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Abstract
We introduce the notion of N = 1 abstract super loop equations and provide two
equivalent ways of solving them. The first approach is a recursive formalism that can
be thought of as a supersymmetric generalization of the Eynard–Orantin topological
recursion, based on the geometry of a local super spectral curve. The second approach
is based on the framework of super Airy structures. The resulting recursive formalism
can be applied to compute correlation functions for a variety of examples related to
2d supergravity.
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1 Introduction

The Eynard–Orantin topological recursion introduced in [17,28,29] can be used to
compute various kinds of enumerative invariants, such as Gromov–Witten invariants,
Hurwitz numbers, knot invariants, andmore (see [11,12,15,25,30–33,37,41] and refer-
ences therein). Startingwith a spectral curve, theEynard–Orantin topological recursion
provides an infinite sequence of multilinear differentials (known as correlation func-
tions) which are generating functions for those enumerative invariants.

The topological recursion does not come out of nowhere. It can be obtained as
a unique solution (respecting polarization) of a set of equations known as abstract
loop equations, which were formalized in [6]. (The well-known loop equations for
Hermitian matrix models fit into this abstract framework.) Concretely, the Eynard–
Orantin topological recursion solves the loop equations through residue analysis at
the poles of the correlation functions.

Recently, Kontsevich and Soibelman developed the framework of Airy structures
[1,40]. The concept of Airy structures can be thought of as an algebraic reformula-
tion (and generalization) of the Eynard–Orantin topological recursion. Given the data
of a spectral curve, one can construct a corresponding Airy structure, and its asso-
ciated partition function contains the same information as the correlation functions
of the Eynard–Orantin topological recursion. In fact, as explained in [1,8], one can
think of Airy structures as providing another approach to solving abstract loop equa-
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Fig. 1 Two dual ways of solving
abstract loop equations

Abstract loop equations

Residue analysis Differential (Virasoro) constraints

Topological recursion Airy structure

tions. Namely, the abstract loop equations can be transformed into a set of differential
constraints satisfied by a partition function. These differential operators satisfy the
defining properties of an Airy structure, and hence the resulting partition function is
uniquely defined by the differential constraints.1 Moreover, in the simple context of a
local spectral curve with one component, these differential operators form a (suitably
polarized) representation of the Virasoro algebra. In this way, the abstract loop equa-
tions are reformulated as Virasoro constraints, and the framework of Airy structures
guarantees that these Virasoro constraints have a unique solution.

Schematically, one could summarize the relations among abstract loop equations,
the Eynard–Orantin topological recursion, and Airy structures as follows.

Supersymmetric generalizations of the Eynard–Orantin topological recursion have
been discussed in [13,19–21,47] in the context of supereigenvalue models. On the
other hand, from an algebraic point of view, a supersymmetric generalization of Airy
structures (super Airy structures) was proposed in [9], with a corresponding existence
and uniqueness theorem for the associated partition function. However, the relation
between these two approaches is not obvious. Furthermore, it is not clear what a
natural supersymmetric generalization of the Eynard–Orantin topological recursion
should look like, which would play the role of a “dual” to super Airy structures.

The goal of this paper is to fill the gap. Our approach is to start with the notion
of N = 1 abstract super loop equations. We define a natural notion of super loop
equations, as a generalization of the standard loop equations. Then, through residue
analysis, we show that if a solution of these super loop equations that respects the
polarization exists, it must be constructed recursively by what we call the “N = 1
super topological recursion”, which provides a generalization of the Eynard–Orantin
topological recursion. The initial data is formulated in terms of a local super spectral
curve. Second, we show that the abstract super loop equations can also be transformed
into differential constraints, which take the form of a super Airy structure. The unique
associated partition function then reconstructs the solution of the abstract super loop
equations, and the framework of super Airy structure guarantees its existence and
uniqueness. Furthermore, in the context of a local super spectral curve with one com-
ponent (which is what we mainly focus on in this paper), these differential operators
form a (suitably polarized) representation of theN = 1 super Virasoro algebra in the
Neveu–Schwarz sector. We have thus reformulated the abstract super loop equations
as super Virasoro constraints, and the framework of super Airy structures guarantees
that these super Virasoro constraints have a unique solution.

This is encapsulated in the following figure:

1 Borot et al. [8] discuss the more general equivalence between higher abstract loop equations, the
Bouchard–Eynard topological recursion, and higher Airy structures.
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Abstract super loop equations

Residue analysis Super differential (super Virasoro) constraints

Super topological recursion Super Airy structures

Fig. 2 The goal of this paper is to mathematically formalize the above flowchart

The N = 1 super topological recursion can be used to compute (parts of the)
correlation functions for a variety of examples related to 2d supergravity. For instance,
we study applications to:

• (2, 4�)-minimal superconformal models coupled to Liouville supergravity [3,5,
23,53];

• Super Jackiw–Teitelboim gravity [16,35,45,50];
• Supereigenvalue models in the Neveu–Schwarz sector [3,5,13];
• Supereigenvalue models in the Ramond sector [21,47].

For the first three examples in this list, it is known that the standard Eynard–Orantin
topological recursion is sufficient to compute correlation functions, thanks to a non-
trivial simplification first observed in [5]. However, as shown in [47], for the fourth
example one needs the fullN = 1 formalism. Also, note that the first, third, and fourth
examples obey a truncation phenomenon [5,42,47], namely, correlation functions
depend on fermions only up to quadratic order, which simplifies the super topological
recursion.

This paper is organized as follows. In Sect. 2, we define local super spectral curves
(Definition 2.3) and N = 1 abstract super loop equations (Definition 2.8). In Sect. 3,
we solve the N = 1 abstract super loop equations through residue analysis, and con-
struct a supersymmetric generalization of the Eynard–Orantin topological recursion,
which we call the N = 1 super topological recursion (Proposition 3.1). In Sect. 4,
we transform the abstract super loop equations into differential constraints, and show
that they form a super Airy structure, which comes with a unique partition function
(Theorem 4.4). In Sect. 5, we discuss that (parts of the) correlation functions of the
examples listed above can be computed by the N = 1 super topological recursion.
Finally, we conclude with a few open questions and future work. For the sake of
brevity, the proofs of all theorems and propositions are given in “Appendix 1”.

2 Super loop equations

In this section, we fix notation, and introduce the notion of local super spectral curves.
Given a local super spectral curve, we define N = 1 abstract super loop equations,
which are the equations underlying the N = 1 super topological recursion. The
presentation for the bosonic sector closely follows [6,8].
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2.1 Local spectral curves

We briefly review the notion of local spectral curves. Let us start with a symplectic
vector space V B

z as

V B
z :=

{
ω ∈ C[z−1, z]]dz | Res

z→0
ω(z) = 0

}
, (2.1)

equipped with the following symplectic pairing �B : V B
z × V B

z → C:

d f1, d f2 ∈ V B
z , �B(d f1, d f2) = Res

z→0
f1(z)d f2(z). (2.2)

We consider a Lagrangian subspace V B+
z = C[[z]]dz ⊂ V B

z , and we choose a basis
(dξl)l>0 with

dξl(z) := zl−1dz, l ∈ Z>0. (2.3)

Given the Lagrangian subspace V B+
z with the choice of basis (dξl)l>0, we now

choose another Lagrangian subspace V B−
z ⊂ V B

z complementary to V B+
z : we call

this a choice of “polarization”. That is, if we denote by (dξ−l)l>0 a basis of V B−
z , then

it satisfies:

∀k, l ∈ Z�=0, �B(dξk, dξl) = δk+l,0

k
. (2.4)

Up to linear transformations, the above condition imposes that

dξ−l(z) = dz

zl+1 +
∑
m>0

φlm

l
dξm(z), l ∈ Z>0, (2.5)

where we call the φlm = φml “bosonic polarization parameters”. Note that the sym-
metry of φlm is required because of antisymmetry of the symplectic pairing.

Let us define a formal symmetric bidifferential ω0,2|0 in terms of the polarization
as:

ω0,2|0(z1, z2|) = dz1dz2
(z1 − z2)2

+
∑

k,l>0

φkl dξk(z1)dξl(z2). (2.6)

Note that ω0,2|0(z1, z2|) is not an element in V B
z1 ⊗ V B

z2 but rather

ω0,2|0(z1, z2|) − dz1dz2
(z1 − z2)2

∈ V B+
z1 ⊗ V B+

z2 . (2.7)
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An important property of ω0,2|0(z1, z2|) is that it works as a projection operator. That
is, for any one-form ω ∈ Vz expanded as

ω(z) =
∑
l �=0

cl z
l−1dz, (2.8)

we get

�B(ω0,2|0(z, ·|), ω) =
∑
l>0

c−ldξ−l(z) ∈ V B−
z . (2.9)

In other words, it projects ω into V B−
z . This can be easily checked by the fact that in

the domain |z1| > |z2|, we can expand ω0,2|0(z1, z2|) as

ω0,2|0(z1, z2|) =
∑
l≥1

ldξ−l(z1)dξl(z2). (2.10)

The last ingredient in this section is an involution operator σ : V B → V B whose
action is simply defined as

σ : z 	→ −z. (2.11)

The basis of V B+
z is diagonal under σ , whereas the basis of V B−

z is generally not, due
to nonzero polarization.

With these ingredients, we can define a local spectral curve:

Definition 2.1 ([6–8]) A local spectral curve with one component consists of a sym-
plectic vector space V B

z , with a Lagrangian subspace V B+
z , and the following data:2

• an involution operator σ : V B
z → V B

z whose action is defined as

σ : z 	→ −z, (2.12)

• a choice of “dilaton shift parameters” (τl)l>0, which can be encoded in a choice
of a one-form ω0,1|0 ∈ V B+

z :3

ω0,1|0(z) =
∑
l>0

τldξl(z), |τ1| + |τ3| > 0, (2.13)

• a choice of bosonic polarization parameters, which can be encoded in a choice of
symmetric bilinear differential ω0,2|0:

ω0,2|0(z1, z2|) = dz1dz2
(z1 − z2)2

+
∑

k,l>0

φkl dξk(z1)dξl(z2). (2.14)

2 In [8], the more general case of automorphisms of arbitrary order was considered. Here, we only consider
involutions, which is consistent with the original topological recursion of Eynard and Orantin.
3 The condition |τ1| + |τ3| > 0 is equivalent to what [8] calls admissible.
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If one were to think of spectral curves in terms of branched coverings of Riemann
surfaces, as in the original formulation of Eynard and Orantin, then the bosonic vector
space V B

z would be interpreted as the space of differentials on an open neighbourhood
of a simple ramification point of the branched covering, withω0,2|0 being the Bergman
kernel of the spectral curve, and σ realizing the local involution that exchanges the
two sheets of the branch cover near the ramification point. The name “dilaton shift”
appears in the context of Airy structures [8] rather than topological recursion, and we
adapt it whenever we refer to a choice of parameters (τl)l>0.

2.2 Local super spectral curves

To define a local super spectral curve, we need two more ingredients: we need a vector
space for fermions V F , analogous to the bosonic vector space V B , and a choice of
fermionic polarization parameters encoded in a fermionic bilinear differential ω0,0|2.

We define a vector space V F (z, θ) as:

V F
z,θ := {η ∈ C[z−1, z]] �(z, θ)}, (2.15)

where

�(z, θ) :=
(

θ + zdz
∂

∂θ

)
, (2.16)

and θ is a Grassmann variable. We equip V F with a pairing �F : V F
z,θ × V F

z,θ → C

�F (η1, η2) := Res
z→0

η1(z, θ)η2(z, θ), (2.17)

Note that �2 = zdz, hence, the residue makes sense.4

Remark 2.2 We will often denote �(z, θ) as �z and �(zi , θi ) as �i for brevity. Also,
we will often omit the θ -dependence below, which should still be clear from the
context.

We extend the involution σ in the definition of local spectral curves to:

σ : (z, θ) 	→ (−z, θ). (2.18)

We note that zdz is invariant under σ so is �z .
Unlike the splitting of the vector space for bosons V B

z into two Lagrangian sub-
spaces V B+

z , V B−
z , we decompose V F

z into three subspaces V F+
z , V F0

z , and V F−
z as

4 We could have defined � = √
zdz instead, without using the Grassmann variable θ , and the discussion

belowwould still apply. Hence, it appears that the Grassmann variable may not be essential. It may however
be important to define the notion of a global super spectral curve. We hope to return to this point in the
near future.
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follows. Similar to V B+
z , we define V F+

z = {η ∈ C[[z]] �}, and we choose a basis
(ηl)l>0 with

ηl(z, θ) := zl−1 �, l ∈ Z>0. (2.19)

Next, we choose a polarization. First, we define V F 0, which is a one-dimensional
subspace whose basis (η0) is given by

η0(z, θ) :=
(
1

z
+

∑
k>0

ψ0k zk−1

)
�, �F (η0, η0) = 1, (2.20)

where ψ0k ∈ C. We call η0(z, θ) the “zero mode”. Finally, we let V F−
z be comple-

mentary to V F+
z ⊕ V F0

z , with basis (η−l)l≥0 as

η−l(z, θ) :=
⎛
⎝ 1

zl+1 +
∑
k≥0

ψlk zk−1

⎞
⎠ �. (2.21)

We call the ψkl the “fermionic polarization parameters”. We require that

∀k, l ∈ Z, �F (ηk, ηl) = δk+l,0. (2.22)

This implies that

ψ00 = 0, ψkl + ψlk + ψ0kψ0l = 0. (2.23)

That is, the ψkl are not fully antisymmetric, due to the zero mode polarization, in
contrast to the symmetry of the bosonic polarization parameters φkl .

