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Abstract
We consider time-dependent perturbations which are relatively bounded with respect
to the square root of an unperturbedHamiltonian operator, andwhose commutatorwith
the latter is controlled by the full perturbedHamiltonian. The perturbation ismodulated
by two auxiliary parameters, one regulates its intensity as a prefactor and the other one
controls its time-scale via a regular function, whose derivative is compactly supported
in a finite interval. We introduce a natural generalization of energy conservation in the
case of time-dependent Hamiltonians: the boundedness of the two-parameter unitary
propagator for the physical evolution with respect to the n/2-th power energy norm
for all n ∈ Z. We provide bounds of the n/2-th power energy norms, uniformly in
time and in the time-scale parameter, for the unitary propagators, generated by the
time-dependent perturbed Hamiltonian and by the unperturbed Hamiltonian in the
interaction picture. The physically interesting model of Landau-type Hamiltonians
with an additional weak and time-slowly-varying electric potential of unit drop is
included in this framework.

Keywords Time-dependent Hamiltonians · Generalization of energy conservation ·
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1 Introduction

We consider the physical evolution of a quantum system in a separable Hilbert space
H generated by the time-dependent Hamiltonian operator

H(ε, η, t) := H0 + εg(ηt)H1 for all t ∈ R, (1.1)

where H0 is the unperturbed Hamiltonian, H1 is the perturbation switched on by a
function g with supp g′ ⊂ (0, 1) and g(s) = 0 for s < 0, and ε ∈ (0, ε∗], η > 0 are
parameters1 regulating respectively the intensity and the time-scale of the perturbation.
The variable t here stands for time and the positive parameter η is a convenient tool to
control the rate at which the system changes. The function g regulates the switch-on
time of the external Hamiltonian εH1 (notice that the perturbation is completely off
for t ≤ 0).

When the Hamiltonian H(ε, η, t) is t-independent,2 namely H(ε, η, t) = H(ε), it
is well known that, by an elementary consequence of Stone’s theorem, one has that
[Uε(t), H(ε)] = 0, where Uε(t) denotes the unitary propagator for the self-adjoint
operator H(ε). In other words there is conservation of the energy and consequently
one obtains that H−n/2(ε)Uε(t)Hn/2(ε) has a bounded extension for every n ∈ Z. On
the other hand, if there is a non-trivial t-dependence and the perturbation commutes
with the unperturbed Hamiltonian, i. e. [H1, H0] = 0, to establish that for all n ∈ Z the
product H−n/2(ε, η, t)Uε,η(t, r)Hn/2(ε, η, r) extends to a bounded operator, one can

use the representation formula for the unitary propagatorUε,η(t, r) = e−i
∫ t
r ds H(ε,η,s)

(see [17, Proposition 2.5]) and rely on similar techniques developed in Proposition 2.9.
In this paper, we deal with the more general case in which the commutator [H1, H0] �=
0 and “is controlled” by the full perturbedHamiltonian H(ε, η, t), uniformly in (ε, η, t)
(see Assumption (B(k))), beyond Assumption (A2) on the perturbation H1 to be self-
adjoint and relatively boundedwith respect to H1/2

0 (see the hypotheses in the statement
of Theorem 2.5).

Unlike for time-independent Hamiltonians there is no immediate notion of energy
conservation, but the boundedness of the unitary propagator for the physical evolution
with respect to n/2-th power energy norm arises as a natural generalization for time-
dependent Hamiltonians. Specifically, fix n ∈ N, defining the n/2-th power energy
norm ‖ · ‖Hn/2(ε,η,t) of H(ε, η, t) as the graph norm of Hn/2(ε, η, t), namely

1 The value ε∗ will be fixed by inequality (2.3) in order to guarantee a uniform positive lower bound,
precisely 1, for H(ε, η, t) (see condition (2.2)).
2 In this case the η-dependence plays no role, thus we cancel it.
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‖ψ‖Hn/2(ε,η,t) := ‖ψ‖ +
∥
∥
∥Hn/2(ε, η, t)ψ

∥
∥
∥ for any ψ ∈ D(Hn/2(ε, η, t))

and equipping D(Hn/2(ε, η, t)) with ‖ · ‖Hn/2(ε,η,t), we introduce the space

L(n)
ε,η(r , t) := {A :D(Hn/2(ε, η, r))→D(Hn/2(ε, η, t)) linear and bounded}.

Denoting by Uε,η(t, r) the unitary propagator generated by H(ε, η, t), we will prove

that for every n ∈ N one has that Uε,η(t, r) is in L(n)
ε,η(r , t) with the corresponding

operator norm
∥
∥Uε,η(t, r)

∥
∥L(n)

ε,η(r ,t)
uniformly bounded in the parameters (η, (t, r)) ∈

(0,∞)×R
2, which is equivalent to establish the following estimate3: For every n ∈ Z,

for all ε ∈ (0, ε∗] and η > 0 we have that

sup
t,r∈R

sup
ψ∈D(Hn/2(ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2(ε, η, t)Uε,η(t, r)H

n/2(ε, η, r)ψ
∥
∥
∥ ≤ Cn(ε),

(1.2)
where the finite constant Cn(ε) is η-independent. The precise assumptions and result
are stated in Theorem2.5. To the best knowledge of the author, in the standard results of
well-posedness of non-autonomous linear evolution equations not even the statement
U (t, r) ∈ L(2)

ε,η(r , t) is shown, the only exception being [8, Theorem 5.1].
Moreover, we are interested in working in the so-called interaction or intermedi-

ate picture4 : First one computes the unitary propagator G(t, 0) = e−i ε
η
φ(ηt)H1 , with

φ(s) := ∫ s
0 du g(u), generated by εg(ηt)H1 (e. g. using again [17, Proposition 2.5])

and then one considers the time-dependent unitarily transformed5 Hamiltonian
G(t, 0)∗H0 G(t, 0) = ei

ε
η
φ(ηt)H1H0e

−i ε
η
φ(ηt)H1 . Setting the scaled time or macro-

scopic time s := ηt , we introduce

Ĥ(ε, η, s) := ei
ε
η
φ(s)H1H0e

−i ε
η
φ(s)H1 . (1.3)

Similarly to the previous case, wewill prove the following inequality: For every n ∈ Z,
for all ε ∈ (0, ε∗] and η > 0 we have that

sup
s,u∈R

sup
ψ∈D

(
Ĥn/2(ε,η,r)

)
:‖ψ‖=1

∥
∥
∥Ĥ−n/2(ε, η, s)Ûε,η(s, u)Ĥn/2(ε, η, u)ψ

∥
∥
∥

≤ Cn(ε)(1 + εDn), (1.4)

3 We will prove this equivalent statement.
4 Usually, the interaction picture is performed using the unitary propagator induced by the time-independent
part of the time-dependent perturbed Hamiltonian (e. g. see [18, §X.12]). More generally, one can introduce
the interaction picture via the two-parameter family of unitary operators generated by time-dependent part
(see [15, §VIII.14]), fixing an initial time. In our framework, we choose the second kind of interaction
picture with initial time t0 = 0 .
5 In Sect. 5, where we deal with the physically interesting model of Landau-type Hamiltonians, this unitary

transformation is the gauge transformation G(t, 0) = e
−i εη φ(ηt)�1 , where H1 := �1 models an electric

potential of negative unit drop for an electric field pointing in the negative 1-st direction (see Definition 5.1).
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where Ûε,η(s, u) is the unitary propagator generated by Ĥ(ε, η, s) and Dn is a finite
constant independent of (ε, η). This result, formulated in Corollary 2.7, is obtained as
a consequence of estimate (1.2), thanks to the following identity

