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Abstract
We focus on functional renormalization for ensembles of several (say n ≥ 1) ran-
dom matrices, whose potentials include multi-traces, to wit, the probability measure
contains factors of the form exp[−Tr(V1) × · · · × Tr(Vk)] for certain noncommu-
tative polynomials V1, . . . , Vk ∈ C〈n〉 in the n matrices. This article shows how
the “algebra of functional renormalization”—that is, the structure that makes the
renormalization flow equation computable—is derived from ribbon graphs, only by
requiring the one-loop structure that such equation (due to Wetterich) is expected
to have. Whenever it is possible to compute the renormalization flow in terms of
U(N )-invariants, the structure gained is the matrix algebra Mn(An,N , �) with entries
inAn,N = (C〈n〉 ⊗C〈n〉)⊕ (C〈n〉 �C〈n〉), being C〈n〉 the free algebra generated by the
n Hermitian matrices of size N (the flowing random variables) with multiplication of
homogeneous elements in An,N given, for each P, Q, U , W ∈ C〈n〉, by

(U ⊗ W )�(P ⊗ Q) = PU ⊗ W Q ,

(U � W )�(P ⊗ Q) = U � PW Q ,

(U ⊗ W )�(P � Q) = W PU � Q ,

(U � W )�(P � Q) = Tr(W P)U � Q ,

which, together with the condition (λU ) � W = U � (λW ) for each complex λ, fully
define the symbol �.
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1 Introduction andmotivation

By the Functional Renormalization Group (FRG), physicists refer to a certain flow
in the renormalization time t , usually the logarithm t = log k of the energy scale k,
which in the “nonperturbative” [1] setting is governed by Wetterich equation [2]

“∂t�k[φ] = 1

2
STr

(
∂t Rk

Hess�k[φ] + Rk

)
” .

This is satisfied by the “effective action �k[φ], infrared-regulated by Rk up to the
energy scale k, on some space of fieldsφ” (quotationmarks, sincemathematical details
follow for the system of our interest). This article addresses functional renormalization
for ensembles of n-tuples of Hermitian matrices; the particular type of ensembles we
analyze have clear physical motivations (Sects. 1.1 and 1.2).

While there is no better way to compute it, the denominator in the right-hand side of
Wetterich equation is a Neumann expansion (geometric series) in “Hess�k[φ]/Rk”,
essentially, the Hessian of the fields. For matrix ensembles, this Hessian is an object
of four indices, two from each of the two derivatives. The question is which is the
meaning of the product � implied in powers (Hess�k[φ])�m of the Hessian; we call
the algebra defined by such product the algebra of functional renormalization.1

Of course, this question can be answered directly by looking at the proof of Wet-
terich equation; for the field theory in question, see [3]. For multi-matrix ensembles
with probability measures defined, as is usual, solely in terms of single traces of matrix
polynomials, part of the answer relies on observing that the Hessian is spanned, as∑

α Fα ⊗Gα , by couples of noncommutative polynomials Fα, Gα . The (so far, unsur-
prising) answer is that powers of the Hessian are obtained by the product rule

(U ⊗ W )�(P ⊗ Q) = PU ⊗ W Q .

Notice the “inversion” in one of the first tensor-factors, which starts to reflect the
inner boundary and the outer one of the one-loop, relevant in this note (see Figs. 1 and
2). Interestingly, the incorporation of double traces yields a less trivial answer, for a
“second product” appears (if one wants, a twisted tensor product) that also satisfies
bilinearity (z P) � Q = P � (zQ), z ∈ C, but which differs from the usual tensor
product only in the way one multiplies it with another element, U ⊗ W or T � V .
From interactions of two (or more) traces, then the Hessian of the effective action

1 We should probably write the functional renormalization group algebra, but “group algebra” can be
confused with C[G], for a group G; or functional renormalization algebra, which would suggest, that the
renormalization group (which is none) is upgraded to an algebra.

123



A ribbon graph derivation of the algebra of functional… Page 3 of 34 58

Fig. 1 The colored legs correspond to Mn -block entries Hessa,b � of the effective action �. Left: Unrenor-
malized interactions ḡi appearing in a kth power of the Hessian. Right: The contribution to the βw-function,
w formed by reading off clockwise the legs

Fig. 2 How the one-loop structure of the FRG is encoded in Mn(An , �). Left: Unrenormalized interactions
ḡi appearing in a kth power of the Hessian. Right: Unlike Fig. 1, this situation leads to a cylindric topology.
Each word w1 and w2 distributed at the boundary is oriented in a consistent way with an orientation of the
cylindric surface (determined by the cyclic clockwise order in the interaction vertices)

turns out to be spanned by noncommutative polynomials in a more general position2∑
α Fα ⊗ Gα +∑ρ Hρ � Iρ . The product reads

(U ⊗ W + Y � Z)�(P ⊗ Q) = PU ⊗ W Q + Y � P Z Q , (1a)

(U ⊗ W + Y � Z)�(T � V ) = W T U � V + TrN (W T )U � V . (1b)

The aim of this article is to prove, using graphs, that the sole assumption that the
contributions to the rhs of Wetterich equation have all a “one-loop structure” implies
that the rhs of Wetterich equation satisfies Eq. (1). Next, we justify the appearance
of noncommutative (nc) polynomials and of double traces, relating both with other
theories (in Sects. 1.1 and 1.2, respectively). In Sect. 2, before presenting the precise
statement, we give a short, but self-contained account of the ribbon graph theory
needed to prove, in Sect. 3, the main statement (Theorem 2). “Appendix A” explains
the construction of the infrared-regulated effective action.

2 These, moreover, might have traces as factors, but being these scalar functions of the matrices that will
not be derived again, this is irrelevant.
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1.1 The origin of the noncommutative polynomials and potential applications

Ensembles of several matrices with probability laws given by ordinary (commutative)
potentials are extensively studied in high-energy physics. An important family of
models solved by Eynard–Orantin [4], using their topological recursion, is the two-
matrix model, which refers to measures dμ onH2

N of the form:

dμ(A, B) = exp[−TrN (AB)]
× exp
{− TrN [V1(A)

}
(dA)Leb × exp

{− TrN [V2(B)]}(dB)Leb . (2)

Modulo the first factor, this is still a product of measures, each of which on the space
HN of N × N Hermitian matrices. Here, V1(x) and V2(x) are polynomials in a real
variable x and TrN (X) = ∑N

i=1 Xi,i is the unnormalized trace. We will keep this
notation in the sequel.

The simplest addressed and (using the character expansion method [5]) solved
model with a genuinely noncommutative law, generalizing Eq. (2), is the AB AB-
model with measure

dμ(A, B) = exp
{− N TrN (gA4 A4 + gB4 B4 + gAB AB AB AB)

}
dγ (A, B)

=: exp(−SInt[A, B])dγ (A, B), (3)

where

dγ (A, B) = exp
{

− N

2
TrN (A2 + B2)

}
(dA)Leb(dB)Leb (4)

is the product Gaussian measure onH2
N . The action S that defines the probability mea-

sure dμ = exp(−S[A, B])(dA)Leb(dB)Leb is the bare action. Hermitian ensembles
with wildly non-factorizable measures, as those relevant in this paper, generalizing
(3), are studied in free probability [6].

A more recent application of nc polynomial interactions concerns ensembles of
Dirac operators

Z =
∫
Dirac

exp[−S(D)]dD (5)

which aim at the quantization of the spectral action S(D) = Tr f (D) in noncommu-
tative geometry. This problem was posed since [7,Ch. 19] and finite approximations
to smooth geometries that allow to make precise sense of the partition function (5)
recently reawakened interest in the problem [8–11]. In the spectral action [12, 13],
traces of f (D) yield (nontrivially noncommutative) polynomial interactions as well
as double traces, cf. Eq. (6).

Applications of nc polynomial interactions were relevant for a better understanding
of theTemperley–Lieb algebra.3 FromaTemperley–Lieb vertexB, i.e., a rooted, planar
3 I thank Bertrand Eynard for pointing out the Temperley–Lieb algebra in the context of nc polynomial
matrix interactions.
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chord diagram one obtains a nc polynomial as in the next example:

B =
*

�→ B(X1, . . . , Xn) =
n∑

a,b,c,d,e=1

Xa Xb X2
c X2

d Xb Xa X2
e .

Nc polynomial matrix interactions are also auxiliary in the description of more general
planar algebras [14] and O(n)-loop models.

1.2 Onmulti-trace interactions

Wewill see later that not includingmulti-trace interactions in renormalization is unnat-
ural (since generic radiative corrections include more traces than the bare action did).
This short section mentions theories that contain multi-traces even before addressing
renormalization (whenever possible).

