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Abstract
We discuss some bulk-surface gapped Hamiltonians on a lattice with corners and
propose a periodic table for topological invariants related to corner states aimed at
studies of higher-order topological insulators. Our table is based on four things: (1)
the definition of topological invariants, (2) a proof of their relation with corner states,
(3) computations of K -groups and (4) a construction of explicit examples.
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1 Introduction

Recent developments in condensed matter physics have greatly generalized the
bulk-boundary correspondence for topological insulators to include corner states.
Topological insulators have a gapped bulk, which incorporates some topology that do
not change unless the spectral gap of the bulk Hamiltonian closes under deformations.
Examples include the TKNN number for quantum Hall systems [66] and the Kane-
Mele Z2 index for quantum spin Hall systems [37]. It is known that, corresponding
to these bulk invariants, gapless edge states appear, which is called the bulk-boundary
correspondence [32]. After Schnyder–Ryu–Furusaki–Ludwig’s classification of topo-
logical insulators [61] for ten Altland–Zirnbauer classes [2], Kitaev noted the role of
K -theory and Bott periodicity in the classification problem and obtained the famous
periodic table [43]. Recently, some (at least bulk) gapped systems possessing in-gap or
gapless states localized around a higher-codimensional part of the boundary (corners
or hinges) are studied [12,31,42], which are called higher-order topological insula-
tors (HOTIs) [60]. For example, for second-order topological insulators, not only is
the bulk gapped but also the codimension-one boundaries (edges, surfaces), and an
in-gap or a gapless state appears around codimension-two corners or hinges. In this
framework, conventional topological insulators are regarded as first-order topological
insulators. HOTIs are now actively studied and the classification of HOTIs has also
been proposed [26,41,53]. Generalizing the bulk-boundary correspondence, relations
between some gapped topology and corner states are much discussed [5,64,67].

Initiated by Bellissard, K -theory and index theory are known to provide a
powerful tool to study topological insulators. Bellissard–van Elst–Schulz-Baldes
studied quantum Hall effects by means of noncommutative geometry [10,11], and
Kellendonk–Richter–Schulz–Baldes went on to prove the bulk-boundary correspon-
dence by using index theory for Toeplitz operators [40]. The study of topological
insulators, especially regarding its classification and the bulk-boundary correspon-
dence for each of the ten Altland–Zirnbauer classes by using K -theory and index
theory, has been much developed [1,16,17,24,28,30,39,40,45,49,58,65,65]. In [33],
three-dimensional (3-D) class A bulk periodic systems are studied on one piece of a
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lattice cut by two specific hyperplanes, which is a model for systems with corners.
Based on the index theory for quarter-plane Toeplitz operators [23,55,63], a topolog-
ical invariant is defined assuming the spectral gap both on the bulk Hamiltonian and
on two half-space compressions of it. This gapped topological invariant is topolog-
ical in the sense that it does not change under continuous deformation of the bulk
Hamiltonians unless the spectral gap of one of the two surfaces closes. It is proved
that corresponding to this topology gapless corner states appear. A construction of
nontrivial examples by using two first-order topological insulators (of 2-D class A and
1-D class AIII) is also proposed. Class AIII codimension-two systems are also studied
through this method in [34] and, as an application to HOTIs, the appearance of topo-
logical corner states in Benalcazar–Bernevig–Hughes’ 2-D model [12] is explained
based on the chiral symmetry. The construction of examples in [34] leads to a proposal
of second-order semimetallic phase protected by the chiral symmetry [52].

The purpose of this paper is to expand the results in [33] to all Altland–Zirnbauer
classes and systems with corners of arbitrary codimension. Since class A and class
AIII systems (with codimension-two corners) were already discussed in [33,34] by
using complex K -theory, we focus on the remaining eight cases, for which we use
real K -theory. For our expansion, a basic scheme has already been well developed
in the above previous studies, which we mainly follow: some gapped Hamiltonian
defines an element of a KO-group of a real C∗-algebra, and its relation with corner
states are clarified by using index theory [16,17,24,30,39,40,45,65]. Although many
techniques have already been developed in studies of topological insulators, in our
higher-codimensional cases, we still lack some basic results at the level of K -theory
and index theory; hence, the first half of this paper is devoted to these K -theoretic
preliminaries, that is, the computation of KO-groups for real C∗-algebras associated
with the quarter-plane Toeplitz extension and the computation of boundary maps for
the 24-term exact sequence of KO-theory associated with it, which are carried out
in Sect. 3. Since the quarter-plane Toeplitz extension [55] is a key tool in our study
of codimension-two corners, such a variant for Toeplitz operators associated with
higher-codimensional corners should be clarified, which are carried out in Sect. 4.
These variants of Toeplitz operators were discussed in [22,23], and the contents in
Sect. 4 will be well known to experts. Since the author could not find an appropriate
reference, especially concerning Theorem 1 which will play a key role in Sect. 5, the
results are included for completeness. Note that the idea there to use tensor products
of the ordinary Toeplitz extension for the study of these variants is based on the
work of Douglas–Howe [23], where these higher-codimensional generalizations are
briefly mentioned. The study of some gapped phases for systems with corners in
Altland–Zirnbauer’s classification is carried out in Sect. 5. In the framework of the
one-particle approximation, we consider n-D systemswith a codimension k corner and
take compressions of the bulkHamiltonian onto infinite latticeswith codimension k−1
corners1 whose intersection makes the codimension k corner. We assume that they are
gapped.Note that, under this assumption, bulk, surfaces and corners up to codimension
k − 1 which constitute the codimension k corner are also gapped. For such a system,

1 In standard terminologies, they will be called edges, surfaces, hinges or edge of edges depending on n
and k. In this paper, we may simply call them corners but state its codimensions.
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we define two topological invariants as elements of some KO-groups: one is defined
for these gapped Hamiltonians, while the other one is related to in-gap or gapless
codimension k corner states. We then show a relation between these two which states
that topologically protected corner states appear reflecting some gapped topology
of the system. We first study codimension-two cases (Sects. 5.1 to 5.4) and then
discuss higher-codimensional cases (Sect. 5.5). This distinction is made because many
detailed results have been obtained for codimension-two cases by virtue of previous
studies of quarter-plane Toeplitz operators [36,55] (the shape of the corner we discuss
is more general than in higher-codimensional cases, and a relation between convex
and concave corners is also obtained in [34]). Based on these results, we propose a
classification table for topological invariants related to corner states (Table 1).Note that
the codimension-one case of Table 1 is Kitaev’s table [43] and Table 1 is also periodic
by the Bott periodicity. In order further to clarify a relation between our invariants and
corner states, in Sect. 5.6, we introduce Z or Z2-valued numerical corner invariants
when the dimension of the corner is zero or one. They are defined by (roughly speaking)
counting the number of corner states. A construction of examples is discussed in
Sect. 5.7. As in [33], this is given by using pairs of Hamiltonians of two lower-order
topological insulators. In the real classes, there are 64 pairs of them and the results are
collected in Table 12. By using this method, we can construct nontrivial examples of
each entry of Table 1, starting from Hamiltonians of first-order topological insulators.
The corner invariant for the constructed Hamiltonian is expressed by corner (or edge)
invariants of constituent two Hamiltonians. This is given by using an exterior product
of some KO-groups in general, though, as in [33,34], the formula for numerical
invariants introduced in Sect. 5.6 is also included. For computations of KO-groups
and classification of such gapped systems, we employ Boersema–Loring’s unitary
picture for KO-theory [14] whose definitions are collected in Sect. 2. Basic results
for some Toeplitz operators are also included there. In Appendix A, we revisit Atiyah–
Singer’s study of spaces of skew-adjoint Fredholm operators [9] and collect necessary
results from the viewpoint of Boersema–Loring’s K -theory. Definitions of some Z2-
spaces, maps between them, expression of boundary maps of 24-term exact sequences
used in this paper are collected there.

Finally, let us point out a relation with our results and the current rapidly developing
studies on HOTIs. In [26], the HOTIs are divided into two classes: intrinsic HOTIs,
which basically originate from the bulk topology protected by a point group symmetry,
and others extrinsicHOTIs. Our studywill be for extrinsic HOTIs since no-point group
symmetry is assumed and our classification table (Table 1) is consistent with that of
Table 1 in [26].

2 Preliminaries

In this section, we collect the necessary results and notations.
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2.1 Boersema–Loring’s KO-groups via unitary elements

In this subsection, we collect Boersema–Loring’s definition of KO-groups by using
unitaries satisfying some symmetries [14]. The basics of real C∗-algebras and KO-
theory can be found in [29,62], for example.