We can encode the choice of polarization into a bilinear differential. We introduce
an antisymmetric (fermionic) bilinear differential as

ω0,0|2(|z1, z2) := −1

2

z1 + z2
z1 − z2

�1�2

z1z2

−
∑

k,l≥1

ψk−1 l−1 − ψl−1 k−1

1 + δ(k−1)(l−1),0

ηl(z1)ηk(z2)

2z1z2
. (2.24)

Note that it is not an element of V F
z1 ⊗ V F

z2 but rather

z1z2

(
ω0,0|2(|z1, z2) + 1

2

z1 + z2
z1 − z2

�1�2

z1z2

)
∈ V F+

z1 ⊗ V F+
z2 . (2.25)

In the domain |z1| < |z2|, it can be expanded as

ω0,0|2(|z1, z2) →
∑
l>0

ηl(z1)η−l(z2) + 1

2
η0(z1)η0(z2). (2.26)
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It turns out that ω0,0|2(|z1, z2) is a projection operator onto V F0
z ⊕ V F−

z . That is, for
any

η(z) =
∑
l∈Z

cl z
l−1 � ∈ V F

z , (2.27)

we have

�F (ω0,0|2(|·, z) , η) =
∑
l>0

clη−l(z) + 1

2
c0η0(z). (2.28)

We are now ready to define a local super spectral curve, which is a supersymmetric
generalization of a local spectral curve (Definition 2.1):

Definition 2.3 A local super spectral curve SC with one component consists of a super
symplectic vector space V B

z ⊕ V F
z,θ with its maximal isotropic subspace V B+

z ⊕ V F+
z,θ

and the following data:

• an involution operator σ : V B
z ⊕ V F

z,θ → V B
z ⊕ V F

z,θ whose action is defined as

σ : (z, θ) 	→ (−z, θ), (2.29)

• a choice of dilaton shift, encoded in a choice of a one-form ω0,1|0 ∈ V B+
z

ω0,1|0(z) =
∑
l>0

τldξl(z), |τ1| + |τ3| > 0, (2.30)

• a choice of bosonic polarization, encoded in a symmetric bilinear differentialω0,2|0

ω0,2|0(z1, z2|) = dz1dz2
(z1 − z2)2

+
∑

k,l>0

φkl dξk(z1)dξl(z2), (2.31)

• a choice of fermionic polarization, encoded in an antisymmetric fermionic bilinear
differential ω0,0|2

ω0,0|2(|z1, z2) := −1

2

z1 + z2
z1 − z2

�1�2

z1z2

−
∑

k,l≥1

ψk−1 l−1 − ψl−1 k−1

1 + δ(k−1)(l−1),0

ηl(z1)ηk(z2)

2z1z2
. (2.32)

Definition 2.4 A local super spectral curve is said to be regular if τ1 = 0, and irregular
if τ1 �= 0.

If one drops the vector space for fermions V F
z,θ and the antisymmetric bilinear differ-

ential ω0,0|2 from the above definition, it reduces to Definition 2.1.
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2.2.1 Local super spectral curves with several components

It is straightforward to generalize Definition 2.3 to local super spectral curves with
c components by considering a vector space V B

z ⊕ VF
z,θ = C

c ⊗ (V B
z ⊕ V F

z,θ ) with
c ∈ Z>0, similarly to [8, Definition 5.7]. That is, we associate a scalar product · to C

c

with the standard orthogonal basis (eα)c
α=1, and we define the symplectic products of

V B
z and VF

z,θ , respectively, as

�B(eα1 ⊗ d f1, eα2 ⊗ d f2) := δα1α2�
B(d f1, d f2),

�F (eα1 ⊗ η1, eα2 ⊗ η2) := δα1α2�
F (η1, η2). (2.33)

We further define two subspaces VB+ = C
c ⊗ V B+ and VF+ = C

c ⊗ V F+, and
choose their basis (dξα,l) and (ηα,l) with l ∈ Z>0 and α ∈ {1, . . . , c} as

dξα,l(z) = eα ⊗ dξl(z), ηα,l(z) = eα ⊗ ηl(z). (2.34)

Then, similar to the story with one component, we encode the information of polar-
izations of the remaining basis (dξα,l) and (ηα,l) of V B

z ⊕ VF
z,θ for l ∈ Z≤0 in the

definition of bilinear forms ω0,2|0 and ω0,0|2. Thus, we have:

Definition 2.5 A local super spectral curve SC with c component consists of a super
symplectic vector space V B

z ⊕ VF
z,θ with its maximal isotropic subspace V B+

z ⊕ VF+
z,θ

and the following data:

• a component-wise involution operator σα : V B
z ⊕VF

z,θ → V B
z ⊕VF

z,θ whose action
is defined for l ∈ Z and α, β ∈ {1, . . . , c} by

σα : dξβ,l(z) 	→ dξβ,l((−1)δαβ z), ηβ,l(z, θ) 	→ ηβ,l((−1)δαβ z, θ) (2.35)

• a choice of dilaton shift, encoded in a choice of a one-form ω0,1|0 ∈ V B+
z

ω0,1|0(z) =
c∑

α=1

∑
l>0

τα,ldξα,l(z), ∀α |τα,1| + |τα,3| > 0, (2.36)

• a choice of bosonic polarization, encoded in a symmetric bilinear differentialω0,2|0

ω0,2|0(z1, z2|) =
c∑

α=1

(eα ⊗ dz1) ⊗ (eα ⊗ dz2)

(z1 − z2)2

+
c∑

α,β=1

∑
k,l>0

φ
αβ
kl dξα,k(z1)dξβ,l(z2), (2.37)
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• a choice of fermionic polarization, encoded in an antisymmetric fermionic bilinear
differential ω0,0|2

ω0,0|2(|z1, z2) := −
c∑

α=1

1

2

z1 + z2
z1 − z2

(eα ⊗ �1) ⊗ (eα ⊗ �2)

z1z2

−
c∑

α,β=1

∑
k,l≥1

ψ
αβ
k−1 l−1 − ψ

αβ
l−1 k−1

1 + δ(k−1)(l−1),0

ηα,l(z1)ηβ,k(z2)

2z1z2
. (2.38)

Remark 2.6 It is, however, not as straightforward to generalize the definition to higher-
order automorphisms (or spectral curves with higher-order ramification): we leave this
for future work.

2.3 N = 1 abstract super loop equations

We now define N = 1 abstract super loop equations which we often call super loop
equations for brevity.Weagain focus on local spectral curveswith only one component.

Let us denote byV F 0,−
z,θ = V F 0

z,θ ⊕V F−
z,θ . Then for g, n, m ∈ Z≥0 with 2g+n+2m >

2, we consider an infinite sequence of multilinear differentialsωg,n|2m on a local super
spectral curve SC as

ωg,n|2m ∈
⎛
⎝ n⊗

j=1

V B−
z j

⎞
⎠ ⊗

(
2m⊗
k=1

V F 0,−
uk ,θk

)
. (2.39)

We impose that the ωg,n|2m are symmetric under permutations of the first n entries,
and antisymmetric under permutations of the last 2m entries. We assume no symmetry
under permutations of some of the first n entries with some of the last 2m entries. Note
that the ωg,n|2m always have an even number of elements in

⊗
V F 0,−

u,θ .

Remark 2.7 We say that the “correlation functions”ωg,n|2m “respect the polarization”,
as they live in the subspaces V B−

z j
and V F 0,−

uk ,θk
defined by the choice of polarization in

the local super spectral curve.

Let us denote by J , K a set of variables J = (z1, . . . ) and K = ((u1, θ1), ..), and
define the average of ωg,n|2m under the involution σ acting on each vector space as:

LB
g,n+1|2m(z, J |K ) = ωg,n+1|2m(z, J |K ) + ωg,n+1|2m(σ (z), J |K ), (2.40)

LF
g,n|2m(J |z, K ) = ωg,n|2m(J |z, K ) + ωg,n|2m(J |σ(z), K ), (2.41)

where we dropped θi ’s from the arguments for brevity. Note that |K | = 2m in (2.40)
whereas |K | = 2m − 1 in (2.41).

We further define the following quantities:
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QF B
g,n|2m(J |z, K )

= ωg−1,n+1|2m(z, J |σ(z), K ) + ωg−1,n+1|2m(σ (z), J |z, K )

+
∑

g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρωg1,n1+1|2m1(z, J1|K1) ωg2,n2|2m2(J2|σ(z), K2)

+
∑

g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρωg1,n1+1|2m1(σ (z), J1|K1) ωg2,n2|2m2(J2|z, K2),

(2.42)

QB B
g,n+1|2m(z, J |K )

= ωg−1,n+2|2m(z, σ (z), J |K )

+
∑

g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρωg1,n1+1|2m1(z, J1|K1) ωg2,n2+1|2m2(σ (z), J2|K2),

(2.43)

QF F
g,n+1|2m(z, J |K )

= −1

2

(
Dz · ωg−1,n|2m+2(J |z, u, K )

+ Du · ωg−1,n|2m+2(J |u, z, K )
)∣∣∣

u=σ(z)

+ 1

2

∑
g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρDz · ωg1,n1|2m1(J1|z, K1) ωg2,n2|2m2(J2|σ(z), K2)

+ 1

2

∑
g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρDz · ωg1,n1|2m1(J1|σ(z), K1) ωg2,n2|2m2(J2|z, K2),

(2.44)

where for η(z, θ) = f (z)�(z, θ) ∈ V F
z,θ , the derivative operator Dz is defined as

Dz · η(z, θ) = d f (z)�(z, θ) ∈ V B
z ⊗ V F

z,θ . (2.45)

Note that (−1)ρ = 1 if K1 ∪ K2 is an even permutation of K and (−1)ρ = −1
otherwise.

With these definitions, one can think of the abstract super loop equations on SC as
constrains imposing that the quantities above live in the “plus” subspaces of the vector
spaces V B

z and V F
z . More precisely:

Definition 2.8 Given a local super spectral curve SC , the N = 1 abstract super loop
equations are the following set of constraints:

(1) linear bosonic loop equations:

LB
g,n+1|2m(z, J |K ) ∈ V B+

z , (2.46)
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(2) linear fermionic loop equations:

LF
g,n|2m(J |z, K ) ∈ V F+

z , (2.47)

(3) quadratic bosonic loop equations:

QB B
g,n+1|2m(z, J |K ) + QF F

g,n+1|2m(z, J |K ) ∈ zV B+
z ⊗ zV B+

z , (2.48)

(4) quadratic fermionic loop equations:

QF B
g,n|2m(J |z, K ) ∈ zV B+

z ⊗ V F+
z . (2.49)

These abstract super loop equations may seem rather ad hoc. But they appear
natural for a number of reasons. First, if one drops the fermionic vector space from
consideration, the conditions (2) and (4) disappear, and conditions (1) and (3) reduce
to the standard abstract loop equations. Second, the super loop equations that appear
in the context of supereigenvalue models (see [13,47]) are particular cases of these
abstract super loop equations. We will discuss this in Sect. 5. Third, and perhaps
even more importantly, as we will see, these loop equations can be reformulated as
differential constraints for a partition function Z , and these differential constraints take
the form of a suitably polarized representation of the N = 1 super Virasoro algebra
in the Neveu–Schwarz sector. In other words, the abstract super loop equations are a
form of super Virasoro constraints. This is explored further in Sect. 4.

Remark 2.9 For a local super spectral curves with c component, recall from Defini-
tion 2.5 that the defining data carry an additional index α ∈ {1, . . . , c}. Accordingly,
in this case we define (2.40)–(2.44) and abstract super loop equations for each com-
ponent α as in [8, Definition 5.21]. This makes sense because the involution σα is
defined component-wise.

3 Super topological recursion

Our task is to prove that there exists a unique solution of super loop equations that
respects the choice of polarization. If we assume existence, then it is relatively easy
to construct a unique solution through residue analysis. This is what we do in this
section. The resulting recursive formalism is a supersymmetric generalization of the
Eynard–Orantin topological recursion,whichwewill call theN = 1 super topological
recursion.

As for existence of a solution, perhaps the simplest proof amounts to rewriting the
abstract super loop equations as differential constraints, which take the form of a super
Airy structure. We will discuss this approach in Sect. 4. Thus, for now, we assume
existence of a solution to the abstract super loop equations.
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Given a local super spectral curve SC , let us define what we call the recursion
kernels:

K B B(z0, z, σ (z)) =
∫ z
0 ω0,2|0(z0, ·|)

ω0,1|0(z|) − ω0,1|0(σ (z)|) , (3.1)

K B F (z0, z, σ (z)) = ω0,0|2(|z, z0) − 1
2η0(z)η0(z0)

ω0,1|0(z|) − ω0,1|0(σ (z)|) . (3.2)

Wenote that for each local super spectral curve, those kernels are uniquely defined. The
first one is the standard recursion kernel in the Eynard–Orantin topological recursion,
whereas the second one is new and incorporates fermions.

In the limit z → 0, the numerator of (3.2) becomes

∑
k≥1

ηk(z)η−k(z0), (3.3)

hence this factor works as a projection to V F −
z0 . Remark that this is different from the

bilinear differential ω0,0|2(|z0, z) which projects onto V F 0,−
z0 as discussed in (2.28).

Indeed, one needs to be very careful with the fermionic zero modes (this was also
noticed in the construction of super Airy structures in [9]). As we will show in
“Appendix A.1”, it turns out that this projection is exactly what we need to solve
the abstract super loop equations through residue analysis, and develop a supersym-
metric generalization of the Eynard–Orantin topological recursion.

Proposition 3.1 Let Q̃B B,F F,B F
g,n+1|2m denote, respectively, all the terms on the right-hand

side of (2.42)–(2.44) except the terms involving ω0,1|0. If there exists a solution to the
N = 1 abstract super loop equations that respects the polarization, then it is uniquely
constructed recursively by the following formulae:

ωg,n+1|2m(z0, J |K ) = Res
z→0

K B B(z0, z, σ (z))
(
Q̃B B

g,n+1|2m(z, J |K )

+Q̃F F
g,n+1|2m(z, J |K )

)
, (3.4)

ωg,n|2m+2(J |u1, u2, K ) = ω̂g,n|2m+2(J |u1, u2, K )

− η0(u1)Res
z→0

ω̂g,n|2m+2(J |u2, z, K )η0(z), (3.5)

where

ω̂g,n|2m+2(J |u1, u2, K ) = Res
z→0

K F B(u1, z, σ (z))Q̃F B
g,n|2m+2(J |z, u2, K ). (3.6)

See “Appendix A.1” for the proof.

Remark 3.2 (3.4) and (3.5) do not guarantee a priori that the ωg,n|2m are symmetric
under permutations of the first n entries, and antisymmetric under permutations of the
last 2m entries. Also, for nm �= 0, one can compute ωg,n|2m from either (3.4) or (3.5),
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and it is not clear a priori that they coincide. In other words, the solution constructed
as above may not even exist. Existence of solution is proven in the next section in
terms of super Airy structures.

Remark 3.3 For a local spectral curve with c components, recall from Remark 2.9 that
the abstract super loop equations are labelled by an additional index α ∈ {1, . . . , c}
due to component-wise involutions σα . As a result, the recursion kernels are defined
for each component α, and one should take summation over α from 1 to c in order to
obtain the correct differentials ωg,n|2m . This is similar to [8, Definition 5.19].