• Dirac ensembles always yield double trace interactions (then renormalization cre-
ates even more traces). The (bare) Dirac ensemble measure is of the type

dμ(X1, . . . , Xn) = exp
{− N TrN (P) − Tr⊗2

N (Q(1) ⊗ Q(2))
}
d(X1, . . . , Xn)Leb

(6)

for P , Q(1) and Q(2) also4 nc polynomials in the matrices X1, . . . , Xn and
d(X1, . . . , Xn)Leb is the product Lebesgue measure, now on Hn

N . Even though
P has an extra factor of N with respect to the double trace, observe that the latter
cannot be neglected, since TrN (Q(1)) × TrN (Q(2)) contains a double sum too.

• Face-worded, stuffed maps. Combinatorial maps (“gluing of polygons” dual to
ribbon graphs) are counted with the aid of matrix partition functions [15]. In the
presence of two random matrices with the probability law (2), the faces of these
maps can be uniformly colored (and interpreted as Ising model) [16,§8]. If the
potentials are noncommutative polynomials, this is no longer possible, and the
partition function generates maps whose faces are labelled by “cyclic words” in
the matrices (thus the maps could be called face-worded, as presented in Fig. 3 for
the alphabet {A, B}). If the interaction vertices have several traces, the generated
maps are said to be stuffed [11, 17] (independent of whether the potentials are
ordinary or noncommutative). The terminology reflects that one now allows maps
to have elementary cells of a topology that need not be that of a disk, i.e., one
has “maps stuffed with bordered Riemann surfaces”. The renormalization flow we
study yields equations for the β-functions for matrix ensembles whose partition
function generate “face-worded, stuffed maps”. The fixed-point solution of the
β-function system Eq. (14) could be useful to compute critical exponents (see
Remark 1).

• “Touching interactions”. In several quantum gravity approaches, multi-trace oper-
ators appear, to name only few:

4 This notation has been inspired by Sweedler notation in quantum groups, and avoids to write sums like
Q(1) ⊗ Q(2) =∑α Q1,α ⊗ Q2,α where each Q1,α, Q2,α ∈ C〈n〉.
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Fig. 3 Example of (face-)worded maps m1 andm2 dual to ribbon graphs generated by multi-matrix models
with noncommutative polynomial interactions. Each r -agon of sides marked with letters Xi1 . . . Xir is
generated by the interaction vertexTrN (Xi1 . . . Xir ). The relation betweenm1 andm2 is the renormalization
flow. In the cross graining process, the one-loop configurations at the nodes marked with dashed circles in
m1 yield the effective (in this case, higher-degree) interactions in m2. This is the dual version of the cross
graining depicted in Fig. 1 (Dashed edges mean that the maps can extend in that direction and might get
some non-planar topology)

– in Liouville gravity, multi-trace one-matrix models are interpreted as generat-
ing functions of surfaces that might touch at isolated points. (The planar sector,
for instance, is grasped, according to [18], as trees of spheres that can touch
other spheres at most once.)

– multi-trace interactions appear in curvature matrix models [19]. Double traces
appear in the effective description of a matrix model with a kinetic term
Tr(φEφE) (with broken symmetry by a constant matrix E).

– another interpretation in terms of wormholes appears in (a certain two-matrix
model description of) 3-dimensional Causal Dynamical Triangulations [20]

– under the AdS/CFT -correspondence, the AdS-object matching multi-trace
operators in CFT are multi-particle states. In this context, for those states
[21] defines the natural boundary conditions at ∞.

2 Terminology andmain statement

Since our aim is to connect combinatorics and algebra in matrix models, on the one
hand, with renormalization on the other, this article is somewhat interdisciplinary.
Therefore, it is convenient to precisely define our framework and notation.

2.1 Ribbon graphs and the noncommutative Hessian on single trace interactions

The next points introduce our notation and present some definitions:

• The space of Hermitian N × N matrices is denoted by HN . The size of matrices
X1

(N ), X2
(N ), . . . , Xn

(N ) ∈ HN (which will become the random variables) will
be relevant, but the lighter notation X1, X2, . . . , Xn is convenient. The number n
of matrices remains fixed, and we will denote the n-tuple (X1, X2, . . . , Xn) by X.

• C〈n〉 = C〈X1, X2, . . . , Xn〉 is the free algebra. Any element of C〈n〉 is spanned
by words in the alphabet X, and C〈n〉 is endowed with the concatenation product.
We actually should write C〈n〉,N instead of C〈n〉 emphasizing that the generators
Xa are matrices of size N , but the only manifestation of it is the empty word being
the unit matrix 1N , and we opt again for a light notation.
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• The noncommutative derivative with respect to A, ∂A : C〈n〉 → C
⊗ 2
〈n〉 on a word

w containing A is the sum over “replacements of A in w by the ⊗ tensor product
symbol” in the middle of the word; if A occurs at the left (resp. right) end, then
one additionally attaches the empty word (or in C〈n〉,N a unit 1N ) to the left (resp.
right) of ⊗. For example, in a free algebra with enough letters

∂A(P AAR) = P ⊗ AR + P A ⊗ R ,

but ∂A(ALG E B R A) = 1 ⊗ LG E B R A + ALG E B R ⊗ 1 .

• The noncommutative derivative defined on “cyclicwords” Tr P , P ∈ C〈n〉, is given
by the sum of all possible excisions P \ A of A from P , rooting (i.e., starting) the
remaining word at the letter after the removed A

∂A : im Tr → C〈n〉, Tr P �→
∑

rootings at
A’s next letter

P \ A .

The result ∂A Tr P =: DA P defines the cyclic derivative DA of P and is due
to Rota-Sagan-Stein [22] and Voiculescu [23]. For instance, ∂A Tr(P AAR) =
AR P + R P A = DA(P AAR). The adjective “cyclic” for D comes from the
property D Xa P = D Xa [σ(P)], which holds for any cyclic permutation σ(P) of
the letters of P (P ∈ C〈n〉 and any a = 1 . . . , n).

• Grasping Tr as the trace in C〈n〉 induced by that of MN (C), define the noncommu-
tative Hessian [3] of a cyclic word

Hess : im Tr → Mn(C〈n〉 ⊗ C〈n〉)
Tr P �→ (Hessa,b Tr P)a,b=1,...,n := (∂Xa ◦ ∂Xb Tr P)a,b=1,...,n . (7)

Referring to the block Mn-matrix structure, i.e., to indices a, b = 1 . . . , n,
notice that in general the nc Hessian is not a symmetric matrix, Hessa,b Tr P �=
Hessb,a Tr P .

The (b, a)-entry in the Mn-matrix block structure of the Hessian of a cyclic word
Tr W can be represented graphically by summing over all the ordered doublemarkings
of Xa and Xb inside a word W . On W = X�1 X�2 · · · X�k ∈ C〈n〉,N (with k ≥ 2),
according to Eq. (7), this is given for a, b = 1, . . . , n by (for a proof see [3,Prop. 2.3])

(∂Xb ◦ ∂Xa )TrN W =
∑

π=(uv)

δa
�u

δb
�v

π1(W ) ⊗ π2(W ) =
∑

π=(uv)

δa
�u

δb
�v

X�k
X�1

X�2

...

X�u−1

X�uX�u+1

. . .

X�v

. .
.

π = (uv)

,

(8)

We sumover all oriented pairingsπ = (uv) between the letters of the cyclicwordTr W
(which explains the circle in the second equality). In Eq. (8), π1(W ) is the ordinary
word between X�u and X�v and π2(W ) that between X�v and X�u , and because of the
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58 Page 8 of 34 C. I. Pérez-Sánchez

deltas X�v = Xb and X�u = Xa must hold, and the empty word in either case leads
to writing 1N .

Example 1 To simplify the drawings, we expose the case n = 2. We compute
the nc Hessian entry corresponding to Xa = A and Xb = B on TrN W =
TrN (AB AAB AB B). The entry reads:

Hessb,a(Tr W ) = ∂B∂A

(
B

B A

A

B

B

A

A )

= 1N ⊗
(

B

B A

A

B

B

A

A

�
+

B

B A

A

B

B

A

A

� +
B

B A

A

B

B

A

A

�

)

+
(

B

B A

A

B

B

A

A

�

+
B

B A

A

B

B

A

A

� +
B

B A

A

B

B

A

A

�

)
⊗ 1N

+ polynomials of the form P ⊗ Q with Q �= 1N �= P

The cyclicity is lost due to each cut (dashed line). The word represented by each exci-
sion is read starting from the letter right after5 the cut: the first one is AAB AB B, . . . ,
and the sixth B B AB AA. These terms that are listed arise from contiguous appearances
of AB and B A in W and in each case the empty word between the letters originates
the 1N tensor factor. According to Eq. (8), the rest of the polynomials (last line) are
computed by cutting the circle into two non-trivial words. For instance, the next cut
yields

B

B A

A

B

B

A

A

BA
�

� → B AA ⊗ AB B (9)

The order of the derivatives ∂B∂A (to the left of the cut “from A to B”, ⇒ first factor,
to the left of “from B to A” ⇒ second factor) determines which word is placed in
which tensor factor.