AC∗,τ -algebra is a pair (A , τ ) consisting of (complex) C∗-algebraA and an anti-
automorphism2 τ ofA satisfying τ 2 = 1. We call τ the transposition and write aτ for
τ(a). There is a category equivalence between the category of C∗,τ -algebras and the
category of real C∗-algebras: for a C∗,τ -algebra (A, τ ), the corresponding real C∗-
algebra isA τ = {a ∈ A | aτ = a∗}, and its inverse is given by the complexification.
A real structure on a (complex) C∗-algebra A is an antilinear ∗-automorphism r
satisfying r2 = 1. For a real structure r, there is an associated transposition τ given
by τ(a) = r(a∗), which gives a one-to-one correspondence between transpositions
and real structures on the C∗-algebra3. We extend the transposition τ on A to the
transposition (for which we simply write τ ) on the matrix algebra Mn(A ) by (ai j )τ =
(aτ

j i ) where ai j ∈ A and 1 ≤ i, j ≤ n. This induces a transposition τK on K ⊗A
where K = K (V ) is the C∗-algebra of compact operators on a separable complex
Hilbert space V . Let �⊗ τ be a transposition on M2(A ) defined by4

(
a11 a12
a21 a22

)�⊗τ

=
(

aτ
22 −aτ

12−aτ
21 aτ

11

)
.

If we identify the quaternionsHwithC
2 by x+ y j �→ (x, y), the left multiplication by

j corresponds to j(x, y) = (−ȳ, x̄). Then, we have �⊗ id = Ad j ◦∗where ∗ denotes
the operation of taking conjugation of matrices and the C∗,τ -algebra (M2(C), �⊗ id)
corresponds to the real C∗-algebra H of quaternions. We extend this transposition to
M2n(A ) by (bi j )�⊗τ = (b�⊗τ

j i ) where 1 ≤ i, j ≤ n and bi j ∈ M2(A ). On M2n(A ),

we also consider a transposition �̃⊗ τ defined by

(
c11 c12
c21 c22

)̃�⊗τ

=
(

cτ
22 −cτ

12−cτ
21 cτ

11

)
,

where ci j ∈ Mn(A ). For an m × m matrix X , we write Xn for the mn × mn block
diagonal matrix diag(X , . . . , X). For example, we write 1n for the n × n diagonal
matrix diag(1, . . . , 1).

Definition 1 (Boersema–Loring [14]) Let (A , τ ) be a unital C∗,τ -algebra. For
i = −1, 0, . . . , 6, let ni be a positive integer,Ri be a relation and I (i) be a matrix, as
indicated in Table 2. Let U (i)

k (A , τ ) be the set of all unitaries in Mni ·k(A ) satisfying

the relation Ri . On the set U (i)∞ (A , τ ) = ∪∞k=1U (i)
k (A , τ ), we consider the equiva-

lence relation ∼i generated by homotopy and stabilization given by I (i). We define

2 i.e., a complex linear automorphism of A that preserves ∗ and satisfies τ(ab) = τ(b)τ (a).
3 Boersema–Loring called τ the real structure in [14]. In this paper, we distinguish these two since the
antilinear structure naturally appears in our application. We call τ the transposition following [39].
4 For notations of the transpositions introduced here, we follow [14].
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Table 2 Boersema–Loring’s unitary picture for KO-theory [14]

i K O-group ni Ri I (i)

−1 KO−1(A , τ ) 1 uτ = u 1

0 KO0(A , τ ) 2 u = u∗, uτ = u∗ diag(1,−1)
1 KO1(A , τ ) 1 uτ = u∗ 1

2 KO2(A , τ ) 2 u = u∗, uτ = −u
(

0 i · 1
−i · 1 0

)

3 KO3(A , τ ) 2 u�⊗τ = u 12

4 KO4(A , τ ) 4 u = u∗, u�⊗τ = u∗ diag(12,−12)
5 KO5(A , τ ) 2 u�⊗τ = u∗ 12

6 KO6(A , τ ) 2 u = u∗, u�⊗τ = −u
(

0 i · 1
−i · 1 0

)

KOi (A , τ ) = U (i)∞ (A , τ )/ ∼i which is a group by the binary operation given by
[u] + [v] = [diag(u, v)].

For a nonunital C∗,τ -algebra (A, τ ), the i-th KO-group KOi (A , τ ) is defined as
the kernel of λ∗ : KOi ( ˜A , τ ) → KOi (C, id), where ˜A is the unitization of A and
λ : ˜A → C is the natural projection. In [14], they also describe the boundary maps
of the 24-term exact sequence for KO-theory associated with a short exact sequence
of C∗,τ -algebras. In Appendix A.3, we discuss an alternative description for some of
them through exponentials.

2.2 Toeplitz operators

In this subsection, we collect the definitions and basic results for some Toeplitz oper-
ators used in this paper [22,55].

LetT be the unit circle in the complex planeC, and let c be the complex conjugation
on C, that is, c(z) = z̄. Let n be a positive integer. On the n-dimensional torus T

n , we
consider an involution ζ defined as the n-fold product of c. This induces a transposition
τT on C(Tn) by (τT f )(t) = f (ζ(t)). Let Z≥0 be the set of nonnegative integers
and Pn be the orthogonal projection of l2(Zn) onto l2((Z≥0)n). For a continuous
function f : T

n → C, let M f be the multiplication operator on l2(Zn) generated by
f . We consider the operator PnM f Pn on l2((Z≥0)n), which is the Toeplitz operator
associated with the subsemigroup (Z≥0)n of Z

n of symbol f . We write T n for the
C∗-subalgebra of B(l2((Z≥0)n)) generated by these Toeplitz operators. The algebra
T 1 is the ordinary Toeplitz algebra, and we simply write T . Note that the algebra
T n is isomorphic to the n-fold tensor product of T . The complex conjugation c on
C induces an antiunitary operator5 of order two on the Hilbert space l2(Zn) by the
pointwise operation, for which we also write c. This induces a real structure c on

5 An operator A on a complex Hilbert space V is called the antiunitary operator if A is an antilinear
bijection on V satisfying 〈Av, Aw〉 = 〈v, w〉 for any v and w in V .
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B(l2((Z≥0)n)) by c(a) = Adc(a) = cac∗. We write τT for the transposition on T n

given by its restriction onto T n .
We next focus on the case of n = 2. We consider the Hilbert space l2(Z2) and take

its orthonormal basis {δm,n | (m, n) ∈ Z
2}, where δm,n is the characteristic function

of the point (m, n) on Z
2. When f ∈ C(T2) is given by f (z1, z2) = zm1 z

n
2, we write

Mm,n for the multiplication operator M f . Let α < β be real numbers, and let H α ,
H β , Ĥ α,β and Ȟ α,β be closed subspaces of l2(Z2) spanned by {δm,n |−αm+ n ≥
0}, {δm,n | − βm + n ≤ 0}, {δm,n | − αm + n ≥ 0 and − βm + n ≤ 0}, and
{δm,n | − αm + n ≥ 0 or − βm + n ≤ 0}, respectively. In the following, we
may take α = −∞ or β = ∞, but not both. Let Pα , Pβ , P̂α,β and P̌α,β be the
orthogonal projection of l2(Z2) onto H α , H β , Ĥ α,β and Ȟ α,β , respectively. For
f ∈ C(T2), the operators PαM f Pα on H α and PβM f Pβ on H β are called half-

plane Toeplitz operators. The operator P̂α,βM f P̂α,β on Ĥ α,β is called the quarter-
planeToeplitz operator, and P̌α,βM f P̌α,β on Ȟ α,β is its concave corner analogue.We
writeT α andT β forC∗-algebras generated by these half-planeToeplitz operators and
T̂ α,β and Ť α,β for C∗-algebras generated by the quarter-plane and concave corner
Toeplitz operators, respectively. There are ∗-homomorphisms σα : T α → C(T2)

and σβ : T β → C(T2), which map PαM f Pα and PβM f Pβ to the symbol f ,
respectively. We define the C∗-algebra S α,β as a pullback C∗-algebra of these two
∗-homomorphisms. The real structure c on H = l2(Z2) induces real structures c on
T α , T β , T̂ α,β , Ť α,β , and S α,β and thus induces transpositions τα , τβ , τ̂α,β , τ̌α,β

and τS onT α ,T β , T̂ α,β , Ť α,β andS α,β , respectively. For transpositions, we may
simply write τ when it is clear from the context. The maps σα and σβ preserve the
real structures, and we have the following pullback diagram:

(S α,β, τS )
pβ

pα

(T β, τβ)

σβ

(T α, τα)
σα

(C(T2), τT)

(1)

