswith this symmetry
living in some real Hilbert spaceM. Since this space describes single fermions, (−1)F

acts as −1. So the symmetry algebra

R[(−1)F ]
((−1)F = −1)

∼= R

5 The exact form of G depends on ‘how discrete’ we want to pick it. For example, instead of SU (2) we
could take the finite quaternion group.

123



Interacting SPT phases are not morita invariant Page 9 of 25 64

is trivial and being a representation of R requires no extra data on M.
Now assume the Majorana additionally furnishes a representation of U (1)Q � Z

C
2

and has charge ±1 under Q. Then, the symmetry algebra is instead a 2 × 2-matrix
algebra

R[i Q,C]
((i Q)2 = −1,C2 = 1, i QC = −CiQ)

∼= Cl1,1 ∼= M2(R),

so the data of this Majorana are simply a representation of M2(R). In particular,
the charge and particle–hole symmetry require the real Hilbert space to be even-
dimensional.

The point of this discussion is that the algebras R and M2(R) are not isomorphic.
However, they are Morita equivalent because their categories of representations are
equivalent: The correspondence is given by mapping a Hilbert space to a Hilbert space
of twice its size. Thismeans that K -theory cannot distinguish these two algebras. Since
SPT phases of free fermions are described by K -theory, the symmetry groups Z

F
2 and

U (1)Q � Z
C
2 will result in the same class D classification after assuming unit charge.

For concreteness, this classification6 is given by the Bott-periodic expression

KOd−3(pt),

where d is the spacetime dimension, also see Table 1.
However, we emphasize that whether this implies that the two classifications are

‘equal’ depends onhowyoucompare them; a natural comparisonmap is in the direction
SPT d

U (1)Q�Z
C
2

→ SPT d
Z
F
2
given by breaking the symmetry. On the algebraic level in

the example above, this corresponds to mapping a certain type of representation of
M2(R) to its underlying representation ofR. Since there exist real vector spaces of odd
dimension, thismapping is typically not surjective. Instead it is a kind ofmultiplication
by twomap. In particular, even though the individual K -theory groups are isomorphic,
this specific comparison map is not an isomorphism.

3 Interacting SPT phases using bordism

In contrast to the free case, SPT phases with strong interactions are mathematically
on a much less robust footing. In recent years, much progress has been made from
many angles. Here, we review the approach of [8] (also see [13]) to study SPT phases
using invertible field theories. We provide a new approach to their ansatz for a general
fermionic internal symmetry group in Sect. 3.2. In Sect. 4.1, we calculate the group
of SPT phases for the two class D internal symmetry groups Z

F
2 and U (1)Q � Z

C
2 .

6 We ignore weak topological invariants for simplicity.
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3.1 Low-energy effective theories of invertible lattice models

The core idea is to study condensed matter systems by their low-energy effective con-
tinuum quantum field theory, which conjecturally is sufficiently simple to be defined
mathematically. The proposal is that there is a map [7,section 9.1]

{invertible gapped lattice systems with symmetry G} → I T FT d
G

from a still-to-be-defined space of condensed matter systems to a space of certain7

functorially defined quantum field theories that are invertible under stacking. One
notable case in which this map has been worked out rigorously is for the time reversal
symmetric Kitaev chain [5]. Conjecturally [7] the map is an isomorphism on path
components

{G-SPT phases}

=

π0({invertible gapped lattice systems with symmetry G})−→

π0(I T FT d
G )

=

{deformation classes of unitary invertible G-topological* field theories}

Therefore, up to the issue of defining the relevant notions, we can indirectly study
symmetry-protected topological phases by studying invertible (roughly) topological
field theories.8 This turns out to be useful, since topological field theories can be
defined rigorously and the homotopy type of invertible field theories is very well
understood [18]. Three nontrivial problems addressed in [8] are

1. to define the appropriate ‘target spectrum’ for the field theory;
2. to define when an invertible topological field theory is unitary;
3. given an internal fermionic symmetry group G, they define Euclidean d-

dimensional spacetime structure groups Hd(G) which they use to equip their
bordisms with the appropriate structure (such as spin).