2.2 Multi-trace interaction vertices, effective vertices

The interaction vertices in the measures dμ(X) = exp
{− N TrN (P) − Tr⊗2

N (Q(1) ⊗
Q(2))
}
dγ (X) are represented by ribbon vertices framed with a dashed circle. This

is unusual, but in view of the multiple products of traces in the measure, a helpful
notation. The coupling constant ḡ of multiple trace interactions is what prevents the
multiple traces from being interpreted as different, disconnected polygonal building

5 “After” is determined by the scissors pointing in that direction. This is clearer in the graph in Eq. (9).
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blocks (and are interpreted as “touching-interactions” [18–21] in other settings). Their
relation to the free algebra is explainedwith the following examples (where green/light
means the A matrix and red/dark represents B)

ḡ1 TrN (AB B B AB) ↔ ḡ1 (10)

ḡ2 Tr
⊗2
N (AAB AB A ⊗ AA) ↔ g2 (11)

ḡ3 Tr
⊗2
N (B B AB B ⊗ A) ↔ ḡ3 (12)

The convention is that the label of the coupling constants applies to everything inside
the dashed circle, i.e., simultaneously both traces (see also Example 5). This repre-
sentation also reflects the mathematical nature of the effective action �N [X] as (for
now, at least) a formal series (with the coupling constants as parameters) of the form:

�N [X] =
∑
α

Oα Oα = ḡα

tα∏
r=1

TrN (wα,r ) ,

for certain monomials wα,r ∈ C〈n〉 = C〈X〉 (13)

so tα is the number of traces in the operators Oα . The monomials wα,r need not be
monic; as a matter of fact, one usually normalizes wα,r with symmetry factors. The
coefficient of the kinetic operator Tr(X2

c/2) (for each c = 1, . . . , n) is called the wave
function renormalization (of thematrix Xc) and, since it is special, it is usually denoted
not by a ḡ but by Zc. Else, we call interaction vertices the remaining Oα’s. The bar on
the coupling constant ḡi = ḡi (N ), which are functions of N , denotes that it will still
be rescaled ḡα → gα = Zλα N κα ḡα , solving for λα and κα , in order to render finite
and Z -independent the next system (only in the large-N differential6) equations

{
ηc := −∂t log Zc = −Zc

−1 × coeff. of TrN (X2
c/2) in rhs of Eq.(28.)

}
c=1,...,n

(14a)

{
βα := ∂t gα = coeff. of

tα∏
r=1

TrN (wα,r ) in the rhs of Eq.(28)
}

α
, t = log N (14b)

of (η-functions and) β-function equations for the interaction vertices α, determined
by Wetterich equation. This list of operators appearing in Eq. (14) includes those of
the original (bare) action S, but additionally those generated from it by “radiative

6 I thank Alexander Schenkel for pointing out that the parameter t is still discrete for finite N and thus
Eq. (14) is not yet a system of differential equations.
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58 Page 10 of 34 C. I. Pérez-Sánchez

corrections” to S. For instance7 if the initial model is given by

S = N TrN

{1
2

A2 + 1

2
B2 + gA4

1

4
A4 + gB4

1

4
B4 + 1

2
gAB AB AB AB

}
(15)

then the radiative corrections

, , , , . . . (16)

“generate” the effective vertex N TrN (AB B A) (see below, how). Also disconnected
vertices are generated; for instance, TrN (A) × Tr(A) is generated from A4 (by con-
tracting non-consecutive half-edges) and from AB AB (by contracting the B edges).

Therefore, the effective action should include these (and all corrections), and
becomes8

�N [A, B] = TrN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

operators from the bare action (but with “running couplings”)︷ ︸︸ ︷
Z A

2
A2 + Z B

2
B2 + ḡA4

1

4
A4 + ḡB4

1

4
B4 + 1

2
ḡAB AB AB AB

+ 1

2
ḡAB B A AB B A + 1

2
ḡA|A TrN (A) × A + · · ·︸ ︷︷ ︸

radiative corrections

⎫⎪⎪⎬
⎪⎪⎭

(17)

The effective vertices are obtained by taking the boundary graph of the radiative
corrections. In otherwords, they are constructed fromaFeynmangraph—aswere those
in (16) for the model (15)—as defined next, and explained with examples immediately
thereafter.

Definition 1 (Effective interaction vertex) Given a Feynman graph G of a multi-trace
multi-matrix model, first single out the traces TrN (U1), . . . ,TrN (Ur ) that are not
contracted by a propagator. Second, pick an arbitrary side of a ribbon-propagator and
travel along the diagram with the orientation induced by the clockwise orientation of
the interaction vertices, listing in that order the letters that label the half-edges of these
(cf. Example 3) until one comes back to the initial, chosen propagator (on the same
side); call the thus obtained word w1. Repeat this process picking an unvisited side of
a propagator, and iterate until all ribbon propagators visited once by both sides (and
thus all uncontracted half-edges are listed exactly once), say, at the sth iteration. The

7 These graphs are based on the next comment: [24].
8 Notice that the N can be re-absorbed in Z and the bar-coupling constants, but other conventions are
possible.
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effective vertex Oeff
G of the graph G is defined by

Oeff
G = TrN (w1) × TrN (w2) × · · · × TrN (ws)︸ ︷︷ ︸

from vertices contracted with propagators

×TrN (U1) × TrN (U2) · · · × TrN (Ur )︸ ︷︷ ︸
from vertices uncontracted with propagators

Since the words appear inside the trace, the construction is evidently independent of
the propagators we started with to construct each word w1, . . . , ws .

Example 2 (Graphs containing an empty loop.) To illustrate the effective vertex con-
struction of a two-matrix model, consider the graph on the right, which corresponds
to a correction from the operators

O1 = ḡ1 TrN (B3AB A) , (18)

O2 = ḡ2 TrN (A2)TrN (A3B AB) . (19)

The effective vertex is N ḡ1ḡ2 TrN (A2)TrN (B3A2B A2). The quadratic trace comes
from the uncontracted trace in O2; the long word comes from the “outward” loop and
the factor N = TrN 1N from the inner, empty word.

A

B

ḡ2

A

A A
B

B
A

A

B

ḡ1

Example 3 (Orientation of loops.) With the operators

O1 = ḡ1 TrN (C F B DE A) , (20)

O2 = ḡ2 TrN (C DF ABC E A) , (21)

we now illustrate the orientation of the loops. Each operator endows the interaction
vertex with an orientation. The effective vertex should be read off respecting it. This
means that outward loops are clockwise oriented and inward loops anti-clockwise.
The effective vertex is ḡ1ḡ2 TrN (C FC E) × TrN (C DF ADE).

� �
F F

C

E E

C

C

A

D

D

A

B
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Example 4 (Propagators joining different traces in the same interaction vertex.) Con-
sider now the graph on the right.

O1 = ḡ1 TrN (ADB ADB) , (22)

O2 = ḡ2 TrN (B AC DB AC D) , (23)

O3 = ḡ3 TrN (C2) × TrN (D3B DB) , (24)

O4 = ḡ4 TrN (A4) × TrN (D6) , (25)

(and possibly other more operators making the action real). The effective vertex is
ḡ1ḡ2ḡ3ḡ4 × TrN (B DB D7)TrN (A3D AC DB AC D ADB). This graph is also a one-
loop (see Definition 2 for the subtleties that appear in the presence of multi-trace
interactions).

ḡ1

ḡ2

ḡ3

ḡ4 A

A

A
A

A

B

B

B

B

D
D

D

A

D

D

D

D

DD

C

C

D

D

D

In the presence of multi-traces, the one-loop condition cannot be formulated purely
in terms of the first Betti-number b1(G). Instead

Definition 2 Let G be a ribbon graph of a multi-trace multi-matrix model. We denote
by G◦ the one-dimensional skeleton obtained after collapsing the interaction vertices9

to points and the propagators (edges between interaction vertices) to ordinary edges. A
one-loop graph of a multi-matrix model with multi-traces is a ribbon graph G whose
skeletonG◦ is one-particle irreducible (1PI; or, equivalently, a 2-edge connectedgraph)
and which additionally has a first Betti-number b1(G◦) = 1.

Example 5 The next three diagrams are all one-loop graphs:

G1 = , G2 = , G3 = .

(We omit the coupling constants ḡi by now, since we care about topology in this
example). First, G1 has b1(G◦

1) = 1; next, although b1(G2) �= 1, since thinning the
edges and collapsing the stars (dashed circles) to points yields a circle, G◦

2 does have

9 In the single-trace random matrices literature these are sometimes called “stars” [6]. In the definition of
the one-dimensional skeleton, it is implicit that we ignore discrete spaces obtained from the many traces
that might be floating around the one-dimensional complex. This will be clear in Example 5.
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first Betti-number 1. The same argument holds for G3. Having these graphs explained
the subtleties of the multiple traces, we give now ordinary examples. Regarding

G4 = , G5 = , G6 = ,

only the tadpole G4 is a one-loop graph; although b1(G◦
5) = 1, G5 is not 1PI. And G6

is such that G◦
6 has two loops, b1(G◦

6) = 2, so neither G5 nor G6 satisfy Definition 2.