Ûε,η(s, u) ≡ ei
ε
η
φ(s)H1Uε,η(s/η, u/η)e−i ε

η
φ(u)H1, (1.5)

and Proposition 2.9, which guarantees that for every integer number n, Hn/2
0 H−n/2

(ε, η, t) and Hn/2(ε, η, t)H−n/2
0 are bounded in the operator norm by O(ε) + 1,

uniformly in (η, t) ∈ (0,∞) × R.
Energy estimates in the form of (1.4) (or equivalently (1.2)) are relevant when one

needs to keep track of localization in energy under the physical evolution, uniformly in
the time-scale of the perturbation. More precisely, suppose that a family of operators
O(s)with s ∈ R decays in energy with power m/2 withm ∈ N, in the sense that there
exists a finite constant CO such that

∥
∥
∥O(s)Ĥm/2(ε, η, s)ψ

∥
∥
∥ ≤ CO ‖ψ‖ (1.6)

for every ε ∈ (0, ε∗], η > 0, s ∈ R and for all ψ ∈ D
(
Ĥm/2(ε, η, s)

)
. Then, by

applying inequality (1.4) this energy localization is conserved by the evolved family
of operators Ûε,η(u, s)O(s)Ûε,η(s, u):

∥
∥
∥Ûε,η(u, s)O(s)Ûε,η(s, u)Ĥm/2(u)ψ

∥
∥
∥

=
∥
∥
∥O(s)Ĥm/2(s)Ĥ−m/2(s)Ûε,η(s, u)Ĥm/2(u)ψ

∥
∥
∥

≤ COCm(ε)(1 + εDm) ‖ψ‖ , (1.7)

for any s, u ∈ R and for every ψ ∈ D
(
Ĥm/2(ε, η, u)

)
.

Thiswork has beenmotivated in the first instance by the need to fill a gap in the proof
of [2, Lemma 5.1], where Landau-typeHamiltonian operators with an additional weak
and time-slowly-varying electric potential of unit drop are considered (see Sect. 5 for
this application).While Theorem 2.5 implies [2, Lemma 5.1], Corollary 2.7 is relevant
since it is explicitly used in the proof of [2, Theorem 2.2] (see [2, Remark (3), p.
599] for the case n = 0). The strategy proof of Theorem 2.5 is based on the one given
in the aforementioned paper, with two essential differences: firstly we use H(ε, η, t)
whose time derivative is compactly supported (while ∂

∂s Ĥ(ε, η, s) is not compactly
supported) and secondly in the proof of Theorem 2.5 we establish the induction step
by computing the time derivative of the bounded operator H−1/2(ε, η, t) (compare
(3.8)) instead of the unbounded one Ĥ1/2(ε, η, s). As it is briefly explained in Sect. 5,
these kinds of energy estimates are used to prove the validity of the Kubo formula for
the transverse conductance in the quantum Hall effect in a two-dimensional sample
(e. g. see [1, 4–6, 11, 13, 14, 21]). But we are convinced that our results are of general
conceptual interest, since we provide bounds on the growth of the n/2-th power energy
norms for time-dependent Hamiltonian in a model-independent setting, and could
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be relevant for proving the linear response in quantum Hall systems for unbounded
Hamiltonians (cf. Sect. 5). More specifically, we require mild properties: Beyond the
technical hypotheses, i. e. Assumptions 2.1 and (C2(k)) for k = 2, which guarantee
the self-adjointness of H(ε, η, t) and Ĥ(ε, η, s) on the same t-independent domain
D(H0) and spectrum condition (2.2), the operator H1 associated with the perturbation
must not be bounded but only H1/2

0 -bounded (compare Assumption (A2)), and the
two parameters ε, η, related to the perturbation, are independent. Furthermore, both
estimates (1.2) and (1.4) are uniform in the time-scale parameter η > 0, while for
fixed η > 0 these bounds are clearly expected, due to the hypothesis supp g′ ⊂ (0, 1),
with η-dependent constants. Finally, the use of the symbols ε and η is not related to a
smallness assumption, as far as this paper is concerned (however our results apply to
the particular case considered in [2], where the limit ε = η = 1

τ
→ 0+ is considered).

2 Mathematical setting andmain results

In this section we set up the mathematical framework and state our main results, under
different assumptions. LetH denote a separable Hilbert space.
Firstly, we write hypotheses on each summand of the perturbed Hamiltonian
H(ε, η, t).

Assumption 2.1 Let H(ε, η, t) be as in (1.1) and g ∈ Ck(R) with6 k ≥ 1, supp g′ ⊂
(0, 1) and g(s) = 0 for s < 0. We define

M := max
s∈[0,1] |g(s)| and M ′ := max

s∈[0,1]
∣
∣g′(s)

∣
∣ . (2.1)

Here ε ∈ (0, ε∗], where ε∗ is chosen so that condition (2.3) is fulfilled, and η > 0.
Furthermore, the Hamiltonian operator H(ε, η, t) satisfies the following properties:

(A1) H0 : D(H0) → H is self-adjoint, whereD(H0) ⊂ H denotes its dense domain,
and7 H0 ≥ 1 + γ0, with γ0 > 0.

(A2) H1 : D(H1) → H is self-adjoint, whereD(H1) ⊂ H denotes its dense domain,
and is H1/2

0 -bounded, namely there exists a finite constant a > 0 such that∥
∥
∥H1H

−1/2
0

∥
∥
∥ ≤ a.

As it is explained respectively inRemark 2.4.(i) andRemark 2.4.(ii), the above assump-
tions ensure that H(ε, η, t) is self-adjoint on D(H0) and that H(ε, η, t) ≥ 1.
Secondly, we write hypotheses on “how the perturbed Hamiltonian H(ε, η, t) behaves
with respect to the unperturbed one H0”.

Assumption 2.2 Let H(ε, η, t) be as in Assumption 2.1.
For every k ∈ Z, there exists a finite constant Ek such that for all ε ∈ (0, ε∗], η ∈
(0,∞), t ∈ R we have that8:
if k ≥ 0 taking any ψ ∈ D(H (k+1)/2(ε, η, t)) otherwise ψ ∈ H
6 Notice that we do not require that suppg is compact.
7 The following hypothesis is equivalent, up to a shift of a constant, to require that H0 is bounded from
below.
8 Notice that we are allowed to write any negative power of H(ε, η, t) due to condition (2.2).
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(B(k))

∥
∥
∥H−k/2(ε, η, t)[H(ε, η, t), H1]H (k−2)/2(ε, η, t)ψ

∥
∥
∥ ≤ Ek ‖ψ‖ ,

where [H(ε, η, t), H1] is densely definedwithD([H(ε, η, t), H1]) ⊃ D(H3/2(ε, η, t)),
and in addition if k ≤ −1 we require that [H(ε, η, t), H1] : D(H (|k|+2)/2(ε, η, t)) →
D(H |k|/2(ε, η, t)).

Assumption 2.3 Let H(ε, η, t) be as in Assumption 2.1.
For every k ∈ N with9 k ≥ 2,

(C1(k)) for all ε ∈ (0, ε∗], η ∈ (0,∞), t ∈ R we have that D(Hk(ε, η, t)) ≡
D(Hk

0 ).

For every k ∈ N

(C2(k)) we have that the domain D(Hk/2
0 ) is invariant under the unitary transfor-

mation {eiλH1}λ∈R, namely for all λ ∈ R one has that

eiλH1 : D(Hk/2
0 ) → D(Hk/2

0 ).

Remark 2.4 Here we explain some useful consequences of the hypotheses above.