Since Freed–Hopkins mainly focus on their tenfold way, we will outline a procedure
to arrive at the third point above for a general fermionic internal symmetry group in
Sect. 3.2. We will not go into detail on the other points, but instead be satisfied with
the fact that their proposed deformation classes of invertible unitary topological field

7 These are not topological field theories in the classical sense of Atiyah–Segal in which partition functions
take values in C

× with the discrete topology, but so-called topological* field theories in which we give C
×

the continuous topology and the theory can be mildly non-topological.
8 The invertibility assumption is essential here: Fractons provide an example of lattice systems of which
the low-energy effective theory is not topological*.
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theories in spacetime dimension d are (noncanonically) isomorphic to

Torsion
(



H(G)
d

)
⊕ Free

(



H(G)
d+1

)

for compact symmetry groups G. Here, 

H(G)
d denotes the bordism group of d-

dimensional manifolds with H(G)-structure and Torsion and Free denote the torsion,
respectively, free part of the group.

3.2 Spacetime structure groups

To define the correct structure groups on Euclidean spacetime, we have to face
some modifications of our symmetry group by Wick rotation. For example, in usual
Lorentzian signature a time reversal symmetry will satisfy T 2 = (−1)F , but after
Wick rotation this sign will change to +1. Therefore, the spacetime structure group
on a d-dimensional topological field theory of a fermionic system with time reversal
is Pin+

d , not Pin
−
d as one might naively expect. We approach this problem using the

following construction, which we think of as a tensor product over Z
F
2 (also see the

preprint [21], and the proof of [22,theorem 2.2.1]). Recall that wewrite theZ2-grading
θ(g) ∈ {0, 1} additively.
Definition 5 Let (G, θG , (−1)FG), (H , θH , (−1)FH ) be fermionic groups. Then, the
fermionic tensor product G ⊗ H is equal to (G × H)/〈((−1)FG , (−1)FH )〉 as a space.
We endow it with a product

(g1 ⊗ h1)(g2 ⊗ h2) = ((−1)FG)θG (g2)θH (h1)g1g2 ⊗ h1h2

the central element 1 ⊗ (−1)FH = (−1)FG ⊗ 1 ∈ G ⊗ H and the grading θ(g ⊗ h) =
θG(g) + θH (h). When it should be clear from the context, we omit the subscripts G
and H from θ and (−1)F to improve readability.

The proof of the following proposition is a direct computation which is included
for completeness.

Proposition 6 The fermionic tensor product G ⊗ H is a fermionic group.

Proof To show that the operation is well defined, consider g′
1 = (−1)Fg1 ∈ G and

h′
1 = (−1)Fh1. Then because θH ((−1)FH ) = 0,

((−1)F )θ(g2)θ(h′
1)g′

1g2 ⊗ h′
1h2

= ((−1)F )θ(g2)(θ(h1)+θ((−1)F ))(−1)Fg1g2 ⊗ (−1)Fh1h2

= ((−1)F )θ(g2)θ(h1)g1g2 ⊗ h1h2.

There is a similar computation for changing the second argument of the product, which
shows it is independent of chosen representatives.
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To show that G ⊗ H is a fermionic group, note first that 1 ⊗ 1 is a unit and

(g ⊗ h)−1 = ((−1)F )θ(g)θ(h)g−1 ⊗ h−1.

It is also clear that (−1)F⊗1 is central of degree zero and the degree θ : G⊗H → Z/2
is a homomorphism. To show associativity, we pick g1, g2, g3 ∈ G and h1, h2, h3 ∈ H
and compute

(g1 ⊗ h1)((g2 ⊗ h2)(g3 ⊗ h3))

= (g1 ⊗ h1)((−1)F )θ(h2)θ(g3)g2g3 ⊗ h2h3)

= ((−1)F )θ(h1)θ(g2g3)((−1)F )θ(h2)θ(g3)g1g2g3 ⊗ h1h2h3,

where in the last line the fact that θ(((−1)F )θ(h2)θ(g3)) = 0 was used. A similar
computation gives

((g1 ⊗ h1)(g2 ⊗ h2))(g3 ⊗ h3)

= ((−1)F )θ(h1)θ(g2)((−1)F )θ(g3)θ(h1h2)g1g2g3 ⊗ h1h2h3.