2.3 Includingmulti-traces and themain result

Wedenote by N∞ ∈ N the energy scale atwhich the bare action describes the system.10

The renormalization flow modifies then the probability measure used to compute
observables as follows. The starting point of the flow is the bare action S (or the
measure dμuv

N∞ defined by it)

S : Hn
N∞ → R dμuv

N∞ = exp
{

− S
[
X

(N∞)
]}
dXLeb

(N∞) . (26)

The “uv” in the measure emphasizes that the action S that defines the probability
measure dμuv

N = exp
{ − S[X]}(dX)Leb is the bare action. In order to flow toward a

lower energy scale N < N∞, a regulator RN takes care of integrating the higher modes
(i.e., the matrix entries N < i, j ≤ N∞ of each of the n matrices; see Appendix A).
This smoothens the idea of step-by-step integration [25] of the N + 1th momentum
shell, in order to obtain from ensembles of matrix of size N + 1, effective ensembles
of N × N matrices. This idea was put forward in [26] for the one-matrix model in a
quantum gravity context. Other renormalization theories based on Polchinski equation
have been addressed in [27].

The system at that lower scale N is described by the effective action �N and by the
respective measure dμeff

N at the scale N ,

�N :
{
Hn

N → R,

X
(N )�→ �N [X(N )] dμeff

N (X(N )) = exp
{− �N [X(N )]}dXLeb

(N ) . (27)

10 The reason for the notation N∞ is that, at the end, that integer can be thought of as being ∞. One
computes first all with finite N∞ and then takes the limit N∞ → ∞.
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It can be proven—rigorously, at least in the sense of formal series—that the effective
action satisfies Wetterich equation [3],

∂t�N [X] = 1

2
STr
( ∂t RN

Hess�N [X] + RN

)
, (28)

but as pointed out in the introduction, this is not the approach we follow in this article.
We rather assume that the renormalization flow is governed by an equation of the form
(28) and let ribbon graph theory dictate us the several objects that appear, specially
the algebra obeyed by the Hessian. If an expansion in U(N )-invariant operators exist,
one is able to split the supertrace as follows:

1

2
STr
{ ∂t RN

Hess�N [X] + RN

}
=

∞∑
k=0

RN -dependent part︷ ︸︸ ︷
h̄k(N , η1, . . . , ηn)

× 1

2
(−1)kSTr

{
(Hess�Int

N [X])�k}
︸ ︷︷ ︸

regulator-independent part

, (29)

where h̄k(N , {η1, . . . , ηn}) is a function of N and the anomalous dimensions ηc =
−∂t log Zc; finally, �Int

N [X] is the interaction part of �N , which will be constructed
below. Since we are looking for a “universal” algebras (not in the usual sense, but in
the sense that they will appear independent on the regulator RN ), details on RN are
placed in “Appendix A’.

In order to find the algebra A where the Hessian of the effective action lies, let us
search for the identity element ofA . Because this algebra should contain Mn(C〈n〉 ⊗
C〈n〉) (still seen as a vector space), we assume that A is also a matrix algebra of
the form A = Mn(An) for certain An , and define the supertrace11 STr on a matrix
P = (Pa,b)a,b=1,...,n ∈ Mn(An), Pa,b ∈ An by

STr(P) =
n∑

a=1

TrAn (Pa,a) (30)

in terms of TrAn , where An , its product � and its trace TrAn are to be determined.
For this purpose, we observe that the effect of the kinetic terms, at a graph level,

is just elongating the ribbons, and since all RN -dependence has been absorbed in the
coefficients h̄k in Eq. (29), we conclude that the Hessian of the kinetic terms cannot

11 This is a historical terminology which should not evoke supersymmetry.
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modify the effective vertex at all: since, for a, b, c, d ∈ {1, . . . , n},

· · ·Hess Od,b�Hess
{1
2
Tr(X2

c )
}

b,a
· · · = · · ·

Tr(
X
2
c
)O · · ·

= · · ·
Tr
(X

2
c
)O × δc

aδc
b · · ·

(31a)

· · ·Hess
{1
2
Tr(X2

c )
}

a,b
�Hess Ob,d · · · = · · · Tr(

X
2
c
)

O · · ·

= · · · Tr
(X

2
c
)

O × δc
aδc

b · · ·

(31b)

for any interaction vertex O . On the other hand, the double trace terms [Tr Xc]2 “cut”
the interaction vertex:

· · ·Hess
{1
2
[Tr(Xc)]2

}
a,b

�Hess Ob,d · · · = · · · δc
aδc

b [TrXc]
2 O · · ·

(32a)

· · ·Hess Od,a�Hess
{1
2
[Tr(Xc)]2

}
a,b

· · · = · · · δc
aδc

b [TrXc]
2O · · ·

(32b)

By Eq. (31), Hessc,c
1
2 Tr(X2

c ) = 1N ⊗ 1N (no sum) is the left and right identity of
An,N , and by Eq. (32) there is another constant generator inAn,N that, by the previous
graph argument, is not proportional to 1N ⊗ 1N (and therefore cannot be the identity)
and which we denote by 1N � 1N .

Definition 3 We defineAn := C
⊗ 2
〈n〉 ⊕ C

� 2〈n〉 = [C〈n〉 ⊗ C〈n〉] ⊕ [C〈n〉 � C〈n〉]. Again,
this is simplified notation for An,N defined as An , but with C〈n〉,N instead of C〈n〉.

So far, An is only a vector space and � is just a symbol which will be different
from ⊗ when we leave the category of vector spaces and grasp An already as an
algebra. The bilinearity of � is due to the coupling constants ḡ of interaction vertices
O = TrN [ḡQ1]TrN Q2 = TrN Q1 TrN [ḡQ2], which can “enter into any trace”.
Thus, � must satisfy (λU ) � W = U � (λW ) for complex λ and U , W ∈ C〈n〉. The
noncommutative Hessian can be extended to products of traces as follows:

Definition 4 On double traces Hess : im Tr⊗2 → Mn(An) is given by

Hess
{
Tr⊗2(P ⊗ Q)

} = Hess P × Tr Q + Hess Q × Tr P + �(P, Q) , (33)
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where �(P, Q) = (�a,b(P, Q))a,b=1,...,n has the following Mn-matrix entries:

�a,b(P, Q) = ∂Xa TrN P � ∂Xb TrN Q + ∂Xa TrN Q � ∂Xb TrN P

= D Xa P � D Xb Q + D Xa Q � D Xb P . (34)

Lemma 1 The trace TrAn on An is defined12 in terms of TrN by linear extension of

TrAn (P ⊗ Q) = Tr⊗2
N (P ⊗ Q) = TrN (P) × TrN (Q) (35a)

TrAn (P � Q) = TrN (P Q) (35b)

Proof The tadpoles yield the desired relations. To obtain the first, for any fixed
c ∈ {1, . . . , n}, consider an interaction vertex O = ḡ Tr(Xc P Xc Q) with
P, Q ∈ C〈n〉 satisfying ∂Xc P = ∂Xc Q = 0 (e.g., take P, Q ∈ C〈n−1〉 =
C〈X1, . . . , Xc−1, Xc+1, . . . , Xn〉). The contribution to the rhs of the flow equation
is

1

2
STr Hess O = ḡ

2
TrAn (P ⊗ Q + Q ⊗ P) + terms without c-propagators . (36)

The value of the first two summands is determined by the effective vertex of the graphs
that the Hessian computes according to Eq. (8). These are such that the two ribbons
are attached at the only two Xc matrices in O ,

Hessc,c O = ḡ
Q

· · ·

P · · ·

+ ḡ
Q

· · ·

P · · ·

The ellipsis means that in the graphs, P is the word after the contracted Xc running
clockwise until the next Xc, after which Q begins. The seemingly different propagator
contraction is just an attempt to reflect that in the first graph P is inside the loop and
Q outside, with these words in the other way around for the second graph. However,
these two graphs are indistinguishable, thus, for each graph the effective vertex reads
ḡ TrN (P) × TrN (Q), so by Eqs. (36), (35a) follows. To obtain the other product,
we consider tadpoles with the ends of the propagator on different traces of the same
operator. Let

O ′ = ḡ′ TrN (P Xc)TrN (Q Xc) = ḡ′
Q

· · ·

P · · ·
Xc Xc

12 Just as the operatorsD A and ∂A , this abstract trace is the result of matrix-trace calculations with entries.
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whose Hessian (cc)-entry reads

Hessc,c O ′ =
ḡ′

Q

· · ·

P · · · + ḡ′
Q

· · ·

P · · ·

.

