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Abstract
We investigate analytic properties of string-integrated massless correlation functions
and propagators with emphasis on their infrared behaviour. These are relevant in
various models of quantum field theory with massless fields, including QED.
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1 Motivation

A conceptually new approach to QED is presented in [12] (see also [11, 17]). It
is designed to better understand the long-distance behaviour of QED, including the
uncountable superselection structure of charged states due to their “asymptotic photon
clouds”, and the infraparticle nature of the electron. The latter is manifest in a sharp
lower end of the mass spectrum with a singular set-on of the continuum due to the
attached soft photons. The new approach properly addresses and solves the problem
with the quantum Gauss Law on the physical Hilbert space: if the charged field were
a local quantum field, the integrated electric flux at spacelike infinity would commute
with it and cannot act as the generator of the U (1) symmetry. The tight relations
among these physical features have been known since long [3, 4, 7, 8], while a way
to incorporate them into a model was so far lacking—apart from a simple model in
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1+1 spacetime dimensions [16]. The new approach proposed in [12] provides such a
model and also sheds some new light on the Infrared Triangle [18].

The most prominent role in the new approach is played by an auxiliary quantum
field formally defined as

φ(x, e) =
∫

�x,e

AK
μ (y)dyμ =

∫ ∞

0
ds AK

μ (x + se)eμ (1.1)

(introduced in more detail below; �x,e is a straight curve from x along a direction e
to infinity, and the superscript K stands for “Krein space” emphasizing the indefinite
metric of the usual Feynman gauge Fock space). It is the main purpose of these notes
to investigate details of its infrared behaviour in position space.

The infrared superselection sectors ofQEDarise by exponentiating thefieldφ(x, e),
smeared with suitable functions c(e). Because Eq. (1.1) is infrared divergent as it
stands, a suitable infrared cut-off function v(k) is needed that allows to extend the
Fourier transform of the two-point function to k = 0 (as a distribution). With an
appropriate regularizationby amassm → 0, the correlation functions of exponentiated
fields (“vertex operators”)

Nv(c)· : eiqφ(x,c) :v (1.2)

contain an overall factor e−dm,v(C,C), where dm,v(C,C) is an integral diverging to
+∞ as m → 0, unless C(e) ≡ ∑

i qi ci (e) = 0. In the limit, the factor converges to
zero unless C(e) = 0:

e−dm (C,C) → δC,0. (1.3)

This factor entails that states with different “charge functions” C are mutually orthog-
onal, and produces an uncountable number of superselection rules. The physical
meaning of the charge functions is that of “photon clouds” attached to charged parti-
cles [12]. States created by the exponential field acting on the vacuum can formally
be regarded as coherent photon states lying outside the vacuum Fock space, and these
coherent states belong to inequivalent representations of the Maxwell field whenever
their photon clouds (i.e. their smearing functions c(e)) differ.

In [12, Sect. 3.1], a “dressed Dirac field”

ψq,c(x) =: eiqφ(x,c) :v ·ψ0(x) (1.4)

is introduced, where q is the unit of electric charge. This field arises by subjecting the
free Dirac field to the “trivial” interaction density

q · ∂μφ(x, c) jμ(x). (1.5)

Being a total derivative, Eq. (1.5) does not contribute to the total action, and gives rise to
a trivial scattering matrix. The non-perturbative construction of the dressed Dirac field
is meant as a first step towards the full perturbative QED, by splitting into two parts
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a QED interaction density that can be defined on a positive-definite subspace of the
indefinite Fock space (i.e. a Krein space). Although the interaction density Eq. (1.5)
is “trivial”, it drastically changes the algebraic structure of the charged field. The
dressed Dirac field is string localized (see Sect. 2) and falls outside the regime of, say,
Wightman quantum field theory. Unlike the free Dirac field, it creates states enjoying
infrared features of QED that cannot be attained in the usual local approach to QED
(including the quantum Gauss Law, the photon cloud superselection structure, and
the associated breakdown of Lorentz invariance). But the dressed Dirac field does not
interpolate between different scattering states. A non-trivial S-matrix is only produced
when also the “true” interaction q · AK

μ jμ(x) is turned on.
The exponentiated escort field is reminiscent of the “dressing factor” in the Faddeev-

Kulish prescription [10], that was introduced to prevent the formal vanishing of the
LSZ limit, and hence of the scattering matrix of QED [5, 20]. But, as explained in
more detail [12, Sect. 4.3 and 4.4], there are major differences: the dressing factor
in [10] is not part of the charged field (as ours) but rather of the states in which the
S-matrix has to be evaluated. The FK factor corresponds to a timelike string in the
direction of the electron momentum that would arise modulo the photon momentum k
(i.e. the null longitudinal photon) by averaging over spacelike strings perpendicular to
p. More interestingly, our dressing factor does not cancel the IR divergence of QED
but interferes with it in a way to dynamically deform the superselection rule.

Scattering theory in each of its formulations exploits the asymptotic large-time
behaviour of correlation functions. Thus, a future modification of scattering theory
adapted to theories with infraparticles will need detailed information about correla-
tion functions of the infrafield. In the case of the dressed Dirac field, these involve
correlation functions of the vertex operators. This is one of our motivations to study
the latter.

The new approach to QED itself is not the topic of this paper, except for the short
remarks in Sect. 2. For more, we refer to [12, Sect. 2]. Our topic are correlation func-
tions of vertex operators and their analytic properties. In particular, the coefficients q
in Eq. (1.2) may be regarded as free parameters, unrelated to the electric charge. The
results also bear on technical aspects of the very setup of string-localized quantum
field theory [13], e.g. how much smearing of the string directions is necessary.

2 Preliminaries

The basic idea of the new approach to QED [11, 13, 16] is to use “string-localized
potentials” Aμ(x, e) for the free Maxwell field:

Fμν(x) = ∂μAν(x, e) − ∂ν Aμ(x, e). (2.1)

They depend on a spacelike four-direction e, and enjoy the axiality property

eμAμ(x, e) = 0. (2.2)
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It is suggestive to think of them as “axial gauge” potentials; but the choice of e is not
a gauge-fixing condition; rather the potentials Aμ(x, e) for all e coexist on the same
Hilbert space where Fμν is defined. More precisely, Aμ(x, e) is a distribution also
in the variable e and requires a smearing with suitable functions c(e). The latter are
required to have total weight

∫
dσ(e) c(e) = 1, so that Aμ(x, c) are still potentials for

Fμν .
The terminology “string-localized” refers to the fact that they can be defined as

integrals (well defined in the distributional sense) over the field along a “string” of
direction e:

Aμ(x, e) :=
∫ ∞

0
ds Fμν(x + se)eν . (2.3)

String-localization is an algebraic property: A(x, e) commutes with F(y) provided y
is spacelike separated from the string x + R+e. The definition Eq. (2.3) ensures both
Eqs. (2.1) and (2.2). Thus, “axiality” is a consequence of localization along a string.

The Hilbert space for the freeMaxwell field can be directly obtained from themass-
less unitary Wigner representations of helicities ±1 [20] without the detour through
a potential, and can thus be seen as a primary entity. But in perturbative QED one
usually starts from a local potential AK

μ (x), say in the Feynman gauge, that is defined
on an indefinite Krein space, and then defines

FK
μν(x) = ∂μA

K
ν (x) − ∂ν A

K
μ (x). (2.4)

When theKrein space is reduced to the physical Hilbert space by theGupta–Bleuler (or
BRST) prescription, theMaxwell field becomes equivalent to the one on the Fock space
over the Wigner representation; while the potential AK

μ ceases to exist. In contrast, the
string-localized potentials Aμ(x, e) (being functionals of the Maxwell field) exist on
both the Krein space and on the physical Hilbert space.