The proof is finished by comparing the exponents of the central element:

θ(h1)θ(g2) + θ(g3)θ(h1h2) = θ(h1)θ(g2) + θ(g3)θ(h1) + θ(g3)θ(h2)

= θ(h1)(θ(g2) + θ(g3)) + θ(g3)θ(h2)

= θ(h1)θ(g2g3) + θ(g3)θ(h2).

��
Note thatG⊗H is actually naturally bigraded; there is a homomorphism θG ⊗θH :

G⊗H → Z2×Z2. The grading that we used to makeG⊗H into a fermionic group is
the bigrading composed with the group operation Z2 × Z2 → Z2. We often consider
the even part (G ⊗ H)ev under this grading. Note that the other part of the bigrading
still gives a grading (G ⊗ H)ev = Gev ⊗ Hev � Godd ⊗ Hodd , as such (G ⊗ H)ev
becomes a fermionic group.

Definition 7 Let (G, (−1)F , θ) be a compact fermionic symmetry group, which we
think of as the internal symmetry group. The associated d-dimensional spacetime
structure group is

Hd(G) := (Pin+(d) ⊗ G)ev.

The orthogonal representation ρ : Hd(G) → Od that we will use as a structure map
is induced by the projection onto the first factor.

Example 8 Let G be bosonic without time-reversing symmetries, so (−1)F = 1 and
θ = 0. Then, the spacetime structure group is

Hd(G) = SO(d) × G.
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Example 9 If G is a fermionic group without time-reversing symmetries, then

Hd(G) = Spin(d) × G

Z
F
2

,

where we quotiented by the diagonalZF
2 . For example, letG = SU (2)with (−1)F :=

− id. The resulting spacetime structure group

Hd(SU (2)) = Spin(d) × SU (2)

Z
F
2

has received some attention in the recent mathematical physics literature. It is the main
topic of [25] where it is called SpinSU (2)(d), it is called G0

d in [8] and perhaps the
most suitable name is Spinh(d) introduced in [4].

The SU (2) = Spin(3)-group occurring here can be interpreted as internal spin
degrees of freedom of the particle. This allows us to relate the example to the original
applications to topological condensed matter. Namely, it appears as internal symmetry
of the class C spin singlet superconductor, which is favored inmaterials with negligible
spin-orbit interaction. Note that this physical interpretation is 3 + 1d-centric from a
particle physics perspective: We really need our electrons to be massive 3+1d spinors
to get internal Spin(3)-degrees of freedom. If we want to describe SPT phases in class
C in say dimension 2 + 1, we imagine our electrons to be confined in a spatial plane,
but still have the internal Spin(3)-symmetry.

3.3 The group of SPT phases

Recall that a superalgebra is a Z2-graded algebra in which the multiplication respects
the Z2-grading. For example, the Clifford algebra with (say) positive squares

Cl+p = R[γ1, . . . , γp]
γiγ j + γ jγi = 2δi j

is a real superalgebra in which all γi are odd. The simplest superalgebras are the super-
division algebras: superalgebras in which every homogeneous element is invertible.
Algebraically, the origin of the tenfold way arises from the following super-version
of the Frobenius theorem on real division algebras [11].

Theorem 10 ([24]) There are ten superdivision algebras over R:

C, Cl1,

R, Cl−1, Cl−2, Cl−3, H, Cl3, Cl2, Cl1

There is a canonical way to pass from superdivision algebras to fermionic groups,
giving us a special family of ten fermionic internal symmetry groups as follows. If D
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64 Page 14 of 25 L. Stehouwer

is a superdivision algebra, define the sphere of D to be the quotient group

S(D) := D×

R>0
,

where D× ⊆ D is the topological group of homogeneous (hence invertible) elements
and R>0 ⊆ D× the subgroup of positive scalars. We make S(D) into a fermionic
group by using (−1)F = [−1] ∈ S(D) and θ [d] = |d| is the supergrading of D. The
list of ten fermionic groups we obtain is the list of nonrelativistic internal symmetry
groups of the tenfold way in the formulation of [8,(9.34),(9.35)]

Spinc(1),Pinc(1),

Spin(1),Pin−(1),Pin−(2),Pin−(3),Spin(3),Pin+(3),Pin+(2),Pin+(1).