By Eqs. (33) and (34),

1

2
STr Hess O = ḡ′

2
TrAn (P � Q + Q � P) + terms without c-propagators . (37)

Ignoring the two coupling, the effective vertex of each graph is TrN (P Q), which
must be the value of TrAn (P � Q), but since the graphs are indistinguishable, also of
TrAn (Q � P), Therefore, Eq. (37) implies Eq. (35b).

Now let us consider the general case, where P might depend on Xc (the depen-
dence of Q on Xc can be likewise implemented, additionally, but the argument is the
same in essence). Suppose that P = PLXc PR, where PL, PR ∈ C〈n〉 are monomials
independent of Xc. In this simple case, the rhs of Eq. (36) receives the correction
ḡ TrAn [PL ⊗ PRXc Q + PRXc Q ⊗ PL], by the formula (8) for the Hessian. How-
ever, since P, Q are arbitrary, these terms cannot contribute to the coefficient of
TrN P TrN Q in 1

2STr(Hess O), since none of the graphs in such correction com-
ply with having effective vertex (proportional to) TrN P TrN Q, and the word P has
been split. Therefore, such contributions can be ignored (they do contribute, but to
other effective vertices). A similar treatment for a generic word P and Q that might
contain Xc concludes also the proof of (37) without restrictions on P and Q imposed
above. ��

In order to justify Eq. (29), we now define both C and �Int
N [X] by

RN + Hess�N [X] =: C−1 + Hess�Int
N [X] , (38)

where �Int
N [X] contains only interaction vertices (and [TrN Xc]2 counts as such; C is

the correlation or inverse propagator). That is, �Int
N is defined in such a way that the

Gaussian part dγ eff
N in the effective measure is factorized out:

dμeff
N (X) = e−�N [X]dXLeb = e−�Int

N [X]dγ eff
N (X) , (39a)

dγ eff
N (X) =

n∏
c=1

e−Zc TrN (X2
c /2)(dXc)Leb . (39b)

Notice that one could have been tempted, inspired by [28], to separate theHessian in its
field-independent part (defined by its vanishing when X = 0) and the field dependent
part as performed in the functional renormalization treatment to one-matrix models by
[26]. The “field part” of the algebraAn,N consists of non-trivialwords (i.e., exceptmul-
tiples of 1N ⊗ 1N and 1N � 1N ). But the presence of double-trace quadratic operators
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1
2 [Tr(Xc)]2, whose Hessian is 1

2 Hess{(Tr Xc)
2} = diagn[0, . . . , 1N � 1N , 0, . . . , 0],

with the non-zero in the (cc)th entry of the Mn-block diagonal diagn , lies in the field-
independent part, and this impairs (as we see now) the Neumann expansion. On the
other hand, the definition (38) guarantees that the propagator C−1 is 1n ⊗ 1N ⊗ 1N

times a function (on [1, . . . , N ]2), due to
n∑

c=1

Hess
{1
2
Tr(X2

c )
}

=
n∑

c=1

diagn[0, . . . , 1N ⊗ 1N︸ ︷︷ ︸
cth place

, 0, . . . , 0] = 1n ⊗ 1N ⊗ 1N .

When the wave function renormalization constant Zc is supposed to be equal for
all matrices, Zc = Z , then h̄k(N , η), η = −∂t log Z , and the sums in h̄k can be
approximated by integrals of the form 1

N2

∫
(∂t rN )σ,τCk+1

τ,σ dσ dτ that remain finite as
N → ∞. We do not study the space of possible regulators (in itself, interesting), but
we stress that the expansion (29) in unitary invariants is an assumption. Ideally, as
commented in [26], since RN breaks the symmetry, Eq. (29) should include operators
STr(∂t RNC[Hess�N

Int[X]C]�k). However, identifying these operators with broken
unitary symmetry is out of our present scope and for now the best one can do is to split,
as in Eq. (29), the rhs of Wetterich equation in RN -dependent and RN -independent
part. The main result of this article is the unique description of the latter.

Theorem 2 For multiple-trace self-adjoint n-matrix ensembles, assume the rhs of Wet-
terich equation to be computable in terms of U(N )-invariants as the geometric series
(29) in the Hessian. Moreover, require that in Eq. (29) only one-loop graphs are gen-
erated. Then, the powers (Hess�Int

N [X])�k are taken in the algebra Mn(An,N , �) of
n × n matrices with entries in An,N , explicitly

Mn(An,N ) = Mn(C) ⊗ An,N , An,N = C
⊗ 2
〈n〉,N ⊕ C

� 2〈n〉,N , (40)

whose product is given entry-wise by (P�Q)a,c = ∑n
b=1 Pa,b�Qb,c for P =

(Pa,b)a,b=1,...,n, and Q = (Qa,b)a,b=1,...,n ∈ Mn(An,N ), and each entry Pa,b and
Qb,c obeys the following multiplication rule, given here on homogeneous elements of
An,N : for any P, Q, U , W ∈ C〈n〉,

(U ⊗ W ) � (P ⊗ Q) = PU ⊗ W Q , (41a)

(U � W ) � (P ⊗ Q) = U � PW Q , (41b)

(U ⊗ W ) � (P � Q) = W PU � Q , (41c)

(U � W ) � (P � Q) = TrN (W P)U � Q . (41d)

Proof Sect. 3 is the proof. ��
In other words, if one computes functional renormalization of matrix models with

a product different from Eq. (41), either contributions that do not have the one-loop
structure appear in the β-functions (14), or it is impossible to compute the renormal-
ization flow by splitting, in regulator-dependent and regulator-independent parts as in
(29)—regardless of what h̄k might be.
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Remark 1 There are two interesting limiting cases,13 large-N (together with the initial
scale of the bare action N∞ → ∞) and small-N . From Fig. 1, it is evident that N -
factors appear only when one-loop graphs have the “empty word” 1N at any side. This
suggests that the algebra of Theorem 2 could be reduced to Eq. (41a), but actually
double-traces appear again in Eq. (41d), and TrN (Q1)×TrN (Q2) compete with terms
of the form N TrN (P). Further, this argument should be thoroughly investigated,
since the ensemble in the large-N depends also on the power-counting, that is, on the
solution for the κα and λα; see the discussion just above Eq. (14). For β-functions
computed with the algebra Eq. (41), see [3,Thm. 7.2] and [24]. The critical behavior
could be explored in the sense of [26] as eigenvalues of the stability matrix, namely
−Eig
{
(∂βα(η

•
, {g•}/∂gα′)

}
α,α′ , where the bullet means the fixed-point solutions of

the system (14), βα(η
•
, {g•}) = 0 and ηc(η

•
, {g•}) = 0 for all interactions α and all

matrices c = 1, . . . , n. In the large-N , for the two-matrix model with 48 operators
(that is the number of operators in a sextic truncation) compatible with the symmetries
of the AB AB-model, the unique fixed point solution with a single positive eigenvalue
of the stability matrix happens when two coupling constants have the value 0.07972
(1/4π = 0.07957 . . . is the critical value for the coupling constants in [5], when one
takes their sign and normalization conventions) and some double-trace operators like
Tr2N (A),Tr2N (A2), TrN (A) × TrN (B3), do contribute to the flow (at least so with the
regulator of App. A). The limit N → 1 (t → 0) should yield the full effective action
(see limits in App. A), but this is unexplored here and needs an independent study. In
the worst of the cases, the full algebra (41) is needed to next-to-leading-order or nlo
corrections, but bounds on those nlo-terms are precisely the beginning of an analytic
approach.

Remark 2 (The product � in terms of matrix entries) Consider the permutation τ =
(13) ∈ Sym(4) and denote by id the identity of the symmetric group Sym(4). Let
ρ, π ∈ {id, τ }. Then, if a, b, c, d = 1, . . . , N , and Y1, Y2, Y3, Y4 ∈ C〈n〉 ⊂ MN (C)

are monomials, the four products of Theorem 2 are summarized in the following
equation, where the sum over x, y = 1, . . . , N is implicit:

(Y1 ⊗ρ Y2)�(Y3 ⊗π Y4)ab;cd = (Y1)ρ(a)ρ(b)(Y2)ρ(x)ρ(y)(Y3)π(y)π(x)(Y4)π(c)π(d)

(42)

where for � ∈ {id, τ }, ⊗� = ⊗ if � = τ = (13) and ⊗� = ⊗id = � if
� is the trivial permutation.. Also ρ acts as element of Sym(a, b, x, y) and π on
Sym(y, x, c, d). For instance, in the nontrivial caseρ = τ , τ(a, b, x, y) = (x, b, a, y).
We remark that in order to keep the Hessian simple in this paper, the convention is the
opposite of [3], i.e., ⊗τ there is ⊗ here; and the ⊗ of [3] corresponds to the � here.
The particular permutation τ = (13) might seem at first arbitrary, but it is actually
natural and can be found in op.cit. or in [6,Eq.5].