4 Super Airy structures

In this section,we showhowone can solve the abstract super loop equations through the
framework of super Airy structures [9]. The idea is to rewrite the super loop equations
as differential constraints on a partition function, and show that these constraints satisfy
the properties of a super Airy structure, which guarantees existence and uniqueness
of the partition function. Let us start by briefly reviewing the notion of super Airy
structures. See [9] for more details.

4.1 Review of super Airy structures

Let U = U0 ⊕U1 ⊕C
0|1 be a super vector space of dimension d +1 over C (the super

vector space could be infinite-dimensional, but for simplicity of presentation we will
assume here that it has finite dimension). We define {xi }i∈I to be linear coordinates
on U0 ⊕ U1 where I = {1, . . . , d} with x0 to be the coordinate of the extra C

0|1, and
their parity is defined such that |xi | = 0 if xi ∈ U0, |xi | = 1 if xi ∈ U1, and |x0| = 1.
Note that x0 ∈ C

0|1 plays an analogous role to η0(z) ∈ V F 0
z that appeared in Sect. 3.

Furthermore, let us denote by

D�(U ) = C[[�, x0, �∂x0 , {xi }i∈I , {�∂xi }i∈I ]] (4.1)

the completed algebra of differential operators acting on U , and we introduce a Z-
grading by

deg(x0) = deg(xi ) = 1, deg(�∂x0) = deg(�∂xi ) = 1, deg(�) = 2. (4.2)

Definition 4.1 ([9, Definition 2.3]) A super Airy structure is a set of differential oper-
ators {Hi }i∈I ∈ D�(U ) such that:

(1) for each i ∈ I , Hi is of the form

Hi = �∂xi − Pi , (4.3)

where Pi ∈ D�(U ) has degree greater than 1 with |Pi | = |xi |,
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(2) there exists f k
i j ∈ D�(U ) such that

[Hi , Hj ] = �

∑
k∈I

f k
i j Hk, (4.4)

where [·, ·] is a super commutator.

It is crucial that the x0-dependence appears only in the {Pi }i∈I , but not in the degree
1 term (there is no H0). We call x0 the extra variable. Accordingly, the dimension of
the super vector space U is one more than the number of {Hi }i∈I . We note that there
is no notion of extra variables in the standard, nonsupersymmetric, formalism of Airy
structures.

Theorem 4.2 ([9, Theorem 2.10]) Given a super Airy structure {Hi }i∈I , there exists
a unique formal power series �F(x) ∈ C[[�, x0, (xi )i∈I ]] (up to addition of terms in
C[[�]]) such that:

(1) �F(x) has no term of degree 2 or less,
(2) every term in �F(x) has even parity,
(3) it satisfies Hi eF = 0.

Z := eF is called the partition function and F the free energy. Note that eF is not
a power series in �, and so one should replace condition (3) by e−F Hi eF = 0, which
gives a power series in �. However, as is standard, we write Hi eF = 0 for brevity.

Explicitly, F can be expanded as follows

F =
2g+n>2∑

g,n≥0

�
g−1

n!
∑

i1,...,in∈{0,I }
Fg,n(i1, . . . , in)

n∏
k=1

xik , (4.5)

where the restriction on the sum that 2g + n > 2 comes from the first condition in
Theorem 4.2. Fg,n(i1, . . . , in) is Z2-symmetric under permutations of indices.

4.2 Super loop equations and super Airy structures

Our goal is now to turn the abstract super loop equations into differential constraints
for a partition function Z . More precisely, we expand the correlation functionsωg,n|2m

satisfying the abstract super loop equations in the basis defined previously as:

ωg,n|2m(J |K ) =
∑

i1,...,in>1
j1,..., j2m≥0

Fg,n|2m(i1, . . . , in| j1, . . . , j2m)

n⊗
k=1

dξ−ik (zk)

⊗
2m⊗
l=1

η− jl (ul , θl). (4.6)

Then, we want to show that the Fg,n|2m that appear in this decomposition are the
coefficients of the free energy F for some super Airy structure. If we can show that,
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by Theorem 4.2, it will ensure existence and uniqueness of the free energy, and hence
of the solution of the abstract super loop equations given by the super topological
recursion in Proposition 3.1.

To construct the relevant super Airy structures, we proceed as follows.We take both
the bosonic and fermionic vector spaces U0, U1 to be countably infinite dimensional.
Also, we explicitly distinguish bosonic and fermionic coordinates, namely, we denote
by {x1, x2, . . . } and {θ1, θ2, . . . } the coordinates onU0 andU1, respectively, and θ0 ∈
C
0|1 is treated as the extra variable. In particular, all {θ0, θ1, θ2, . . . } are Grassmann

variables.
We then define {Ja}a∈Z and {�a}a∈Z by:

∀a ∈ Z>0, Ja = �
∂

∂xa
, J0 = 0, J−a = axa, (4.7)

∀a ∈ Z>0, �a = �
∂

∂θa
, �0 = θ0

2
+ �

∂

∂θ0
, �−a = θa, (4.8)

It is easy to see that the Ja are a basis for the Heisenberg algebra, while the �a are a
basis for the Clifford algebra:

[Ja, Jb] = a � δa+b,0, [Ja, �b] = 0, {�a, �b} = � δa+b,0. (4.9)

Using those, we define the following set of differential operators (where : · · · :
denotes normal ordering):

n ∈ Z≥−1, L2n = 1

2

∑
j∈Z

(−1) j−1 : J− j J2n+ j : +�

4
δn,0

+ 1

2

∑
j∈Z

(−1) j (n + j) : �− j� j+2n :, (4.10)

m ∈ Z≥−1, G2m+1 =
∑
j∈Z

(−1) j−1 : J− j� j+2m+1 : . (4.11)

It is easy to show that for n, m ∈ Z≥−1 and i ∈ Z≥1, these operators satisfy the
following commutation relations:

[L2n, J2i ] = 2i�J2n+2i , [G2m+1, J2i ] = 2i��2i+2m+1, (4.12)

[L2n, �2i−1] = (n + 2i − 1)��2n+2i−1, {G2m+1, �2i−1} = �J2i+2m+2,

(4.13)

[L2n, L2m] = 2�(n − m)

(
L2n+2m +

∑
j∈Z

: J−2 j J2n+2m+2 j :

+
∑
j∈Z

(n + m + 2 j + 1) : �−2 j−1�2 j+2n+2m+1 :
)

, (4.14)
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[L2n, G2m+1] = �(n − 2m − 1)

(
G2n+2m+1 + 2

∑
j∈Z

: J−2 j�2n+2m+2 j+1 :
)

,

(4.15)

{G2n+1, G2m+1} = 2�

(
L2n+2m+2 +

∑
j∈Z

: J−2 j J2n+2m+2 j+2 :

+
∑
j∈Z

(n + m + 2 j + 2) : �−2 j−1�2 j+2n+2m+3 :
)

. (4.16)

This is a natural extension of theN = 1 super Virasoro algebra in the Neveu–Schwarz
sector by the first-order differential operators J2i and �2i−1.

We now introduce the notion of a dilaton shift and polarization in the context of
super Airy structures. For τl , φkl , ψkl ∈ C, we consider a differential operator � as:

� := exp

⎛
⎝1

�

⎛
⎝∑

l>0

τl

l
Jl +

∑
l,k>0

φkl

2kl
Jk Jl +

∑
k,l≥0

ψkl

2
�k�l

⎞
⎠

⎞
⎠ , (4.17)

We then define dilaton-shifted and polarized operators {L̃2n, G̃2m+1} for n, m ∈
Z≥−1:

L̃2n = �L2n�−1, G̃2m+1 = �G2m+1�
−1. (4.18)

Note that conjugating by � simply acts by shifting the modes J−i and �−i as:

J−i 	→ J−i + τi +
∑
k≥1

φik

k
Jk, �−i 	→ �−i +

∑
k≥0

ψki�k, (4.19)

where we conventionally defined τi = φik = ψi−1,k = 0 for i ∈ Z≤0. Notice that
one can find the differential operators {L̃2n, G̃2m+1} from the defining data of a super
spectral curve and vice versa. This is the natural generalization of the dilaton shift
considered in [8].

With this under our belt, we get the following result:

Proposition 4.3 For i ∈ Z>0, consider the set SA of differential operators

SA = {H1
i , F1

i , H2
i , F2

i }, (4.20)

where

H1
i = J2i , F1

i = �2i−1, H2
i = L̃2i−ε−1, F2

i = G̃2i−ε . (4.21)

We set ε = 1 if τ1 = 0, and ε = 3 otherwise. Then the differential operators in SA
form a super Airy structure, with θ0 the extra variable.

123



N = 1 super topological recursion Page 19 of 54 144

See “Appendix A.2” for the proof.
Since the differential operators in SA form a super Airy structure, Theorem 4.2

implies that there exists a unique partition function Z and free energy F = log Z in
the form:

F =
2g+n+2m>2∑

g,n,m≥0

�
g−1

n!(2m)!
∑

i1,...,in>1
j1,..., j2m≥0

Fg,n|2m(i1, . . . , in| j1, . . . , j2m)

n∏
k=1

xik

2m∏
l=1

θ jl ,

(4.22)

and such that

∀ i ∈ Z>0, H1
i Z = F1

i Z = H2
i Z = F2

i Z = 0. (4.23)

Note that Fg,n|2m is symmetric under permutations of the n first entries, antisymmetric
under permutations of the last 2m entries, with no further symmetry.

Our goal now is to relate this super Airy structure to the abstract super loop equa-
tions. This is the essence of the following theorem.

Theorem 4.4 (1) Consider the super Airy structure SA in Proposition 4.3, defined in
terms of the dilaton shift and polarization parameters τl , φkl and ψkl . Let

Fg,n|2m(i1, . . . , in| j1, . . . , j2m) (4.24)

be the coefficients of the unique free energy F associated with this super Airy
structure SA.

(2) Let SC be a super spectral curve defined in terms of the same dilaton shift and
polarization parameters τl , φkl and ψkl . Consider an infinite sequence of multi-
linear differentials ωg,n|2m that respect the polarization:

ωg,n|2m ∈
⎛
⎝ n⊗

j=1

V B−
z j

⎞
⎠ ⊗

(
2m⊗
k=1

V F 0,−
uk ,θk

)
, (4.25)

and that satisfy the abstract super loop equations Definition 2.8. We expand the
differentials in terms of the basis in the definition of super spectral curves as:

ωg,n|2m(J |K ) =
∑

i1,...,in>1
j1,..., j2m≥0

F̂g,n|2m(i1, . . . , in| j1, . . . , j2m)

n⊗
k=1

dξ−ik (zk)

⊗
2m⊗
l=1

η− jl (ul , θl). (4.26)
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Then, for all g, n, m, and indices i1, . . . , in and j1, . . . , j2m,

F̂g,n|2m(i1, . . . , in| j1, . . . , j2m) = Fg,n|2m(i1, . . . , in| j1, . . . , j2m). (4.27)

We give the proof in “Appendix A.3”. Concretely, what we are doing is reformulat-
ing the abstract super loop equations as differential constraints satisfied by the partition
function Z , which take the form of the super Airy structure SA defined in terms of the
polarization of the super spectral curve.

An immediate corollary of this theorem is that a solution to the abstract super loop
equations that respects the polarization exists. As a result, it must be given by the super
topological recursion in Proposition 3.1.

Corollary 4.5 There exists a solution to the abstract super loop equations that respects
the polarization, and it is uniquely constructed by the N = 1 super topological
recursion of Proposition 3.1.

Remark 4.6 For local spectral curves with c component, all one has to do is to pre-
pare c copies of super Virasoro operators. Then, it is straightforward to generalize
Proposition 4.3 and Theorem 4.4 with several components.

4.3 Going back to the super loop equations

We end this section with an important remark. In the construction of the super Airy
structure SA, the operators H1

i and F1
i for i ∈ Z>0 are just derivatives:

H1
i = J2i = �

∂

∂x2i
, F1

i = �2i−1 = �
∂

∂θ2i−1 . (4.28)

Thus, the differential constraints H1
i Z = F1

i Z = 0 impose that the partition function
Z does not depend on the variables x2i and θ2i−1 for all i ∈ Z>0. As a consequence,
we can reduce the differential operators (this is similar to the reduction considered in
Section 2.2.3 of [8]) by setting J2i = 0 and �2i−1 = 0 for all i ∈ Z. The resulting
differential operators (after rescaling) form a representation of the N = 1 super
Virasoro algebra in the Neveu–Schwarz sector.

In particular, if we choose a trivial polarization, by setting τk = φkl = ψkl = 0
except for τ3 = 1, the operators precisely agree with the representation given in
Section 4.2.6 of [9].

This was in fact part of the motivation for introducing the particular abstract super
loop equations that we considered in Definition 2.8. On the one hand, we wanted our
abstract super loop equations to be natural generalizations of the standard bosonic
ones, and to include as particular cases the super loop equations of supereigenvalue
models. But, on the other hand, we were also looking for super loop equations that
correspond to the (suitably polarized) differential constraints associated with the super
Airy structures realized as representations of the super Virasoro algebras considered
in [9]. Those motivations resulted in Definition 2.8.
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5 Examples

In this section, we will apply the N = 1 super topological recursion (equivalently
super Airy structures) to compute (parts of) correlation functions of the examples
listed below:

• (2, 4�)-minimal superconformal models coupled to Liouville supergravity,
• Super Jackiw–Teitelboim gravity,
• Supereigenvalue Models in the Neveu–Schwarz sector,
• Supereigenvalue models in the Ramond sector.

We will approach the first two examples with the techniques of super Airy structures.
Concretely, we will show an interesting relation to ordinary Airy structures as an
extension of [5], which helps us with describing the first two examples in terms of
super Airy structures with suitable dilaton shift and polarization. In contrast, the last
two examples are described in the framework of the N = 1 super topological recur-
sion. That is, we show that their correlation functions satisfy the abstract super loop
equations on a certain local super spectral curve, hence they are uniquely constructed
thanks to Proposition 3.1.

5.1 Relation between Airy structures and super Airy structures

We investigate a relation between Airy structures and super Airy structures with van-
ishing polarization but with arbitrary choice of dilaton shift. This naturally leads us to
the first two examples.