In particular, the case Pin−(1) recovers example 2 and the case Pin−(2) recovers
example 4. The fermionic groups

Hd(S(D)) = (Pin+(d) ⊗ S(D))ev

will give the ten spacetime structure groups of [8]9, see Table 1. For example, D = R

gives S(D) = Spin1 = Z
F
2 and Hd(S(D)) = Spin(d). Example 9 corresponds to the

case D = H.
Next, the idea is to endow spacetime with a Hd(G)-structure, see [8,section 2.2] for

the definition of an H -structure on amanifold for a group H together with amap to Od .
We then consider unitary invertible field theories with this structure group, which can
be described using bordism groups. Namely, the proposal of [8,remark 8.39] extended
to the current setting is

Ansatz Given a fermionic internal symmetry group G, the abelian group of deforma-
tion classes of d-dimensional G-protected SPT phases is

SPT d
G := [MT H(G),
d+1 IZ].

Here, MT H(G) is the Madsen–Tillmann spectrum [10], IZ denotes the Anderson
dual of the sphere spectrum, and the square brackets denote homotopy classes of maps
of spectra. For more details, we refer the reader to [8,section 5.3 and 7.1]. However, in
this paper we will only consider the right-hand side of the noncanonical isomorphism

SPT d
G

∼= Torsion
(



H(G)
d

)
⊕ Free

(



H(G)
d+1

)

9 There is a sign difference between [8] and this formulation. For example, in [8], the nonrelativistic internal
symmetry group I = Pin+(1) corresponds to the structure group Hd = Pin+(d), while in the formulation
of this paper it corresponds to Pin−(d). The convention chosen here seems to be in agreement with the
physics literature.
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which holds for every compact G. Here 

H(G)
d denotes the bordism group consisting

of d-dimensional Hd(G)-manifolds modulo the ones that bound a d + 1-dimensional
Hd+1(G)-manifold.

Example 11 Consider the class D internal symmetry group Z
F
2 . The bordism groups

corresponding to the spacetime structure group Hd(Z
F
2 ) = Spin(d) are well known

[3]. Using this, we can find the group of SPT phases. For example, in dimension 2+1

SPT 3
Z
F
2

∼= Torsion(
Spin
3 ) ⊕ Free(
Spin

4 ) = Z

is the group of SPT phases in dimension 2 + 1 protected by fermion parity only. The
partition function of the generator is given by the Atiyah–Patodi–Singer eta invariant
of the Dirac operator.

In the next section, we will show that SPT 3
U (1)Q�Z

C
2
is not isomorphic to SPT 3

Z
F
2

by computing the relevant bordism groups. This will show that in the approach to SPT
phases using bordism, these two symmetry groups describing class D give a different
classification of topological phases.

4 Class D classification for interacting theories

4.1 Computing the other class D bordism group

In this section, we will compute the group of H -manifolds up to bordism in low
dimensions, where (see example 9)

Hd := Hd(G) = Spin(d) ×U (1)Q � Z
C
2

Z
F
2

is the spacetime structure group associatedwith the fermionic internal symmetry group
G = U (1)Q � Z

C
2 consisting of charge Q and charge-conjugation C . To this extent,

we will employ an Atiyah–Hirzebruch-type spectral sequence originally introduced
in [22,theorem 3.1.1] under the name ‘James spectral sequence’ as follows. Consider
the short exact sequence of topological groups (also see proposition 12)

1 → Spin(d) → Hd → U (1) � Z2 → 1, (1)

where themap Hd → U (1)�Z2 is given by [r , z, y] �→ (z2, y), where r ∈ Spind , z ∈
U (1) and y ∈ Z2. Note that U (1) � Z2 ∼= O(2) by mapping the Z2 to any reflection
in R

2. This short exact sequence is compatible with the inclusion maps Hd → Hd+1
and Spin(d) → Spin(d + 1). So taking the colimit as d → ∞, there is an associated
fibration of topological spaces

B Spin → BH → BO(2)
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in which the first two spaces have compatible structure maps to BO . We will use a
generalized version of the Serre spectral sequence associated to this fibration which
looks like

Hp(BO(2),
Spin
q ) �⇒ 
H

p+q .