Because on the Krein space both Eqs. (2.1) and (2.4) hold, the two potentials differ
by an operator-valued gauge transformation

AK
μ (x, e) = AK

μ (x) + ∂μφ(x, e). (2.5)

The quantity φ(x, e), baptized “escort field” in [17], turns out to be given by Eq. (1.1).
Thus, it is string-localized and—as we shall see—infrared divergent. But its derivative
is well defined as a string integral over ∂AK that decays fast enough as s → ∞.

There are now several new options [12, Sect. 2] to construct QED without the need
to work in Krein spaces. The first is to replace the usual interaction density q AK j ,
defined on a Krein space, by q A(e) j , defined on the Wigner Hilbert space (where the
string-dependence is a total derivative and should not affect the resulting theory [17]).
This option requires string-localized propagators of the potentials A(e) that are the
topic of Sect. 4.

The “hybrid” option indicated in the introduction is to split q A(e) j into q ∂φ(e) j
(which is a total derivative) andq AK j , and study the theorywith the “trivial interaction
density” q ∂φ(e) j first. This model can actually be constructed non-perturbatively,

123



On the spacetime structure of infrared divergencies in QED Page 5 of 24 37

leading to a rigorous and IR-finite definition of the vertex operators Eq. (1.2) and the
dressed Dirac field Eq. (1.4). The analytic properties of vertex operators, in particular,
the space–time structure of their correlation functions, is the topic of Sect. 3.

The second step, the perturbation of the dressedDirac fieldwith theQED interaction
density q AK j (and the reasons why this does not reintroduce Hilbert space non-
positivity) requires a rather big effort and is addressed in [12, Sect. 4].

Let us begin with an inventory of the basic quantities that are needed in the various
approaches.

The two-point functionW0 and the Feynman propagator GF
0 of the massless scalar

Klein–Gordon field coincide (up to a factor of i) as a function of x = x1 − x2 outside
the singular support, which is the null-cone (x1 − x2)2 = 0. As distributions, they are
given in position space as boundary values of analytic functions

W0(x) = lim
ε↓0

1

(2π)2

−1

(x0 − iε)2 − �x2 ≡ lim
ε↓0

1

(2π)2

−1

x2 − iεx0
≡ −1

(2π)2
· 1

(x2)−
,

(2.6)

GF
0 (x) = lim

ε↓0
1

(2π)2

−i

x2 − iε
, (2.7)

respectively. The commutator function (Pauli–Jordan function) can be written as

C0(x) := i(W0(x) − W0(−x)) = 1

2π
sign(x0)δ(x2). (2.8)

For the indefinite Feynman gauge vector potential, one has

〈AK
μ (x)AK

ν (x ′)〉 = −ημνW0(x − x ′), (2.9)

i〈T AK
μ (x)AK

ν (x ′)〉 = −ημνG
F
0 (x − x ′). (2.10)

By Eq. (1.1), the ensuing two-point function and Feynman propagator of the escort
field are given as double integrals

−(ee′)
∫ ∞

0
ds′

∫ ∞

0
ds F(x + se − s′e′)

≡ −(ee′)(I−e′ IeF)(x), (F = W0 resp. GF
0 ). (2.11)

The notation Ie stands for the string integration as in Eqs. (1.1) or (2.3). The operations
Ie commute among each other and with derivatives as long as all integrals exist as
distributions, and it holds

eμ∂μ(Ie f )(x) = − f (x). (2.12)

If f is a function or a distribution, Ie f can only be defined if f has sufficiently rapid
decay. Because W0 and GF

0 fall off in configuration space like 1/x2, their first string
integrations are finite, whereas the second string integration diverges logarithmically
and has to be regularized.
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The well-definedness as a distribution is a more subtle issue than the convergence
of an integral. In Fourier space, the string integration is a multiplication with another
distribution:

Iee
−ikx ≡

∫ ∞

0
ds e−ik(x+se) = lim

ε↓0
−i

(ke) − iε
· e−ikx . (2.13)

The existence of a product of distributions has to be analysed by microlocal methods,
such as Hörmander’s criterion for the wave front sets. But the latter is only a sufficient
condition, and by cancellations of singularities the product may be better behaved
than the wave front sets may tell. Since in this work we are interested mainly in the
behaviour in position space, we refer to [9] where the existence of certain relevant
distributions has been established in Fourier space.

We just notice here that the Fourier transforms of W0 and GF
0 scale like k−2. The

IR divergence arises because with two additional denominators as in Eq. (2.13), the
Fourier integrals would diverge logarithmically at k = 0.

Because 1
(y−iε)2

(where y = (ke)) is well defined, (Ie Ie f )(x) is well defined as

a distribution in x , provided the decay of f is fast enough. But because 1
(y−iε)(y+iε)

is ill defined, (I−e Ie f )(x) is always ill defined. In position space, this can be easily
understood because the integrand in Eq. (2.11) depends only on s − s′. In particular,
〈A(x, e)A(x ′, e′)〉 is ill defined at e = e′. Not least for this reason, one should consider
the string integrals also as distributions in e and e′. We shall see in Sect. 3.2 that the
singularity at e = e′ is integrable in e and e′ w.r.t. the invariant measure of S2, so that
smeared expressions like 〈A(x, c)A(x ′, c′)〉 are well defined even when the supports
of c(e) and c′(e′) overlap.

Because W0 and GF
0 are homogeneous distributions in x of degree −2, IeW0 and

IeGF
0 are homogeneous both in e and in x of degree −1. We shall (most of the time)

restrict e to the open set of spacelike vectors, because these are the directions needed in
the intended applications [12]. Because of homogeneity in e, we may as well restrict
e to the unit spacelike hyperboloid H1 = {e ∈ R

4 : e2 = −1} [9]; but it will be
advantageous to display factors “e2” explicitly, so as to maintain homogeneity in e.
Yet, smearing in e is always understood with normalized e.

The quantities of interest in various applications [12] are:

(i) Two-point functions of Aμ(x, e) = (IeFμν)(x)eν or AK
μ (x, e) = AK

μ (x) +
∂μφ(x, e). (These distributions are identical in the Wigner Hilbert space version
and the Krein space version.)

(ii) Mixed two-point functions between AK
μ (x) and φ(x, e).

(iii) IR-regularized two-point functions of φ(x, e) and their exponentials.
(iv) Propagators (= time-ordered two-point functions) of Aμ(x, e).

Propagators of φ with itself would require time-ordering and IR regularization, which
would be very delicate to implement simultaneously. Fortunately, such objects do not
occur [12, Sect. 4.2].

(i) define a string-localized free quantum field theory. Apart from a local contribu-
tion, they involve contributions with one or two string integrations over derivatives of
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Eq. (2.6). Thanks to the derivatives, these string integrations are IR finite and do not
need a regularization. They are far simpler than (iii) without derivatives.

(ii) and (iii) arise in the non-perturbative “dressing model” [12, Sect. 3.1] and the
“hybrid” approach to QED outlined in [12, Sect. 2, Eq. (1.15)], where the escort
field without derivative appears in the exponent of a regularized normal-ordered Weyl
operator (vertex operator). Their computation and analysis will be our first main topic
in Sect. 3.

(iv) are needed in perturbation theory when a current is coupled to a string-localized
potential on the Wigner Hilbert space [12, Sect. 2, Eq. (1.5)]. They involve one or two
string integrations over derivatives of Eq. (2.7). Again, thanks to the derivatives, an IR
regularization is not needed. Their computation and analysis will be the second main
topic of this work in Sect. 4.