Wewrite σ for the composition σα ◦ pα = σβ ◦ pβ . Let γ̂ be a ∗-homomorphism from
T̂ α,β to S α,β which maps P̂α,βM f P̂α,β to the pair (PαM f Pα, PβM f Pβ). This
map γ̂ preserves the real structures, and there is the following short exact sequence of
C∗,τ -algebras (Park [55]):

0→ (K (Ĥ α,β), τK )→ (T̂ α,β, τ̂α,β)
γ̂→ (S α,β, τS )→ 0, (2)

where the map from (K (Ĥ α,β), τK ) to (T̂ α,β, τ̂α,β) is the inclusion. Its concave
corner analogue is studied in [34], and the following exact sequence is obtained:

0→ (K (Ȟ α,β), τK )→ (Ť α,β, τ̌α,β)
γ̌→ (S α,β, τS )→ 0, (3)

where γ̌ is a ∗-homomorphism mapping P̌α,βM f P̌α,β to (PαM f Pα, PβM f Pβ).
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3 KO-groups of C∗-algebras associated with half-plane and
quarter-plane toeplitz operators

In this section, the KO-theory for half-plane and quarter-plane Toeplitz operators
is discussed. In Sect. 3.1, KO-groups of the half-plane Toeplitz algebra are com-
puted. Quarter-plane Toeplitz operators are discussed in the following sections, and
the KO-groups of theC∗,τ -algebra (S α,β, τS ) are computed in Sect. 3.2. In Sect 3.3,
the boundary maps of the 24-term exact sequence for KO-theory associated with
sequence (2) are discussed and the KO-groups of the quarter-plane Toeplitz algebra
(T̂ α,β, τ̂α,β) are computed.

3.1 KO-groups of (T ˛, �˛)

We compute the KO-groups of the C∗,τ -algebra (T α, τα). The discussion is divided
into two cases whether α is rational (or −∞) or irrational.

We first consider the case when α is a rational number or −∞. When α ∈ Q, we
write α = p

q where p and q are relatively prime integers and q is positive. Let m and
n be integers such that −pm + qn = 1 and let

Γ =
(

n −m
−p q

)
∈ SL(2, Z). (4)

Then, the action of Γ on Z
2 induces the Hilbert space isomorphism H α ∼= H 0

and an isomorphism of C∗,τ -algebras (T α, τα) ∼= (T 0, τ0). Thus, the C∗,τ -algebra
(T α, τα) is isomorphic to (T , τT )⊗ (C(T), τT), and its KO-groups are computed
as KOi (T α, τα) ∼= KOi (C(T), τT) ∼= KOi (C, id)⊕KOi−1(C, id). For the first iso-
morphism, see Proposition 1.5.1 of [62]. Generators of the group KOi (C(T), τT) are
obtained in Example 9.2 of [14], and the unital ∗-homomorphism ι : C → T induces
an isomorphism (id ⊗ ι)∗ : KOi (C(T), τT) → KOi ((C(T), τT) ⊗ (T , τT )) ∼=
KOi (T 0, τ0). Combined with them, KO-group KOi (T α, τα) and its generators
are given as follows.

– KO0(T α, τα) ∼= Z and its generator is [12].
– KO1(T α, τα) ∼= Z2⊕Z. A generator ofZ2 is [−1] and that ofZ is [PαMq,p Pα].
– KO2(T α, τα) ∼= (Z2)

2. A generator of one Z2 is [−I (2)], and that of another Z2

is

[(
0 i PαMq,p Pα

−i PαM−q,−p Pα 0

)]
.

– KO3(T α, τα) ∼= Z2 and its generator is [diag(PαMq,p Pα, PαM−q,−p Pα)].
– KO4(T α, τα) ∼= Z and its generator is [14].
– KO5(T α, τα) ∼= Z and its generator is [diag(PαMq,p Pα, PαMq,p Pα)].
– KO6(T α, τα) = KO−1(T α, τα) = 0.

The case of α = −∞ is computed similarly, and its generators are given by replacing
p and q above with −1 and 0, respectively.

We next consider the cases of irrational α. In this case, complex K -groups of T α

are computed by Ji–Kaminker and Xia in [35,70].
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Lemma 1 For irrational α and for each i , we have K Oi (T α, τα) ∼= KOi (C, id),
where the isomorphism is given by λα∗ .

Proof As for complex K -groups, we have K0(T α) = Z and K1(T α) = 0 by [35,70].
We consider a split ∗-homomorphism ofC∗,τ -algebras λα : (T α, τα)→ (C, id) given
by the composition of σα : (T α, τα) → (C(T2), τT) and the pull-back onto a fixed
point of the involution ζ on T

2. Let T α
0 = Ker λα . By the six-term exact sequence

associated with the extension 0→ T α
0 → T α λα→ C → 0, complex K -groups ofT α

0
are trivial. For aC∗,τ -algebra (A , τ ), it follows from Theorem 1.12, Proposition 1.15,
and Theorem 1.18 of [13] that KO∗(A , τ ) = 0 if and only if K∗(A ) = 0. Therefore,
KO∗(T α

0 , τα) = 0. The result follows from the 24-term exact sequence of KO-
theory for C∗,τ -algebras associated with the short exact sequence 0→ (T α

0 , τα) →
(T α, τα)

λα→ (C, id)→ 0. ��

3.2 KO-groups of (S ˛,ˇ, �S )

In this subsection, we compute the KO-groups of the C∗,τ -algebra (S α,β, τS ). The
basic tool is the followingMayer–Vietoris exact sequence associated with the pullback
diagram (1) (see Theorem 1.4.15 of [62], for example):

· · · KOi+1(C(T2), τT)

∂i+1

KOi (S
α,β , τS )

(pα∗ ,pβ∗ )

KOi (T
α, τα)⊕ KOi (T

β, τβ)
σ

β∗ −σα∗
KOi (C(T2), τT)

∂i

K Oi−1(S α,β , τS ) · · ·

(5)

As in [55], the computation of the group KO∗(S α,β, τS ) is divided into three cases
corresponding towhetherα andβ are rational (or±∞) or irrational. As in Sect. 3.1, we
have a unital ∗-homomorphism λα ◦ pα : (S α,β, τS )→ (C, id) which splits. Corre-
spondingly, the KO-group KO∗(S α,β, τS ) have a direct summand corresponding to
KO∗(C, id). Noting this, these KO-groups are computed by Lemma 1 and sequence
(5) when at least one of α and β is irrational. The results are collected in Tables 4 and
5. In the rest of this subsection, we focus on the cases when both α and β are rational
(or ±∞).

Whenα, β ∈ Q, wewriteα = p
q andβ = r

s by usingmutually prime integerswhere
q and s are positive. In the following discussion, the case of α = −∞ corresponds
to the case where p = −1 and q = 0, and the case of β = +∞ corresponds to the
case where r = 1 and s = 0. By using the action of Γ ∈ SL(2, Z) in (4) on Z

2, there
are isomorphisms (T α, τα) ∼= (T 0, τ0) and (T β, τβ) ∼= (T γ , τγ ), where γ = t

u for
u = ns − mr and t = −ps + qr . Note that t is positive since α < β. We have the
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following commutative diagram:

KOi (T α, τα)⊕ KOi (T β, τβ)
σ

β∗ −σα∗

∼=

KOi (C(T2), τT)

∼=

KOi (T 0, τ0)⊕ KOi (T γ , τγ )
σ

γ∗ −σ 0∗
KOi (C(T2), τT)

where the vertical isomorphisms are induced by the action of Γ . In the following,
we discuss the lower part of the diagram, which is enough for our purpose since the
isomorphism KOi (S α,β, τS ) ∼= KOi (S 0,γ , τS ) is also induced. We write ϕi for
the above map σ

γ∗ − σ 0∗ . By the exact sequence (5), we have the following short exact
sequence.

0→ Coker(ϕi+1)→ KOi (S
0,γ , τS )→ Ker(ϕi )→ 0. (6)

We first compute kernels and cokernels of ϕi . Cases for i = −1, 0, 4, 6 are easy; thus,
we consider the other cases.