To do so, let us first define a set of operators Ľ2n by

n ∈ Z≥−1, Ľ2n = 1

2

∑
j∈Z

(−1) j−1 : J− j J2n+ j : +�

8
δn,0. (5.1)

Ľ2n are same as the first line of (4.10) except the last term which is now �/8 instead
of �/4. We then construct dilaton-shifted operators Ľτ

2n by taking conjugate as

Ľτ
2n = exp

(
1

�

∑
l>0

τl

l
Jl

)
Ľ2n exp

(
−1

�

∑
l>0

τl

l
Jl

)
. (5.2)

We further define Ȟ2
i = Ľτ

2i−ε−1. Recall the definition of H1
i from (4.21), then it

is shown in [8] that a set Aτ = {H1
i , Ȟ2

i }i∈Z>0 of differential operators forms an
Airy structure with one component, and as a consequence, there is a unique partition
function annihilated by those differential operators. (See [8] for the definition of Airy
structure in general. Alternatively, it is sufficient for our purpose if one just drops all
Grassmann variables in Definition 4.1 from consideration.)

Let us now consider another set SAτ of differential operators given in (4.20) with
the choice of dilaton shift parameters being exactly the same τl inAτ and polarization
being trivial, φkl = ψkl = 0. We also choose ε in SAτ to be the same as that in Aτ .
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Then, Proposition 4.3 immediately implies that SAτ forms a super Airy structure.
Somewhat surprisingly, we find the following relation between the Airy structure Aτ

and the super Airy structure SAτ :

Proposition 5.1 Let F(Aτ ) and F(SAτ ) be the free energy associated with the Airy
structure Aτ , and that with the super Airy structure SAτ defined above, respectively.
Then, order by order in �, we have

Fg(SAτ ) = 2g

⎛
⎝Fg(Aτ ) − 1

2

∑
i, j≥0

θ2iθ2 j ∂2Fg(Aτ )

∂x2i+1∂x2 j−1

⎞
⎠ + O(θ4), (5.3)

where O(θ4) and higher terms vanish if ε = 3.

The proof is given in Appendix A.4 in detail, but let us give a few remarks about this
proposition. This type of relation is first observed in [5] for the case with τl = δl,3
in line with supereigenvalue models, and [42] proved that O(θ4) or higher terms in θ

vanish. That is, the free energy truncates at quadratic order with respect to Grassmann
variables.5 However, since the formula in [5] was not written in the form of (5.3), this
point was not realized in [9] in relation to super Airy structures. Proposition 5.1 is
an extension of [5] to arbitrary dilaton shift including irregular ones. It remains to be
investigated how general we can extend this type of relation with nonzero polarization.

With Proposition 5.1 in our hands, we are able to discuss the first two examples in
the list above.

5.1.1 (2, 4�)-minimal superconformal models coupled to Liouville supergravity

It was shown [3,5,23,53] that the continuum limit of supereigenvalue models in the
Neveu–Schwarz sector (cases without the continuum limit will be presented shortly)
describe (2, 4�)-minimal superconformal models coupled to Liouville supergravity,
which turns out to be a solutionof a supersymmetric extensionof theKdV-hierarchy too
[34].After an appropriate transformation, the free energyof a corresponding superAiry
structure becomes the generating function of correlation functions of (2, 4�)-minimal
superconformal models coupled to Liouville supergravity. See [3,53] for more details
about the necessary transformation.

Proposition 5.2 Let FLSG(SAτ3) be the free energy associated with the super Airy
structure with τl = δl,3, φkl = ψkl = 0, and ε = 3. Then, after an appropriate
transformation, FLSG(SAτ3) becomes the generating function of correlation functions
of (2, 4�)-minimal superconformal models coupled to Liouville supergravity.

This is an old story discussed in [3,5,23,53]. Since their presentation is different from
the style of this paper, we give a short justification in “Appendix A.4.1”.

5 It remains to be seen whether truncation holds for ε = 1 too.
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5.1.2 Super Jackiw–Teitelboim gravity

Thanks to Proposition 5.1, the free energy F(Aτ ) encodes the same information as
the free energy F (0)(SAτ ) where the superscript (k) denotes the order of Grassmann
variables. This includes the Kontsevich–Witten τ -function [39,51], the Brezin–Gross–
Witten τ -function [14,36], and Mirzakhani’s recursion for volumes of moduli spaces
of Riemann surfaces [43,44]. An interesting question arises: is there any super Airy
structure SAτ such that not only F (0)(SAτ ) but also F (2)(SAτ ) have enumerative
interpretation? Even though we do not have any promised example, let us discuss a
possible candidate.

Recently, Stanford and Witten investigated super Jackiw–Teitelboim gravity [16,
35,45] and showed in [50] that volumes of moduli spaces of super Riemann surfaces
can be computed by utilizing the Eynard–Orantin topological recursion. They derived
that the spectral curve has no polarization, and dilaton shift parameters (τl)l>0 are
encoded in the following one-form

ω0,1|0(z|) = √
2 cos(2π z)dz =

∑
l>0

τldξl(z). (5.4)

If we apply Proposition 5.1 with the dilaton shift given above, we know the role of
Fg,n|0 thanks to [50]. How about Fg,n|2? Can we find their enumerative meanings in
terms of moduli spaces of super Riemann surfaces, or physical meanings in terms
of super Jackiw–Teitelboim gravity? It remains to be investigated, but the study of
Ramond punctures might be a relevant starting point.

5.2 Supereigenvaluemodels

Supereigenvalue models (see [3,5,13,19–21,47] and references therein) are super-
symmetric generalizations of Hermitian matrix models. It is known that (parts of)
correlation functions of these models satisfy super loop equations, and their recursive
system has been verified in [13] for the Neveu–Schwarz sector and in [47] for the
Ramond sector. However, their super loop equations appear to look differently from
each other so do the resulting recursive formulae. A benefit of our abstract formalism is
that regardless of the sector, correlation functions satisfy the abstract super loop equa-
tions, and we can apply the super topological recursion to construct a unique solution.
Therefore, the super topological recursion is a unifying recursive formalism—one can
treat both the Neveu–Schwarz and Ramond sector in the same footing.

5.2.1 Neveu–Schwarz Sector

The local super spectral curve for the Neveu–Schwarz sector consists of two com-
ponents. Since a global expression is known thanks to [13], it is the sufficient if we
present how to determine all the dilaton shift parameters τα,l and polarization param-
eters φ

α,β
k,l , ψ

α,β
k−1,l−1 with k, l ∈ Z>0 and α, β ∈ {+,−} from the spectral curve given

in [13].
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Let us first define polynomials x± ∈ C[z] and formal power series u± ∈ C[[z]]
encoded in the following form:

x±(z) = ±1 + z2

2
, u±(z) = ±1 + z2

2
+ z

√
±1 + z2

4
, (5.5)

where the equality for uα(z) should be understood as a Taylor expansion at z = 0.
The sign of the square root in uα(z) is not an issue here because that exactly amounts
to the action of the involution in the definition of local super spectral curves. Note that
uα(z) comes from the global coordinate of a hyperelliptic curve given in [13] whereas
z can be thought of a local coordinate in the neighbourhood of one of the ramification
points. Then for any polynomial M(x) with M(±1) �= 0, τα,l are determined by the
following term-by-term equation in z

∑
l>0

τα,l z
l−1dz = 1

2
M(xα(z))

(
uα(z) − 1

uα(z)

)
zdz, (5.6)

where one should expand the right-hand side at z = 0.
Next, let us define a bilinear differential B(u1, u2) as

B(u1, u2) = du1du2

(u1 − u2)2
. (5.7)

Then, for α, β ∈ {+,−}, bosonic polarization parameters φ
α,β
k,l are determined by the

following term-by-term equations in z1, z2:

dz1dz2
(z1 − z2)2

δα,β +
∑

k,l>0

φ
α,β
k,l zk−1

1 zl−1
2 dz1dz2

= B(uα(z1), uβ(z2)). (5.8)

Similarly, fermionic polarization parameters are determined by the following term-
by-term equations in z1, z2:

− 1

2

z1 + z2
z1 − z2

δαβ

z1z2
−

∑
k,l≥1

ψ
α,β
k−1 l−1 − ψ

α,β
l−1 k−1

1 + δ(k−1)(l−1),0
zl−1
1 zk−1

2

= xα(z1) − xβ(z2)

dxα(z1)dxβ(z2)
B(uα(z1), uβ(z2)), (5.9)

where the right-hand sides of (5.8) and (5.9) should be expanded at z1, z2 = 0. Note
that for α �= β, one can indeed show that the right-hand sides of (5.8) and (5.9) are
regular at z1 = z2, which is consistent with Definition 2.5.

Proposition 5.3 (Neveu–Schwarz sector) Let us consider a local super spectral curve
SCN S with two components whose dilaton shift and polarization parameters are given
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by (5.6), (5.8), and (5.9). Then, for 2g + n + 2m > 2, ωg,n|2m constructed from
the N = 1 super topological recursion on SCN S correspond to (fermionic-coupling
independent) correlation functions of supereigenvalue models in the Neveu–Schwarz
sector.

See “Appendix A.5” for the proof. Note that an analogous formula to (5.3) is known
to hold for supereigenvalue models in the Neveu–Schwarz sector, and it was a key fact
for [13] to present a recursive formula. On the other hand, theN = 1 super topological
recursion gives a unique solution without referring to such a simplification.

5.2.2 Ramond sector

The local spectral curve for the Ramond sector consists of only one component due to a
(somewhat surprising) supersymmetric cancellation observed in [47]. Since the global
expression is known thanks to [47], it is again sufficient to present how to determine
the defining parameters of the corresponding super spectral curve.

Let us first define a polynomial x ∈ C[z] and a formal power series u ∈ C[[z]]
encoded in the following form:

x(z) = 1 + z2

2
, u(z) = z(2 + z2)−

1
2 . (5.10)

where the equality for u(z) should be understood as a Taylor expansion at z = 0.
Then, similar to the Neveu–Schwarz sector, the dilaton shift and bosonic polarization
parameters are determined by the following term-by-term equations:

∑
l>0

τl z
l−1dz = M(x(z))u(z)zdz, (5.11)

d

z 1
dz2(z1 − z2)

2 +
∑

k,l>0

φk,l z
k−1
1 zl−1

2 dz1dz2 = B(u(z1), u(z2)), (5.12)

where the right-hand sides should be expanded at z, z1, z2 = 0. On the other hand,
the fermionic polarization parameters are determined by the following term-by-term
equation in z1, z2:

− 1

2

z1 + z2
z1 − z2

1

z1z2
−

∑
k,l≥1

ψk−1 l−1 − ψl−1 k−1

1 + δ(k−1)(l−1),0
zl−1
1 zk−1

2

= − (u(z1) + u(z2))(1 − u(z1)u(z2))

4u(z1)u(z2)(u(z1) − u(z2))
√

x(z1)
√

x(z2)
, (5.13)

Note that
√

x(z) does not create any issue regarding branch cuts because (5.13) is a
valid equation only in the neighbourhood of z = 0 (x = 1). This is another advantage
of considering a local super spectral curve—one of difficulties in the Ramond sector
is the appearance of square roots, and [47] had to consider a variant of correlation
functions in order to evaluate them as single-valued differentials on aRiemann surface.
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Proposition 5.4 (Ramond sector) Let us consider a local super spectral curve SC R

with one components whose dilaton shift and polarization parameters are given by
(5.11), (5.12), and (5.13). Then, for 2g + n + 2m > 2, ωg,n|2m constructed from
the N = 1 super topological recursion on SC R correspond to (fermionic-coupling
independent) correlation functions of supereigenvalue models in the Ramond sector.

The proof is given in “Appendix A.6”.

Remark 5.5 The current formalism is not sufficient to incorporate fermionic couplings
in supereigenvalue models. We suspect that investigating fermionic couplings helps
with developing the notion of “global super spectral curves”. We are hoping to return
to it in the near future.

5.3 Comments on truncation

It is proven for minimal superconformal models and supereigenvalue models in both
sectors that their correlation functions (equiv. free energy) truncate at quadratic order
in fermionic variables—and the authors suspect that this applies to all local super
spectral curves with vanishing polarizations. However, this does not hold for a more
general class of local super spectral curves. In fact, if we consider a local super spectral
curve with nonzero polarization given as

ω0,1|0(z|) = z2dz, (5.14)

ω0,2|0(z1, z2|) =
(

1

(z1 − z2)2
+ φ11

)
dz1dz2, (5.15)

ω0,0|2(|z1, z2) = −1

2

z1 + z2
z1 − z2

�1�2

z1z2
, (5.16)

then we find that

ω2,0|4(|z1, z2, z3, z4) = φ3
11

3∑
il=0

εi1i2i3i4η−2i1(z1)η−2i2(z2)η−2i3(z3)η−2i4(z4),

(5.17)

where εi1i2i3i4 is completely antisymmetric under the permutation of the indices and it
is normalized as ε0123 = 1. A general analysis on truncation phenomena remains to be
investigated and seems rather complex. However, it is easy to show that for m ∈ Z≥2,
ω0,0|2m and ω0,1|2m vanish for any local super spectral curve:

Proposition 5.6

∀ m ∈ Z≥2, ω0,0|2m = ω0,1|2m = 0. (5.18)

See “Appendix A.7” for the proof.
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6 Conclusion and future work

We have formalized the flowchart in Fig. 2 through Definition 2.8, Proposition 3.1,
and Theorem 4.4. There is a one-to-one correspondence between ωg,n|2m on a local
super spectral curve SC and Fg,n|2m associated with a super Airy structure SA. We
have then discussed that four examples related to 2d supergravity fit into this new
framework, and we are seeking more. Let us conclude with listing open questions and
future work.

Global super spectral curves

Bouchard andOsuga [13] andOsuga [47] showed that the full recursion of supereigen-
value models in both the Neveu–Schwarz and Ramond sector requires one more initial
datum; a Grassmann-valued polynomial equation. These observations suggest a pos-
sibility of defining a global super spectral curve which comes with Grassmann-valued
parameters. Note that every global spectral curve can be described by local spectral
curves with multiple components by looking at an open neighbourhood of every ram-
ification point. If we believe that this holds in a supersymmetric realm, then how can
we consider a local super spectral curve compatible with possible Grassmann-valued
parameters? Since the current formalism is based on C-valued vector spaces V B, V F ,
a fundamental extension seems necessary to construct a formalism equipped with
Grassmann parameters.