Just as in the ordinary Serre spectral sequence, we might have to deal with local
coefficients. In our case, the base is not simply connected: π1(BO(2)) = π0(O(2)) =
Z2. However, the associated homotopy action of Z2 on the fiber of the fibration is
trivial. This can be seen from the short exact sequence (1): The element 1 ⊗ C ∈ Hd

maps to the nontrivial connected component of O(2) but commutes with the subgroup
Spind . Therefore, the coefficients are not twisted. We can now look up the first few
spin bordism groups [14]



Spin
0 = Z, 


Spin
1 = 


Spin
2 = Z2, 


Spin
3 = 0, 


Spin
4 = Z. (2)

Writing the base space as B = BO(2) to save space, the relevant part of the second
page of the spectral sequence looks like

H0(B, Z) . . .

0 0 0 . . .

H0(B, Z2) H1(B, Z2) H2(B, Z2) H3(B, Z2) . . .

H0(B, Z2) H1(B, Z2) H2(B, Z2) H3(B, Z2) H4(B, Z2) . . .

H0(B, Z) H1(B, Z) H2(B, Z) H3(B, Z) H4(B, Z) H5(B, Z)

The cohomology of BO(2) with Z2-coefficients is well known: [16]

H∗(BO(2), Z2) = Z2[w1, w2],

where w1 is the first Stiefel–Whitney class in degree one and w2 the second Stiefel–
Whitney class in degree two. Since Z2 is a field, the homology is in duality with the
cohomology:

H∗(BO(2), Z2) = Hom(H∗(BO(2), Z2), Z2) = Z2[ w

1,

w

2].

so the homology is spanned by the dual basis of the basis consisting of wk
1w

l
2, which

we write wk
1

wl
2. We emphasize that w

1

w

2 is by no means the product of w

1 and

w

2.
The integral homology of BO(n) for general n was computed in [6]. Alternatively,
one can compute it using Bockstein homology in a similar way to [12,section 3.E]
using the fact that

H∗(BO(2), Z[1/2]) = Z[1/2, p1],

see [16,theorem 15.9, problem 15B]. The result in the dimensions of interest is given
in Table 2. Plugging in these results yields the second page in Fig. 1.

123



64 Page 18 of 25 L. Stehouwer

Table 2 Low-dimensional homology groups of BO(2)

i 0 1 2 3 4 5

Hi (BO(2), Z2) Z2 Z2 Z
2
2 Z

2
2 Z

2
2 Z

3
2

generators 1 w

1

w2
1,

w

2

w

1

w

2,

w3
1

w2
2,

w

2

w2
1,

w4
1

w

1

w2
2,

w3
1

w2
2,

w5
1

Hi (BO(2), Z) Z Z2 Z2 Z2 Z ⊕ Z2 Z
2
2

generators 1 w

1

w

2

w3
1

q

1,

w2
1

w

2

w

1

w2
2,

w5
1

Here wk
1

wl
2 is the dual basis of the basis wk

1w
l
2 of H∗(BO(2), Z2). If they exist, we denote their integral

lifts to two-torsion classes by the same symbol. Furthermore q

1 is an integral lift of w2
2 generating the

Z-part

Z . . .

0 0 0 . . .

Z2 Z2

w

1 Z2

w2
1,

w

2 Z2

w

1

w

2,

w3
1 . . .

Z2 Z2

w

1 Z2

w2
1,

w

2 Z2

w

1

w

2,

w3
1 Z2

w2
2,

w

2

w2
1,

w4
1 . . .

Z Z2

w

1 Z2

w

2 Z2

w3
1 Z q

1 Z2

w2
1

w

2 Z2

w

1

w2
2,

w5
1 . . .

∼

∼ 0

Fig. 1 Second page of the spectral sequence to compute 
H
d . Several second differentials are displayed

To get to the third page, there are general expressions for the second differ-
entials (theorem 3.1.3 in [22]). In the case at hand, the differentials of the form
d2 : Hi+2(BO(2), Z2) → Hi (BO(2), Z2) are dual to

Sq2 + w2· : Hi (BO(2), Z2) → Hi+2(BO(2), Z2).