Thus, we shall study the IR-finite expressions

(IeW0)(x), (Ie2 Ie1∂W0)(x), (Ie2 Ie1∂G
F
0 )(x) (2.14)

from which the other IR-finite quantities of interest arise via

(Ie∂W0)(x) = ∂(IeW0)(x), (Ie2 Ie1∂∂W0)(x) = ∂(Ie2 Ie1∂W0)(x); (2.15)

and the IR-regularized expression

(Ie2 Ie1W0)v(x). (2.16)

3 Two-point functions and vertex operator correlations

3.1 One string integration

The distribution W0(x) is defined as the boundary value of the analytic function
− 1

(2π)2
1
z2

in the complex forward tube Im z0 < 0 (see [14, Thm. IX.16], which we

shall repeatedly refer to). We may thus write z = x − iεu where x is real and u a
forward timelike (unit) vector. By Lorentz invariance, the distributional limit ε ↓ 0
is independent of u. So, because e is spacelike, one may choose u perpendicular to
e. Let in this section F(x) = 1

(x−iεu)2
, where the distributional limit ε ↓ 0 is always

understood.
The string-integral over F(x) can be written as

f (x, e) := −(IeF)(x) ≡ −
∫ ∞

0

ds

(x + se − iεu)2

= −
∫ ∞

0

ds

(x − iεu)2 + 2s(xe) + s2e2
. (3.1)

The point is that the complex denominator cannot vanish for real s, and iε appears
only in the parameter (x − iεu)2. The elementary integration gives
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Lemma 3.1

(2π)2(IeW0)(x)= f (x, e) =
1
2 log

−(xe)+i
√

detx,e

−(xe)−i
√

detx,e

i
√
detx,e

=
1
2 log

−(xe)+√− detx,e

−(xe)−√− detx,e√− detx,e
,

(3.2)

where

det x,e := (x − iεu)2e2 − (xe)2 (3.3)

is the Gram determinant, with the imaginary shift of x and the distributional limit
ε ↓ 0 in the sense of [14, Thm. IX.16] being implicitly understood.

The logarithm of the quotient is understood as the difference of two logarithms with
their branch cuts along R−. The same applies for logarithm’s of products or quotients
throughout.1 In particular, Eq. (3.2) does not depend on the choice of the branch of the
square root (because numerator and denominator would simultaneously switch sign).
As a function on R4 × H1 × H1 (i.e. putting ε = 0), Eq. (3.2) is ill defined only when
x2 = 0 or detx,e = 0. The iε-prescription in detx,e defines Eq. (3.2) as a distribution.

When x and e lie in a common spacelike plane, one may without loss of generality
assume x0 = 0 and e0 = 0. Then,

√
x2e2 · f (x, e) = α

sin α
, (3.4)

where α = ∠(�x, �e) ∈ [0, π). It has a singularity at α = π reflecting the fact that the
string x + R+e passes through the origin. Yet, upon smearing in �e, this singularity is
integrable w.r.t. the invariant measure of S2 and does not need an iε prescription to
define it as a distribution in �e.

More generally, the defining integral Eq. (3.1) may be singular whenever (x + se)2

can become zero for s ≥ 0, i.e. geometrically, when the string x + R+e hits the
null-cone. This happens necessarily if x is timelike or lightlike (the string starts inside
or on the null-cone). If x is spacelike, the string may touch the null-cone or pierce it
twice.However, inspection ofEq. (3.2) shows thatwith the iε-prescription, the singular
support of f (x, e) is at x2 = 0 (the string starts on the null-cone) and at detx,e = 0,
(xe) ≥ 0 (the string touches the null-cone).

Somewhat unexpected from its unsymmetric definition f (x, e) = −(IeF)(x), this
function (where it is regular) is symmetric in x ↔ e. The symmetry can be understood
by a change of integration variables s → 1

s in Eq. (3.1).

3.2 Two string integrations

The two-point function of the escort field is the twofold string-integral over W0(x),
multiplied by the factor−(ee′). The presence of this factor jeopardizes the positivity of
1 In particular, negative factors must not be cancelled under the logarithm: this would produce errors of
2π i!
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the inner product defined by the two-point function. The latter is essential to produce
the superselection structure, that arises by the divergence to +∞ of the exponent
dm,v(C,C) in Eq. (3.29) below. To secure positivity, one has to impose that e and e′
are smeared within a spacelike surface [12, Sect. 3.1] perpendicular to any timelike
unit vector u, so that −(ee′) becomes positive definite. Without loss of generality, we
may pick

u = u0 :=
(
1
�0
)

⇒ e =
(
0
�e
)

, e′ =
(
0
�e ′

)
. (3.5)

Thus, smearing functions c(e) = c(�e) are elements ofC∞(S2). Vectors y with y0 = 0
will be called “purely spatial”.

Because the two-point function W0(x) is homogeneous of degree −2, (IeW0)(x)
is homogeneous of degree −1, and the second string integration would diverge
logarithmically. In momentum space, with the Lorentz invariant measure dμ0(k)

= (2π)−3d4k δ(k2)θ(k0) = (2π)−3 d3k
2k0

,

(I−e′ IeW0)(x)
?= lim

ε↓0 limε′↓0

∫
dμ0(k)

e−ikx

((ke) − iε)((ke′) + iε′)
(3.6)

diverges at k = 0. We therefore have to regularize it in the infrared. The regularization
extends the momentum space distribution to k = 0. This is done by replacing e−ikx by
e−ikx − v(k) where v(k) is any smooth test function with v(0) = 1. Thus, we define

(I−e′ IeW0)v(x) := lim
ε↓0 limε′↓0

∫
dμ0(k)

e−ikx − v(k)

((ke) − iε)((ke′) + iε′)
. (3.7)

Because of the symmetry e ↔ −e′, we shall in the sequel write e = e1 and −e′ = e2,
so that (Ie2 Ie1W0)v(x) is symmetric in e1 ↔ e2.

We want to gain insight into the distribution (Ie2 Ie1W0)v(x) in position space,
leaving the regulator function v unspecified. It is clearly not possible to compute the
integral Eq. (3.7) when v(k) is not specified. The strategy is therefore to compute
instead the cut-off integral

(I ae2 Ie1W0)(x) ≡
∫ a

0
ds2 (Ie1W0)(x + s2e2) = 1

(2π)2

∫ a

0
ds f (x + se2, e1)

(3.8)

—which can be done analytically—and use that

∂μ(Ie2 Ie1W0)v(x) = (Ie2 Ie1∂μW0)(x) = lim
a→∞(I ae2 Ie1∂μW0)(x)

= lim
a→∞ ∂μ(I ae2 Ie1W0)(x), (3.9)
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where the first equality follows from the definition Eq. (3.7), the second holds because
∂μW0 decays sufficiently fast to make the integral converge in a, and the last is obvious
from the definition of the integral operations. Thus, the difference is independent of
x , and the result for (Ie2 Ie1W0)v(x) is obtained by replacing the cut-off dependent but
x-independent term by another (unknown) x-independent term. Specifically, we will
show in the remainder of this section

(I ae2 Ie1W0)(x) = 1

(2π)2

[
1

2
f (e1, e2) · log

(
4(ae2)2

(x − iεu)2

)
+ H(x; e1, e2)

(e1e2)

]
+ O

(
1

a

)
,

(3.10)

where f (e1, e2) = f (e2, e1) is the samedistribution as inEq. (3.1), and the distribution
H is symmetric in e1 ↔ e2 and homogeneous of degree 0 separately in x , e1, and e2.
We conclude

(Ie2 Ie1W0)v(x) = 1

(2π)2

[
−1

2
f (e1, e2) · log(−μ2

v · (x − iεu)2) + H(x; e1, e2)
(e1e2)

]
,

(3.11)

where μv carries the dependence on the regulator function v and may depend on e1
and e2.