(i) Under Assumptions (A1) and (A2), we have that H1 is H0-bounded, with relative
bound ã < 1. Indeed, notice that for every C > 0

∥
∥
∥H1(H0 + C)−1

∥
∥
∥ =

∥
∥
∥H1H

−1/2
0 · H1/2

0 (H0 + C)−1/2 · (H0 + C)−1/2
∥
∥
∥

≤ a√
1 + C

,

where a is defined in Assumption (A2). Hence, for every ψ ∈ D(H0) we obtain
that

‖H1ψ‖ =
∥
∥
∥H1(H0 + C)−1(H0 + C)ψ

∥
∥
∥ ≤ a√

1 + C
(‖H0ψ‖ + C ‖ψ‖) .

Therefore, by the Kato–Rellich theorem H(ε, η, t) is self-adjoint on D(H0).
(ii) Observe that Assumptions (A1) and (A2) imply that there exists ε∗ > 0 such that

inf
t∈R,η>0

σ(H(ε, η, t)) ≥ 1 for all ε ∈ (0, ε∗]. (2.2)

In fact, for any z < 1, H(ε, η, t) − z = (
1 + εg(ηt)H1(H0 − z)−1) (H0 − z) is

invertible for a suitable choice of ε∗. In view of hypothesis (A1) and the previous
remark, we get that

∥
∥
∥H1(H0 − z)−1

∥
∥
∥ ≤

∥
∥
∥H1H0

−1
∥
∥
∥

(

1 + |z|
1 + γ0 − z

)

≤ 3γ0 + 1

γ0

∥
∥
∥H1H0

−1
∥
∥
∥

9 For k = 1 the following identity is implied by Assumptions (A1) and (A2) (see Remark 2.4.(i)).
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and thus there exists ε∗ > 0 such that

3γ0 + 1

γ0
ε∗M

∥
∥
∥H1H0

−1
∥
∥
∥ < 1 (2.3)

with M defined in (2.1).
(iii) For k ∈ N with k ≥ 2, Assumption (C1(k)) and [9, Supplementary

notes, V.7] imply that for all ε ∈ (0, ε∗], η ∈ (0,∞), t ∈ R one has that
D(Hk/2(ε, η, t)) ≡ D(Hk/2

0 ). The same result holds true automatically for k = 1
due to D(H(ε, η, t)) ≡ D(H0) by Remark 2.4.(i).

Before stating themain results, namely Theorem 2.5 and Corollary 2.7, it is convenient
to recall the problem ofwell-posedness of non-autonomous linear evolution equations.
As it is emphasized in [18, Notes of Section X.12], the Cauchy problem for linear
evolution equations

dψ

dt
(t) = A(t)ψ(t), 0 ≤ t ≤ T , in a Banach space

where A( · ) is an unbounded-operator valued function and the domain D(A(t)) ≡ D
of A(t) is independent of t , under general suitable conditions, was solved first by
Kato [7] and then byYosida [23] (for the comparison of theseworks see [19]). Formore
general results, considering that A(t) has domain which does depend on time, see e. g.
[8, 20, 22] and references therein. In the present setting, under Assumption 2.1 one has
that the domain of self-adjointness D(H(ε, η, t)) of H(ε, η, t) is independent of t by
Remark 2.4.(i). Hence, under additional hypotheses (e. g. assumptions in [7, Theorem
3]) one can prove that there exists the unitary propagator Uε,η(t, r) generated by
H(ε, η, t). This means thatUε,η(t, r) is the two-parameter family of unitary operators,
jointly strongly continuous in t ∈ R and r ∈ R, such that for every t, r , u ∈ R

Uε,η(t, r)Uε,η(r , u) = Uε,η(t, u), Uε,η(t, t) = 1, Uε,η(t, u)D(H0) = D(H0),

i
∂Uε,η

∂t
(t, u)ψ = H(ε, η, t)Uε,η(t, u)ψ for all ψ ∈ D(H0),

−i
∂Uε,η

∂u
(t, u)ψ = Uε,η(t, u)H(ε, η, u)ψ for all ψ ∈ D(H0).

In order to keep the reader’s attention on the main results, i. e. Theorem 2.5 and
Corollary 2.7, we postpone their proofs to Sect. 3.

Theorem 2.5 Consider the Hamiltonian H(ε, η, t) = H0 + εg(ηt)H1 satisfying
Assumption 2.1 and let Uε,η(t, r) be the unitary propagator generated by H(ε, η, t).
Let n ∈ Z. If |n| ≥ 2 we assume in addition Assumption (B(k)) for all 0 ≤ k ≤ |n|−2.
Then for every ε ∈ (0, ε∗] we have that

sup
t,r∈R

sup
ψ∈D(Hn/2(ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2(ε, η, t)Uε,η(t, r)Hn/2(ε, η, r)ψ

∥
∥
∥ ≤ Cn(ε) ∀ η > 0,

(2.4)
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where Cn(ε) is defined iteratively as

{
C0(ε) := C0 = 1
Cn(ε) := Cn−1(ε)eCn−1(ε)(α+βε+γn)ε for all n ≥ 1

(2.5)

with α, β and γn finite constants defined as

α + εβ := M ′(a + εMa2), γ1 := 0 and γn := M ′
n−2∑

k=0

Ek for n ≥ 2, (2.6)

and C−n(ε) := Cn(ε) for all n ∈ N.

Remark 2.6 Both in theGell-Mann andLow [3] and theKubo [10] formula the standard
choice for the switch-on procedure in time is to make use of the exponential function
for the non-positive time-axis R− := (−∞, 0]. More specifically, in our setting of
reference, we replace the function g with the exponential and restrict the whole real
time-axis to the non-positive one, i. e. one considers the time-dependent Hamiltonian
operator

Hexp(ε, η, t) := H0 + εeηt H1 for all t ∈ R−.

Clearly, the main difference between Hexp(ε, η, t) and H(ε, η, t) ≡ Hg(ε, η, t),
defined in (1.1), is that the the switch-on process acts respectively on the infinite
time-interval R− and on a finite time-interval (precisely, under Assumption 2.1:
supp g′ ⊂ (0, 1)). Under the assumptions of Theorem 2.5 except for the substitution
of g with the exponential and the restriction to R− (applying the these two replace-
ments everywhere in the nested hypotheses), a type of inequality similar to (2.4) still
holds true. Precisely, denoting by Uexp,ε,η(t, r) the unitary propagator generated by
Hexp(ε, η, t), we have

sup
t,r∈R−

sup
ψ∈D(Hn/2

exp (ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2

exp (ε, η, t)Uexp,ε,η(t, r)H
n/2
exp (ε, η, r)ψ

∥
∥
∥ ≤ C̃n(ε),

(2.7)

for all η > 0, where C̃n(ε) is defined iteratively as

{
C̃0(ε) := C̃0 = 1
C̃n(ε) := C̃n−1(ε)eC̃n−1(ε)(̃α+β̃ε+γ̃n)ε for all n ≥ 1

(2.8)

with α̃, β̃ and γ̃n finite constants, and C̃−n(ε) := C̃n(ε) for all n ∈ N.
Here, for completeness we sketch a proof of the above statement. We follow the
argument of the proof of Theorem 2.5 in Sect. 3.1, excepting the restriction of the
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times t, r to a finite time-interval depending on η (see (3.1)). Similarly, defining for
every t, r ∈ R−

C̃ε,η,n(t, r) := sup
ψ∈D(Hn/2

exp (ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2

exp (ε, η, t)Uexp,ε,η(t, r)H
n/2
exp (ε, η, r)ψ

∥
∥
∥ ,

one arrives at the inequality

C̃ε,η,N (t, r) ≤ C̃N−1(ε)

(

1 + (̃α + β̃ε + γ̃N )ε

∫ r

t
dτ ηeητ C̃ε,η,N (τ, r)

)

,

for −∞ < t ≤ r ≤ 0. By using Grönwall’s inequality and that
∫ 0
−∞ dτ ηeητ = 1, we

conclude that

C̃ε,η,N (t, r) ≤ C̃N−1(ε)e
C̃N−1(ε)(̃α+β̃ε+γ̃N )ε

∫ r
t dτ ηeητ

≤ C̃N−1(ε)e
C̃N−1(ε)(̃α+β̃ε+γ̃N )ε =: C̃N (ε).