Even though we do not have any rigorous idea, let us mention a few expectations.
First, supereigenvalue models suggest to introduce ω0,0|1—the Grassmann-valued
counterpart of ω0,1|0, and as a result, there would possibly be “fermionic dilaton
shift” as well as nonzero ωg,n|2m+1. On the other hand, from a super Airy structure
point of view, we would have to allow Fg,n|m to be Grassmann-valued in such a way
that the partition function Z is still bosonic. Thus, in particular, we need to generalize
super Airy structures defined in [9]. It remains to be investigated how to make sense
of these insights with technical details.

Higher generalization

Borot et al. [8] have shown a correspondence betweenW-algebra and the Bouchard–
Eynard topological recursion which involves higher orders of ramification. A natural
question is whether we can upgrade their work with supersymmetry. In terms of
the super topological recursion, this would potentially mean that we generalize the
involution σ : z 	→ −z to an automorphism σ : z 	→ e2π i/q z for some q ∈ Z≥2. The
superW-algebra counterpart, however, is not so clear how we should generalize, and
we are hoping to return to this point in the near future. This is indeed under investigation
joint with N. Chidambaram, T. Creutzig, N. Genra, and S. Nakatsuka. While we were
finishing up this paper, a new paper [18] appeared on the arXiv that discusses a W-
algebra and supereigenvalue models in the Ramond sector. It is interesting to see how
our formalism relates to theirs.
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Enumerative geometry

Following the work of Stanford–Witten [50], Norbury very recently developed in [46]
an intersection theory associated with moduli spaces of super Riemann surfaces. Even
though the recursion in this story is the standard recursion of Eynard and Orantin, it is
interesting to see whether the N = 1 super topological recursion plays an additional
role, in particular, whether ωg,n|2 admit some enumerative interpretation. One good
starting point would be the study of Ramond punctures. Furthermore, the analysis in
[46,50] reduces down to computations in “reduced spaces” of moduli spaces of super
Riemann surfaces [52]. Such reduced spaces can be obtained by setting all odd moduli
to zero, and they turn out to be moduli spaces of ordinary Riemann surfaces with the
extra data of spin structures. Importantly, the bosonic part of the Teichmüller space
does not see the extra spin structures, hence they are the same as usual Teichmüller
space [46]. It is interesting to investigate whether this fact relates to Proposition 5.1.
Putting another way, intersection theory on more general moduli spaces may require a
recursive formalism beyond the Eynard–Orantin topological recursion, and theN = 1
super topological recursion may play a key role.
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Appendix A: Proofs

A.1. Proof of Proposition 3.1

The proof of (3.4) closely follows how [6,7] prove the standard local topological
recursion. Given a local super spectral curve, let us assume existence of solutions of
the abstract super loop equations that respects the polarization. Since K B B(z0, z, σ (z))
has at most a simple pole at z = 0, the quadratic bosonic loop equations imply that

∀n, m ∈ Z≥0, Res
z→0

K B B(z0, z, σ (z))

(
QB B

g,n+1|2m(z, J |K )

+QF F
g,n+1|2m(z, J |K )

)
= 0. (A.1)
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Let us focus on terms involving ω0,1|0 on the left-hand side. They appear in the form:

Res
z→0

K B B(z0, z, σ (z))

(
ω0,1|0(z|)ωg,n+1|2m(σ (z), J |K )

+ ω0,1|0(σ (z)|)ωg,n+1|2m(z, J |K )

)

= Res
z→0

K B B(z0, z, σ (z))

(
− (

ω0,1|0(z|) − ω0,1|0(σ (z)|))ωg,n+1|2m(z, J |K )

+ ω0,1|0(z|)LB
g,n+1|2m(z, J |K )

)
, (A.2)

where we used (2.40) in the equality. The linear bosonic loop equations guarantee
that the last term in (A.2) does not contribute to the residue at z = 0. Furthermore,
ω0,1|0(z|)−ω0,1|0(σ (z)|) on the right-hand side cancels the denominator in the recur-
sion kernel. In summary, we get

(A.2) = −Res
z→0

∫ z

0
ω0,2|0(z0, ·|) ωg,n+1|2m(z, J |K ) = −ωg,n+1|2m(z0, J |K ),

(A.3)

where we used (2.9) in the second equality. This proves (3.4).
Similarly, the quadratic fermionic loop equations imply

∀n, m ∈ Z≥0, Res
z→0

K F B(u1, z, σ (z))QF B
g,n|2m+2(J |z, u2, K ) = 0. (A.4)

Note that the right-hand side vanishes thanks to the − 1
2η0(z)η0(u1) in the recursion

kernel (3.2). One can repeat the same procedure as we did in (A.2), with the help of the
linear fermionic loop equations instead, then terms involving ω0,1|0 on the left-hand
side of (A.4) become

− Res
z→0

(
ω0,0|2(|z, u1) − 1

2
η0(z)η0(u1)

)
ωg,n|2m+2(J |z, u2, K )

= −ω̂g,n|2m+2(J |u1, u2, , K ). (A.5)

This gives (3.6). Remark that due to the− 1
2η0(z)η0(u1) factor in the recursion kernel,

ω̂g,n|2m+2(J |u1, u2, K ) recoversωg,n|2m+2(J |u1, u2, K ) except terms that depend on
η0(u1). Since fermionic entries are antisymmetric under their permutations, however,
one can indeed supplement this missing η0(u1)-dependence precisely by the second
term in (3.5). It is clear that (3.4) together with (3.5) are recursive for ωg,n|2m in
2g +n +2m, hence we have constructed allωg,n|2m starting with a local super spectral
curve, subject to the assumption of existence of solution. This completes the proof.
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A.2. Proof of Proposition 4.3

Since conjugation by � does not change the commutation relations, it is clear from
the commutation relations (4.12)–(4.16) that the differential operators in SA satisfy
property (2) in Definition 4.1. Thus it suffices if we show that (linear combinations
of) the differential operators in SA satisfies property (1) in Definition 4.1. We present
a proof for ε = 3 (τ1 = 0), and we normalize τ3 = 1—the following discussions can
be straightforwardly applied to the case with ε = 1 (τ1 �= 0).

It is shown in (4.19) that H1
i , F1

i remain unchanged under conjugation by�, hence,
they automatically satisfy property (1). On the other hand, H2

i , F2
i are expanded in

terms of (Ji , �i )i∈Z as follows:

H2
i =

∑
k∈Z≥2

(−1)k−1τk J2i+k−4 + 1

2

∑
j,k∈Z

(
C j,k|

i : J j Jk : +C | j,k
i : � j�k :

)
+ �Di ,

(A.6)

F2
i =

∑
k∈Z≥2

(−1)k−1τk�2i+k−3 +
∑
j,k∈Z

C j |k
i : J j�k :, (A.7)

where

C j,k|
i =(−1) j−1δ j+k,2i−4+(−1) j−1φ j−2i+4,k

k
+(−1)k−1φ j,k−2i+4

j
+δi,1

φ1, jφ1,k

jk
,

(A.8)

C | j,k
i = (−1) j k − j

2
δ j+k,2i−4 + δi,1(ψ2, jψ0,k − ψ0, jψ2,k)

+ (−1) j (k − i + 2)ψ j,k−2i+4 − (−1)k( j − i + 2)ψk, j−2i+4, (A.9)

C j |k
i = (−1)kδ j+k,2i−3 + (−1)k φ j,k−2i+3

j
− (−1) jψk, j−2i+3 + δi,1

φ j,1

j
ψk,0,

(A.10)

Di = 1

4
δi,2 +

(
1

2
φ1,1 + 1

2
ψ0,2

)
δi,1, (A.11)

where we conventionally defined φi,k = ψi,k = 0 for i ∈ Z<0. We then introduce a
parity-preserving linear transformation to Ĥ2

i , F̂2
i as

∀ i ∈ Z≥1, Ĥ2
i = H2

i +
∑
k≥1

τ2k H1
i+k−2 −

∑
k≥2

τ2k+1H2
i+k−1, (A.12)

F̂2
i = F2

i +
∑
k≥1

τ2k F1
i+k−2 −

∑
k≥2

τ2k+1F2
i+k−1, (A.13)
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where we conventionally defined H1
0 = J0 = 0. In particular, the degree 1 term in

each Ĥ2
i , F̂2

i reads, respectively,

Ĥ2
i = �

∂

∂x2i−1 + (deg 2 terms), F̂2
i = �

∂

∂θ2i
+ (deg 2 terms). (A.14)

Therefore, the set ŜA = {H1
i , F1

i , Ĥ2
i , F̂2

i } is a super Airy structure. Note that θ0

does not appear in the degree 1 term, hence it plays the role of the extra variable.

A.3. Proof of Theorem 4.4

The differential operators in ŜA above andSA are related by the linear transformations
(A.12) and (A.13). As a consequence, if Z is the associated unique partition function
of the super Airy structure ŜA, then it is also annihilated by all the operators in SA. In
other words, property (2) is required only up to linear transformations (independent of
the choice of basis). Thus, we can equivalently consider differential constrains derived
from the differential operators in SA instead of those in ŜA. It turns out that this is
easier in practice to show a relation to abstract super loop equations.

With this remark in mind, the proof consists of two parts:

Part 1 given a super Airy structure SA, obtain a sequence of equations that the asso-
ciated free energy F(SA) satisfies,

Part 2 starting with the corresponding local super spectral curve SC , expand the
abstract super loop equations that respect the polarization in the (ξk, ηl)-basis
and show that the expanding coefficients satisfy exactly the same sequence of
equations.

A.3.1. Part 1

Let us denote by Z , F the unique partition function and free energy associated with a
super Airy structure ŜA Then, Z is annihilated by all differential operators in SA. It
is easy to show that Hi

i Z = 0, F1
i Z = 0 give, respectively,

Fg,n+1|2m(2i, J |K ) = 0, Fg,n|2m+2(J |2i − 1, K ) = 0, (A.15)

for any g, n, m ∈ Z≥0 (recall that F0,1|0 = F0,2|0 = F0,0|2 = 0bydefinition).Here,we
denote by J = {i1, i2, . . . } a collections of positive integers and by K = { j1, j2, . . . }
by a collection of nonnegative integers. We will come back later that these equations
are in agreement with the linear bosonic and fermionic loop equations.

We now consider the equations derived from H2
i Z = F2

i Z = 0. In order to express
all terms in a compact way, let us first define the following notations:

�
(0)
g,n+1|2m[i, J |K ] =

∑
p≥1

(−1)p−1τp Fg,n+1|2l(2i + p − 4, J |K ), (A.16)

�
(0)
g,n|2m[J |i, K ] =

∑
p≥1

(−1)p−1τp Fg,n+1|2m(J |2i + p − 3, K ), (A.17)
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�
(2)
g,n|2m[k, l, J |K ] = Fg−1,n+2|2m(k, l, J |K ) +

∑
g1+g2=g∑

J1∪J2=J
K1∪K2=K

(−1)ρ Fg1,n1+1|2m1(k, J1|K1)Fg2,n2+1|2m2(l, J2|K2),

(A.18)

�
(2)
g,n|2m[J |k, l, K ] = −Fg−1,n|2m+2(J |k, l, K ) +

∑
g1+g2=g∑

J1∪J2=J
K1∪K2=K

(−1)ρ Fg1,n1|2m1(J1|k, K1)Fg2,n2|2m2(J2|l, K2),

(A.19)

�
(2)
g,n|2m[k, J |l, K ] = Fg−1,n+1|2m(k, J |l, K ) +

∑
g1+g2=g∑

J1∪J2=J
K1∪K2=K

(−1)ρ Fg1,n1+1|2m1(k, J1|K1)Fg2,n2|2m2(J2|l, K2).

(A.20)

Then order by order in � as well as in variables x j , θ j , we find from H2
i Z = F2

i Z = 0

a sequence of constraints on the free energy F . For �
(0)
g,n|2m with 2g + n + 2m = 3,

we have

∀ j, k ∈ Z≥1, 0 = �
(0)
0,3|0[i, j, k|] + jkC− j,−k|

i , (A.21)

∀ j, k ∈ Z≥0, 0 = �
(0)
0,1|2[i | j, k] + 1

1 + δ j,0 + δk,0
C |− j,−k

i , (A.22)

∀ j ∈ Z≥1, k ∈ Z≥0, 0 = �
(0)
0,1|2[ j |i, k] + j

1 + δk,0
C− j |−k

i , (A.23)

0 = �
(0)
1,1|0[i |] + Di . (A.24)

Note that from the definitions (A.8), (A.9), and (A.10), one easily finds

C− j,−k|
i =δi,1δ j,1δk,1, C |− j,−k

i =δi,1(δ j,2δk,0 − δ j,0δk,2), C− j |−k
i = δi,1δ j,1δk,0,

(A.25)

for (A.21), (A.22), and (A.23), respectively. For �
(0)
g,n+1|2m with 2g + n + 2m ≥ 4,

we get from H2
i Z = 0 that

0 = �
(0)
g,n+1|2m[i, J |K ] +

∑
k,l≥0

(
Ck,l|

i �
(2)
g,n|2m[k, l, J |K ] + C |k,l

i �
(2)
g,n|2m[J |k, l, K ]

)
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+
∑
k≥0

(
n∑

l=1

ilC
−il ,k|
i Fg,n|2m(k, J\il |K )+

2m∑
l=1

(−1)l−1 C |− jl ,k
i

1+δ jl ,0
Fg,n|2m(J |k, K\ jl)

)
.

(A.26)

And for �
(0)
g,n|2m with 2g + n + 2m ≥ 4, we find from F2

i Z = 0 that

0 = �
(0)
g,n|2m[J |i, K ] +

∑
k,l≥0

Ck|l
i �

(2)
g,n|2m[k, J |l, K ]

+
∑
k≥0

(
n∑

l=1

ilC
−il |k
i Fg,n−1|2m(J\il |k, K )

+
2m−1∑
l=1

(−1)l−1 Ck|− jl
i

1 + δ jl ,0
Fg,n+1|2m−2(k, J |K\ jl)

)
. (A.27)

See Section 2 in [9] for an analogous computation.

Remark A.1 As shown in [9], the constraints (A.21)–(A.27) uniquely determine all
Fg,n|2m except Fg,n|2m+2(J |0, j0, K ) due to existence of the extra fermionic variable
θ0. However, since Fg,n|2m+2(J | j0, 0, K ) is fixed, we involve the antisymmetry of
fermionic entries to fix

Fg,n|2m+2(J |0, j0, K ) = −Fg,n|2m+2(J | j0, 0, K ). (A.28)

This additional treatment is an analogous role to the second term in (3.5).