To prepare the computation of H(x; e1, e2) in Eqs. (3.10) and (3.11), we need some
definitions. We shall denote by

det y1,y2,y3 := y21 y
2
2 y

2
3 − y21 (y2y3)

2 − y22 (y1y3)
2

−y23 (y1y2)
2 + 2(y1y2)(y1y3)(y2y3) (3.12)

the Gram determinant of vectors y1, y2, y3. For i, j, k ∈ {1, 2, 3} pairwise distinct,
the cofactors of y2i are the 2 × 2 Gram determinants dety j ,yk , and we shall denote the
cofactors of (yi y j ) by

�k = (yi yk)(y j yk) − y2k (yi y j ). (3.13)

We shall need a few trivial facts, proven by elementary computation.

Lemma 3.2 It holds

∂yi det y1,y2,y3 = 2

⎛
⎝dety2,y3 �3 �2

�3 dety1,y3 �1
�2 �1 dety1,y2

⎞
⎠

⎛
⎝y1
y2
y3

⎞
⎠ . (3.14)

If G is the Gram matrix and L the matrix in Eq. (3.14), then GL = LG = dety1,y2,y3 ,
i.e. if dety1,y2,y3 �= 0, then det−1

y1,y2,y3 L = G−1.

Lemma 3.3 For i, j, k ∈ {1, 2, 3} pairwise distinct, it holds

y2i det yi ,y j ,yk = det yi ,yk det yi ,y j − �2
i . (3.15)
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Notice that with Lorentzian metric the vanishing of a Gram determinant does not
require the linear dependence of the vectors, see, however Lemmas4.2 and 4.3.

The inverse of the Gram determinant det x,e1,e2 will play a major role. Similar to
Eq. (3.2), it is understood as the distributional boundary value from the forward tube
x−iεu. Because (ei u) = 0, this simplymeans that x2 is understood as (x−iεu)2 while
all other scalar products are real. For properties of Gram determinants in Lorentzian
metric, see Sect. 4.

It is convenient to define γ = ∠(�e1, �e2), so that
√
e21e

2
2 cos γ = −(e1e2) and

dete1,e2 = e21e
2
2 sin

2 γ . One trivially has

Lemma 3.4 The distribution f (x, e2) in Lemma3.1 with x substituted by e1 equals

√
e21e

2
2 · f (e1, e2) = γ

sin γ
. (3.16)

The singularity at γ = π is integrable w.r.t. the invariant measure on S2 × S2.

Remark 3.5 The singularity is not integrable along one-dimensional submanifolds of
S2. Thus, strings must not be further restricted than e2 = −1 (which is trivial by
homogeneity) and e0 = 0.

Next, by using Lemma3.3 with y1 = e1, y2 = e2, y3 = x , and i = 1 and i = 2,
respectively, one can define the homogeneous functions ζ1(x, e1, e2) and ζ2(x, e1, e2)
by

± e±ζ1 = �1 ± √
dete1,e2 detx,e1√

e21 detx,e1,e2

, ±e±ζ2 = �2 ± √
dete1,e2 detx,e2√

e22 detx,e1,e2

. (3.17)

When e1, e2 and x are purely spatial, the geometry is Euclidean. Then, all diagonal
cofactors (2×2 Gram determinants) are ≥ 0 and e21 detx,e1,e2 ≥ 0. In this case, ζ1 and
ζ2 are real functions.

We can now state the result.

Proposition 3.6 Let ei (i = 1, 2) be purely spatial and linearly independent (dete1,e2
�= 0). Denote by D = detx,e1,e2

(x−iεu)2e21e
2
2
the normalized Gram determinant. Then, the

distribution H in Eqs. (3.10) and (3.11) is

H(x; e1, e2) = − cos γ

2 sin γ

[
γ log

(
sin4 γ

D

)
+ π(ζ1 + ζ2)

− i

2

⎧⎨
⎩Li2

(
eiγ eζ1eζ2

) +(eζ1 ↔ −e−ζ1)

+(eζ2 ↔ −e−ζ2)

−(eiγ ↔ e−iγ )

⎫⎬
⎭

⎤
⎦ . (3.18)

The limit γ → 0 (e1 and e2 parallel) is regular, while the limit γ → π (e1 and e2
antiparallel) is singular, but integrable w.r.t. the invariant measure on S2 × S2.
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Via Eq. (3.11), this formula determines the regularized double string-integrated distri-
bution (Ie2 Ie1W0)v(x) on R

4 × S2 × S2, up to the unknown additive dependence on
the regulator function v via μv(e1, e2). Its relevance for the intended applications to
QED will be discussed at the end of Sect. 3.3.

Sketch of proof By the argument preceding Eq. (3.10), we need to compute the
cut-off integral over f (x + se2, e1) in Eq. (3.8) in order to compute the regularized
integral Eq. (3.7). We begin with x⊥ (the component of x perpendicular to e1 and e2)
spacelike. Then, there is a boost preserving e1 and e2, such that (u�x) = 0. Thus, we
may without loss of generality assume that also x is purely spatial, and ζ1 and ζ2 are
real.

The clue to compute Eq. (3.8) analytically is the change of integration variable

C(s)=earcsinh(s�1+�2) =s�1+�2+
√

(s�1 + �2)2 + 1,
1

C

dC

ds
= 2

C + C−1 ,

(3.19)

where

�1 := dete1,e2√
e21 detx,e1,e2

, �2 := − �1√
e21 detx,e1,e2

(3.20)

with �i defined as in Eq. (3.13) for y1 = e1, y2 = e2, y3 = x . Then, C(0) = e−ζ1 and
C(a) = log(2a�1) + O( 1a ) for large a, and one finds

f (x + se2, e1) = �1√
dete1,e2

log

e−ζ2

2�1

(1 + eiγ eζ2C(s))(1 − e−iγ eζ2C(s)−1)

e−ζ2

2�1

(1 + e−iγ eζ2C(s))(1 − eiγ eζ2C(s)−1)

i(C(s) + C(s)−1)
.

(3.21)

Because ζi are real and �1 is positive, one can cancel the factor e−ζ2

2�1
in the difference

of logarithms without risk of changing the branches, see footnote 1. The integral is
solved by

2�1
log

(
1 + eiγ eζ2C(s))(1 − e−iγ eζ2C(s)−1

)
C(s) + C(s)−1

= d

ds

[
Li2

(
e−iγ eζ2C(s)−1

)
− Li2

(
−eiγ eζ2C(s)

) ]
, (3.22)

and likewise for γ → −γ . (Eq. (3.22) holds in fact with the sum of two logarithms on
the left-hand side. Because the complex phases of the two factors under the logarithm
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always have the same sign and do not add up beyond±π , the branch is the same when
the sum is written as the logarithm of the product.)

By working out the values of the primitive function in Eq. (3.22) at s = 0 and
s = a, and writing the result symmetrically in e1 ↔ e2, one arrives at Eq. (3.18). For
the relevant properties of the dilogarithm function, see [21, Chap. I.2].

The behaviour at the branch cuts of the dilogarithm function, determined by the
imaginary part of x0, can be worked out explicitly in both limits γ → 0 and γ → π .
The singularity at γ = π is like O(log(π−γ ))

π−γ
and hence integrable.