Therefore, it emerges that the crucial properties of the switch-on proceduremodeled
by a generic function f : I → R, f ∈ Ck(I ) with k ≥ 1 on a subset I ⊆ R to deduce
a type of inequality in the form of (2.4), which is uniform in the time-scale parameter
η, is to have that both ‖ f ‖L∞(I ) and

∥
∥ f ′∥∥

L1(I ) are finite.

Let the scaled time s = ηt , consider the unperturbed Hamiltonian in the interaction
picture Ĥ(ε, η, s), defined in (1.3), which is self-adjoint on D(H0) under Assump-
tions 2.1 and (C2(k)) for k = 2. Let us briefly recall the notion of the corresponding
unitary propagation, whose existence and uniqueness are guaranteed again by [7,
Theorem 3], under additional regularity hypotheses. Let Ûε,η(s, r) be the unitary
propagator generated by Ĥ(ε, η, s), namely Ûε,η(s, r) is the two-parameter family of
unitary operators, jointly strongly continuous in s ∈ R and r ∈ R, such that for every
s, r , u ∈ R

Ûε,η(s, r)Ûε,η(r , u) = Ûε,η(s, u), Ûε,η(s, s) = 1, Ûε,η(s, u)D(H0) = D(H0),

iη
∂Ûε,η

∂s
(s, u)ψ = Ĥ(ε, η, s)Ûε,η(s, u)ψ ∀ψ ∈ D(H0),

−iη
∂Ûε,η

∂u
(s, u)ψ = Ûε,η(s, u)Ĥ(ε, η, u)ψ ∀ψ ∈ D(H0).

(2.9)

Corollary 2.7 Under Assumptions 2.1 and (C2(k)) for k = 2, consider Ĥ(ε, η, s) =
ei

ε
η
φ(s)H1H0e

−i ε
η
φ(s)H1 , where s = ηt is the scaled time. Let Ûε,η(s, u) be the unitary

propagator generated by Ĥ(ε, η, s). Let n ∈ Z. Let Assumption (C2(k)) for k = |n|
hold true. If |n| ≥ 3 we assume in addition Assumption (C1(k)) for all 3 ≤ k ≤ |n|
and Assumption (B(k)) for k = 0. If |n| ≥ 4 we assume further Assumption (B(k))
for all 2 − |n| ≤ k ≤ −2. Then there exists a finite constant Dn such that for every
ε ∈ (0, ε∗] and η ∈ (0,∞) we have that
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sup
s,u∈R

sup
ψ∈D

(
Ĥn/2(ε,η,r)

)
:‖ψ‖=1

∥
∥
∥Ĥ−n/2(ε, η, s)Ûε,η(s, u)Ĥn/2(ε, η, u)ψ

∥
∥
∥

≤ Cn(ε)(1 + εDn),

where Cn(ε) is defined in (2.5).

Here, we state two auxiliary results whose technical proofs are deferred to Sect. 4.
Specifically, the following lemma shows that H1 is actually H1/2(ε, η, t)-bounded
with a relative bound independent of the parameters (η, t) ∈ (0,∞) × R, not only
H1/2
0 = H1/2(ε, η, r)-bounded with r ≤ 0 (compare Assumption (A2)).

Lemma 2.8 Let H(ε, η, t) be as in Assumption 2.1. Then for every ε ∈ (0, ε∗], η ∈
(0,∞) and t ∈ R we have that

∥
∥
∥H1H

−1/2(ε, η, t)
∥
∥
∥ ≤ a + εMa2.

On the other hand, the next proposition turns out to be useful to deduce the energy
estimates for the unperturbed Hamiltonian in the interaction picture Ĥ(ε, η, s) from
the ones for the perturbed Hamiltonian H(ε, η, t).

Proposition 2.9 Let H(ε, η, t) be as in Assumption 2.1. Let n ∈ Z. If |n| ≥ 3 we
assume in addition Assumption (C1(k)) for all 3 ≤ k ≤ |n| and Assumption (B(k)) for
k = 0. If |n| ≥ 4 we assume further Assumption (B(k)) for all 2 − |n| ≤ k ≤ −2.
Then there exist finite constants An, Bn such that for every ε ∈ (0, ε∗], η ∈ (0,∞)

and t ∈ R:

(i) for any ψ ∈ D(H−n/2(ε, η, t)) we have that

∥
∥
∥H

n/2
0 H−n/2(ε, η, t)ψ

∥
∥
∥ ≤ (1 + Anε) ‖ψ‖ , (2.10)

(ii) for any ψ ∈ D(H−n/2
0 ) we have that

∥
∥
∥Hn/2(ε, η, t)H−n/2

0 ψ

∥
∥
∥ ≤ (1 + Bnε) ‖ψ‖ . (2.11)

3 Proof of themain results

3.1 Proof of Theorem 2.5

First of all, notice that it suffices to check inequality (2.4) for n ∈ N0 due to the Riesz
Lemma. In view of the hypothesis supp g′ ⊂ (0, 1), for any ψ ∈ D(H0) the map
t �→ H(ε, η, t)ψ is time-independent for t ≤ 0 and t ≥ 1/η. Therefore, it is enough
to prove that for all n ∈ N0

sup
t,r∈[0,1/η]

sup
ψ∈D(Hn/2(ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2(ε, η, t)Uε,η(t, r)H

n/2(ε, η, r)ψ
∥
∥
∥ ≤ Cn(ε).

(3.1)
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Indeed, defining

Cε,η,n(t, r) := sup
ψ∈D(Hn/2(ε,η,r)):‖ψ‖=1

∥
∥
∥H−n/2(ε, η, t)Uε,η(t, r)H

n/2(ε, η, r)ψ
∥
∥
∥ ,

(3.2)
we have

sup
t,r∈R

Cε,η,n(t, r) = sup
t,r∈[0,1/η]

Cε,η,n(t, r). (3.3)

To prove the last equality it suffices to notice that for all t ∈ R: if r < 0
then Cε,η,n(t, r) = Cε,η,n(t, 0), and similarly if r > 1/η then Cε,η,n(t, r) =
Cε,η,n(t, 1/η), using that H(ε, η, r) is constant for r ∈ R \ (0, 1/η) and Uε,η(t, r) =
Uε,η(t, s)Uε,η(s, r) for all t, s, r ∈ R. One obtains analogous identities exchanging
the roles of r and t . In order to prove inequality (3.1), we proceed by induction over
n ∈ N0. For n = 0 it is trivial. Now we take some N ∈ N0 with N ≥ 1. We assume
that the thesis holds true for n = N − 1 and we prove it for n = N . Let us start by
noticing that for every ψ ∈ D(H0), we have that

Uε,η(t, r)H
−1/2(ε, η, r)Uε,η(r , t)ψ = H−1/2(ε, η, t)ψ

+
∫ r

t
dτ Uε,η(t, τ )

∂

∂τ

(
H−1/2(ε, η, τ )

)
Uε,η(τ, t)ψ, (3.4)

by using that Uε,η(s, u)D(H0) ⊂ D(H0) for all s, u ∈ R and ∂
∂τ

(
H−1/2(ε, η, τ )

)
is

a bounded operator, computed as follows. By applying [9, V-§3.11 equation (3.43)]
one has that

H−1/2(ε, η, τ ) = 2

π

∫ ∞

0
dx

(
x2 + H(ε, η, τ )

)−1
, (3.5)

and thus

∂

∂τ
H−1/2(ε, η, τ )=−2εηg′(ητ)

π

∫ ∞

0
dx

(
x2 + H(ε, η, τ )

)−1
H1

(
x2+H(ε, η, τ )

)−1
.