A.3.2. Part 2

Our next task is to find the same set of Eqs. (A.21)–(A.27) from the abstract super
loop equations that respect the polarization. Note that by definition, we can always
expand ωg,n|2m for g, n, m ∈ Z≥0 with 2g + n + 2m ≥ 3 in the form

ωg,n|2m(J |K ) =
∑

i1,...,in≥1
j1,..., j2m≥0

F̂g,n|2m(J |K )

n⊗
k=1

dξ−ik (zk)

2m⊗
l=1

η− jl (ul , θl),

(A.29)

with some coefficients F̂g,n|2m(J |K ) which are (anti)symmetric under permutations
of indices in J (K ), respectively, but no symmetry is assumed otherwise. Therefore,
we will rewrite the abstract super loop equations with respect to these coefficients
F̂g,n|2m(J |K ), and show that such constraints agree with the equations obtained
in Step 1. As a consequence, uniqueness and existence in Theorem 4.2 imply that
F̂g,n|2m(J |K ) = Fg,n|2m(J |K ) which completes the proof of Theorem 4.4 as well as
Corollary 4.5.
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Notice that the linear bosonic loop equations are equivalent to the following equa-
tions:

∀i ∈ Z≥1, 0 = Res
z=0

zi−1LB
g,n+1|2m(z, J |K ). (A.30)

If we substitute the expansion (A.29) in LB
g,n+1|2m(z, J |K ), it gives

∀i ∈ Z≥1, 0=
∑

i1,...,in≥1
j1,..., j2m≥0

2F̂g,n|2m(2i, J |K )

n⊗
k=1

dξ−ik (zk)

2m⊗
l=1

η− jl (ul , θl),

(A.31)

which implies

∀i ∈ Z≥1, F̂g,n|2m(2i, J |K ) = 0. (A.32)

Similarly, the linear fermionic loop equations are equivalent to

∀i ∈ Z≥0, 0 = Res
z=0

ηi (z)LF
g,n|2m(J |z, K ), (A.33)

which implies

∀ i ∈ Z≥1, F̂g,n|2m(J |2i − 1, K ) = 0. (A.34)

Therefore, (A.32) and (A.34) agree with (A.15).
We repeat similar procedures for the quadratic fermionic and bosonic loop equa-

tions, but computations become tedious. The quadratic fermionic loop equations are
equivalent to

∀ i ∈ Z≥1, 0 = −1

2
Res
z=0

ηi (z)

z2dz
QF B

g,n|2m(J |z, K ), (A.35)

where the overall− 1
2 factor is inserted for convention. Let us consider terms involving

ω0,1|0 whose residues can be easily obtained as

− 1

2

∑
p≥2,q≥0

(−1)p
(
1 + (−1)i

)
τp F̂g,n|2m(J |i + p − 3, K ), (A.36)

wherewe have omitted the
⊗

dξJ
⊗

ηK factor. Notice that these terms trivially vanish
if i is odd. When i is even, we redefine i → 2i , and they become

∀ i ∈ Z≥1,
∑
p≥2

(−1)p−1τp F̂g,n+1|2p(J |2i + p − 3, K ) (A.37)
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This agrees with the first term in (A.23) and (A.27) with the replacement of Fg,n|2m

with F̂g,n|2m .
For 2g + n + 2m = 3, the rest of terms in (A.35) becomes

− 1

2
Res
z=0

ηi (z)

z2dz
(ω0,2|0(z, z1|)ω0,0|2(| − z, z2) + ω0,2|0(−z, z1|)ω0,0|2(|z, z2))

=
∑

j≥1,k≥0

dξ− j (z1)η−k(z2)
j

1 + δk,0
Ĉ− j |−k

i , (A.38)

where

Ĉ− j |−k
i := −1

2
Res
z=0

η2i (z)

z2dz

(
dξ j (z)ηk(−z) + dξ j (−z)ηk(z)

)
= δi,1δ j,1δk,0.

(A.39)

This is in agreement with (A.25), hence we have recovered (A.23).
For 2g + n + 2m > 3, one can show after some manipulation that (A.35) can

be written in the same form as (A.27) with the replacement of (Fg,n|2m, C j |k
i ) with

(F̂g,n|2m, Ĉ j |k
i ) where

∀ j, k ∈ Z, Ĉ j |k
i := −1

2
Res
z=0

η2i (z)

z2dz

(
dξ− j (z)η−k(−z) + dξ− j (−z)η−k(z)

)
.

(A.40)

Note that we have defined dξ0 = 0 for convention. One can explicitly compute the
residues (A.40) and check that the result is in complete agreement with (A.10). That
is,

∀i ∈ Z≥1, ∀ j, k ∈ Z, Ĉ j |k
i = C j |k

i . (A.41)

This implies that F̂g,n|2m(J |K ) satisfies the same equation as (A.27).
Similarly, the quadratic bosonic loop equations are equivalent to

∀i ∈ Z≥1, 0 = −1

2
Res
z=0

dξi (z)

z2dzdz

(
QB B

g,n+1|2m(z, J |K ) + QF F
g,n+1|2m(z, J |K )

)
.

(A.42)

Almost all computations are similar to those for the quadratic fermionic loop equations,
and one can manipulate the quadratic bosonic loop equations into the same form as
(A.27) with the replacement of (Fg,n|2m, C jk|

i , C | jk
i )with (F̂g,n|2m, Ĉ j |k

i , Ĉ | j,k
i )where

Ĉ j,k|
i = −1

2
Res
z=0

dξ2i−1(z)

zdzdz

(
dξ− j (z)dξ−k(−z) + dξ− j (−z)dξ−k(z)

)
, (A.43)
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Ĉ | j,k
i = −1

4
Res
z=0

dξ2i−1(z)

zdzdz

(
Dz · η− j (z)η−k(−z)+Dz · η− j (−z)η−k(z)

)
− ( j ↔ k).

(A.44)

Note that the antisymmetrization of Ĉ | j,k
i is a consequence of the sign factor (−1)ρ

in (2.44). By explicit computations of the residues, one confirms that

∀i ∈ Z≥1, ,∀ j, k ∈ Z, Ĉ j,k|
i = C j,k|

i , Ĉ | j,k
i = C | j,k

i (A.45)

The only factor that does not have any analogue in the fermionic loop equations is
the one that corresponds to (A.11). This appears in the quadratic bosonic loop equation
for g = 1, n = m = 0 in the form:

D̂i = −1

2
Res
z=0

dξ2i−1(z)

zdzdz

(
ω0,2|0(z,−z|) − 1

2

(
Dz · ω0,0|2(|z, u)

+Du · ω0,0|2(|u, z)
)∣∣∣

u=σ(z)

)
. (A.46)

Again, one can show that D̂i = Di .
In summary, F̂g,n|2m satisfy precisely the same equations as those that Fg,n|2m do.

Thus, uniqueness of solution implies F̂g,n|2m = Fg,n|2m . This proves Theorem 4.4 and
Corollary 4.5.

Remark A.2 For irregular cases (ε = 1), all we have to modify from the above analysis
is to shift the indices i → i − 1 in H2

i , F2
i , or equivalently, in terms of abstract super

loop equations, we shift i → i − 2 in (A.35) and (A.42). All other computations are
completely parallel.

A.4. Proof of Proposition 5.1

The case with τl = δl,3 is proven in [5,42] but with a twist. For consistency, however,
first we directly prove Proposition 5.1 except the truncation property, and then consider
truncation by consulting the arguments in [5,42].

The idea of the proof is as follows. In terms of the super topological recursion,
Proposition 3.1 implies that ωg,n|0 and ωg,n|2 are determined by themselves without
the knowledge of ωg,n|2m for m ≥ 2. This is because (3.5) involves only ωg,n|0 and
ωg,n|2. Even though ωg,n|4 appear if we use (3.4) to compute ωg,n|2, the results should
match with those by (3.5) since existence of solution is guaranteed. An equivalent
statement in termsof superAiry structures is that the leadingorder of H2

i Z = F2
i Z = 0

with respect to Grassmann variables gives a set of constraints that uniquely determines
Fg,n|0 and Fg,n|2 without the knowledge of Fg,n|2m≥4. Higher-order constraints involve
Fg,n|2m≥4. Therefore, it is sufficient for our purpose to only focus on the leading order
of the differential constraints H2

i Z = F2
i Z = 0.

Now we consider the super Airy structure SAτ3 = {H1
i , F1

i , H2,τ3
i , F2,τ3

i } with
τl = δl,3 (ε = 3) and its associated free energy F(SAτ3). First, we can set x2i =
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θ2i+1 = 0 for all i ∈ Z>0 without loss of generality (see Sect. 4.3). Next, let us define
F̂ s, F̂ s

g by

F̂ s =
∑
g≥0

�
g−1 F̂ s

g =
∑
g≥0

�
g−12g

⎛
⎝Fg(Aτ3) − 1

2

∑
i, j≥0

θ2iθ2 j ∂2Fg(Aτ3)

∂x2i+1∂x2 j−1

⎞
⎠

+O(θ)4, (A.47)

where Aτ3 = {H1
i , Ȟ2,τ3

i } is the Airy structure with τl = δl,3, φkl = 0 and F(Aτ3) is

the associated free energy. Then, since F̂ s satisfies property (1) and (2) of Theorem4.2,
it suffices to claim that F(SAτ3) = F̂ s + O(θ)4, if we show:

e−F̂s
H2,τ3

i eF̂s = O(θ)2, e−F̂s
F2,τ3

i eF̂s = O(θ)3. (A.48)

This can be checked by directly substituting (A.47) into (A.48). First, one finds for
all i ∈ Z>0,

e−F̂s
H2,τ3

i eF̂s =
∑
g≥0

(2�)g
(

∂ Fg(Aτ3)

∂x2i−1 + x1x1

2
δi,1δg,0+

∑
j≥1

(2 j − 1)x2 j−1 ∂ Fg(Aτ3)

∂x2i+2 j−5

+ 1

2

∑
j+k=i−1

⎛
⎝ ∑

g1+g2=g

∂ Fg1(Aτ3)

∂x2 j−1

∂ Fg2(Aτ3)

∂x2k−1 + ∂2Fg−1(Aτ3)

∂x2 j−1∂x2k−1

⎞
⎠

+ �

8
δi,2δg,1

)
+ O(θ)2, (A.49)

The leading order in θ vanishes thanks to the assumption that F(Aτ3) is the free energy
of the Airy structure Aτ3 . Next, one can show that

e−F̂s
F2,τ3

i eF̂s =
∑
j≥0

θ2 j ∂

∂x2 j+1

(
1

2
e−F̂s

H2,τ3
i eF̂s

)

−
∑
j≥0

θ2 j ∂

∂x2 j−1

(
1

2
e−F̂s

H2,τ3
i+1 eF̂s

)
+ O(ζ )3. (A.50)

Thus, the leading order in θ again vanishes thanks to the assumption.We can apply the
same technique to the super Airy structure SAτ1 with τl = δl,1 (ε = 1). This shows
that (5.3) holds, at least for SAτ1 ,SAτ3 .

We will now generalize the above results for an Airy structure Aτ with arbitrary
dilaton shift (τl)l>0. It is easy to show by induction in n ∈ Z≥0 that every nonzero
coefficient F0,n+3(Aτ3)(i1, i2, i3, I ) is always in the form:

F0,n+3(Aτ3)(1, 1, 1, I ) (A.51)
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where I = {i4, . . . , in+3}. That is, at least three of the entries must be 1. Recall that
the free energy associated with any Airy structure is unique up to addition of terms in
�

−1
C[[�]]. Importantly, (4.19) shows that taking conjugate with respect to arbitrary

τl merely shifts each variable xl 	→ xl + τl . Thus, if we define F̄ by conjugation

eF̄ = exp

⎛
⎝∑

l≥2

τl

l
Jl

⎞
⎠ eF(Aτ3 ) exp

⎛
⎝−

∑
l≥2

τl

l
Jl

⎞
⎠ , (A.52)

(A.51) ensures that no unwanted terms such as F̄0,1 and F̄0,2 appear in F̄ . Then by
construction, all differential operators in Aτ annihilate (A.52), hence it follows that

F̄ − F(Aτ ) ∈ �
−1

C[[�]] (A.53)

With this in mind, let us define F̄ s as

eF̄s = exp

⎛
⎝∑

l≥2

τl

l
Jl

⎞
⎠ eF(SAτ3 ) exp

⎛
⎝−

∑
l≥2

τl

l
Jl

⎞
⎠ . (A.54)

Then as a consequence of (A.53), order by order in �, we have

F̄ s
g = 2g

⎛
⎝cg + Fg(Aτ ) − 1

2

∑
i, j≥0

θ iθ j ∂
2Fg(Aτ )

∂xi∂x j−1

⎞
⎠ + O(θ4), (A.55)

for some cg ∈ C. Importantly, F̄ s
0 does not have the unwanted terms, hence F̄ s satisfies

property (1) and (2) of Theorem 4.2.
Finally, let SAτ = {H1

i , F1
i , H2,τ

i , F2,τ
i } be a set of differential operators of arbi-

trary dilaton shift with ε = 3. Explicitly,

H2,τ
i = exp

⎛
⎝∑

l≥2

τl

l
Jl

⎞
⎠ H2,τ3

i exp

⎛
⎝−

∑
l≥2

τl

l
Jl

⎞
⎠ , (A.56)

F2,τ
i = exp

⎛
⎝∑

l≥2

τl

l
Jl

⎞
⎠ F2,τ3

i exp

⎛
⎝−

∑
l≥2

τl

l
Jl

⎞
⎠ . (A.57)

Thus, by construction (recall (A.48)), we find that F̄ s satisfies

e−F̄s
H2,τ

i eF̄s = O(θ)2, e−F̄s
F2,τ

i eF̄s = O(θ)3. (A.58)

Then, it follows that

F(SAτ ) = F̄ s + O(θ4). (A.59)
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Again, one can repeat the same trick for every set SAτ of differential operators of
arbitrary dilaton shift ε = 1. This proves that (5.3) holds for any SAτ .