13 I thank Răzvan Gurău for questions that motivated this remark (which gives partial answers).
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3 The proof of themain statement

Figure 4 gives the logic structure in the proof. By “s ⊂ Hessa,b(O)” we abbreviate
that s is a summand in Hessa,b(O). Further, M, L, P, Q, R, S, T , U , V , W ∈ C〈n〉
are arbitrary monomials.

Proof of Theorem 2 Start with the kth power of a Hessian. First, we argue that we can
simplify this situation and deduce the behavior regarding the kth power for any k from
the square of a Hessian. Supertraces of products of Hessians will be sums over terms
of the following form:

Xb

Xa Xd

Xc

ḡ2

ḡ1

. . .

ḡ3 ⊂
{
Hessa,b (O1)�Hessb,c (O2)�

Hessc,d (O3)� · · · �Hess∗,a (Ok)
(43)

The associativity of the product � follows from the definition of effective vertices
(but should be verified purely algebraically, after the product is constructed):

Xb

Xa Xd

Xc

ḡ2

ḡ1

. . .

ḡ3 =
Xb

Xa Xd

Xc

ḡ2

ḡ1

. . .

ḡ3 (44)

where the gray boxes with uncontracted, protruding ribbon edges mean the new inter-
actions formed from the two grouped interaction vertices. The new cyclic order is
determined by the propagator, together with the half-edges it is attached to, being
shrunk. The left corresponds to the [Hessa,b(O1)�Hessb,c(O2)]�Hessc,d(O3) brack-
eting, while the right one to Hessa,b(O1)�[Hessb,c(O2)�Hessc,d(O3)].

We have four cases, depending on the way the four propagators in the loop connect
the interaction vertices of k = 2 interaction vertices. The fact thatA = Mn(An) is an
associative algebra (or recursive application of (44)) allows us not to consider more
cases. However, to determine the product, k = 3, 4 will yield also useful information
too.
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(a)

(b)

Fig. 4 The “topology” of the proof of Theorem 2 showing the absence of logic loops, notwithstanding
the mix of cases in the proof. The arrows are implications. These diagrams show how we “bootstrap” the
algebra
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• Case I: When two ribbons in the loop lie in the same trace in the first interaction
vertex, but in different traces in the second:

ḡ1 ḡ2
...↑

W

↓ ... ↓...

T

↗
V

U
↙

Xb

Xa

⊂ Hessa,b O1�Hessb,a O2 (45)

Suppose that the interaction vertices have one and two traces, respectively. In fact
they might have more traces, but these not being implied in the loop for the present
case, they remain intact; thus, we do not loose generality by this simplification.
There exist then words T , U , V , W (which might be empty) such that

O1 = ḡ1 Tr(U Xa W Xb) and O2 = ḡ2 Tr(XbT )Tr(Xa V ) .

The words T , U , V , W ∈ C〈n〉 might contain the letters Xa, Xb, but we are ana-
lyzing only the summand in the lhs of (45). To compute the contribution of the
two Hessians to this precise summand, we get by Eq. (8)

Hessa,b O1 ⊃ ḡ1∂Xa ◦ ∂Xb Tr(U Xa W Xb) = ḡ1U ⊗ W ,

and by Eq. (34),

Hessb,a O2 ⊃ ḡ2D Xb Tr(XbT ) � D Xa Tr(Xa V ) = ḡ2T � V .

Now, since the effective vertex of (45) is formed by shrinking the green and red
propagators and merging the rest of the ribbon half-edges while preserving the
order, the graph (45) implies that the effective vertex is ḡ1ḡ2 TrN (W T U V ). By
Wetterich equation,

TrAn [(U ⊗ W )�(V � T )] = TrN (W T U V ) . (46)

Since the lhs is a single trace, this is enough to conclude that the result of (U ⊗
W )�(V � T ) must be “a � inserted somewhere in the cyclic word W T U V ”,
otherwise it would be a product of the form w1 ⊗ w2 which, when traced, would
yield a N -factor, in case that any of the words w1 or w2 is trivial, and a double
trace if both are not trivial. We also know that the result of (U ⊗ W )�(V � T )

must be an ordinary and not a cyclic word; thus, so far, we need to know how to
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root it, i.e., the expression for (U ⊗ W )�(V � T ) should be listed in

1 � W T U V , W � T U V , W T � U V , W T U � V , W T U V � 1 ,

1 � T U V W , T � U V W , T U � V W , T U V � W , T U V W � 1 ,

1 � U V W T , U � V W T , U V � W T , U V W � T , U V W T � 1 ,

1 � V W T U , V � W T U , V W � T U , V W T � U , V W T U � 1 .

(47)

To discard the wrong ones, we first consider the following interaction vertices:

O1 = ḡ1 TrN (XbW XaU ) ,

O2 = ḡ2 TrN (XbT )TrN (XcV ) ,

O3 = ḡ3 TrN (Xc R)TrN (SXa) .

and the corresponding product of Hessians of each of these (in that order), which
contains in particular, the next graph:

ḡ2

ḡ1

ḡ3

Xc

Xb

Xa

U

T

R

S

V

W

⊂ Hessa,b O1�Hessb,c O2�Hessc,a O3

The effective vertex must be TrN (V W SU )TrN (RT ), so

TrAn

{[(W ⊗ U )�(V � T )]�(R � S)
} = TrN (V W SU ) × TrN (RT ) . (48)

One can use the previous graph to discard elements in the list (47). For instance,
we suppose that (W ⊗ U )�(V � T ) = W � T U V . For the product inside curly
brackets {. . .}, using Eq. (60c) or Eq. (60d) (equivalently, Eq. (65); Fig. 4b), one
gets the following possibilities:

=
{

S � W TrN (RT U V ) if Eq. (60c)holds ,

W � S TrN (RT U V ) if Eq. (60d.)holds .
(49)

But the trace of it yields in either case TrN (SW )TrN (RT U V ) which differs from
Eq. (48). Thus, (W ⊗ U )�(V � T ) = W � T U V is impossible. By the same
token, with the same counterexample above, one discards the possibilities that do
not contain a factor of the empty word 1, except (W ⊗U )�(V �T ) = U V W �T .
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Regarding those possibilities containing the factor of 1, following any of the pre-
scription of the leftmost column in (47) for the square brackets product, and the
Case IV, which is to say either Eq. (60c) or Eq. (60d), for the resulting multi-
plication of the form w1 � w2�w3 � w4, one easily sees that these generate a
factor TrN (S); likewise, those possible products on the rightmost columns (47)
generate a factor TrN (R). Both lead then to contradiction with the previous graph.
Therefore, indeed (W ⊗ U )�(V � T ) = U V W � T , i.e., Eq. (41c) holds.

• Case II: When two ribbons in the loop lie in the same trace in the first interaction
vertex, but in different traces in the second: This case is proven by swapping
the roles of the first and second interaction vertices in Case I. Since the proof is
analogous, we rather sketch it. The next graph can be used

ḡ2ḡ1

Xb

Xa

Q

P

W

U

⊂ Hessa,b O1�Hessb,a O2 (50)

for suitable operators O1 and O1 (constructed in a similar way to Case I) to obtain

TrAn

(
U � W�P ⊗ Q

) = TrN (QU PW ) . (51)

From Eqs. (60c) and (60d) (see Fig. 4) and the graph

ḡ3

ḡ2

ḡ1

U

Xa

S

R

P

Q

Xc

Xb

W

⊂ Hessa,b O1�Hessb,c O2�Hessc,a O3 ,

one can create suitable operators O1, O2, O3 to deduce Eq. (41b).
• Case III: When two ribbons in the loop lie on the same trace in both the first and

second interaction vertices:

W
U

P

...

...

Q

...

irrelevant →

Xa

Xb

⊂ Hessa,b O1�Hessb,a O2 . (52)
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We consider operators O1 = ḡ1 TrN (Xa W XbU ) and O2 = ḡ2 TrN (Xa P Xb Q).
These might have more traces, but as depicted above, these being outside the loop,
do not suffer any transformation (in that summand) and can be ignored. Then,
Hessa,b O1�Hessb,a O2 = (U ⊗ W )�(P ⊗ Q). According to Wetterich equation,
the effective vertex must be

TrAn [(U ⊗ W )�(P ⊗ Q)] = TrN (PU )TrN (W Q). (53)

which implies either of the following possibilities:

(U ⊗ W ) � (P ⊗ Q) = TrN (PU )W � Q (54a)

(U ⊗ W ) � (P ⊗ Q) = TrN (PU )Q � W (54b)

(U ⊗ W ) � (P ⊗ Q) = PU ⊗ QW (54c)

(U ⊗ W ) � (P ⊗ Q) = U P ⊗ QW (54d)

(U ⊗ W ) � (P ⊗ Q) = U P ⊗ W Q (54e)

(U ⊗ W ) � (P ⊗ Q) = PU ⊗ W Q (54f)

To obtain the right one(s), we consider now the third power of the Hessian, but
in the contraction with the additional vertex Case IV shall be here useful. By
contradiction to each of the cases, we suppose that Eq. (54a) holds. Then, consider
the following interaction vertices:

O1 = ḡ1 TrN (Xa W XbU ) ,

O2 = ḡ2 TrN (Xb Q Xc P) ,

O3 = ḡ3 TrN (Xc R)TrN (SXa) .