(3.6)
Notice that in the above computationwe have exchanged the derivative and the integral
since by using condition (2.2) and Lemma 2.8, we obtain that

∣
∣g′(ητ)

∣
∣
∥
∥
∥
∥

(
x2 + H(ε, η, τ )

)−1
H1

(
x2 + H(ε, η, τ )

)−1
∥
∥
∥
∥

≤ M ′
∥
∥
∥
∥

(
x2 + H(ε, η, τ )

)−1
∥
∥
∥
∥

∥
∥
∥H1H

−1/2(ε, η, τ )

∥
∥
∥ ·

·
∥
∥
∥
∥H

1/2(ε, η, τ )
(
x2 + H(ε, η, τ )

)−1
∥
∥
∥
∥

≤ M ′

1 + x2
(a + εMa2) for all τ ∈ R,

where the right-hand term is integrable on [0,∞). Obviously, the previous bound
implies that ∂

∂τ
H−1/2(ε, η, τ ) is bounded uniformly in time. Moreover, notice that

123



51 Page 12 of 22 G. Marcelli

∂

∂τ

(
H−1/2(ε, η, τ )

)
D(H0) ⊂ D(H0). (3.7)

Indeed for every φ ∈ D(H0) = D(H(ε, η, τ )) there exists ϕ ∈ H such that φ =
H−1(ε, η, τ )ϕ thus

∂

∂τ
H−1/2(ε, η, τ )φ = −2εηg′(ητ)

π

∫ ∞

0
dx

(
x2 + H(ε, η, τ )

)−1
H1H

−1/2(ε, η, τ )·

·
(
x2 + H(ε, η, τ )

)−1
H−1/2(ε, η, τ )ϕ,

by using condition (2.2) and Lemma 2.8, inclusion (3.7) is obtained. Therefore, we
are allowed to apply H1/2(ε, η, τ ) on the left-hand side of (3.4), getting that for every
ψ ∈ D(H0)

H1/2(ε, η, t)Uε,η(t, r)H
−1/2(ε, η, r)ψ = Uε,η(t, r)ψ

+
∫ r

t
dτ H1/2(ε, η, t)Uε,η(t, τ )

∂

∂τ

(
H−1/2(ε, η, τ )

)
Uε,η(τ, r)ψ.

By multiplying the above equality on the left-hand side by H−N/2(ε, η, t) and
applying it to a particular subset of D(H0) � ψ = HN/2(ε, η, r)φ, where φ ∈
D(H (N+2)/2(ε, η, r)), we obtain that for every φ ∈ D(H (N+2)/2(ε, η, r))

H−N/2(ε, η, t)Uε,η(t, r)H
N/2(ε, η, r)φ

= H−(N−1)/2(ε, η, t)Uε,η(t, r)H
(N−1)/2(ε, η, r)φ

−
∫ r

t
dτ H−(N−1)/2(ε, η, t)Uε,η(t, τ )

∂

∂τ

(
H−1/2(ε, η, τ )

)
·

·Uε,η(τ, r)H
N/2(ε, η, r)φ. (3.8)

Therefore, in view of the induction hypothesis for n = N − 1 we have that

∥
∥
∥H−N/2(ε, η, t)Uε,η(t, r)H

N/2(ε, η, r)φ
∥
∥
∥ ≤ CN−1(ε) ‖φ‖

+ CN−1(ε)

∫ r

t
dτ

∥
∥
∥
∥H

−(N−1)/2(ε, η, τ )
∂

∂τ

(
H−1/2(ε, η, τ )

)
HN/2(ε, η, τ ) ·

· H−N/2(ε, η, τ )Uε,η(τ, r)H
N/2(ε, η, r)φ

∥
∥
∥ , (3.9)
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for 0 ≤ t ≤ r ≤ 1/η. BeingD(H (N+2)/2(ε, η, r)) a core10 of HN/2(ε, η, r), it suffices
to prove the induction step on this set. In order to conclude the proof, it is enough to
observe that: For everym ≥ 1, being α, β and γm defined in (2.6), for all τ ∈ [0, 1/η],
for all ψ ∈ D(Hm/2(ε, η, τ )) , we have that

∥
∥
∥
∥H

−(m−1)/2(ε, η, τ )
∂

∂τ

(
H−1/2(ε, η, τ )

)
Hm/2(ε, η, τ )ψ

∥
∥
∥
∥ ≤ (α+βε+γm)εη ‖ψ‖ .

(3.10)
Indeed, notice that

∥
∥
∥
∥H

−(m−1)/2(ε, η, τ )
∂

∂τ

(
H−1/2(ε, η, τ )

)
Hm/2(ε, η, τ )ψ

∥
∥
∥
∥

≤
∥
∥
∥
∥

∂

∂τ

(
H−1/2(ε, η, τ )

)
H1/2(ε, η, τ )ψ

∥
∥
∥
∥ +

+
∥
∥
∥
∥

[

H−(m−1)/2(ε, η, τ ),
∂

∂τ

(
H−1/2(ε, η, τ )

)]

Hm/2(ε, η, τ )ψ

∥
∥
∥
∥ , (3.11)

where each of the summands on the right-hand side is uniformly bounded in time as
follows. BeingD(H(ε, η, τ )) a core ofD(H1/2(ε, η, τ )) [9, V-§3.11 Lemma 3.38], in
view of (3.6), above the first summand is bounded since for every ψ̃ ∈ D(H(ε, η, τ ))

∥
∥
∥
∥

∫ ∞

0
dx

(
x2 + H(ε, η, τ )

)−1
H1

(
x2 + H(ε, η, τ )

)−1
H1/2(ε, η, τ )ψ̃

∥
∥
∥
∥

≤
∫ ∞

0
dx

(
x2 + 1

)−1 ∥
∥
∥H1H

−1/2(ε, η, τ )

∥
∥
∥

∥
∥
∥
∥

(
x2 + H(ε, η, τ )

)−1
H(ε, η, τ )ψ̃

∥
∥
∥
∥

≤ π

2
(a + εMa2)

∥
∥ψ̃

∥
∥ .

10 First of all, notice that
(
1 + 1

n H
(N+2)/2(ε, η, r)

)−1
converges strongly to 1. Indeed, in view of

∥
∥
∥
∥

(
1 + 1

n H
(N+2)/2(ε, η, r)

)−1
∥
∥
∥
∥ ≤ 1, if v ∈ D(H (N+2)/2(ε, η, r)) then

∥
∥
∥
∥
∥

(

1 + 1

n
H (N+2)/2(ε, η, r)

)−1
v − v

∥
∥
∥
∥
∥

≤ 1

n

∥
∥
∥
∥
∥

(

1 + 1

n
H (N+2)/2(ε, η, r)

)−1
∥
∥
∥
∥
∥

∥
∥
∥H (N+2)/2(ε, η, r)v

∥
∥
∥

≤ 1

n

∥
∥
∥H (N+2)/2(ε, η, r)v

∥
∥
∥ .