When x⊥ is not spacelike, the variables and functions are defined as analytic func-
tions in the forward tube x − iεu with the iε prescriptions of detx,ei and detx,e1,e2
as before. This defines the distribution as the boundary value ε ↓ 0, invoking [14,
Thm. IX.16] together with the mild growth properties of the logarithm and diloga-
rithm [21] functions. ��

The regular behaviour at γ = 0 (e1 = e2) is expected because (I 2e F)(x)
= ∫ ∞

0 s ds F(x + se) is well defined when regularized as in Eq. (3.7). The singu-
lar behaviour at γ = π (e1 = −e2) is expected because I−e Ie is never defined. But
because the singularity is integrable, one can extend the distributions f (e1, e2) and
H(x, e1, e2) to e1 = −e2:

Corollary 3.7 Let f̃ (e, e′) := f (e,−e′) and H̃(x − x ′; e, e′) := H(x − x ′; e,−e′),
which are symmetric under e ↔ −e′. The regularized two-point function of the escort
field

(2π)2〈φ(x, e)φ(x ′, e′)〉v
= (ee′)

2
f̃ (e, e′) log

( − μ2
v · (x − x ′ − iεu)2

) + H̃(x − x ′; e, e′) (3.23)

is a distribution on R
4 × S2 × S2.

When smeared with the constant function c0(ei ) = 1
4π , Eq. (3.23) simplifies drasti-

cally. The averagingwith c0 can be done already in themomentumspace representation
Eq. (3.7):

Lemma 3.8 (see [12, Eq. (A.3)]) For purely spatial e, u0 the standard timelike unit
vector as above, and k2 = 0 one has

∫
S2
dσ(�e) c0(�e) e

(ek)±
= u0

(u0k)
− k

(u0k)2
. (3.24)

Because ( u0
(u0k)

− k
(u0k)2

)2 = − 1
(u0k)2

, which is (minus) the denominator for two
string integrations in the direction u0, one obtains the desired result by computing
(Iu0 Iu0W0)v along the same lines as (Ie2 Ie1W0)v before. The result is
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Lemma 3.9 For c0(�e) = 1
4π , one has

(2π)2〈φ(x, c0)φ(x ′, c0)〉v = −1

2
log

( − μ̃2
v · ((x − x ′)2)−

) + H̃(x − x ′; c0, c0),
(3.25)

with H̃(x; c0, c0) = x0

2r
log

x0 − r − iε

x0 + r − iε
(r = |�x |). (3.26)

Sketch of proof By a direct computation of the cut-off integral Eq. (3.8), which
for two parallel strings becomes an elementary integral. The claim for the regularized
integral Eq. (3.7) follows by the argument preceding Eq. (3.10), which leaves only the
constant μ̃2

v unspecified. ��

3.3 Vertex operator correlations and commutation relations

We briefly sketch the definition of operators : eiφ(g⊗c) :v (smeared in both x and e)
through a massless limit [12, Sect. 3.1]:

: eiφ(g⊗c) :v:= lim
m→0

e− ĝ(0)2

2 dm,v(c,c)· : eiφm (g⊗c) :≡ eiφ(g⊗c)

e− 1
2wv(g⊗c,g⊗c)

, (3.27)

where φm is the IR-regular massive escort field whose two-point function diverges in
the limit m → 0, and, with the Lorentz invariant measure dμm(k) = (2π)−3d4k δ

(k2 − m2)θ(k0),

dm,v(e, e
′) = −(ee′)

∫
dμm(k) v(k)

((ke) − iε)((ke′) + iε)
, (3.28)

smeared over e and e′ is the divergent part. The second writing in Eq. (3.27) is the
normal-ordering w.r.t. the non-positive two-point function wv defined as −(ee′) times
Eq. (3.7). But because the denominator is positive, correlations of Eq. (3.27) evaluated
in the limit of massive vacuum states define a positive functional. The correlations
can be worked out by the Weyl formula. The crucial feature is that they contain the IR
divergent parts in the combination

e− 1
2 dm,v(C,C) (3.29)

where C(e) = ∑
i ĝi (0)ci (e). Because dm,v(C,C) diverges to +∞ unless C = 0,

one obtains in the limit a Kronecker delta δC,0.
The coefficient δC,0 defines an uncountable superselection rule: the GNS Hilbert

space splits into an uncountable direct sum of subspacesHC which carry inequivalent
representations of the Weyl subalgebra generated by eiφ(g⊗c) with ĝ(0) = 0.

Therefore, correlation functions of : eiφ(g⊗c) :v are given by

〈 : eiφ(g1⊗c1) :v . . . : eiφ(gn⊗cn) :v
〉 = δC,0 ·

∏
i< j

e−wv(gi⊗ci ,g j⊗c j ). (3.30)
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When wv as computed in Eq. (3.23) is inserted, the (unspecified) terms logμ2
v(e,−e′)

in the exponent contribute only as c-dependent but irrelevant normalizations Nv(c) of
the fields, as follows. Collect these terms in Eq. (3.30) as

exp
∑

i< j

ĝi (0)ĝ j (0)

8π2 λv(ci , c j ) (3.31)

with the symmetric bilinear form

λv(c, c
′) := 1

2

∫
dσ(�e) c(�e)

∫
dσ(�e ′)c′(�e ′) (�e · �e ′) f̃ (e, e′) logμ2

v(e,−e′). (3.32)

Because
∑

i ĝi (0)ci = 0, the exponential of the sum factorizes:

exp
∑

i< j

ĝi (0)ĝ j (0)

8π2 λv(ci , c j ) =
∏

i
exp

(
− ĝi (0)2

16π2 λv(ci , ci )

)
=:

∏
i
Nv(ci )

−1.

(3.33)

Vertex operators are defined by choosing g(y) = qδx (y), hence ĝ(0) = q, and
normalizing as

Vqc(x) := Nv(c)· : eiqφ(x,c) :v
(
Nv(c) = e

q2

16π2
λv(c,c)

)
. (3.34)

By inspection of their correlation functions, displayed in Cor. 3.10, together with (a
version of) [14, Thm. IX.16] and the mild growth properties of the logarithm and
dilogarithm functions, one can conclude that the vertex operators are distributions.

Corollary 3.10 (see [12, Sect. 3.1]) The correlation functions of vertex operators are

〈
Vq1c1(x1) . . . Vqncn (xn)

〉

= δ∑
i qi ci ,0 ·

∏
i< j

(
−1

(xi − x j )2−

)− qi q j
8π2

〈ci ,c j 〉
e
− qi q j

4π2
H̃(xi−x j ;ci ,c j ), (3.35)

where

〈c, c′〉 :=
∫

dσ(�e) c(�e)
∫

dσ(�e ′)c′(�e ′) (�e · �e ′) f̃ (e, e′)
(
f̃ (e, e′) = π − ∠(�e, �e ′)

sin(∠(�e, �e ′))

)
. (3.36)

Proof The statement follows by combining the definition Eq. (3.34) with Eq. (3.30),
where wv is specified by Eq. (3.23) and Proposition3.6. The formula Eq. (3.36) uses
Eq. (3.16). ��
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Remark 3.11 Among the smearing functions of unit weight, c0 is a stationary point of
the functional 〈c, c〉, and 〈c0, c0〉 = 1. It is presumably aminimum, so that correlations
with c �= c0 would decay faster than with c0.

We conclude this section with some miscellaneous results about correlations of
vertex operators, with only indications of proofs.