By a similar ribbon graph argument, we obtain, using the hypothesis, that
(Hessa,b O1�Hessb,c O2)�Hessc,a O3 which is, modulo the coupling constants
[(U ⊗ W )�(P ⊗ Q)]�(R � S) = [TrN (PU )W � Q]�(R � S). Applying TrAn to
this quantity we deduce, according to the partial conclusion in Case IV (recalling
that the bracketing is irrelevant due to Eq. (44)), that

TrAn

{
(U ⊗ W )�(P ⊗ Q)�(R � S)

} = TrN (PU )TrAn

{
(W � Q)�(R � S)

}
= TrN (PU )TrN (Q R)TrN (W S). (55)

However, by looking at the graph that the product in curly brackets represents,
the previous equation cannot be true, for the graph leads to a single trace, namely
TrN (W Q R PU S). This is a contradiction with the supposition that (U ⊗W )�(P ⊗
Q) = TrN (PU )W � Q. Hence, we discard Eq. (54a). By the same argument in
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number of traces, we discard also Eq. (54b). Further, with the next counterexample

ḡ1

ḡ3

ḡ2Xa

Xc

Xb

W

U

Q

S

R

P

⊂ Hessa,b O1�Hessb,c O2�Hessc,a O3 , (56)

obtained from the Hessians of the operators

O1 = ḡ1 TrN (Xa W XbU ) , O2 = ḡ2 TrN (Xb Q Xc P) , O3 = ḡ3 TrN (Xa R Xc S) .

Then, two further possibilities are ruled out, for, on the one hand, Eq. (54c)
implies that the effective vertex is TrN (R PU )TrN (SQW ); and Eq. (54e), on
the other hand, implies that it is TrN (U P R)TrN (W QS), modulo coupling con-
stants. Either is different from the effective vertex for the graph (56), namely
TrN (W QS)TrN (R PU ). So only the next two are possible:

(U ⊗ W )�(P ⊗ Q) = U P ⊗ QW (U ⊗ W )�(P ⊗ Q) = PU ⊗ W Q .

(57)

We solve nowCase IV and then determine which of the two is the right expression.
• Case IV: When two ribbons in the loop lie on different traces in both interaction

vertices:

ḡ1 ḡ2

↘

↗

↙
Q

←
↖

↙
P

U

↖

←W

Xb

Xa

⊂ Hessa,b O1�Hessb,a O2 (58)

Notice that, notwithstanding the disconnectedness of the ribbons in this graph
G iv, as a graph in the field theory context, what matters is the connectivity of
its skeleton G◦

iv (ḡi are the coupling constants for both traces inside the dashed
circle, cf. Def 2). We construct now operators that yield the desired product. Let
O1 = ḡ1 TrN (U Xa)TrN (XbW ) and O2 = ḡ2 TrN (Q Xa)TrN (Xb P). Then, the
product of Hessians in Eq. (58) contains (U � W )�(P � Q) as a summand. The
effective vertex must be what we obtain by shrinking the propagators. In turn, in
the rhs of Wetterich Eq. (28) this effective vertex is obtained by tracing over14 An ,

14 Actually one has to trace over Mn(An), i.e., take the supertrace. But the trace corresponding to the
Mn -block matrix was already taken in Eq. (58).
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so

TrAn [(U � W )�(P � Q)] = TrN (W P) × TrN (U Q) . (59)

This means that the quantity in square brackets must be either of the following
product formulas for �:

(U � W ) � (P � Q) = P � W TrN (QU ) (60a)

(U � W ) � (P � Q) = W � P TrN (QU ) (60b)

(U � W ) � (P � Q) = Q � U TrN (PW ) (60c)

(U � W ) � (P � Q) = U � Q TrN (PW ) (60d)

(U � W ) � (P � Q) = PW ⊗ QU (60e)

(U � W ) � (P � Q) = W P ⊗ QU (60f)

(U � W ) � (P � Q) = W P ⊗ U Q (60g)

(U � W ) � (P � Q) = PW ⊗ U Q (60h)

To determine the correct product, we consider higher powers of the Hessian, and
one of the partial conclusion of the Case III, Eq. (53).
By contradiction, suppose that Eq. (60a) holds. Then applying twice this equation,

[(U � W )�(P � Q)]�(R � S) = TrN (QU )P � W�R � S

= TrN (QU )Tr(S P)R � W (61)

which when is traced in An yields

TrAn

{[(U � W )�(P � Q)]�(R � S)
} = TrN (QU )TrN (RW )TrN (S P) . (62)

However, if we pick the next observables,

O1 = ḡ1 TrN (U Xa)TrN (W Xb)

O2 = ḡ2 TrN (P Xb)TrN (Q Xc)

O3 = ḡ3 TrN (R Xc)TrN (SXa)

the effective vertex for the summand

ḡ1

ḡ3

ḡ2

Xc
Q

P

S

R

Xa

W

Xb

U

⊂ Hessa,b O1�Hessb,c O2�Hessc,a O3 ,
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must be TrN (SU )TrN (PW )TrN (Q R), which is a contradiction with Eq. (62).
Thus, Eq. (60a) is impossible. By the same token, one sees that Eq. (60b)
leads to an effective vertex TrN (P R)TrN (QU )TrN (SW ), which differs from
TrN (SU )TrN (PW )TrN (Q R). Thus, Eq. (60b) is not the right product either.
To rule out further products, we go to fourth degree in the Hessian. Suppose that
Eq. (60e) holds. Then,

[U � W�P � Q]�[T � V �M � L] =PW ⊗ QU�MV ⊗ LT

=
{

PW MV ⊗ LT QU

MV PW ⊗ QU LT
(63)

where the last equality lists the possibilities Eq. (54d) or Eq. (54f). In either case,
Eq. (60e) holds, then the trace of Eq. (63) reads TrN (PW MV ) × TrN (LT QU ).
Again, if we consider the operators

O1 = ḡ1 TrN (U Xa)TrN (W Xb) O2 = ḡ2 TrN (P Xb)TrN (Q Xc) (64a)

O3 = ḡ3 TrN (T Xc)TrN (V Xd) O4 = ḡ4 TrN (M Xc)TrN (L Xa) . (64b)

we get from the summand

ḡ4

ḡ1

ḡ2

ḡ3

Xa

Xd

M
L

U

Xb P

V

W

Q

Xc

T

⊂ Hessa,b O1�Hessb,c O2�Hessc,d O3�Hessd,a O4

in the fourth power of the Hessian the effective vertex TrN (LU )

TrN (W P)TrN (QT )TrN (V M). Since not even the number of traces coincides,
Eq. (60e) is impossible. By the same trace-counting argument, the same operators
(64) serve as a counterexample for the products Eqs. (60f), (60g) and (60h). This
leaves us only with possibilities Eqs. (60c) and (60d):

(U � W )�(P � Q) =
{

Q � U TrN (PW )

U � Q TrN (PW )
(65)
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To finish the proof, we have to determine which of are the correct products, consider
the operators

O1 = ḡ1 TrN (Xa V XbT ) ,

O2 = ḡ2 TrN (XbW XcU ) ,

O3 = ḡ3 TrN (Xc P)TrN (Xd Q) ,

O4 = ḡ4 TrN (Xd R)TrN (Xa S) ,

and the product of their Hessian (entries)

(T ⊗ V �U ⊗ W )�(P � Q�R � S)

This expression is given by

=
{

T U ⊗ W V if Eq. (60c) holds

U T ⊗ V W if Eq. (60d) holds

}
�

{
S ⊗ P TrN (Q R) if Eq. (54d) holds

P ⊗ S TrN (Q R) if Eq. (54 f ) holds

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TrN (Q R)W V ST U � P if Eq. (60c)&Eq. (54d) hold

TrN (Q R)W V PT U � S if Eq. (60c)&Eq. (54 f ) hold

TrN (Q R)V W SU T � P if Eq. (60d)&Eq. (54d) hold

TrN (Q R)V W PU T � S if Eq. (60d)&Eq. (54 f ) hold

(66)

However, since the graph

ḡ1

ḡ2

ḡ3

ḡ4

S

R

Q

P

T

W

U

V

Xa

Xb

Xd

Xc

⊂ Hessa,b O1�Hessb,c O2�Hessc,d O3�Hessd,a O4

has anAn-trace equal to TrN (Q R)×TrN (W PU T SV ), only the last choice is possible.
This proves at once Eqs. (60d) and (54f), that is Eqs. (41d) and (41a), respectively.