The differentials of the form d2 : Hi+2(BO(2), Z) → Hi (BO(2), Z2) are the same,
but only after reduction modulo two Hi+2(BO(2), Z) → Hi+2(BO(2), Z2).

The map δ := Sq2 + w2 is given as follows in degrees at most five:

δ(1) = w2, δw1 = w1w2, δw2 = 0, δ(w2
1) = w4

1 + w2
1w2,

δ(w3
1) = w5

1 + w3
1w2, δ(w1w2) = w3

1w2.
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To compute these, one can use the Cartan formula, the fact that Sqi x = x2 if |x | = i
and Sqi x = 0 if |x | < i . One other useful equation is

Sq1w2 = w1w2,

which follows for example from problem 8A in [16] since w3 = 0 in BO(2). The
dual δ∗ : H∗(BO(2), Z2) → H∗−2(BO(2), Z2) of δ in these degrees is

δ∗ w

2 = 1 δ∗ w2
1 = 0 δ∗ w3

1 = 0 δ∗ w

1

w

2 = w

1

δ∗ w4
1 = w2

1 δ∗ w2
1

w

2 = w2
1 δ∗ w2

2 = 0

δ∗ w5
1 = w3

1 δ∗ w3
1

w

2 = w3
1 + w

1

w

2 δ∗ w

1

w2
2 = 0.

Using these formulas and reading fromTable 2 which classes lift to integral homology,
we can compute the third page of the spectral sequence.

Z . . .

0 0 0 . . .

0 0 Z2 . . .

0 Z2 0 0 . . .

Z Z2 0 Z2 Z Z2

d3

In this part of the third page, there are still two possible third differentials. First of
all, the Z in the upper left corner (0, 4) could still be hit by the group at (3, 2), which
is not displayed here. However, looking back to the second page, we see that the group
at this spot is torsion. Therefore, on the third page, it is still torsion and since there is
no nonzero map from a torsion group to Z we see that this third differential vanishes.

However, there is still a possible differential from the (5, 0)-spot to the (2, 2)-spot,
which could be either an isomorphism or zero. We can conclude that


H
0 = Z, 
H

1 = Z2, 
H
2 = Z2, 
H

3 = Z2, 
H
4 = Z

2 ⊕ Z2 or Z
2

where the last group depends on this third differential and the relevant extension
problem. This indeterminacy will be relevant when computing SPT 4

U (1)Q�Z
C
2
, but in

this paper we will only concern ourselves with dimension 3 and lower. One can now

compare SPT
Z
F
2

d to SPT
U (1)Q�Z

C
2

d for d ≤ 3 looking at Eq. 2. For d < 3, they are
isomorphic, but for d = 3 we deduce SPT 3

U (1)Q�Z
C
2

= Z
2 ⊕ Z2, which is not equal

to

SPT 3
Z
F
2

∼= Z.

Since the new Z and Z2 are on the bottom row of the spectral sequence, it is not
hard to construct invariants realizing them. For example, comparing with the spectral
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sequence we see that the three-dimensional Z2-phase can be realized as the invertible
topological field theory with partition function

Z(M, E) = (−1)
∫
M w1(E)3, (3)

where E → M is the two-dimensional real vector bundle we get by coupling our
bosonic Gb ∼= O(2)-symmetry to a background gauge field. Mathematically, it is the
vector bundle induced by the Hd -structure under the natural map Hd → O(2). In the
next section, we will elaborate on these statements and give an explicit representative
(M, E) for which this partition function is nontrivial.

The integer invariant is harder to describe, because integral invariants cannot be
represented by classical Atiyah–Segal-type field theories. The physically correct way
to describe the partition function is by the geometric secondary invariant associated
to the primary invariant one dimension up, see [2,section 21.2] for a pedagogical
introduction. For us, the primary invariant in dimension four is the first Pontryagin
number of the bundle E → M . The associated secondary invariant is the corresponding
classical Chern–Simons theory with gauge group O(2) of level 1. 10

Note additionally that in lower dimensions we have a similar phenomena as was
described for the free case at the end of Sect. 2.3. Namely, even though the classifica-
tions are equal, the natural comparison maps are not isomorphisms. For example, for
dimension 0 + 1 the nontrivial invertible field theory realizing the Z2 is

Z(M, E) = (−1)
∫
M w1(E).