By density of D(H (N+2)/2(ε, η, r)) in H the strong convergence follows. Therefore, for every u ∈
D(HN/2(ε, η, r)) defining un :=

(
1 + 1

n H
(N+2)/2(ε, η, r)

)−1
u ∈ D(H (N+2)/2(ε, η, r)) one has that

lim
n→∞ HN/2(ε, η, r)un = lim

n→∞

(

1 + 1

n
H (N+2)/2(ε, η, r)

)−1
HN/2(ε, η, r)u = HN/2(ε, η, r)u,

and thus by using that H−N/2(ε, η, r) is bounded we obtain that limn→∞ un = u as well.
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On the other hand for the second summand in (3.11) for m ≥ 2, we have that

[

H−(m−1)/2(ε, η, τ ),
∂

∂τ

(
H−1/2(ε, η, τ )

)]

Hm/2(ε, η, τ )ψ

=
m−2∑

k=0

H−k/2(ε, η, τ )

[

H−1/2(ε, η, τ ),
∂

∂τ

(
H−1/2(ε, η, τ )

)]

H (k+2)/2(ε, η, τ )ψ

= 4εη g′(ητ)

π2

∫ ∞

0
dx

∫ ∞

0
dy (x2 + H(ε, η, τ ))

−1
(y2 + H(ε, η, τ ))

−1·

·
m−2∑

k=0

H−k/2(ε, η, τ )[H(ε, η, τ ), H1]H (k−2)/2(ε, η, τ )

· H(ε, η, τ )(x2 + H(ε, η, τ ))
−1

H(ε, η, τ )(y2 + H(ε, η, τ ))
−1

ψ.

Clearly, the operator at right-hand side is uniformly bounded in τ , since
(x2 + H(ε, η, τ ))

−1
and (y2 + H(ε, η, τ ))

−1
ensure the uniform convergence of the

integrals, hypothesis (B(k)) for 0 ≤ k ≤ m − 2 guarantees the boundedness of the

middle factor and
∥
∥
∥H(ε, η, τ )(z2 + H(ε, η, τ ))

−1
∥
∥
∥ ≤ 1 for all z ∈ [0,∞). Therefore,

we obtain that

∥
∥
∥
∥

[

H−(m−1)/2(ε, η, τ ),
∂

∂τ

(
H−1/2(ε, η, τ )

)]

Hm/2(ε, η, τ )ψ

∥
∥
∥
∥ ≤ εηM ′

m−2∑

k=0

Ek ‖ψ‖ .

Finally, plugging estimate (3.10) into inequality (3.9), we have

Cε,η,N (t, r) ≤ CN−1(ε)

(

1 + (α + βε + γN )εη

∫ r

t
dτ Cε,η,N (τ, r)

)

,

for 0 ≤ t ≤ r ≤ 1/η. Applying Grönwall’s inequality, we conclude that

Cε,η,N (t, r) ≤ CN−1(ε)e
CN−1(ε)(α+βε+γN )εη|t−r |

≤ CN−1(ε)e
CN−1(ε)(α+βε+γN )ε =: CN (ε)

for all t, r ∈ [0, 1/η]. ��

3.2 Proof of Corollary 2.7

Notice that identity (1.5) holds true since for every ϕ ∈ D(H0) one has that

i
∂

∂s

(
ei

ε
η
φ(s)H1Uε,η(s/η, u/η)e−i ε

η
φ(u)H1ϕ

)

= ei
ε
η
φ(s)H1

(
1

η
H(ε, η, s/η) − ε

η
g(s)H1

)

Uε,η(s/η, u/η)e−i ε
η
φ(u)H1ϕ

123



Improved energy estimates for a class of time-dependent… Page 15 of 22 51

= 1

η
ei

ε
η
φ(s)H1H0e

−i ε
η
φ(s)H1ei

ε
η
φ(s)H1Uε,η(s/η, u/η)e−i ε

η
φ(u)H1ϕ

= 1

η
Ĥ(ε, η, s)Ûε,η(s, u)ϕ,

due to strong differentiability of Uε,η(t, r) on D(H0), Assumption (C2(k)) for k =
2 and D(H0) ⊂ D(H1) by Assumption (A2), and similarly one verifies the other
properties in (2.9). Therefore, fixed any n ∈ N, in view of Assumption (C2(k)) for
k = n, for every ψ ∈ D(Hn/2

0 ) we have that

Ĥ−n/2(ε, η, s)Ûε,η(s, u)Ĥn/2(ε, η, u)ψ

= ei
ε
η
φ(s)H1H−n/2

0 e−i ε
η
φ(s)H1ei

ε
η
φ(s)H1Uε,η(s/η, u/η)·

· e−i ε
η
φ(u)H1ei

ε
η
φ(u)H1Hn/2

0 e−i ε
η
φ(u)H1ψ

= ei
ε
η
φ(s)H1H−n/2

0 Uε,η(s/η, u/η)Hn/2
0 e−i ε

η
φ(u)H1ψ.

Thus, we deduce that

∥
∥
∥Ĥ−n/2(ε, η, s)Ûε,η(s, u)Ĥn/2(ε, η, u)ψ

∥
∥
∥

=
∥
∥
∥H

−n/2
0 Hn/2(ε, η, s/η) · H−n/2(ε, η, s/η)Uε,η(s/η, u/η)Hn/2(ε, η, u/η)·

·H−n/2(ε, η, u/η)Hn/2
0 e−i ε

η
φ(u)H1ψ

∥
∥
∥

≤ Cn(ε)(1 + εDn),

by using Theorem 2.5 and Proposition 2.9. Finally, the Riesz Lemma implies the thesis
for all n = − |n| ∈ Z. ��

4 Proof of the auxiliary results

4.1 Proof of Lemma 2.8

In view of D(H1/2(ε, η, t)) = D(H1/2
0 ) by Remark 2.4.(iii), equality (3.5) and the

second resolvent identity, we have that

H1H
−1/2(ε, η, t) = 2

π

∫ ∞

0
dx H1

(
x2 + H(ε, η, t)

)−1

= H1H
−1/2
0 − 2εg(ηt)

π

∫ ∞

0
dx H1

(
x2 + H0

)−1
H1

(
x2 + H(ε, η, t)

)−1
.

(4.1)
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In the last expression, for the second summand we observe that

∥
∥
∥
∥

∫ ∞

0
dx H1H

−1/2
0 ·H1/2

0

(
x2+H0

)−1
H1/2
0 ·H−1/2

0 H1 ·
(
x2+H(ε, η, t)

)−1
∥
∥
∥
∥≤a2π

2
,

where we have used the hypothesis
∥
∥
∥H1H

−1/2
0

∥
∥
∥ = a < ∞, condition (2.2) and

∥
∥
∥H

−1/2
0 H1ϕ

∥
∥
∥ =

∥
∥
∥
(
H1H

−1/2
0

)∗
ϕ

∥
∥
∥ ≤ a ‖ϕ‖ for all ϕ ∈ D(H1) ⊇ D(H0). Using the

last inequality in (4.1) the thesis is obtained. ��

4.2 Proof of Proposition 2.9

First of all, notice that for any k ∈ N if one supposes Assumption (C1(k)) then
Remark 2.4.(iii) ensures that the products of operators Hk/2

0 H−k/2(ε, η, t) and

H(ε, η, t)k/2H−k/2
0 are well defined onH. We are going to prove inequality (2.10) for

every n ∈ N0, proceeding by induction. The induction step will be proved by using
the base cases for 0 ≤ n ≤ 3 and estimate (2.11) for n = 1. For n = 0 it is trivial. For
n = 1, in view of equality (3.5) and the second resolvent identity we obtain that
∥
∥
∥H

1/2
0 H−1/2(ε, η, t)

∥
∥
∥ = 2

π

∥
∥
∥
∥H

1/2
0

∫ ∞

0
dx

(
x2 + H(ε, η, t)

)−1
∥
∥
∥
∥

≤ 1 + 2εM

π

∫ ∞

0
dx

∥
∥
∥
∥H

1/2
0

(
x2 + H0

)−1
H1/2
0

∥
∥
∥
∥

∥
∥
∥
∥H

−1/2
0 H1

(
x2 + H(ε, η, t)

)−1
∥
∥
∥
∥

≤ 1 + εMa,

where we have used the hypothesis
∥
∥
∥H1H

−1/2
0

∥
∥
∥ = a < ∞ and condition (2.2).