A.4.1. Justification of Proposition 5.2

We finish the proof of Proposition 5.1 with comments about truncation phenomena
which simultaneously justifies Proposition 5.2. It is shown in [5] that the partition
function eFS of the continuum limit of supereigenvalue models is annihilated by
(Gn+1/2)n≥−1 defined in Eq. (29) in [5] which are represented by a set of variables
(ti , τi )i≥0. Note that (τi )i≥0 denote their Grassmann variables only here and in (A.60),
but they denote dilaton shift parameters anywhere else. Furthermore, they conjectured
that FS is given by the partition function of the continuum limit of Hermitian matrix
models which also relates to Fg(Aτ3) [22,39,51]. This conjecture, in particular, its
truncation property is proven in [42]. Explicitly, their notation is translated into ours
as follows:

∀i ≥ 0, ti = x2i+1, τi = θ2i

√
2
, x2i = θ2i+1 = 0, κ2 = 2�,

(A.60)

Gi−3/2 = 1√
2�

exp

(
−1

3
J3

)
F2

i exp

(
1

3
J3

)
, (A.61)

eFS = exp

(
−1

3
J3

)
eF(SAτ3 ) exp

(
1

3
J3

)
, (A.62)

where the left-hand sides of these equalities are notation used in [5] and the right-hand
sides ours. Note that Eq. (31) in [5] is obtained by (5.3) in terms of the κ2-expansion
instead of �. Since the degree ofGrassmann variable dependence never increases under
taking conjugate with respect to (τl)l>0, we conclude from (A.62) and from the results
in [5,42] that F(SAτ ) with ε = 3 truncates at quadratic order in Grassmann variables
θ i . We cannot apply this argument to cases with ε = 1 because the results in [5,42]
are valid only for τl = δl,3. This completes the proof of Proposition 5.1.

With (A.62) being shown, one can easily follow [3,53] to compute correlation
functions of (2, 4�)-minimal superconformal models coupled to Liouville supergrav-
ity. Note that FS has nonzero F0,1|0, F0,2|0, and F0,0|2 unlike F(SAτ3) due to the
(inverse) dilaton shift (A.62).

A.5. Proof of Proposition 5.3

We apply the N = 1 super topological recursion to prove Proposition 5.3 instead
of super Airy structures. Concretely, we first derive the super loop equations of
supereigenvalue models in the Neveu–Schwarz sector, and then next, we determine
an appropriate local super spectral curve with the help of the results shown in [13].
Finally, we evaluate the super loop equations on the local super spectral curve and
show that the super loop equations of supereigenvalue models fit into the framework
of abstract super loop equations. Bouchard and Osuga [13] show a recursive formula
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for correlation functions without half-order differentials thanks to a great simplifi-
cation due to [5,42]. Here instead, we will take a different definition of correlation
functions in such a way that the N = 1 super topological recursion suits well. Parts
of computations and analyses below are taken from [13].

A.5.1. Super loop equations

As the first step towards the proof of Proposition 5.3,we derive the super loop equations
of supereigenvaluemodels. Let FN S = log Z N S be the free energy of 1-cut supereigen-
value models in the Neveu–Schwarz sector with coupling constants {gk, ξk+ 1

2
}k∈Z≥0 .

The bosonic and fermionic potentials are defined with the coupling constants and a
formal variable x as

V (x) =
∑
k≥0

gk xk, �N S(x) =
∑
k≥0

ξk+ 1
2
xk . (A.63)

The partition function is annihilated by super Virasoro operators {Ln, Gn+ 1
2
}n∈Z≥−1

in the Neveu–Schwarz sector,

∀ n ∈ Z≥−1, Ln Z N S = Gn+ 1
2

Z = 0, (A.64)

where the representation of these operators can be found in [13]. Note that FN S is
not the free energy of the associated super Airy structure. Accordingly, these super
Virasoro operators do not form a nontrivial super Airy structure.6

Let 2N be the number of bosonic (equiv. fermionic) eigenvalues in supereigenvalue
models. It can be shown that the free energy enjoy the 1/N -expansion, that is,

FN S =
∑
g≥0

(
1

N

)2−2g

FN S,g. (A.65)

We introduce the bosonic and fermionic loop insertion operators as

∂

∂V (x)
:= −

∑
k≥0

1

xk+1

∂

∂gk
,

∂

∂�N S(x)
:= −

∑
k≥0

1

xk+1

∂

∂ξk+ 1
2

. (A.66)

Then, correlation functions Wg,n|2m are defined by

Wg,n|m(J |K ) =
(
1

N

)2g−2+n+m n∏
i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�N S(x̃m−i )
FN S,g. (A.67)

Note that the power of N is inserted so that Wg,n|m(J |K ) are independent of N . Also,
the ordering of the fermionic loop insertion operators is important as sign may appear

6 After an appropriate conjugation, they can form a super Airy structure whose associated free energy is
zero. See [9].
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if the order is chosen differently. In particular, our definition is different from that in
[13,47] to match with the abstract super loop equations.

Their super loop equations are derived from the following series

∑
n≥−1

1

xn+2

1

Z N S
Ln Z N S = 0,

∑
n≥−1

1

xn+2

1

Z N S
Gn+ 1

2
Z N S = 0. (A.68)

As shown in [13, Section 3.4], our first step is to manipulate the above series into the
following forms:

P N S,B B
g,1|0 (x |) = −V ′(x)Wg,1|0(x |) + 1

2

∑
g1+g2=g

Wg1,1|0(x |)Wg2,1|0(x |)

+ 1

2
Wg−1,2|0(x, x |)

− 1

2
W ′

g,0|1(|x)�N S(x) − 1

2
� ′

N S(x)Wg,0|1(|x)

+ 1

2

∑
g1+g2=g

W ′
g1,0|1(|x)Wg2,0|1(|x) − 1

2
W ′

g2,0|1(|x, x̃)

∣∣∣
x̃=x

, (A.69)

P N S,F B
g,0|1 (|x) = −V ′(x)Wg,0|1(|x) − �N S(x)Wg,1|0(x |)

+
∑

g1+g2=g

Wg1,1|0(x |)Wg2,0|1(|x)) + Wg−1,1|1(x |x), (A.70)

where the prime denotes the derivative with respect to x and

P N S,B B
g,1|0 (x |)

=
∑

n,k≥0

xn

(
(n + k + 2)gn+k+2

∂

∂gk
+ 1

2
(n + 2k + 3)ξn+k+ 5

2

∂

∂ξk+ 1
2

)
FN S,g,

(A.71)

P N S,F B
g,0|1 (|x)

=
∑

n,k≥0

xn

(
(n + k + 2)gn+k+2

∂

∂ξk+ 1
2

+ ξn+k+ 3
2

∂

∂gk

)
FN S,g. (A.72)

If we act an arbitrary number of times with the loop insertion operators on
P N S,B B

g,1|0 (x |) and P N S,F B
g,0|1 (|x), we get from (A.71), (A.72) that

QN S,B B
g,n+1,m(x, J |K ) :=

(
1

N

)n+m n∏
i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�N S(x̃m−i )
P N S,B B

g,1|0 (x |)

= P N S,B B
g,n+1|m(x, J |K ) −

n∑
i=1

d

dxi

Wg,n|m(J |K )

x − xi
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+
m∑

j=1

(−1)m
(
1

2

d

dx

Wg,n|m(J |K )

x − x̃ j
− d

dx̃ j

Wg,n|m(J |K )

x − x̃ j

)
,

(A.73)

QN S,F B
g,n|m+1(J |x, K ) :=

(
1

N

)n+m n∏
i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�N S(x̃m−i )
P N S,B F

g,1|0 (x |)

= P N S,F B
g,n|m+1(J |x, K ) −

n∑
i=1

d

dxi

Wg,n−1|m+1(J\xi |xi , K )

x − xi

−
m∑

j=1

(−1)m 1

2

Wg,n|m(x̃ j , J |K\x̃ j )

x − x̃ j
(A.74)

where

P N S,B B
g,n+1|m(x, J |K ) =

(
1

N

)n+m ∑
n,k≥0

xn
(

(n + k + 2)gn+k+2
∂

∂gk

+1

2
(n + 2k + 3)ξn+k+ 5

2

∂

∂ξk+ 1
2

)

·
n∏

i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�N S(x̃m−i )
FN S,g, (A.75)

P N S,F B
g,n|m+1(x, J |K ) =

(
1

N

)n+m ∑
n,k≥0

xn

(
(n + k + 2)gn+k+2

∂

∂ξk+ 1
2

+ ξn+k+ 3
2

∂

∂gk

)

·
n∏

i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�N S(x̃m−i )
FN S,g. (A.76)

At the same time, (A.69) and (A.70) imply that

QN S,B B
g,n+1,m(x, J |K )

= −V ′(x)Wg,n+1|m(x, J |K )

+
n∑

i=1

1

(x − xi )2
Wg,n,m(x, J\xi |K )

+ 1

2
Wg−1,n+2|m(x, x, J |K )

− 1

2
W ′

g−1,n|m+2(J |x, x̃, K )

∣∣∣
x̃=x

+ 1

2

∑
g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρWg1,n1+1|2m1(x, J1|K1)Wg2,n2+1|m2(x, J2|K2)

123



N = 1 super topological recursion Page 43 of 54 144

− 1

2
W ′

g,n|m+1(J |x, K )�N S(x)

+ 1

2

m∑
j=1

(−1) j−1 1

x − x̃ j
W ′

g,n|m(J |x, K\x̃ j )

− 1

2
� ′

N S(x)Wg,n|m+1(J |x, K )

− 1

2

m∑
j=1

(−1) j−1 d

dx

1

x − x̃ j
Wg,n|m(J |x, K\x̃ j )

+ 1

2

∑
g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρW ′
g1,n1|m1+1(J1|x, K1)Wg2,0|1(J2|x, K2), (A.77)

and

QN S,F B
g,n|m+1(J |x, K )

= −V ′(x)Wg,n|m+1(J |x, K )

+
n∑

i=1

1

(x − xi )2
Wg,n−1,m+1(J\xi |x, K )

− �N S(x)Wg,n+1|,(x, J |K )

−
m∑

j=1

(−1) j−1 1

x − x̃ j
Wg,n+1|m−1(x, J |K\x̃ j )

+ Wg−1,n+1|m+1(x, J |x, K )

+
∑

g1+g2=g

∑
J1∪J2=J

K1∪K2=K

(−1)ρWg1,n1+1|2m1(x, J1|K1)Wg2,n2|m2+1(J2|x, K2).

(A.78)

In the computations, we used

∂

∂V (x1)
V (x) = − 1

(x − x1)2
,

∂

∂�N S(x̃1)
�N S(x) = 1

x − x̃1
. (A.79)

We note that these super loop equations are derived without referring to the reduction
[5,42]. Although (A.77) and (A.78) are called the super loop equations of supereigen-
valuemodels in theNeveu–Schwarz sector,we still have to show that they are examples
of abstract super loop equations, when evaluated on an appropriate local super spectral
curve.
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A.5.2. Local super spectral curve

The second step is to find an appropriate local super spectral curve. To do so, however,
let us start with a global picture. We set the potentials V (x),�(x) to be polynomials.
Then, Bouchard and Osuga [13] showed that if we consider a hyperelliptic curve

y2 − (x − 1)(x + 1)(M(x))2 = 0, (A.80)

with parametrization

x(z) = 1

2

(
u + 1

u

)
, y(z) = 1

2

(
u − 1

u

)
M(x(u)), (A.81)

we find

ω0,1|0(u|) := M(x)y(u)dx(u) = 1

2

(
W (0)

0,1|0(u|) − V ′(x(u))
)
dx(u),

(A.82)

ω0,2|0(u1, u2|) := 1

2
W (0)

0,2|0(u1, u2|)dx1dx2 + dx1dx2
(x1 − x2)2

= du1du2

(u1 − u2)2
,

(A.83)

W (0)
0,0|2(|u1, u2) = −(x1 − x2)W (0)

0,2|0(u1, u2|), (A.84)

where the superscript (0) denotes the term independent of ξk-couplings. Note that they
are globally well-defined on the hyperelliptic curve.

Next, we will move to a local picture and define ω0,0|2. There are two ramification
points, u = ±1, and we focus on one of them, u = 1—the case with u = −1 goes
parallel. Moving from a global picture to a local picture is done by considering a local
coordinate z satisfying

x = 1

2

(
u + 1

u

)
= 1 + z2

2
, (A.85)

and by rewriting everything as formal expansion in z. Note that (A.85) is a valid
equation only in the neighbourhood of the ramification point u = 1. Furthermore,
we extend this local patch C to C

1|1 together with a Grassmann variable θ . With this
setting, we have from (A.82) and (A.83) that

ω0,1|0(z|) = 1

2
M(x)

(
u(z) − 1

u(z)

)
z dz, (A.86)

ω0,2|0(z1, z2|) = 1

(u(z1) − u(z2))2
du(z1)

dz1

du(z2)

dz2
dz1dz2, (A.87)
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where they should be understood as formal expansion in z, z1, z2. Also, we define

ω0,0|2(|z1, z2) :=
(
1

2
W (0)

0,2|0(|z1, z2) − 1

(x1 − x2)

)
�1�2

= − x(z1) − x(z2)

dx(z1)dx(z2)
ω0,2|0(z1, z2|)�1�2 (A.88)

Again this should be understood as formal expansion in z1, z2. Notice that
(ω0,1|0, ω0,2|0, ω0,0|2) in formal expansion in z provide the defining data of one of the
two components of a local super spectral curve (Definition 2.5). Therefore, together
with a similar analysis for the case with u = −1 and mixed cases for ω0,2|0, ω0,0|2,
we have found an appropriate local super spectral curve of two components given in
(5.6), (5.8), and (5.9).