When i = 1, groups KO1(T 0, τ0) and KO1(T γ , τγ ) are both isomorphic to
Z2⊕Z. TheZ2 direct summand is generated by [−1], and the otherZ direct summand
is generated by [P0M1,0P0] and [Pγ Mu,t Pγ ], respectively. They map to [M1,0] and
[Mu,t ] in KO1(C(T2), τT) by σ 0∗ and σ

γ∗ , respectively. We have KO1(C(T2), τT) ∼=
Z2 ⊕ Z

2, where the Z2 direct summand is generated by [−1]. For (m, n) ∈ Z
2, the

element [Mm,n] ∈ KO1(C(T2), τT) corresponds to (0,m, n) ∈ Z2 ⊕ Z
2. Therefore,

Ker(ϕ1) ∼= Z2 which is generated by ([−1], [−1]), and6 Coker(ϕ1) ∼= Zt .
We next consider the case of i = 2. We have KO2(C(T2), τT) ∼= Z2 ⊕ (Z2)

2 ⊕
Z, where the first Z2 direct summand is generated by [−I (2)]. For (m, n) ∈ Z

2,

the element

[(
0 iMm,n

−iM−m,−n 0

)]
in KO2(C(T2), τT) corresponds to (0,m mod

2, n mod 2, 0) ∈ Z2 ⊕ (Z2)
2 ⊕ Z (Example 9.2 of [14]). Groups KO2(T 0, τ0) and

KO2(T γ , τγ ) and their generators are obtained in Sect. 3.1, and we have

Ker(ϕ2) ∼=
{

(Z2)
2 when t is even,

Z2 when t is odd,
Coker(ϕ2) ∼=

{
Z2 ⊕ Z when t is even,

Z when t is odd.

When i = 3, we have KO3(C(T2), τT) ∼= (Z2)
3. For (m, n) ∈ Z

2, we have an
element [diag(Mm,n, M−m,−n)] ∈ KO3(C(T2), τT) which corresponds to (m mod
2, n mod 2, 0) ∈ (Z2)

3. By Sect. 3.1, we have

Ker(ϕ3) ∼=
{

Z2 when t is even,

0 when t is odd,
Coker(ϕ3) ∼=

{
(Z2)

2 when t is even,

Z2 when t is odd.

6 When α = −∞ and β ∈ Q, we have Coker(ϕ1) ∼= Zs . This is the case when p = −1 and q = 0 and
t = −ps + qr = s in this case. A similar remark also holds for i = 2, 3, 5.
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When i = 5, we have KO5(C(T2), τT) ∼= Z
2. For (m, n) ∈ Z

2, we have an
element [diag(Mm,n, Mm,n)] ∈ KO5(C(T2), τT) which corresponds to (m, n) ∈ Z

2.
By Sect. 3.1, we have Ker(ϕ5) = 0 and Coker(ϕ5) = Zt .

Combined with the above computation and the exact sequence (6), we compute
KO-groups KOi (S α,β, τS ). When i = 0, the sequence (6) is of the following
form,

0→ Zt → KO0(S
0,γ , τS ) → Z → 0,

Since Z is free, this sequence splits and we obtain KO0(S 0,γ , τS ) ∼= Z⊕Zt . Other
cases are computed in a similar way though some complication appears when i = 2, 3.
We discuss these two cases in the following subsections.

3.2.1 The group KO2(S ˛,ˇ, �S )

We compute the group KO2(S 0,γ , τS ), which is isomorphic to KO2(S α,β, τS ).
The computation is divided into two cases depending on whether t is even or odd.
Note that u is odd when t is even since r and s are mutually prime.

When t is odd, Ker(ϕ2) ∼= Z2 is generated by ([−I (2)], [−I (2)]) and sequence (6)
splits. Therefore, KO2(S α,β, τS ) ∼= (Z2)

2.
We next discuss the cases of even t . In this case, both of the kernel and the cokernel

of ϕ3 are isomorphic to (Z2)
2. Let K̃ O2(S 0,γ , τS ) be the kernel of the map λα∗ ◦

pα∗ : KO2(S α,β, τS ) → KO2(C, id) ∼= Z2 which splits. Then, sequence (6) reduces
to the following extension:

0→ (Z2)
2 → K̃ O2(S

0,γ , τS ) → Z2 → 0. (7)

In the following, we show that this sequence (7) splits. We find a lift of the generator
ofZ2 in K̃ O2(S 0,γ , τS ) and show this lift has order two. For (m, n) ∈ Z

2 and κ = 0
and γ , we write T κ

m,n for P
κMm,n Pκ , and let Q be the projection T γ

u,0T
γ
−u,0. Note that

1−Q is the projection onto the closed subspace spanned by {δm,n | 0 ≤ γm−n < t }.
For j = 1, . . . , t , let Pj be a projection in T γ , defined inductively as follows:

P1 = (1− Q)M0,−t+1(1− Q)M0,t−1(1− Q),

Pj = (1− Q)M0,−t+ j (1− Q)M0,t− j (1− Q)−
j−1∑
k=1

Pk .

Specifically, Pj is the orthogonal projection ofH γ onto the closed subspace spanned
by {δn,tn− j+1}n∈Z. Note that

∑t
j=1 Pj = 1 − Q. For odd j = 1, 3, . . . , t − 1, let

s j = Pj M0,1Pj+1 − Pj+1M0,−1Pj and s =∑t−1
j=1,odd s j . The element s satisfies the

relations ( i ) s∗ = −s, (ii) sτ = −s, (iii) s2 = −1+ Q, (iv) Qs = sQ = 0 and (v)

sT γ
u,0 = T γ

−u,0s = 0. Note that σγ (s) = 0 since σγ (1 − Q) = 0. We first consider
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Fig. 1 The case of u = 1 and t = 4. 1−Q is the projection onto the closed subspace corresponding to lattice
points in between two lines (lattice points on the line y = γ x are included, while that on y = γ (x − 1) are
not). Pj is the projection onto the closed subspace spanned by {δn,4n− j+1 | n ∈ Z}. s j interchanges two
points in a pair up to the sign

the following elements:

a =
(

0 i · 1T 0

−i · 1T 0 0

)
∈ M2(T

0), b± =
( ±is i Q
−i Q is

)
∈ M2(T

γ ),

where the double sign corresponds. Elements a and b± are self-adjoint unitaries sat-
isfying aτ = −a and bτ± = −b±, and pairs (a, b±) are elements of M2(S 0,γ );
therefore, they define the elements of KO2(S 0,γ , τS ).

Lemma 2 As elements of K O2(S 0,γ , τS ), we have [(a, b+)] = [(a, b−)] = 0.

Proof We first show that [(a, b+)] = 0. For j = 1, 3, . . . , t − 1, let r j =
Pj M0,1Pj+1+Pj+1M0,−1Pj and r =∑t−1

j=1,odd r j . The element r satisfies ( i ) r∗ = r ,

(ii) r τ = r , (iii) r2 = 1− Q, (iv) Qr = r Q = 0, (v) rT γ
u,0 = T γ

−u,0r = 0 and (vi) r
anticommutes with s. For 0 ≤ θ ≤ π

2 , let

bθ =
(

is cos θ i Q + ir sin θ

−i Q − ir sin θ is cos θ

)
, d =

(
0 i · 1T γ

−i · 1T γ 0

)
.

This bθ is a self-adjoint unitary satisfying bτ
θ = −bθ and b0 = b+. Therefore, b+ and

b π
2
are homotopic in U (2)

1 (T γ , τγ ). We further discuss b π
2
. Let us consider lattice

points (m, n) ∈ Z
2 satisfying 0 ≤ γm − n < t , as indicated in Fig. 1 for the case

where u = 1 and t = 4. As in Fig. 1, we divide these points to t
2 pairs of lattice points:
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for n ∈ Z and odd j = 1, 3, . . . , t−1, a pair consists of {(n, tn− j), (n, tn− j +1)}.
The action of b π

2
is closed on each pair of lattice points and is expressed by a 4 × 4

matrix (acting onC
2⊗C

2; oneC
2 corresponds to a pair of lattice points, and the other

C
2 corresponds to the 2× 2 matrix we consider). Let V be the following matrix.

V = 1

2

⎛
⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⎞
⎟⎟⎠ .

Then V ∈ SO(4) and satisfies

V

⎛
⎜⎜⎝

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

⎞
⎟⎟⎠ V ∗ =

⎛
⎜⎜⎝

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ ,

where the left matrix inside the conjugation is the restriction of b π
2
onto the closed

subspace spanned by generating functions of these two lattice points tensor C
2 and

the right matrix is that of d (note that Q = 0 on these lattice points). Let W be the
unitary on H γ ⊗ C

2 defined by applying V to these pair of lattice points satisfying
0 ≤ γm − n < t and the identity on the lattice points satisfying t ≤ γm − n; then,
we have Wb π

2
W ∗ = d. Since SO(4) is path-connected, there is a path of self-adjoint

unitaries from b π
2
to d preserving the relation of the KO2-group. Summarizing, we

have a path inU (2)
1 (T γ , τγ ) from b+ to d. By its construction, the pair of the constant

path at a ∈ M2(T 0) and this path gives a path in U (2)
1 (S 0,γ , τS ) from (a, b+) to

(a, d). Therefore, we have [(a, b+)] = [(a, d)] = [I (2)] = 0 in KO2(S 0,γ , τS ).
We next discuss the class [(a, b−)]. For 0 ≤ θ ≤ π

2 , let

b′θ =
( −is cos θ i Q + i(1− Q) sin θ

−i Q − i(1− Q) sin θ is cos θ

)
.