Restricting this theory to spin manifolds with trivial bundle E corresponds to break-
ing the particle–hole and U (1)-symmetry. Therefore, the comparison map Z2 =
SPT 1

U (1)Q�Z
C
2

→ SPT 1
Z
F
2

= Z2 is trivial.

We finish this section by remarking that the above computations can also be done
without assuming the spin–charge relation. A reasonable choice of internal symmetry
group is then Z

F
2 × (U (1)Q � Z

C
2 ) resulting in the spacetime structure group Hd =

Spin(d) × (U (1)Q � Z
C
2 ). The second page of the new spectral sequence is identical

and the only thing that changes in the above computations is the expression for d2
which now has δ = Sq2. The exact result in this case unfortunately strongly depends
onwhether third differentials are present, but at least one of the twoZ2’s on place (2, 1)

can be shown to survive to E∞. Therefore, also in this case

Spin×(U (1)Q�Z

C
2 )

3 contains

a 2-torsion element which is not present in 

Spin
3 = 0 and so SPT 3

Z
F
2 ×(U (1)Q�Z

C
2 )

�

SPT 3
Z
F
2
.

10 There are two integral refinements of p1 ∈ H4(BO(2), R) because the torsion subgroup of
H4(BO(2), Z) is Z2 generated by w4

1. The Chern–Simons theories corresponding to w4
1 + p1 ∈

H4(BO(2), Z) and p1 ∈ H4(BO(2), Z) might be different. But after the choice of integral p1 there
is a unique differential refinement [2,Theorem 13.1.1] defining the Chern–Simons action.
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4.2 Explicit generators

To compute explicit invariants, we first provide a few results that are useful tools to
study H(G)-manifolds for general symmetry group G.

Proposition 12 Let G, H be fermionic groups. If (−1)F �= 1 in H, then there is an
exact sequence of topological groups

1 → G
i→ G ⊗ H

π→ Hb → 1,

where we recall that Hb := H/〈(−1)F 〉. If additionally G has a nontrivial grading
homomorphism, then this restricts to an exact sequence

1 → Gev
i→ (G ⊗ H)ev

π→ Hb → 1.

Proof The maps are defined in the obvious way. Since (g1 ⊗1)(g2 ⊗1) = (g1g2 ⊗1),
the map i is an injective homomorphism. π is well defined, since

π((−1)Fg ⊗ (−1)Fh) = [(−1)Fh] = [h] = π(g ⊗ h)

by design. It is a homomorphism, since the product

(g1 ⊗ h1)(g2 ⊗ h2) = ((−1)F )θ(h1)θ(g2)g1g2 ⊗ h1h2

is mapped to the class of h1h2 in H
〈(−1)F 〉 . It is clearly surjective.

To show that ker π = Im i , note first that π i = 1. Now suppose g ⊗ h ∈ ker π .
Then, h = 1 or h = (−1)F . If h = (−1)F , then

i((−1)Fg) = (−1)Fg ⊗ 1 = g ⊗ (−1)F = g ⊗ h

and otherwise i(g) = g ⊗ h. Hence g ⊗ h ∈ Im i . This finishes the proof that the first
sequence is exact.

For the second sequence, note that the restriction of i to the even parts is still well
defined because it intertwines the gradings. It is also still injective and the composition
with π is trivial. Now suppose that g⊗h ∈ ker π is even. Then h ∈ {1, (−1)F } is even
and therefore so is g. So we still have ker π = Im i . To show that π is still surjective
if G is nontrivially graded, pick [h] ∈ H/〈(−1)F 〉. If h is even, then so is 1 ⊗ h and
π(1 ⊗ h) = h. If h is odd, pick an odd element g ∈ G. Then, g ⊗ h is even and
π(g ⊗ h) = h. This proves the second sequence. ��
Corollary 13 If G is a fermionic group with (−1)F �= 1, then

1 → Spin(d) → Hd(G) → Gb → 1

is exact.
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Proof Apply proposition 12 to the case where G = Pin+(d). ��
Proposition 14 Suppose (−1)F �= 1 ∈ G. Let ν : BGb → B2

Z
F
2 be the map corre-

sponding to the extension

1 → Z
F
2 → G → Gb → 1.