Remark 3 (On well-definedness of the graphical representation.) Example 1 shows a
phenomenon that is more general: the asymmetry of the Mn-block structure of the nc
Hessian matrix, Hessa,b �= Hessb,a . Nevertheless, a weaker symmetry persists. Since
the swap of Xa and Xb in Eq. (8) leads to the exchange π1 with π2, we conclude that
for any interaction vertex O ,

Hessa,b O = ˜Hessb,a O where ˜(P ⊗ Q) = Q ⊗ P and ˜(P � Q) = Q � P ,

(67)
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for each P, Q ∈ C〈n〉; the exchange P � Q → Q � P follows by Definition 4.
This makes the present construction independent of the choice of “inner” and “outer”
loop, as well as the orientation of the interaction vertices in the one-loop (whether the
Hessians of O1, O2, . . . , Ok being multiplied means we draw ḡ1, . . . , ḡk clockwise
or anti-clockwise as in Fig. 2) for the following reason. First, observe that using the
algebra obtained in Theorem 2 one can easily derive

ã�b = b̃�ã for each a, b ∈ An , (68)

Let h := Hessa1,a2 O1�Hessa2,a3 O2� · · · �Hessak ,a1 Ok , for fixed ai = 1, . . . , n and
for some fixed interaction vertices Oi (i = 1, . . . , k). Then, by Eq. (67)

Hessa1,ak Ok� · · · �Hessa3,a2 O2�Hessa2,a1 O1

= ˜Hessak ,a1 Ok� ˜Hessa2,a3 O2� · · · � ˜Hessa1,a2 O1 ,

and because of Eq. (68), this last expression equals h̃. But according to Lemma 35,
TrAn h̃ = TrAn h. Thus, if h contributes to the flow, so does h̃, and in an equal way,
yielding our description independent on the cyclic orientation we choose for drawing
the interaction vertices. What we just proved can also be pictorially justified:

h =
ḡ1

ḡ2

ḡ3

ḡ4

ḡ5

ḡ1

ḡ2

ḡk

ḡ3

. . .

�

→

→

→

→

⇒

ḡ1

ḡ2

ḡ3

ḡ4

ḡ5

ḡ1

ḡk

ḡ2

ḡ3
. . .

�

→

→

→

→

= h̃ (69)

Notice that these are the only two representations that the cyclic orientation of each
vertex Oi allows (meaning, if one inverts the order of the interaction vertices).

The final piece of well-definedness is that the product found here is indeed asso-
ciative, without using graphs. The purely algebraic proof is routine (and can be found
in [3]).

Example 6 Once proven the main statement, we can use the algebra to exemplify
a typical contribution to the renormalization flow in a Hermitian 3-matrix model.
Consider two operators O1 = ḡ1

2 [TrN ( A2

2 )]2 and O2 = ḡ2 TrN (ABC). Suppose we
wish to determine the ḡ1ḡ2

2-coefficient of the rhs of Wetterich equation. We need
(essentially) the Hessian of O1 and [Hess O2]�2. The former has only one nonzero
entry,

HessI ,J O1 = δ J
I δA

I ḡ1{TrN (A2/2)[1N ⊗ 1N ]︸ ︷︷ ︸+ A � A︸ ︷︷ ︸} , (70)

where a “filled ribbon” means that that half-edge is contracted in the one-loop graph,
and an “empty ribbon” that it is not (and therefore contributes to the final effective
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vertex). We also have

Hess O2 = ḡ2

⎡
⎣ 0 C ⊗ 1N B ⊗ 1N

1N ⊗ C 0 A ⊗ 1N

1N ⊗ B 1N ⊗ A 0

⎤
⎦ (71)

getting

[Hess O2]�2 = ḡ2
2

⎡
⎣C ⊗ C + B ⊗ B B ⊗ A C ⊗ A

A ⊗ B A ⊗ A + C ⊗ C C ⊗ B
A ⊗ C B ⊗ C B ⊗ B + A ⊗ A

⎤
⎦ .

(72)

Only the black-colored entry will contribute, since Hess O1’s (11)-entry is the only
non-vanishing. In the (11)-entry, the term

C ⊗ C corresponds to the graph .. and B ⊗ B to ..
(the horizontal green edges still to be contracted in the loop with those in Hessian (70)
that are also filled). Finally, we extract the coefficients

[ḡ1ḡ2]STr{Hess O1[Hess O2]�2}
= TrAn

{[TrN (A2/2)[1N ⊗ 1N ] + A � A]�[C ⊗ C + B ⊗ B]}
= TrAn

{
TrN (A2/2)(C ⊗ C + B ⊗ B) + A � C AC + A � B AB

}
= TrN (A2/2) × [Tr2N C + Tr2N B] + TrN (AC AC + AB AB) ,

which are effective vertices of the four one-loop graphs that can be formed with the
contractions of (the filled ribbon half-edges of)

any of
{ .. , .. } with any of

{
,
}

.

Of course, this is a toy-example: the algebraic structure pays off with higher-power
interactions and/or higher number of matrices (whose flow becomes unaccessible by
traditional methods and can hardly be cross-checked using graphs, due to the large
amount of these; cf. the supplementary material of [3]).

4 Conclusion

The algebraic structure of functional renormalization of Hermitian n-matrix models
with interactions containing several traces has been addressed. Under the assumption
that it is possible to compute the flow in terms of U(N )-invariant operators, the present
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result completely describes the regulator-independent part of the flow. This paper com-
plements15 [3]. There, for multi-matrix models with multi-traces, Wetterich equation
was proven, and in the middle of the proof one were able to read off the algebraic
structure, (41). Computations of β-functions using (41) revealed a one-loop structure
in [3]. Here we showed the converse: the one-loop structure requires the algebra of
functional renormalization (i.e., the structure that makes the rhs of Wetterich equation
computable for such matrix models) to be Eq. (41), showing its uniqueness.

As a final perspective, the present results can be useful to connect different
renormalization theories, e.g., [30, 31]. Also, Fig. 1 is strikingly reminiscent of
the Connes–Kreimer residue defining the coproduct (of their renormalization Hopf-
algebra [32]). Between those, the algebraic language could build a shorter bridge than
graph theory—all the more, algebra can be coded more directly than graphs.
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Appendix A On 0N and RN

Although our aim in this paper is rather algebraic, we sketch how the FRG works, for
sake of completeness. Starting from the bare action S[�] on S : Hn

N → R, in order to
construct the effective action�N [X] one first regulates the connected partition function
logZ[J] = log

∫
Hn

N
exp[−S[�] +∑n

c=1 Tr(Jc�c)]d�Leb (where J = (Jc) ∈ Hn
N )

15 To fully implement the flow for Dirac ensembles, which is the aim of [3] either operators with broken
unitary symmetry could be introduced. Another perspective is to implement a Ward-constrained flow [29].
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by adding a mass-like term, 1
2rc,N �2

c , to each matrix:

WN [J] = log
∫
Hn

N

exp

{
− S[�] −

n∑
c=1

TrN

[1
2

rc,N �2
c + Jc�a

]}
d�Leb

where rc,N is the next infrared regulator, given in terms of the Heaviside or indicator
function �DN on the disk DN = {(a, b) ∈ N

2 | a2 + b2 ≤ N 2} by

rc,N (a, b) = Zc ·
[

N 2

a2 + b2
− 1

]
· �DN (a, b) , or plotted:

0.5

1
0.4 0.6 0.8 1

0

5

a/N
b/N

r c
,N
(a
,b
)/
Z

c

(A1)

with Zc the “wave function renormalization” of the matrix Xc (see [3] for details on
the dependence on the “classical fields” X = (X1, . . . , Xn) := (∂J1W, . . . , ∂JnW) ∈
Hn

N ). Other regulators are not discussed here, but another regulator should comply
with the following limits: in order for rc,N to integrate out only the “higher modes”,
i.e., matrix entries

{
(Xc)i, j

}
i, j≥N ;c=1,...,n above the energy scale N , one imposes

that rc,N (a, b) = 0 if a > N or b > N , which explains the presence of �DN in
this particular choice. The additional condition rc,N > 0 creates a mass-like term
for the low-energy modes

{
(Xc)i, j

}
0<i, j<N ;c=1,...,n that protects these from being

integrated out. One wants, moreover, to recover the bare action via saddle point
approximation as N → ∞ and thus rc,N → ∞ is necessary in that limit. The interpo-
lating effective action is then constructed by taking the Legendre transform, namely
�N [X] = supJ1,...,Jn

∑n
c=1

{
TrN (Xc Jc) − WN [J1, . . . , Jn] − 1

2 TrN (rc,N X2
c )
}
. The

regulator RN that appears in the main text is

RN =

⎡
⎢⎢⎢⎣

r1,N1N ⊗ 1N 0 . . . 0
0 r2,N1N ⊗ 1N . . . 0
...

. . .
...

0 0 . . . rn,N1N ⊗ 1N

⎤
⎥⎥⎥⎦ .
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