Then, b′θ is a self-adjoint unitary satisfying (b′θ )τ = −b′θ . We have b′0 = b− and
b′π

2
= I (2). Therefore, [(a, b−)] = [(a, b′π

2
)] = [I (2)] = 0 in KO2(S 0,γ , τS ). ��

Let us consider the following elements:

v2 =
(

0 iT 0
u,0

−iT 0−u,0 0

)
∈ M2(T

0), w± =
( ±is iT γ

u,0
−iT γ

−u,0 0

)
∈ M2(T

γ ),

which are self-adjoint unitaries satisfying (v2)
τ = −v2 and wτ± = −w±. Since

σ 0(v2) = σγ (w±), pairs (v2, w±) are elements of M2(S 0,γ ) satisfying (v2, w±)τ =
−(v2, w±) and give elements [(v2, w±)] of the group KO2(S 0,γ , τS ).

Lemma 3 In K O2(S 0,γ , τS ), we have [(v2, w+)] = [(v2, w−)].
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Proof For 0 ≤ θ ≤ π , let us consider the following element in M4(T γ ):

Rθ =

⎛
⎜⎜⎝

is cos θ iT γ
u,0 −ir sin θ 0

−iT γ
−u,0 0 0 0

ir sin θ 0 is cos θ i Q
0 0 −i Q is

⎞
⎟⎟⎠ ,

Then, we have R0 = w+ ⊕ b+, Rπ = w− ⊕ b− and Rθ is a self-adjoint unitary
satisfying Rτ

θ = −Rθ . Since σγ (Rθ ) = σ 0(v2⊕a), the pair (v2⊕a, Rθ ) is contained

in U (2)
2 (S 0,γ , τS ) and gives a path from (v2 ⊕ a, w+ ⊕ b+) to (v2 ⊕ a, w− ⊕ b−).

By using Lemma 2, we obtain the following equality in KO2(S 0,γ , τS ):

[(v2, w+)] = [(v2 ⊕ a, w+ ⊕ b+)] = [(v2 ⊕ a, w− ⊕ b−)] = [(v2, w−)].

��
Lemma 4 In K O2(S 0,γ , τS ), the element [(v2, w+)] has order two.
Proof For 0 ≤ θ ≤ π

2 , let

A0
θ =

⎛
⎜⎜⎝

0 iT 0
u,0 cos θ i sin θ 0

−iT 0−u,0 cos θ 0 0 −i sin θ

−i sin θ 0 0 iT 0
u,0 cos θ

0 i sin θ −iT 0−u,0 cos θ 0

⎞
⎟⎟⎠ ∈ M4(T

0),

Aγ
θ =

⎛
⎜⎜⎝

is cos θ iT γ
u,0 cos θ i sin θ 0

−iT γ
−u,0 cos θ 0 0 −i sin θ

−i sin θ 0 −is cos θ iT γ
u,0 cos θ

0 i sin θ −iT γ
−u,0 cos θ 0

⎞
⎟⎟⎠ ∈ M4(T

γ ).

Then, A0
θ and Aγ

θ are self-adjoint unitaries satisfying (A0
θ )

τ = −A0
θ and (Aγ

θ )τ =
−Aγ

θ , and their pair (A0
θ , A

γ
θ ) is contained in M4(S 0,γ ). Note that (A0

0, A
γ
0 ) =

(v2 ⊕ v2, w+ ⊕ w−). Therefore, by Lemma 3, the following equality holds in
KO2(S 0,γ , τS ):

2 · [(v2, w+)] = [(v2, w+)] + [(v2, w−)] = [(A0
0, A

γ
0 )] = [(A0

π
2
, Aγ

π
2
)] = 0.

��
Proposition 1 When α and β are rational numbers and t = −ps + qr is even, we
have K O2(S α,β, τS ) ∼= (Z2)

4.

Proof Since u is odd when t is even, pair ([v2], [w+]) ∈ KO2(T 0, τ0) ⊕
KO2(T γ , τγ ) constitutes a nontrivial element of the right Z2 ⊂ Ker(ϕ2) in the
sequence (7). The element [(v2, w+)] ∈ KO2(S 0,γ , τS ) is a lift of it. Therefore,
[(v2, w+)] is nontrivial and has order two by Lemma 4. This element belongs to
K̃ O2(S 0,γ , τS ), and by mapping 1 ∈ Z2 to [(v2, w+)], we obtain a splitting of the
sequence (7). Therefore, K̃ O2(S 0,γ , τS ) ∼= (Z2)

3 and the result follows. ��
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3.2.2 The group KO3(S ˛,ˇ, �S )

We next compute KO3(S α,β, τS ). Note that Ker(ϕ3) depends on whether t is even
or odd. When t is odd, Ker(ϕ3) is zero and, KO3(S α,β, τS ) ∼= Z2 follows from (6).

We next discuss the cases of even t . In this case, extension (6) is of the following
form:

0→ Z2 → KO3(S
0,γ , τS ) → Z2 → 0. (8)

As in Sect. 3.2.1, we show that this sequence splits by finding a lift of the generator of
the rightZ2 in KO3(S 0,γ , τS ) of order two. Let us consider the following elements:

v3 =
(
T 0
u,0 0
0 T 0−u,0

)
∈ M2(T

0), z± =
(
T γ
u,0 ±s
0 T γ

−u,0

)
∈ M2(T

γ ),

where the double-sign in the second equality corresponds. Pairs (v3, z±) are unitaries
in M2(S 0,γ ) satisfying (v3, z±)#⊗τ = (v3, z±) and define elements [(v3, z±)] of the
KO-group KO3(S 0,γ , τS ).

Lemma 5 In K O3(S 0,γ , τS ), we have [(v3, z+)] = [(v3, z−)].

Proof For 0 ≤ θ ≤ π , let zθ =
(
T γ
u,0 eiθ s
0 T γ

−u,0

)
∈ M2(T γ ) which gives a path

{zθ }0≤θ≤π of unitaries satisfying (zθ )#⊗τ = zθ . Its endpoints are z0 = z+ and zπ =
z−. The pair (v3, zθ ) satisfies (v3, zθ )#⊗τ = (v3, zθ ) and gives a homotopy between
(v3, z+) and (v3, z−) in U (3)

1 (S 0,γ , τS ). ��
Lemma 6 The element [(v3, z+)] in K O3(S 0,γ , τS ) has order two.

Proof For 0 ≤ θ ≤ π
2 , let

B0
θ =

⎛
⎜⎜⎝
T 0
u,0 cos θ 0 0 sin θ

0 T 0−u,0 cos θ sin θ 0
0 − sin θ T 0

u,0 cos θ 0
− sin θ 0 0 T 0−u,0 cos θ

⎞
⎟⎟⎠ ,

Bγ
θ =

⎛
⎜⎜⎝
T γ
u,0 cos θ s cos θ 0 sin θ

0 T γ
−u,0 cos θ sin θ 0

0 − sin θ T γ
u,0 cos θ −s cos θ

− sin θ 0 0 T γ
−u,0 cos θ

⎞
⎟⎟⎠ .

For each θ , matrices B0
θ and Bγ

θ are unitaries satisfying (B0
θ )#⊗τ = B0

θ and
(Bγ

θ )#⊗τ = Bγ
θ . We have Bγ

0 = v3 ⊕ v3 and Bγ
0 = z+ ⊕ z−. Note that matri-

ces B0
π
2
and Bγ

π
2
are contained in M4(C), where they coincide. Since this unitary

satisfies the symmetry of the KO3-group, this is an element of the quaternionic uni-
tary group U (2, H). Since U (2, H) is path-connected, there is a path of unitaries in
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Table 3 KO∗(S α,β , τS ) when both α and β are rational (or ±∞)

i 0 1 2

t = −ps + qr Even Odd Even Odd

KOi (S
α,β , τS ) Z⊕ Zt (Z2)

2 ⊕ Z Z2 ⊕ Z (Z2)
4 (Z2)

2

3 4 5 6 7

Even Odd

(Z2)
2

Z2 Z⊕ Zt Z 0 0

Table 4 KO∗(S α,β , τS ) when one of α and β is rational (or ±∞) and the other is irrational

i 0 1 2 3 4 5 6 7

KOi (S
α,β , τS ) Z

2 (Z2)
2 ⊕ Z (Z2)

3
Z2 Z

2
Z 0 0

Table 5 KO∗(S α,β , τS ) when both α and β are irrational

i 0 1 2 3 4 5 6 7

KOi (S
α,β , τS ) Z

3 (Z2)
3 ⊕ Z (Z2)

4
Z2 Z

3
Z 0 0

U (3)
2 (S 0,γ , τS ) connecting (B0

π
2
, Bγ

π
2
) to (1S )4. By using Lemma 5, we obtain the

following equality in KO3(S 0,γ , τS ):

2 · [(v3, z+)] = [(v3 ⊕ v3, z+ ⊕ z−)] = [(B0
π
2
, Bγ

π
2
)] = [(1S )4] = 0.