Analogously, by virtue of Lemma 2.8 and condition (2.2), one obtains (2.11) for
n = 1. For n = 2 rewriting

H0H
−1(ε, η, t)= (H0 + εg(ηt)H1 − εg(ηt)H1)H

−1(ε, η, t)

=1 − εg(ηt)H1H
−1(ε, η, t),

thus by applying Lemma 2.8 and condition (2.2), inequality (2.10) is obtained. For
n = 3 notice that

H3/2
0 H−3/2(ε, η, t) = H1/2

0 H0H
−1/2(ε, η, t)H−1(ε, η, t)

= H1/2
0 H−1/2(ε, η, t)H0H

−1(ε, η, t) + H1/2
0 [H0, H

−1/2(ε, η, t)]H−1(ε, η, t),

(4.2)

where on the right-hand side the first summand is bounded11 by 1+O(ε) by applying
the base cases for 1 ≤ n ≤ 2. For the second summand in (4.2), Leibniz’s rule and
equality (3.5) imply that

11 In this proof when we write that an operator is bounded by a constant we mean it in the sense of the
operator norm, and O(ε) is understood in the sense of the operator norm as well.
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H1/2
0 [H0, H

−1/2(ε, η, t)]H−1(ε, η, t)

= 2εg(ηt)

π

∫ ∞

0
dx H1/2

0

(
x2 + H(ε, η, t)

)−1 · [H1, H(ε, η, t)]H−1(ε, η, t)

·
(
x2 + H(ε, η, t)

)−1

where in the last equality the first factor is uniformly bounded in x since

∥
∥
∥
∥H

1/2
0

(
x2+H(ε, η, t)

)−1
∥
∥
∥
∥ ≤

∥
∥
∥
∥H

1/2
0 H−1/2(ε, η, t)H1/2(ε, η, t)

(
x2+H(ε, η, t)

)−1
∥
∥
∥
∥

≤ 1 + A1ε,

the second factor is bounded by virtue of hypothesis (B(k)) for k = 0 and the last one
ensures the convergence of the integral. Now we take some N ∈ N0. We assume that
inequality (2.10) holds true for n ∈ {1, . . . , N − 1} and we prove it for n = N . We
split the cases for even and odd N . Let N = 2m for m ≥ 2, we get that

HN/2
0 H−N/2(ε, η, t) = Hm

0 H−m(ε, η, t)

= Hm−1
0 [H0, H

1−m(ε, η, t)]H−1(ε, η, t) + Hm−1
0 H1−m(ε, η, t)H0H

−1(ε, η, t).
(4.3)

In (4.3) the second summand is bounded by 1 + O(ε) by applying the induction
hypothesis for n = N − 2 and the base case for n = 2. On the other hand, for the first
summand in (4.3) Leibniz’s rule implies that

Hm−1
0 [H0, H

1−m(ε, η, t)]H−1(ε, η, t)

= εg(ηt)Hm−1
0 H1−m(ε, η, t)H−1(ε, η, t)·

·
m−2∑

h=0

Hm−h−1(ε, η, t)[H1, H(ε, η, t)]Hh−m(ε, η, t),

which is O(ε) thanks to the induction hypothesis for n = N − 2, condition (2.2) and
hypothesis (B(k)) for all 2 − N ≤ k := 2(h − m) + 2 ≤ −2. Let N = 2m + 1 for
m ≥ 2, similarly we have that

HN/2
0 H−N/2(ε, η, t) = Hm−1/2

0 H0H
−m+1(ε, η, t)H−3/2(ε, η, t)

= Hm−1/2
0 [H0, H

−m+1(ε, η, t)]H−3/2(ε, η, t)

+ Hm−1/2
0 H1/2−m(ε, η, t)H1/2(ε, η, t)H−1/2

0 H3/2
0 H−3/2(ε, η, t),

where in the last equality the second summand can be bounded by 1 + O(ε) due to
the induction hypothesis for n = N − 2, inequality (2.11) for n = 1 and the base case
for n = 3. While, the first summand can be rewritten as
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Hm−1/2
0 [H0, H

−m+1(ε, η, t)]H−3/2(ε, η, t)

= εg(ηt)Hm−1/2
0 H−m+1/2(ε, η, t)·

· H−1(ε, η, t)
m−2∑

h=0

Hm−h−1/2(ε, η, t)[H1, H(ε, η, t)]H−m+h−1/2(ε, η, t),

where last term is O(ε) in view of the induction hypothesis for n = N − 2 and
assumption (B(k)) for every 2−N ≤ k := 2(h−m)+1 ≤ −3. Thus, inequality (2.10)
is proved for everyn ∈ N0. Similarly, one proves estimate (2.11) for alln ∈ N0. Finally,
to show inequality (2.10) for negative integer numbers, we notice that for any n ∈ N,
for every ψ ∈ D(Hn/2(ε, η, t))

∥
∥
∥H

−n/2
0 Hn/2(ε, η, t)ψ

∥
∥
∥ =

∥
∥
∥
(
Hn/2(ε, η, t)H−n/2

0

)∗
ψ

∥
∥
∥

≤
∥
∥
∥Hn/2(ε, η, t)H−n/2

0

∥
∥
∥ ‖ψ‖ ,

where the right-hand side is bounded by (1+ Bnε) ‖ψ‖ in view of estimate (2.11) for
positive integers. Analogously, one proves estimate (2.11) for negative integers. ��

5 Application of the general strategy to Landau-type Hamiltonians

Among magnetic Schrödinger operators associated with non-interacting electrons in
the plane, with (constant) magnetic field perpendicular to the plane, the Landau model
is emblematic for the understanding of the quantum Hall effect (QHE) [5]. For the
model of Landau-type Hamiltonians an explanation for the QHE is provided [2, The-
orem 2.2] by relying on adiabatic perturbation theory [16], which allows to compute
rigorously the response of the intensity current being linear in the perturbation deter-
mined by the voltage difference (for recent topical reviews see [6, 12]). Here, first
we briefly explain why the energy estimates established in the general mathematical
framework of Sect. 2 are useful in this respect. Then, we verify that this model satisfies
the assumptions previously stated.

This class of perturbed Hamiltonians is specified by [2, Equation (1.1)]. For the
sake of clarity, we recall some definitions.

Definition 5.1 Let be j ∈ {1, 2} and l j > 0, a l j -switch function in the j-th direction
is a smooth function� j : R2 → [0, 1] that depends onlyon thevariable x j and satisfies

� j (x j ) =
{
0 if x j < −l j
1 if x j > l j .