3.3.1 Commutation relations

Proposition 3.12 The vertex operators satisfy anyonic commutation relations

Vqc(x)Vq ′c′(x ′) = eiqq
′β(x−x ′;c,c′) · Vq ′c′(x ′)Vqc(x), (3.37)

where β(x − x ′; c, c′) arises by smearing with c(e) and c′(e′) the escort commutator
function

β(x − x ′; e, e′) = i[φ(x, e), φ(x ′, e′)] = −(ee′)(I−e′ IeC0)(x − x ′). (3.38)

Proof The claim follows from the fact that vertex operators are defined as limits of
multiples of Weyl operators, Eqs. (3.27) and (3.34). The escort commutator function
does not suffer from the IR divergence because the Fourier transform of C0 vanishes
at k = 0. ��

For x0 = x ′0, Eq. (3.38) vanishes because the equal-time commutator vanishes and
e, e′ are purely spatial. Otherwise it is a rather simple geometric quantity in terms of
the intersection of the null-cone with the planar wedge x − x ′ + R+e − R+e′, which
is a subset of a circle. It can be written in a symmetric form, by writing e1 = e and
e2 = −e′ as before, so that γ = ∠(�e1, �e2):
Lemma 3.13 (see [15]) Denote by A the total arc-length of the intersection of the
null-cone with the planar wedge x + R+e1 + R+e2 of opening angle γ . Then,

β(x; e1, e2) = −sign(x0)
A

4π tan γ
. (3.39)

Sketch of proof Perform the double string-integral in Eq. (3.38) in Euclidean polar
coordinates (r , ϕ) of the plane x +Re1 +Re2. The change of coordinates contributes
the Jacobi determinant 1

sin γ
. Using Eq. (3.19), the relevant integral can be written as

∫
r dr dϕ χW (r , ϕ)δ(r2 − x⊥2) = 1

2
A, (3.40)

where χW is the characteristic function of the wedge, and x⊥ is the component of x
perpendicular to the plane. Finally, (e1e2) = − cos γ . Collecting all factors, yields
Eq. (3.39). ��

The intersection of the wedge with the null-cone is empty if the two strings are
spacelike separated, in particular when x⊥2 < 0. In this case, A = 0 and the vertex
operators commute.
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3.3.2 Spectrum

One would like to know the Fourier transform of the two-point function of vertex
operators because its c-dependent energy–momentum distribution supported in the
interior of V+ reveals the energy–momentum spectrum of the state created by the
vertex operator [12, Sect. 3.1]. It has to be added to the mass-shell energy–momentum
of the free Dirac particle. The sum is the spectrum of the infraparticle state generated
by the dressed Dirac field Eq. (1.4).

We do not know how to compute this Fourier transform for general c, other than
by working out an exponential series of convolution products of Eq. (3.23) (which is
impractical). However, the case of the constant smearing function c(�e) = c0 = 1

4π , for
which the two-point function drastically simplifies, see Lemma3.9, allows to quantify
the ensuing dissolution of the mass shell in a special case.

By Eq. (3.25), the two-point function of the vertex operator Vqc0 is

〈
V ∗
qc0(x1)Vqc0(x2)

〉 =
[ (

x0−r−iε
x0+r−iε

)
x0
r

−(x2 − iεx0)

] α
2π

, (x = x1 − x2, r = |�x |). (3.41)

Here, α := q2

4π , which in the application to QED [12] is the fine structure constant.

Equation (3.41) equals (i x0 + ε)− α
π multiplied with a power series in r2

x20
. This

structure allows to extract quantitative details of the Fourier transform, and hence of the
rotationally invariant energy–momentum distribution ρ(ω, �k) in the state created by
Vqc0 [15]. By putting r = 0, one concludes that the distribution ρ(ω) = ∫

d3k ρ(ω, �k)
of energies decays like ω

α
π

−1. By applying powers of the Laplacian before putting
r = 0, one can compute averages of powers of |�k|2 at fixed energy ω. For example, the
average of the invariantmassesω2−|�k|2 at given energyω is found to be α

π
·ω2+O(α2)

with variance 4
9

α
π

· ω4 + O(α2). These data are roughly compatible with an inverse

power-law distribution ∼ (ω2 − |�k|2)1− α
π near the mass shell |�k| = ω2 [12, Fig. 1].

3.3.3 Scattering

Vertex operator correlation functionsEq. (3.35) involve exponentials of the distribution
H̃ (smeared in the strings), and the same is true for correlations of the dressed Dirac
field Eq. (1.4). Asymptotic properties of H̃ at large times will become relevant in a
future scattering theory. At this moment, a scattering theory for infrafields like the
dressed Dirac field has not yet been formulated. The LSZ method fails because of the
absence of a sharpmass shell, and for the same reason, “asymptotic creation operators”
needed in theHaag–Ruelle theory have not been found. Apart from the lack of themass
shell, a major obstacle is the product structure of vertex operator correlations that is
very different from that of free correlations. It probably entails that “two-infraparticle
states” are not tensor products as in the Fock space.

A toy model without a mass gap would be a scattering theory for vertex operators
without the Dirac field. A candidate would be a version of Buchholz’ scattering theory
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for massless waves in two dimensions [1], in which the scattering amplitude is a limit
of four-point correlations relative to two-point correlations, when the positions go
to infinity like x ± t�, x ′ ± t�′ in future and past lightlike directions. Although its
assumption that m2 = 0 be an eigenvalue of the mass operator is not fulfilled, this
method is also successful in the two-dimensional vertex operator model (no H̃ -terms)
where it yields an S-matrix that is a complex phase [6]. Tentatively applying the same
prescription in the four-dimensional case at hand, one would consider the quantity

lim
t→∞

〈
Vc( ft�)∗Vc′( f ′

t�′)∗Vc′( f ′
−t�′)Vc( f−t�)

〉
〈
Vc( ft�)∗Vc( f−t�)

〉〈
Vc′( f ′

t�′)∗Vc′( f ′
−t�′)

〉 , (3.42)

where �, �′ are two non-parallel future-directed lightlike vectors, and ft�(x)
= f (x − t�) etc. are smearing functions shifted in lightlike directions. To simplify
matters, we absorb the charge factor q in the string smearing functions c which may
therefore have arbitrary total weight q ∈ R.

The following result illustrates how features of H̃ have an impact on scattering
theory, and in particular shows that the prescription Eq. (3.42) is certainly too naive
to define a scattering. The challenge remains to understand which modification of
Eq. (3.42), properly taking into account the directional dependence arising through
H̃ , would possibly define an S-matrix in our four-dimensional model without zero
mass eigenstates, or whether a variant of the more complicated strategy in [2], that
was formulated for massless particles in 4D, should be developed.

Lemma 3.14 (see [19]) Let �, �′ be future directed lightlike vectors, and c, c′ ∈
C∞(S2). Then in the limit t → ∞, Eq. (3.42) converges to

e−i 〈c,c′〉
4π · e 1

4π2

(
H̃(�+�′;c,c′)+H̃(�+�′;c′,c)−H̃(�−�′;c,c′)−H̃(�−�′;c′,c)

)
. (3.43)

The second factor is, in general, not a complex phase. Replacing c by−c, if necessary,
its modulus may be > 1.

Sketch of proof By the structure Eq. (3.35) of vertex operator correlations, the four-
point function is a product of six factors. One can convince oneself that in the limit
the smearing functions in x can be neglected, so that two of the six factors in the
numerator cancel against the denominator. This essentially leaves the four factors

e
− 1

4π2
H̃(x+t�−x ′−t�′;c,c′)

(−(x + t� − x ′ − t�′ − iεu)2)
− 〈c,c′〉

8π2

· e
− 1

4π2
H̃(x ′−t�′−x+t�;c′,c)

(−(x ′ − t�′ − x + t� − iεu)2)
− 〈c,c′〉

8π2

·

e
1

4π2
H̃(x+t�−x ′+t�′;c,c′)

(−(x + t� − x ′ + t�′ − iεu)2)
+ 〈c,c′〉

8π2

· e
1

4π2
H̃(x ′+t�′−x+t�;c′,c)

(−(x ′ + t�′ − x + t� − iεu)2)
+ 〈c,c′〉

8π2

.