��

Proposition 2 When α and β are rational numbers and t = −ps + qr is even, we
have K O3(S α,β, τS ) ∼= (Z2)

2.

Proof The pair ([v3], [z+]) ∈ KO3(T 0, τ0) ⊕ KO3(T γ , τγ ) is contained in
Ker(ϕ3) ∼= Z2 and is nontrivial. The element [(v3, z+)] ∈ KO3(S 0,γ , τS ) is its
lift. Therefore, the class [(v3, z+)] is nontrivial and has order two by Lemma 6. We
thus obtain a splitting of the sequence (8) and the group KO3(S 0,γ , τS ) is isomorphic
to (Z2)

2. ��

The results in this subsection are summarized in Tables 3, 4 and 5.
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3.3 Boundarymaps associated with quarter-plane Toeplitz extensions and
KO-groups of (T̂ ˛,ˇ, �̂˛,ˇ)

We next consider the boundary maps7 of the 24-term exact sequence for KO-theory
associated with the sequence (2):

∂̂i : KOi (S
α,β, τS )→ KOi−1(K (Ĥ α,β), τK ). (9)

Proposition 3 For each i , the boundary map ∂̂i in (9) is surjective.

Proof When i = −1, 0, 4, 6, the group KOi−1(K (Ĥ α,β), τK ) is trivial and the
statement is obvious. We discuss the other cases. The proof is given by constructing
explicit elements of the group KOi (S α,β, τS ), which maps to a generator of the
group KOi−1(K (Ĥ α,β), τK ). As in [36], by using the action of SL(2, Z) on Z

2,
we assume 0 < α ≤ 1

2 and 1 ≤ β < +∞ without loss of generality. Let P̂m,n =
P̂α,βMm,n P̂α,βM−m,−n P̂α,β . As in [36], we consider the following element in T̂ α,β :

Â = P̂0,1 + M1,1(1− P̂−1,0)+ M1,0(P̂−1,0 − P̂0,1). (10)

The operator Â is Fredholm whose kernel is trivial and has one-dimensional cokernel
[36]. We also have the following.

– γ̂ ( Â) is a unitary inS α,β .
– Â is a real operator, that is r( Â) = Â, and Âτ = r( Â∗) = Â∗ holds.

From these preliminaries, the proof of Proposition 3 is parallel to the computation in
Example 9.4 of [14]. We summarize the results here.

– Let u1 = γ̂ ( Â). u1 is a unitary satisfying uτ
1 = u∗1 and gives an element [u1] ∈

KO1(S α,β, τS ). ∂̂1([u1]) is a generator of KO0(K (Ĥ α,β), τK ) ∼= Z.

– Letu2 =
(

0 i γ̂ ( Â)

−i γ̂ ( Â)∗ 0

)
.u2 is a self-adjoint unitary satisfyinguτ

2 = −u2 and
gives [u2] ∈ KO2(S α,β, τS ). ∂̂2[u2] is the generator of KO1(K (Ĥ α,β), τK ) ∼=
Z2.

– Let u3 = diag(γ̂ ( Â), γ̂ ( Â)∗). u3 is a unitary satisfying u�⊗τ
3 = u3 and gives [u3] ∈

KO3(S α,β, τS ). ∂̂3([u3]) is the generator of the group KO2(K (Ĥ α,β), τK ) ∼=
Z2.

– Let u5 = diag(γ̂ ( Â), γ̂ ( Â)). u5 is a unitary satisfying u
�⊗τ
5 = u∗5 and gives [u5] ∈

KO5(S
α,β, τS ). ∂̂5([u5)] is a generator of the group KO4(K (Ĥ α,β), τK ) ∼=

Z.

��
Remark 1 In the case when α, β are both rational (or ±∞) and t = −ps + qr is
even, the group KO2(S 0,γ , τS ) ∼= (Z2)

4 is generated by [−I (2)], [(v2, w+)], [u2]
7 We write ∂̂i for boundary maps associated with (2) and write ∂̌i for that with (3).
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Table 6 KO∗(T̂ α,β , τ̂α,β ) when both α, β are rational (or ±∞)

i 0 1 2 3

t = −ps + qr Even Odd Even Odd Even Odd

KO∗(T̂ α,β , τ̂α,β ) Z⊕ Zt (Z2)
2

Z2 (Z2)
3

Z2 Z2 0

4 5 6 7

Z⊕ Zt 0 0 0

Table 7 KO∗(T̂ α,β , τ̂α,β )

when one of α and β is rational
(or ±∞) and the other is
irrational

i 0 1 2 3 4 5 6 7

KOi (T̂
α,β , τ̂α,β ) Z

2 (Z2)
2 (Z2)

2 0 Z
2 0 0 0

Table 8 KO∗(T̂ α,β , τ̂α,β )

when both α and β are irrational
i 0 1 2 3 4 5 6 7

KOi (T̂
α,β , τ̂α,β ) Z

3 (Z2)
3 (Z2)

3 0 Z
3 0 0 0

and [(w′, I (2)
2 )], where8

w′ = Y (3)
4 diag(1, 1− 2T 0

0,1T
0
0,−1, 2T 0

0,1T
0
0,−1 − 1,−1)Y (3)∗

4 .

By the map σ∗ : KOi (S 0,γ , τS ) → KOi (C(T2), τT), the components generated by
[(v2, w+)] (when i = 2) and [(v3, z+)] (when i = 3) maps injectively.

The KO-groups of (T̂ α,β, τ̂α,β) are computed by the 24-term exact sequence of
KO-theory associated with (2) and Proposition 3. The results are collected in Tables 6,
7 and 8.

Remark 2 Similar results in this section also hold for convex corners. Let Ǎ ∈ Ť α,β

be an operator defined by replacing P̂α,β in the definition of Â by P̌α,β . This Ǎ is a
Fredholm operator satisfying Ǎτ = Ǎ∗ which have one-dimensional kernel and trivial
cokernel [34]. As in Proposition 3, by using this example, we see that the boundary
maps ∂̌i of KO-theory associated with the sequence (3) is surjective. The KO-groups
of (Ť α,β, τ̌α,β) is computed by the 24-term exact sequence associatedwith (3), and the
results are the same as in Tables 6, 7 and 8. Through the stabilization isomorphism, we
have two boundary maps ∂̂i and ∂̌i from KOi (S α,β, τS ) to KOi−1(C, id) associated
with (2) and (3). Since γ̂ ( Â) = γ̌ ( Ǎ), the relation ∂̂i = −∂̌i holds, as in Corollary 1
of [34].

8 The matrix Y (3)
4 is introduced in Appendix A.3.
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4 Toeplitz operators associated with subsemigroup (Z≥0)
n of Z

n

In this section, Toeplitz operators associated with the subsemigroup (Z≥0)n of Z
n for

n ≥ 3 are discussed. They are an n-variable generalization of the ordinary Toeplitz and
quarter-planeToeplitz operators and are briefly discussed in [22,23], where a necessary
and sufficient condition for these Toeplitz operators to be Fredholm is obtained. We
revisit these operators since, in our application to condensed matter physics, models
of higher-codimensional corners are given by using these n-variable generalizations.
Since the Toeplitz extension (11) and the quarter-plane Toeplitz extension (3) provide
a framework for these applications, we seek this extension for our n-variable cases
(Theorem 1). Note that we consider corners of arbitrary codimension, though of a
specific shape compared to the codimension-two case [55]. In this section, let n be a
positive integer bigger than or equals to three.