Then, the diagram

BH(G) BGb

BO BZ
T
2 × B2

Z
F
2

(θ,ν)

(w1,w2+w2
1)

is a homotopy pullback square.

Proof We first show the square is commutative. The two maps to BZ
T
2 agree because

they come from the maps of groups x ⊗ g �→ θ(x), θ(g) which are equal because
for Hd(G) we only take the even part of the tensor product. To show that the maps to
B2

Z
F
2 agree, it is sufficient to prove that the pullback of group extensions

1 Z
F
2 Kd Hd(G) 1

1 Z
F
2 Pin−(d) Od 1

is isomorphic as a group extension to the pullback of extensions

1 Z
F
2 K ′

d Hd(G) 1

1 Z
F
2 G Gb 1

Wewill use the model K ′
d = Hd(G)×Gb G and show that it fits in the first pullback

square. There is a homomorphism K ′
d → Pin−(d) defined by ((x⊗g1)×Gb g2) �→ x .

Indeed, we compute the product

((x ⊗ g1) ×Gb g2) · ((x ′ ⊗ g′
1) ×Gb g

′
2) = (−1)θ(g1)θ(x ′)(xx ′ ⊗ g1g

′
1) ×Gb g2g

′
2

and note that since θ(g1) = θ(x) this element is mapped to (−1)θ(x)θ(x ′)xx ′. This
defines an associative product on Pin+(d) through which it becomes isomorphic to
Pin−(d). The resulting map to Od agrees with the composition Gd → Hd → Od .
So the square is commutative. To show it is a homotopy pullback square, we apply
Corollary 13. Note that the homotopy fibers of both horizontal maps in the square are
B Spin and the maps are compatible. ��
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We specialize the discussion to the case at hand and conclude the following.

Corollary 15 An H-structure on a manifold M consists of an orientation, a two-
dimensional real vector bundle E → M and a Pin+-structure on E ⊕ T M.

Proof Given a manifold with stable tangent bundle T M : M → BO , an H -structure
consists of a map M → BH(G) and a homotopy between the composition M →
BH(G) → BO and the tangent bundle. The homotopy pullback square of 14 reduces
to

BH(G) BO(2)

BO BZ
T
2 × B2

Z
F
2

(0,w2)

(w1,w2+w2
1)

telling us that this is equivalent to a two-dimensional real vector bundle E : M →
BO(2) together with a homotopy between the two maps M → BZ

T
2 × B2

Z
F
2 . The

two maps to BZ
T
2 are the determinant line bundle

∧top T M : M → BZ
T
2 and the

trivial map, so this gives an orientation on M . The two maps to B2
Z
F
2 correspond to

the cohomology classesw1(M)2+w2(M) = w2(M) andw2(E). Sincew2(E⊕M) =
w2(E) + w2(M), a homotopy between these maps M → B2

Z
F
2 is a Pin+-structure

on E ⊕ T M . ��
Recall that the three-dimensional Z2-phase can be realized as the invertible topo-

logical field theory with partition function

Z(M, E) = (−1)
∫
M w1(E)3 .

In physics language, if our theory has both charge and particle–hole symmetry, we
have to couple theU (1)Q�Z

C
2 to a background gauge field and this purely topological

partition function gives some information about which instanton sector spacetime is
in.

An example of a three-dimensional H -manifold on which the partition function is
nontrivial is RP

3 together with E = γ ⊕ R, where γ → RP
3 is the canonical line

bundle. Indeed, RP
3 is orientable, w2(RP

3) = 0 and w2(γ ⊕ R) = w2(γ ) = 0, so
that E ⊕ TRP

3 admits a spin structure. Using any of these we have

∫
RP3

w1(E)3 =
∫

RP3
w1(γ )3 �= 0 ∈ Z2,

sincew1(γ )3 is nontrivial in the top cohomology ofRP
3. So the theory is nontrivial on

the spacetime (RP
3, E) with any choice of orientation and Pin+-structure. Note that

the trivial bundle E over RP
3 would make the partition function equal to 1 instead.

Therefore, this theory depends on the choice of instanton sector. In particular, the
theory would not be well defined if it did not have particle–hole and charge symmetry.
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