(3.44)

Because � ± �′ are timelike resp. spacelike, the denominators in Eq. (3.44) are domi-
nated by powers of−t2((�±�′)−iεu)2 = 2t2[∓(��′)+iε(u(�±�′))]. Since (��′) > 0,
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the spacelike cases in the first line give [2t2(��′)] 〈c,c′〉
8π2 each. The timelike cases in the

second line give [2t2(��′)(−1+ iε)]− 〈c,c′〉
8π2 each. Together, they yield the first factor in

Eq. (3.43). Because H is a homogeneous function, the numerators in Eq. (3.44) yield
the second factor in Eq. (3.43). Now, one may regard L± = �±�′ as a pair of orthogo-
nal vectors, one timelike and one spacelike, and otherwise independent. For L− purely
spacelike, H̃(L−; c, c′)+ H̃(L−; c′, c) is a real functionwith a non-trivial dependence
on L−. It cannot be cancelled by the real part of H̃(L+; c, c′) + H̃(L+; c′, c). ��

The first factor in Eq. (3.43) is a phase, as in the two-dimensional model [6]. But
because the second factor may have modulus > 1, Eq. (3.43) cannot be interpreted as
an S-matrix element.

The conclusion is only avoided if all strings are orthogonal to both � and �′, in which
case H(�±�′; e1, e2) are independent of �, �′. Namely, in this case ζ(�±�′; e1, e2) are
independent of �, �′. But this would require a smearing in the intersection of the sphere
S2 with a plane (i.e. a circle S1). This is not an option because, by Remark3.5, the
singularity at e = e′ would no longer be integrable, and, e.g. the exponents Eq. (3.36)
would be ill defined.

3.4 Derivative formula

The derivative of Eq. (3.11) w.r.t. x is surprisingly simple to compute.

Lemma 3.15 Let F(x) = 1
x2
. For x2, e2i , dete1,e2 , detx,ei and detx,e1,e2 all nonzero, it

holds

(Ie2 Ie1∂F)(x) = 1

2

[
f (e1, e2)∂x + f (x, e2)∂e1 + f (x, e1)∂e2

]
log det x,e1,e2 .

(3.45)

Proof Let P := (Ie2 Ie1∂F)(x). By definition as a convergent integral over
∂x

1
(x+s1e1+s2e2)2

, it is a linear combination b1e1 + b2e2 + b3x . From Eq. (2.12), we
know that (ei P) = f (x, e j ) for i, j ∈ {1, 2} pairwise distinct. From Eq. (3.11), we
know that (x P) = f (e1, e2). Then

⎛
⎝(e1P)

(e2P)

(x P)

⎞
⎠ =

⎛
⎝ f (x, e2)

f (x, e1)
f (e1, e2)

⎞
⎠ = G

⎛
⎝b1
b2
b3

⎞
⎠ , (3.46)

where G is the Gram matrix, is solved for the coefficient functions bi by using
Lemma3.2. ��

A remarkable feature of Eq. (3.45) is its formal symmetry in the three vector vari-
ables, despite the unsymmetric definition. The symmetry can be understood by a
change of variables (s1, s2) → ( 1

s1
, s2
s1

) in the defining double string-integral.
Given Lemma3.15, to specify (Ie2 Ie1∂W0)(x) for e1, e2 ∈ H1 purely spatial, it

suffices to specify the iε-prescriptions at the possibly singular configurations. For
e1, e2 ∈ H1 purely spatial and x replaced by x − iεu, the distributions f (x, ei )
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and f (e1, e2) are well defined. It remains to consider the reciprocal of detx,e1,e2 in
Eq. (3.45) when detx,e1,e2 = 0. Because iε appears only in the term (x−iεu)2 dete1,e2 ,
the distribution is well defined unless dete1,e2 = 0, i.e. when e1 �= ±e2. The case
e1 = e2 is regular by Proposition3.6. Because the singularity at e1 = −e2 is integrable
w.r.t. the invariant measure on S2 × S2, we conclude

Proposition 3.16

−(2π)2(Ie2 Ie1∂W0)(x)

= 1

2

[
f (e1, e2)∂x + f (x, e2)∂e1 + f (x, e1)∂e2

]
log det x,e1,e2 , (3.47)

with the distributions f (x, ei ) as specified in Sect. 3.1 and f (e1, e2) given by
Eq. (3.16), is well defined as a distribution on R4 × S2 × S2.

The result can also be obtained with a cumbersome computation of the derivative
of (Ie2 Ie1∂W0)(x) given by Eqs. (3.11) and (3.18). This may be taken as a non-trivial
check of Eq. (3.18).

4 Propagators

While the IR-regularized two-point function of the escort field is needed for the non-
perturbative construction of the dressed Dirac field in [12], propagators are needed in
perturbation theory. DefiningQEDas a perturbative expansionwith interaction density
q Aμ(e) jμ in the Wigner Hilbert space, where the two-point function of Aμ(e) is

〈Aμ(x, e)Aν(x
′, e′)〉

= −[
ημν + eν I

x
e ∂x

μ + e′
μ I

x ′
e′ ∂x ′

ν + (ee′)I x ′
e′ I xe ∂x

μ∂x ′
ν

]
W0(x − x ′), (4.1)

one needs only string integrations over derivatives of the massless two-point function
and propagator. The string integrations over derivatives are IR-regular. We therefore
focus on the analogues of the derivative of Eq. (3.2) and of Eq. (3.47) for the propagator,
whose existence has been established in momentum space with methods of microlocal
analysis in [9].

At first sight, the case of the propagator should be very parallel to that of the two-
point function except for a different iε-prescription: x2 − iε rather than (x − iεu)2.
Instead of an “analytic continuation through the forward tube”, one needs an analytic
continuation in the variable x2. For the single string-integral of the propagator, it
suffices to define the derivative of f (x, e)by simply substituting (x−iεu)2 inEqs. (3.2)
and (3.3) by x2 − iε.

For the double string-integral over the derivative of the propagator, however, this
prescription is not sufficient because the reciprocal of detx,e1,e2 becomes

1

detx,e1,e2 −iε dete1,e2
. (4.2)
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Namely, in the Wigner Hilbert space approach to QED, the strings are not restricted
to be purely spatial [12, Sect. 4.2], and in fact they should not, in order to evade the
velocity superselection rule [12, Sect. 4.4]. But in Lorentzian metric, if ei ∈ H1 are
not purely spatial, dete1,e2 may vanish in a larger submanifold of configurations, see
Lemma4.3. For such e1, e2, Eq. (4.2) does not define a distribution in x at detx,e1,e2 =
0. The following Lemma, which is a corollary to Lemma3.3, allows to reduce the set
of configurations where Eq. (4.2) is not defined.

Lemma 4.1 Suppose that dety1,y2,y3 = 0. Then, for i, j, k ∈ {1, 2, 3} pairwise distinct,
hold:

(i) All “diagonal” cofactors dety j ,yk have the same sign, or vanish.
(ii) If detyi ,y j = 0, then also the cofactors �i and � j vanish.

Proof (i) By Lemma3.3, if dety1,y2,y3 = 0, then det yi ,y j det yi ,yk = �2
i ≥ 0. Thus

detyi ,y j and detyi ,yk cannot be nonzero with opposite sign.
(ii) is obvious from Lemma3.3.

��

Because by Lemma4.1(i) the three two-variable Gram determinants cannot have
opposite signs when detx,e1,e2 = 0, one may improve the definition the reciprocal of
detx,e1,e2 as a pullback of a boundary value of an analytic function in the variables
x2 − iε, e21 − iε, and e22 − iε, i.e.