To study such Toeplitz operators, we follow Douglas–Howe’s idea [23] to use the
tensor product of the Toeplitz extension,

0→ K
ι→ T

γ→ C(T) → 0, (11)

whereK = K (l2(Z≥0)). There is a linear splitting of the ∗-homomorphism γ given
by the compression onto l2(Z≥0). For a subsetA ⊂ {1, . . . , n}, letT n

A = A1⊗· · ·⊗
An , where Ai isC(T)when i ∈ A and isT when i /∈ A . Note thatT n

∅ is isomorphic

toT n introduced in Sect. 2.2. For subsetsD ⊂ R ⊂ {1, . . . , n}, let πD
R : T n

D → T n
R

be the ∗-homomorphism induced by γ . Specifically, πD
R = a1 ⊗ · · · ⊗ an , where ai

is idC(T) when i ∈ D , is γ when i ∈ R \ D and is idT otherwise. Note that πD
R

is a surjection and π∅∅ = id. In the following, we use a subset A of {1, . . . , n} as
a label to distinguish C∗-algebras and the morphisms between them, which we may
abbreviate brackets {·} in our notation. For example, we write T n

1,2 for T
n{1,2}, πi for

π∅{i} and π1
1,2 for π

{1}
{1,2}. For each A ⊂ {1, . . . , n}, the map πA has a linear splitting

ρA : T n
A → T n given by the compression onto l2((Z≥0)n). By these preliminaries,

we consider the following C∗-subalgebra of T n
1 ⊕ · · · ⊕T n

n .

S n =
{

(T1, · · · , Tn)

∣∣∣∣For 1 ≤ i ≤ n, Ti ∈ T n
i ,

For 1 ≤ i < j ≤ n, π i
i j (Ti ) = π

j
i j (Tj )

}
.

Let (T1, . . . , Tn) ∈ S n . For a nonempty subset A ⊂ {1, . . . , n}, we take i ∈ A and
consider the element π i

A (Ti ) ∈ T n
A . This element does not depend on the choice of

i ∈ A , and we write TA = π i
A (Ti ). Let ρ′ : S n → T n be a linear map defined by

ρ′(T1, . . . , Tn) =
n∑

k=1

∑
|A |=k

(−1)k+1ρA (TA )

for (T1, . . . , Tn) ∈ S n , where the second summation is taken over all subsets A ⊂
{1, . . . , n} consisting of k elements. Let K n = K (l2((Z≥0)n)), and let γn : T n →
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S n be an ∗-homomorphism given by γn(T ) = (π1(T ), . . . , πn(T )). Let ιn be the
n-fold tensor product of ι.

Theorem 1 There is the following short exact sequence of C∗-algebras:

0→ K n ιn→ T n γn→ S n → 0, (12)

where the map γn has a linear splitting given by ρ′.
Proof The map ιn is injective since ι is injective. We first show the exactness at T n .
Since γ ◦ ι = 0, we have γn ◦ ιn = 0, and thus, Im(ιn) ⊂ Ker(γn). Let T ∈ Ker(γn).
Since π1(T ) = (γ ⊗1⊗· · ·⊗1)(T ) = 0, there exists some S1 ∈ K ⊗T ⊗· · ·⊗T
such that (ι⊗ 1⊗ · · · ⊗ 1)(S1) = T . Since

0 = (1⊗ γ ⊗ 1⊗ · · · ⊗ 1)(T ) = (1⊗ γ ⊗ 1⊗ · · · ⊗ 1)(ι⊗ 1⊗ · · · ⊗ 1)(S1)

= (ι⊗ 1⊗ · · · ⊗ 1)(1⊗ γ ⊗ 1⊗ · · · ⊗ 1)(S1)

and ι⊗ 1⊗· · ·⊗ 1 is injective, (1⊗ γ ⊗ 1⊗· · ·⊗ 1)(S1) = 0. Therefore, there exists
some S2 ∈ K ⊗K ⊗ T ⊗ · · · ⊗ T such that S1 = (1⊗ ι⊗ 1⊗ · · · ⊗ 1)(S2). By
continuing this argument, we see that there exists some Sn ∈ K ⊗ · · · ⊗K ∼= K n

such that (ι⊗ · · · ⊗ ι)(Sn) = T . Thus, we have Ker(γn) ⊂ Im(ιn).
For the surjectivity of γn , we see that ρ is a linear splitting of γn , that is, for

(T1, . . . , Tn) ∈ S n and 1 ≤ i ≤ n, the relation πi ◦ ρ′(T1, . . . , Tn) = Ti holds. In the
following, we show π1 ◦ ρ′(T1, . . . , Tn) = T1 and the other case is proved similarly.
Note that

π1 ◦ ρ′(T1, . . . , Tn) =
n∑

k=1

∑
|A |=k

(−1)k+1π1 ◦ ρA (TA ) (13)

and that π1 ◦ ρ1(T1) = T1. Thus, it is sufficient to show that the sum over A ( �= {1})
is zero. Note that for 2 ≤ i1 < · · · < ik−1 ≤ n, we have

π1 ◦ ρi1,...,ik−1(Ti1,...,ik−1) = π1 ◦ ρ1,i1,...,ik−1(T1,i1,...,ik−1).

By using this relation, we compute the sum on the right-hand side of (13). For k = 1
and k = 2 of the sum, we have the following:

∑
|A |=1, A �={1}

π1 ◦ ρA (TA )−
∑
|A |=2

π1 ◦ ρA (TA )

=
n∑

i=2
π1 ◦ ρi (Ti )−

∑
1≤i< j≤n

π1 ◦ ρi, j (Ti j ) = −
∑

2≤i< j≤n
π1 ◦ ρi, j (Ti j ).

For 2 < k < n, we have

(−1)k
∑

2≤i1<···<ik−1≤n
π1 ◦ ρi1,...,ik−1(Ti1,...,ik−1)
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Table 9 KO-groups of
(S n , τS )

i 0 1 2 3 4 5 6 7

KOi (S
n , τS ) Z Z⊕ Z2 (Z2)

2
Z2 Z Z 0 0

+ (−1)k+1
∑

1≤i1<···<ik≤n
π1 ◦ ρi1,...,ik (Ti1,...,ik )

= (−1)k+1
∑

2≤i1<···<ik≤n
π1 ◦ ρi1,...,ik (Ti1,...,ik ),

and since

(−1)nπ1 ◦ ρ2,...,n(T2,...,n)+ (−1)n+1π1 ◦ ρ1,...,n(T1,...,n) = 0,

we have π1 ◦ ρ′(T1, . . . , Tn) = T1. ��
Theorem 13 leads to the necessary and sufficient condition for Toeplitz operators
associated with these codimension-n corners to be Fredholm.

Corollary 1 (Theorem 18 of [22]) Let k be a positive integer. An operator T ∈
Mk(T n) is a Fredholm operator if and only if γn(T ) is invertible in Mk(S n) or,
equivalently, if and only if πi (T ) is invertible for any 1 ≤ i ≤ n.

As in Sect. 2.2, the real structure c on l2(Zn) induces real structures on T n
i and S n .

We write τS for the transposition on S n associated with this real structure. The
map γn preserves the real structure, and we obtain the following exact sequence of
C∗,τ -algebras:

0→ (K n, τK )
ιn→ (T n, τT )

γn→ (S n, τS ) → 0. (14)

We next compute the K -groups of theC∗-algebraS n and KO-groups of theC∗,τ -
algebra (S n, τS ).

Proposition 4 Ki (S n) ∼= Z for i = 0, 1.

Proof Note that Ki (T n) ∼= Ki (C). The result follows from the six-term exact
sequence of K -theory associated with the sequence (12) in Theorem 1. ��
Proposition 5 For each i , we have

K Oi (S
n, τS ) ∼= KOi (C, id)⊕ KOi−1(C, id).

The results are collected in Table 9.

Proof Note that KOi (T n, τT ) ∼= KOi (C, id). The result follows from the 24-term
exact sequence of KO-theory associated with the sequence (14). ��
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A Fredholm Toeplitz operator associated with a codimension-n corner whose Fred-
holm index is one is constructed as follows.

Example 1 (A Fredholm Operator of Index One) Let Tz be the Toeplitz operator whose
symbol z : T → C is the inclusion. Its adjoint T ∗z is a Fredholm operator on l2(Z≥0)
of index one. Let p = TzT ∗z and q = 1T − p, then p, q ∈ T and are projections
onto l2(Z≥1) and Cδ0, respectively, where δ0 is the characteristic function of the point
0 ∈ Z. For a subsetA ⊂ {1, . . . , n}, let Pn

A = r1⊗· · ·⊗rn , where ri is pwhen i ∈ A
and is q otherwise. The operator Pn

A is a projection which satisfies
∑

A Pn
A = 1T n .