We consider the unperturbed Hamiltonian H0, defined as12

12 We use Hartree atomic units, andmoreover we reabsorb the factor e
c , where e is the charge of the electron

and c is the speed of light, in the definition of the magnetic potential A.
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H0 := 1

2
p2A + λV acting in L2(R2, dx), (5.1)

where pA := (p − A(x)) with p := −i∇ = −i
(

∂
∂x1

, ∂
∂x2

)
and A(x1, x2) :=

B/2(−x2, x1)with B > 0,λ ∈ R and the potential V is such that ‖V ‖∞ is finite.13 The
perturbed Hamiltonian is defined as14 H(ε, t) := H(ε, η = ε, t) = H0 + εg(εt)�1,

where 0 < ε � 1, �1 is a l1-switch function in the 1-st direction and g fulfills
the hypotheses in Assumption 2.1. The multiplication operator �1 models an elec-
tric potential of negative unit drop for an electric field pointing in the negative 1-st
direction. One is interested in computing the Hall conductance GHall, defined as a
ratio between the (excess of) induced current intensity when the perturbation is fully
switched on and the voltage difference. More precisely, one introduces the operator
i[H0,�2] standing for the current intensity in the 2-nd direction and ρε(t) the den-
sity operator, representing the state of the system at time t evolving from the Fermi
projection P0 of the unperturbed Hamiltonian H0 with associated Fermi energy in a
spectral gap of H0. Thus, one is in shape to define the Hall conductance as

Tr (i[H0,�2](ρε(t) − P0)) =: −GHall ε + o(ε) as ε → 0, (5.2)

for any t ≥ 1/ε (when the perturbation is fully switched on). In [2] first, by exploiting
the invariance of the trace under unitary conjugation, one rewrites15

Tr (i[H0,�2](ρε(s/ε) − P0)) = Tr
(
eiφ(s)�1 i[H0,�2](ρε(s/ε) − P0)e

−iφ(s)�1
)

= Tr
(
i[Ĥ(s),�2](ρ̂ε(s) − P̂0(s))

)
(5.3)

where s := εt is the scaled time, Ĥ(s) := eiφ(s)�1H0e−iφ(s)�1 , ρ̂ε(s) :=
eiφ(s)�1ρε(s/ε)e−iφ(s)�1 and P̂0(s) = eiφ(s)�1 P0e−iφ(s)�1 . Then, in order to derive
an explicit formula for the Hall conductance GHall, they use an asymptotic expansion
in ε powers of ρ̂ε(s)

ρ̂ε(s) =
k∑

j=0

ε j B j − εk
∫ s

0
dr Ûε(s, r)Ḃk(r)Ûε(r , s), (5.4)

where Ûε(r , s) := Ûε,η=ε(r , s). Clearly, by plugging (5.4) into (5.3) and (5.2), beyond
controlling the terms involving the Bj ’s, one needs to estimate for k > 1

εk−1 Tr

(∫ s

0
dr i[H0,�2]Ûε(s, r)Ḃk(r)Ûε(r , s)

)

.

13 In [2, Theorem 2.2] a stronger hypothesis is assumed, namely |λ| ‖V ‖∞ < B to ensure that the spectrum
of H0 consists of a infinite sequence of bands, separated from each other by finite gaps.
14 Notice that in this case we are imposing that the intensity of the perturbation and time-scale parameter,
respectively ε and η, are equal.
15 The advantage of working with Ĥ(s) instead of H(ε, t) is the isospectrality of the former Hamiltonians.
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In the continuum to prove that the trace of an operator O is finite it suffices to show
that O has suitable localization both in energy and space [2, Proposition 3.2]. Since
Ḃk(r) decays fast enough in energy in the sense of (1.6), this energy localization is
retained by the corresponding evolved operator Ûε(s, r)Ḃk(r)Ûε(r , s) as in (1.7) by
exploiting the energy estimate in the form of (1.4) (compare the inequality after [2,
Equation (3.12)] and [2, Remark (3), p. 599] for the case n = 0).

Now we are going to verify that the general assumptions of Sect. 2 are fulfilled by
this specific model. Clearly, H(ε, t) satisfies Assumptions (A1) and (A2). Assump-
tions (B(k)), (C1(k)) and (C2(k)) hold true under certain regularity conditions on V .
Fix any k ∈ Z, assume that the Sobolev norm16‖V ‖|k|+1,∞ is finite then hypothe-
sis (B(k)) holds true. Indeed, since [�1, H(ε, t)] = i

2

(
pA,1�

′
1 + �′

1 pA,1
)
, applying

[2, Proposition 3.1.(i)] we deduce that there exists a finite constant ek :
∥
∥
∥H−k/2(ε, t)[�1, H(ε, t)]H (k−2)/2(ε, t)

∥
∥
∥ ≤ ek ‖�1‖|k|+2,∞ ,

for all ε ∈ (0, 1) and t ∈ R.
Now let k ∈ N with k ≥ 2, assume that ‖V ‖2(k−1),∞ is finite then it follows that for
all ε ∈ (0, 1) and t ∈ R

D(Hk(ε, t)) ≡ D(Hk
0 ),

namely the hypothesis (C1(k)) is fulfilled. Indeed, observe that

Hk(ε, t) = Hk
0 + (εg(εt))k�k

1 +
2k−2∑

j=1

Mj , (5.5)

where each operatorMj is such that there existααα = (α1, . . . , αk),βββ = (β1, . . . , βk) ∈
{0, 1}k with ααα �= 0 �= βββ and

∑k
j=1 α j + β j = k:

Mj = (εg(εt))
∑k

j=1 β j Hα1
0 �

β1
1 · · · Hαk

0 �
βk
1 .

We are going to show thatD(Hk
0 ) ⊆ D(Hk(ε, t)). It suffices to observe that every Mj

is densely defined on D(Hk−1
0 ) ⊇ D(Hk

0 ). In fact, rewriting17

Hα1
0 �

β1
1 · · · Hαk

0 �
βk
1 H−k+1

0 = H
∑k

j=1 α j−k+1
0

·
k−1∏

m=1

H
k−1−∑m−1

j=0 αk− j

0 �
βk−m
1 H

∑m−1
j=0 αk− j−k+1

0

· Hk−1
0 �

βk
1 H−k+1

0

16 Let us recall that for k ∈ N the Sobolev norm ‖ f ‖k,∞ of a scalar function f on R
2 is defined as

‖ f ‖k,∞ := ∑
α1,α2∈N
α1+α2≤k

∥
∥
∥∂

α1
x1 ∂

α2
x2 f

∥
∥
∥∞ , where ‖ f ‖∞ := supx∈R2 | f (x)|.

17 As in the previous sections, up to a shift of a constant, we can assume that H0 ≥ 1.
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here the product
∏k−1

m=1 is ordered in the sense that a factor with larger index m stands
to the left of ones with smaller m and, hence [2, Proposition 3.1.(i).(b)] implies that

∥
∥
∥Hα1

0 �
β1
1 · · · Hαk

0 �
βk
1 H−k+1

0

∥
∥
∥ ≤ Ck−1

∥
∥
∥
∥H

∑k
j=1 α j−k+1

0

∥
∥
∥
∥

∥
∥
∥�

βk
1

∥
∥
∥
2k−2,∞ ·

·
k−1∏

m=1

Ck−1−∑m−1
j=0 αk− j

∥
∥
∥�

βk−m
1

∥
∥
∥
2k−2−∑m−1

j=0 2αk− j ,∞
,

which is finite, because
∑k

j=1 α j − k + 1 ≤ 0 and any Sobolev norm of �
β j
1 for all

β j ∈ {0, 1} is bounded. On the other hand, rewriting Hk
0 = (H(ε, t) − εg(εt)�1)

k

and applying again [2, Proposition 3.1.(i).(b)], we deduce thatD(Hk
0 ) ⊇ D(Hk(ε, t)).

Now let k ∈ N, suppose that ‖V ‖k,∞ is finite then Assumption (C2(k)) is satisfied.
In fact, consider the gauge transformation eiλ�1 with λ ∈ R, thus by virtue of [2,

Proposition 3.1.(i).(b)] we obtain that
∥
∥
∥H

k/2
0 eiλ�1H−k/2

0

∥
∥
∥ ≤ Ck/2

∥
∥eiλ�1

∥
∥
k,∞ < ∞.

Thus, for every n ∈ Z, if |n| ≥ 2 assuming that ‖V ‖|n|−1,∞ is finite, then Theorem 2.5
implies that the inequality in [2, Lemma 5.1] holds true. Furthermore, assuming
that ‖V ‖2,∞ is finite, then fixing any n ∈ Z, if |n| ≥ 2 supposing in addition that
‖V ‖2|n|−2,∞ is finite one can apply Corollary 2.7 as well.
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