A.5.3. Abstract super loop equations

The final task towards the proof of Proposition 5.3 is to transform the super loop
equations of supereigenvalue models evaluated on the above local super spectral curve
into the abstract super loop equations on the local super spectral curve. Again we only
discuss the case with u = 1 and the case with u = −1 immediately follow. By
construction, we know that ω0,1|0, ω0,2|0, ω0,0|2 satisfy the linear abstract super loop
equations

ω0,1|0(z1|) + ω0,1|0(σ (z1)|) = 0, (A.89)

ω0,2|0(z1, z2|) + ω0,2|0(σ (z1), z2|) = dx1dx2
(x1 − x2)2

, (A.90)

ω0,0|2(|z1, z2) + ω0,0|2(|σ(z1), z2) = − �1�2

x1 − x2
. (A.91)

For 2g + n + 2m ≥ 3, we define

ωg,n|2m(J |K ) = 2g−1W (0)
g,n|2m(J |K )

n⊗
i=1

dx(zi )

2m⊗
j=1

�(z̃ j ). (A.92)

The 2g−1 is inserted for convention, but this is indeed related to (A.60)—one can
think of κ = 1/N . We would like to rewrite the ξk-coupling independent terms on the
right-hand sides of (A.77) and (A.78) with respect to ωg,n|2m . In order to do so, let us
give a list of what we have to do:

(1) multiply to (A.77)

dx(z)⊗2
n⊗

i=1

dx(zi )

2m⊗
j=1

�(z̃ j ) (A.93)
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(2) multiply to (A.78)

dx(z)�(z)
n⊗

i=1

dx(zi )

2m−1⊗
j=1

�(z̃ j ) (A.94)

(3) use (A.82), (A.89), (A.90), and (A.91)whenever possible to get rid of the following
terms:

V ′(x(z))dx(z), ,
dx(z)dx(zi )

(x(z) − x(zi ))2
, −�(z)�(x̃ j )

x − x̃ j
. (A.95)

(4) use the following relation whenever necessary,

1

2
dxdxW ′

0,0|2(|z, z̃)
∣∣∣
z̃=z

= Dz · ω0,0|2(|z, z̃)
∣∣∣
z̃=σ(z)

= Dz · ω0,0|2(|σ(z), z̃)
∣∣∣
z̃=z

,

(A.96)

There is one more important process to arrive at the abstract super loop equa-
tions. A key observation is that after setting V (x),�(x) to be polynomials in x , both
QN S,B B

g,n+1,m(x, J |K ) and QN S,F B
g,n|m+1(J |x, K ) become functions of x which is regular in

the neighbourhood of z = 0. This can be explicitly seen by (A.73) and (A.74). Thus,
locally we have

QN S,B B
g,n+1|m(x, J |K )dxdx ∈ zV B+ ⊗ zV B+, (A.97)

QN S,F B
g,n|m+1(J |x, K )dx�z ∈ zV B+

z ⊗ V F+
z , (A.98)

which agreewith the defining condition for the quadratic abstract super loop equations.
Moreover, since it is invariant under z → σ(z) = −z, we can show7 by induction in
2g + n + 2m ≥ 3,

ωg,n|2m(z, J |K ) + ωg,n|2m(σ (z), J |K ) = 0, (A.99)

ωg,n|2m(J |z, K ) + ωg,n|2m(J |σ(z), K ) = 0. (A.100)

They agree with the linear super loop equations. With these relations in hands, we add
another step to the list:

(5) use (A.99) and (A.100) whenever appropriate to obtain the quadratic abstract super
loop equations.

If we proceed (1)–(5) inductively, we can show that the right-hand sides of (A.77) and
(A.78) agree with the quadratic abstract super loop equations with an overall factor of
2−g .

7 See Section 2.3.2, Bouchard and Osuga [13] for an analogous analysis on a global spectral curve. Com-
putations are parallel.
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As the final remark, it is not a priori guaranteed that ωg,n|2m respects the polariza-
tion:

ωg,n|2m ∈
⎛
⎝ n⊗

j=1

V B−
z j

⎞
⎠ ⊗

(
2m⊗
k=1

V F 0,−
uk ,θk

)
. (A.101)

This is rather a property that we have to show by investigating their pole structures.
Fortunately, this property has been shown in [13] from a global point of view, and it
is straightforward to transform their results into our local description.

In summary, we have found a local super spectral curve of supereigenvalue models
in the Neveu–Schwarz sector, and have shown that their correlation functions respect
the polarization and that they satisfy the abstract super loop equations. Therefore,
thanks to Proposition 3.1 and Corollary 4.5, the N = 1 super topological recursion
uniquely constructs all correlation functions of supereigenvalue models in the Neveu–
Schwarz sector. This completes the proof of Proposition 5.3.

A.6. Proof of Proposition 5.4

The recursive formula for correlation functions of supereigenvalue models in the
Ramond sector was recently obtained in [47] where correlation functions are defined
as meromorphic differentials on a certain hyperelliptic curve without a superconfor-
mal structure. Thus, similar to the NS sector, we will define correlation functions
differently from how [47] does so that they fit to the framework of the N = 1 super
topological recursion. Since the strategy for the proof is very similar to that for the
Neveu–Schwarz sector, we only point out some important differences and omit all
other straightforward tedious computations.

A.6.1. Super loop equations

We first derive the super loop equations of supereigenvalue models in the Ramond
sector. Let Z R be the partition function of supereigenvalue models in the Ramond
sector, then it is crucial to remark that Z is annihilated by Ln+1, Gm for nonnegative
integers n, m, and it is not annihilated by L0 but rather

L0Z R = 1

16
Z R, (A.102)

where the explicit representation of these operators can be found in [47]. In particular,
L−1Z R �= 0. The bosonic potential V (x) and the bosonic loop insertion operator
are defined in the same way as in the Neveu–Schwarz sector. On the other hand, the
fermionic ones are defined with half-integer powers of x as

�R(x) =
∑
k≥0

ξk xk− 1
2 ,

∂

∂�R(x)
= −

∑
k≥0

1

1 + δk,0

1

xk+ 1
2

∂

∂ξk
. (A.103)
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Note that the δk,0 factor is due to existence of the fermionic zero mode ψ0 with
{ψ0, ψ0} = 1 which is represented as

ψ0 = ξ0 + 1

2

∂

∂ξ0
. (A.104)

Accordingly, correlation functions are defined by acing an arbitrary number of times
with the loop insertion operators on the free energy FR = log Z R as

Wg,n|m(J |K ) =
(
1

N

)2g−2+n+m n∏
i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�R(x̃m−i )
FR,g. (A.105)

In contrast to theNeveu–Schwarz sector, however, the 1/N -expansion is anassumption
rather than a consequence due to the lack of relation to Hermitian matrix models.

It is discussed in [47] that
√

x is not a well-defined function on a Riemann surface.
In order to avoid this issue, Osuga [47] introduces a variant of the fermionic potential
and fermionic loop insertion operator in order to make correlation functions well-
defined on a global spectral curve. Since our formalism in the present paper is local,
however, we can take the definition (A.103), which in fact seems more natural from
a vertex operator algebra point of view. Effectively, one needs to divide by

√
x or

multiply
√

x to the fermionic potential and the fermionic loop insertion operator if
one wants to match with [47]’s notation.

The super loop equations in the Ramond sector are derived from the following
series:

∑
n≥0

1

xn+2

1

Z R

(
Ln − δn,0

16

)
Z R = 0,

∑
n≥0

1

xn+ 3
2

1

Z R
Gn Z R = 0. (A.106)

By acting an arbitrary number of times with the loop insertion operators, one can
manipulate and bring the two power series into similar expressions to (A.77), (A.73),
(A.78), and (A.74). Even though computations are tedious, the results in the Ramond
sector are obtained by the following replacements. See “Appendix A”, Osuga [47] for
a justification. Almost all computations are parallel:

NS-R dictionary

NS-R 1 Replace �N S(x) with �R(x)

NS-R 2 Replace the fermionic loop insertion operator

∂

∂�N S(x)
	→ ∂

∂�R(x)
(A.107)

NS-R 3 Replace as follows on the right-hand sides of (A.77) and (A.78)

1

x − x̃ j
	→ 1

2

x + x̃ j

x − x̃ j

1√
x
√

x̃ j
, (A.108)
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NS-R 4 Replace (P N S,B B
g,n+1|m, P N S,F B

g,n|m+1) with (P R,B B
g,n+1|m, P R,F B

g,n|m+1) where

P R,B B
g,n+1|m(x, J |K )

=
∑

n≥−1,k≥0

xn
(

(n + k + 2)gn+k+2
∂

∂gk
+ 1

2

n + 2k + 2

1 + δk,0
ξn+k+2

∂

∂ξk

)

×
n∏

i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�R(x̃m−i )
FR,g, (A.109)

P R,F B
g,n|m+1(J |x, K )

=
∑

n,k≥0

xn− 1
2

(
n + k + 1

1 + δk,0
gn+k+1

∂

∂ξk
+ ξn+k+1

∂

∂gk

)

×
n∏

i=1

∂

∂V (xi )

m−1∏
i=0

∂

∂�R(x̃m−i )
FR,g. (A.110)

NS-R 5 Add the following terms to the right-hand side of (A.73)

− 1

x

n∑
i=1

d

dxi
Wg,n|m(J |K ) − 1

x

m∑
j=1

(−1) j−1 d

dx̃ j
Wg,n|m(J |K ), (A.111)

NS-R 6 Replace as follows in (A.74)

1

x − xi
	→ 1

x − xi

√
xi√
x

,
1

x − x̃ j
	→ 1

x − x̃ j

√
x̃ j√
x

(A.112)

Note that (A.108) is a consequence of the following result instead of (A.79):

∂

∂�R(x2)
�R(x1) = 1

2

x1 + x2
x1 − x2

1√
x1

√
x2

. (A.113)

Crucial differences from a global point of view [47] are not only the appear-
ances of

√
x , but also that Q R,B B

g,n+1|m(x, J |K ) has a simple pole at x → 0 unlike the

QN S,B B
g,n+1|m(x, J |K ). As explained in [47], this originates from the fact that L−1Z R �= 0.

However, as long as we stick to a local description in a neighbourhood far from x → 0,
we do not have to worry about the pole. This is one of advantages of super topological
recursion—one can treat both the Neveu–Schwarz and Ramond sector in the same
footing.
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A.6.2. Local super spectral curve and abstract super loop equations

Let us find the local super spectral curve for the Ramond sector. It is proven in [47]
that the (global) spectral curve is given by

xy2 − (x − 1)(M(x))2 = 0. (A.114)

If we choose the parametrization as

x = 1

1 − u2 , y = u M(x(u)), (A.115)

then there are two ramification points u = 0,∞. Furthermore, Osuga [47] has shown
that there is no contribution to the recursion from the irregular ramification point
at u = ∞ thanks to a supersymmetric cancellation. Hence, we just focus on the
regular ramification point u = 0. This is critical because x = 0 at the irregular
ramification point u = ∞, which is exactly where we would like to avoid because
Q R,B B

g,n+1|m(x, J |K ) has a simple pole at x = 0. The supersymmetric cancellation nicely
saves us from this issue.

We introduce a local coordinate z in the neighbourhood of u = 0 by

x = 1 + z2

2
= 1

1 − u2 , (A.116)

and extend this patch C to C
1|1. Similar to the Neveu–Schwarz sector, we define

ω0,1|0(z|) := M(x)y(z)dx(z) = 1

2

(
W (0)

0,1|0(z|) − V ′(x(z))
)
dx(z),

(A.117)

ω0,2|0(z1, z2|) := 1

2
W (0)

0,2|0(z1, z2|)dx(z1)dx(z2) + dx(z1)dx(z2)

(x(z1) − x(z2))2

= du(z1)du(z2)

(u(z1) − u(z2))2
, (A.118)

where they should be understood as formal expansions in z, z1, z2. The explicit form of
ω0,0|2(|z1, z2)was derived in [47] from a global point of view. In our local description,
we get

ω0,0|2(|z1, z2) :=
(
1

2
W (0)

0,2|0(|z1, z2) − 1

2

x1 + x2
x1 − x2

1√
x1

√
x2

)
�1�2

=−(u(z1)+u(z2))(1−u(z1)u(z2))

4u(z1)u(z2)(u(z1)−u(z2))

(
1+ z21

2

)− 1
2
(
1+ z22

2

)− 1
2

�1�2,

(A.119)
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where this should be understood as a formal expansion in z1, z2. These (ω0,1|0, ω0,2|0,
ω0,0|2) provide the defining data of a local super spectral curve for the Ramond sector.
Note that instead of (A.91) we now have

ω0,0|2(|z, z1) + ω0,0|2(|σ(z), z1) = −1

2

x + x1
x − x1

1√
x
√

x1
�1�2. (A.120)

Starting with this local super spectral curve, we can go through procedure (1)–(5)
listed in Appendix A.5 with only one change, use (A.120) instead of (A.91), and we
obtain the abstract super loop equations for the Ramond sector. Moreover, it is shown
in [47] that correlation functions respect the polarization. This completes the proof of
Proposition 5.4.

A.7. Proof of Proposition 5.6

Let us first show that

ω0,0|4 = ω0,1|4 = 0, (A.121)

for any local super spectral curve. This can be easily shown by counting the degree of
poles. Since this is trivial if ε = 1, we focus on local super spectral curves with ε = 3
and we normalize τ3 = 1. Given a regular local super spectral curve, we find

ω0,3|0(z1, z2, z3|) = −dξ−1(z1)dξ−1(z2)dξ−1(z3), (A.122)

ω0,1|2(z1|u1, u2) = −1

2
dξ−1(z1)

(
η−2(u1)η0(u2) − η0(u1)η−2(u2)

)
. (A.123)

The degree of poles of the integrand in (3.4) and (3.5) increases by 2whenχ = 2g+n+
2m increases by1due to their recursion kernels. In particular,ω0,0|4 canonly havepoles
up to the degree of η−4 but not higher (this can be explicitly verified with (3.5)). Since
there is no (η−2l−1)l∈Z due to the linear fermionic loop equations, ω0,0|4 should be
given by a linear combination of products of {η0, η−2, η−4}. However, {η0, η−2, η−4}
is not enough to construct a completely antisymmetric linear combination. This shows
that ω0,0|4 = 0.

For ω0,1|4, one may naively think that it can have poles up to the degree of η−6.
Indeed, by looking at the pole structure of the integrand, the following terms in (3.5)
for ω0,1|4 give:

Res
z→0

K F B(u1, z, σ (z))
(
ω0,0|2(|z, u2)ω0,2|2(z1,−z|u3, u4)

+ ω0,1|2(z1|z, u2)ω0,1|2(−z|u3, u4) + (z ↔ −z)
)

= c dξ−1(z1)η−6(u1)η0(u2)
(
η−2(u3)η0(u4) − η0(u3)η−2(u4)

)
+ terms independent of η−6(u1), (A.124)
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for some c ∈ C. However, after complete antisymmetrization, these terms vanish and
we get ω0,1|4 = 0. Finally, by induction we can show that ω0,0|2m = 0 by (3.4) and
ω0,1|2m = 0 by (3.5) for m ≥ 2.
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