1

detx,e1,e2 −iε(dete1,e2 + detx,e1 + detx,e2)
. (4.3)

This prescription, applied to Eq. (3.45) in the case of the propagator, extends the
previous definition Eq. (4.2) of the reciprocal of detx,e1,e2 , and hence of the propagator
of Aμ(e), as distributions everywhere on R × H1 × H1, except on configurations
where all four Gram determinants vanish simultaneously. When this happens, then
by Lemma3.3 (or Lemma4.1(ii)), also the non-diagonal cofactors �i of the Gram
determinant vanish.

The following Lemmas allow to characterize configurations with vanishing Gram
determinants in Lorentzian metric, and in particular the configurations where Eq. (4.3)
is not defined.

Lemma 4.2 Suppose that dety1,y2 �= 0. Then, dety1,y2,y3 = 0 if and only if there exist
α, β ∈ R and � lightlike (�2 = 0) such that

y3 = αy1 + β y2 + � and (�y1) = (�y2) = 0. (4.4)

Proof Because det y1,y2 �= 0, one may define α, β by

(
y21 (y1y2)

(y2y1) y22

) (
α

β

)
=

(
(y3y1)
(y3y2)

)
. (4.5)
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With � := y3 − αy1 − β y2, an elementary computation gives

det y1,y2,y3 = det y1,y2,� = �2 det y1,y2 . (4.6)

Hence det y1,y2,y3 = 0 if and only if �2 = 0. ��
Analogous statements with analogous proofs hold for n × n Gram determinants

(which are trivially zero in 4 dimensions for n > 4). The version for n = 2 is

Lemma 4.3 Suppose that y21 �= 0. Then, dety1,y2 = 0 if and only if there exists α ∈ R

and � lightlike such that

y2 = αy1 + � and (�y1) = 0. (4.7)

Lemma 4.4 Let y21 �= 0, y22 �= 0. If dety1,y2,y3 = dety1,y2 = 0 and either dety1,y3 = 0
or dety2,y3 = 0, then the set {y1, y2, y3} is linearly dependent.
Proof Assume dety1,y3 = 0. Define

v := y2 − (y1y2)

y21
y1, w := y3 − (y2y3)

y22
y2.

One computes that v2 = w2 = 0 because dety1,y2 = dety1,y3 = 0, and (vw) = 0
because �2 = 0 by Lemma4.1(ii). Because two lightlike vectors that are orthogonal
must be linearly dependent, it follows that v and w, and consequently y1, y2, y3 are
linearly dependent. The case with dety2,y3 = 0 is similar, replacing y1 ↔ y2. ��

The conclusion of Lemma4.4 is not true if dety1,y2 �= 0 but the other two 2 × 2
determinants are zero. It is easy to find counter examples.

We can now classify the configurations where the inverse Gram determinant is not
defined by the prescription Eq. (4.3).

Lemma 4.5 For (x, e1, e2) ∈ R
4 × H1 × H1 it holds detx,e1,e2 = detx,e1 = detx,e2 =

dete1,e2 = 0 if and only if either

e1 = ±e2, x = αe1 + � (4.8)

for some α ∈ R and lightlike � with (e1�) = 0, or

e2 = a′e1 + �′, x = α1e1 + α2e2 (4.9)

for some α′, α1, α2 ∈ R and lightlike �′ with (e1�′) = (e2�′) = 0. In either case, the
set {x, e1, e2} is linearly dependent.
Proof The “If” statements are trivial by linear dependency. Conversely, dete1,e2 = 0
implies e2 = ae1 + �′ with �′2 = 0 and (e1�′) = 0 by Lemma4.3. It then trivially
follows that also (e2�′) = 0. If �′ = 0, then a = ±1, and Lemma4.3 applied to
detx,ei = 0 entails Eq. (4.8). If �′ �= 0, then e1 and e2 are not linearly dependent.
Because the three vectors x, e1, e2 are linearly dependent by Lemma4.4, x must be a
linear combination of e1 and e2. This is Eq. (4.9). ��
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The configurations of type Eqs. (4.8) and (4.9) both have codimension 3 in R
4 ×

H1 × H1. At this moment, we do not know how to naturally extend the propagator
to these sets. See, however, [9] where it was proven with microlocal methods that the
string-localized propagator of Aμ(x, e), when smeared in the strings, can be defined
on all of R4. This suggests that one can find coordinates in

R
4 × H1 × H1

with respect to which the singularities of the inverse determinant at configurations as
in Lemma4.5 are integrable, similarly to the integrability of α

sin α
observed earlier. In

[9], it is also shown that products of smeared string-localized propagators have natural
extensions as distributions in x in R4 \ {0}, exactly as in point-localized QFT.

Acknowledgements We thank J. Mund for valuable discussions, and the referees for suggestions for
improvement. CG acknowledges financial support by the Studienstiftung des Deutschen Volkes.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability The manuscript has no associated data.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Buchholz, D.: Collision theory for waves in two dimensions and a characterization of models with
trivial S-matrix. Commun. Math. Phys. 45, 1–8 (1975)

2. Buchholz, D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977)
3. Buchholz, D.: The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71

(1982)
4. Buchholz, D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–334 (1986)
5. Chung, V.: Infrared divergence in quantum electrodynamics. Phys. Rev. B 140, 1110–1122 (1965)
6. Dybalski, W., Mund, J.: Interacting massless infraparticles in 1 + 1 dimensions. arXiv:2109.02128
7. Ferrari, R., Picasso, L.E., Strocchi, F.: Some remarks on local operators in quantum electrodynamics.

Commun. Math. Phys. 35, 25–38 (1974)
8. Fröhlich, J., Morchio, G., Strocchi, F.: Charged sectors and scattering states in quantum electrodynam-

ics. Ann. Phys. 119, 241–284 (1979)
9. Gaß, C.: Renormalization in string-localized field theories: a microlocal analysis. Ann. H. Poinc.

arXiv:2107.12834 (to appear)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2109.02128
http://arxiv.org/abs/2107.12834


37 Page 24 of 24 C. Gaß et al.

10. Kulish, P.P., Faddeev, L.D.: Asymptotic conditions and infrared divergencies in quantum electrody-
namics. Theor. Math. Phys. 4, 745–757 (1970)

11. Mund, J., Rehren, K.-H., Schroer, B.: Gauss’ Law and string-localized quantum field theory. JHEP 01,
001 (2020)

12. Mund, J., Rehren, K.-H., Schroer, B.: Infraparticle fields and the formation of photon clouds. JHEP
(2022) (to appear)

13. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields and modular localization. Com-
mun. Math. Phys. 268, 621–672 (2006)

14. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Acad. Press, Cambridge
(1975)

15. Ried, S.: Eigenschaften desVertexoperators in der string-lokalisiertenFormulierungderQED.Bachelor
thesis, Göttingen University (2021)

16. Schroer, B.: Infraparticles in quantum field theory. Fortsch. Phys. 11, 1–32 (1963)
17. Schroer, B.: The role of positivity and causality in interactions involving higher spins. Nucl. Phys. B

941, 91–144 (2019)
18. Strominger, A.: Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton University

Press, Princeton (2018) (and references therein)
19. Tippner, F.: Master thesis (ongoing), Göttingen University (2021)
20. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995)
21. Zagier, D.: The dilogarithm function. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers

in Number Theory, Physics, and Geometry II, pp. 3–65. Springer, Berlin (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the spacetime structure of infrared divergencies in QED
	Abstract
	1 Motivation
	2 Preliminaries
	3 Two-point functions and vertex operator correlations
	3.1 One string integration
	3.2 Two string integrations
	3.3 Vertex operator correlations and commutation relations
	3.3.1 Commutation relations
	3.3.2 Spectrum
	3.3.3 Scattering

	3.4 Derivative formula

	4 Propagators
	Acknowledgements
	References