Let T̃ = T ∗z ⊗ q ⊗ · · · ⊗ q and consider the following element in T n :

G = T̃ +
∑

A �={1}
Pn
A ,

where the sum is taken over all subsets of {1, . . . , n} except {1}. Then, we can see that
Ker(G) ∼= C and Coker(G) = 0, that is, G is a Fredholm Toeplitz operator associated
with codimension-n corners whose Fredholm index is one.

This example leads to the following result.

Proposition 6 The boundary maps of the six-term exact sequence for K -theory asso-
ciated with (12) are surjective. Moreover, the boundary maps of the 24-term exact
sequence for K O-theory associated with (14) are surjective.

Proof The result for complex K -theory is immediate fromExample 1. For KO-theory,
since the operator G in Example 1 satisfies Gτ = G∗, the result follows as in Propo-
sition 3. ��
Note that, we have γn(G) = (π1(G), 1, · · · , 1) ∈ S n by using

π1(G) = M∗
z ⊗ q ⊗ · · · ⊗ q +

∑
∅�=A ⊂{1,...,n−1}

1C(T) ⊗ Pn−1
A ,

The element γn(G) is a unitary and defines an element [γn(G)] of the group K1(S n).
Since the Fredholm index of G is one, this gives a generator of K1(S n) ∼= Z. As
in the proof of Proposition 3, generators of the KO-groups KOi (S n, τS ) are also
obtained by using G.

Remark 3 Let 1 ≤ j ≤ n. We have the following ∗-homomorphisms:

S n −→ T n−1 ⊗ C(T)
γn−1⊗1−→ S n−1 ⊗ C(T),

where the first map maps (T1, . . . , Tn) to Tj . We write σ n,n−1 for the composite of the
above maps which induces the map σ

n,n−1∗ : Ki (S n) → Ki (S n−1 ⊗ C(T)). When
i = 0, K0(S n) ∼= Z is generated by [12] and σ

n,n−1∗ [12] = [12].When i = 1, themap
σ
n,n−1∗ is zero since, by Example 1, the element [γn(G)] is a generator of K1(S n) ∼= Z

and σ
n,n−1∗ [γn(G)] = [1] = 0. A similar observation also holds in real cases. The

map σ
n,n−1∗ from KOi (S n, τS ) to KOi (S n−1 ⊗ C(T), τ ) maps direct summands

corresponding to KO-groups of a point injectively and the other components to zero.
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5 Topological invariants and corner states in Altland–Zirnbauer
classification

In this section, some gapped Hamiltonians on a lattice with corners are discussed
in each of the Altland–Zirnbauer classes. Since two of them (class A and AIII) are
already studied in [33,34], we consider the remaining cases here. The codimension of
the corner will be arbitrary, though we mainly discuss codimension-two cases, with
many detailed results being obtained by [34,36,55] and the results in Sect. 3. Higher-
codimensional cases are discussed in a similar way, whose results are collected in
Sect. 5.5.

5.1 Setup

Let V be a finite rank Hermitian vector space of complex rank N . Let n be a positive
integer. Let Θ and Ξ be antiunitary operators on V whose squares are +1 or −1. Let
Π be a unitary operator on V whose square is one. These operators Θ , Ξ and Π are
naturally extended to the operator on l2(Zn; V ) by the fiberwise operation; we also
denote them as Θ , Ξ and Π , respectively. Let Herm(V ) be the space of Hermitian
operators on V . We consider a continuous map T

n → Herm(V ), t �→ H(t), where
t = (t1, t2, . . . , tn) in T

n . Through the Fourier transform L2(Tn; V ) ∼= l2(Zn; V ),
the multiplication operator generated by this continuous map defines a bounded linear
self-adjoint operator H on the Hilbert space l2(Zn; V ). We consider the lattice Z

n

as a model of the bulk and call H the bulk Hamiltonian. The Hamiltonian is said to
preserve time-reversal symmetry (TRS) if it commutes with Θ (i.e., ΘHΘ∗ = H ),
particle-hole symmetry (PHS) if it anticommutes with Ξ (i.e., ΞHΞ∗ = −H ) and
chiral symmetry if it anticommutes with Π (i.e., ΠHΠ∗ = −H ). Furthermore, TRS
or PHS is called even (resp. odd) if Θ2 = 1 or Ξ2 = 1 (resp. Θ2 = −1 or Ξ2 = −1).
Hamiltonians may preserve both TRS and PHS. In that case, Θ and Ξ are assumed to
commute, and Π is identified with ΘΞ or iΘΞ such that Π2 = 1 is satisfied.

By taking the partial Fourier transform in the variables t1 and t2, we obtain a
continuous family of bounded linear self-adjoint operators {H(t)}t∈Tn−2 onH ⊗ V .
By taking a compression ontoH α⊗V ,H β ⊗V and Ĥ α,β ⊗V , we obtain a family
of operators Hα(t), Hβ(t) and Ĥα,β(t) parametrized by t = (t3, . . . , tn) ∈ T

n−2.
Hα(t) and Hβ(t) are our models for two surfaces (codimension-one boundaries),
and Ĥα,β(t) is our model of the corner (codimension-two corner). We assume the
following spectral gap condition.

Assumption 1 (Spectral Gap Condition)We assume that both Hα and Hβ are invert-
ible.

Under this assumption, the bulk Hamiltonian H is also invertible since, when we take
a basis of V and identify V with C

N , there is a unital ∗-homomorphism MN (S α,β ⊗
C(Tn−2))→ MN (C(Tn)) that maps (Hα, Hβ) to H . In classesAI andAII, we further
assume that the spectrum of H is not contained in eitherR>0 orR<0. Note that in other
classes where Hamiltonians preserve PHS or chiral symmetry, this condition follows
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from Assumption 1. Let h be the pair (Hα, Hβ). Under Assumption 1, we set

sign(h) = h|h|−1. (15)

When the bulk Hamiltonian H satisfies TRS, PHS or chiral symmetry, the operators
Hα , Hβ , Ĥα,β and sign(h) also satisfy the symmetry, that is, commutes with Θ or
anticommutes with Ξ or Π .

5.2 Gapped topological invariants

In the following, starting from a Hamiltonian satisfying Assumption 1 in each class
AI, BDI, D, DIII, AII, CII, C and CI, we construct a unitary and see that this unitary
satisfies the relation Ri in Table 2. By using this unitary, we define a topological
invariant as an element of some KO-group.

In class AI, the Hamiltonian has even TRS. We take an orthonormal basis of V to
identify V with C

N and express Θ as C = diag(c, . . . , c). Under our spectral gap
condition, let

u =
(
sign(h) 0

0 1N

)
. (16)

This u is a self-adjoint unitary satisfying uτ = AdC⊕C (u∗) = u∗ by the TRS.
In class BDI, the Hamiltonian has both even TRS and even PHS. Note that the chiral

symmetry is given by Π = ΘΞ and commutes with Θ and Ξ . For a Hamiltonian
satisfying chiral symmetry and Assumption 1 to exist, the even/odd decomposition
V ∼= V 0⊕V 1 with respect toΠ should satisfy rankC V 0 = rankC V 1, and we assume
that. Then, there is an orthonormal basis of V to identify V with C

N such that Π and
Θ are expressed as follows:

Π =
(
1 0
0 −1

)
, Θ =

(
C 0
0 C

)
, (17)

where C = diag(c, . . . , c). Since the Hamiltonian H anticommutes with Π , the
operator sign(h) in (15) is written in the following off-diagonal form:

sign(h) =
(
0 u∗
u 0

)
, (18)

where u is a unitary. By the TRS, we have uτ = C u∗C ∗ = u∗.
In class D, the Hamiltonian has even PHS. We take an orthonormal basis of V to

identify V ∼= C
N and express Ξ as C = diag(c, . . . , c). Let u = sign(h), then we

have uτ = ΞuΞ∗ = −u by the PHS.
In class DIII, the Hamiltonian has both odd TRS and even PHS. Note that the

chiral symmetry is given by Π = iΘΞ and anticommutes with Θ and Ξ . For such
a Hamiltonian H satisfying Assumption 1 to exist, the complex rank of V must be a
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multiple of 4 since sign(H(t)), iΠ , i and Θ provides a Cl1,1⊗Cl2,0 ∼= H(2)-module
structure on V . We assume rankC V = 4M for some positive integer M .

Lemma 7 If a Hamiltonian H satisfying Assumption 1 exists, there is an orthonormal
basis of V such that Π and Θ are expressed as follows.

Π =
(
1 0
0 −1

)
, Θ =

(
0 J
J 0

)
.

We writeJ = diag( j, . . . , j), where j is the quaternionic structure on H.

Proof By using Π , we decompose V ∼= V 0 ⊕ V 1. We identify V 0 ∼= V 1 ∼= C
2M ∼=

H
M , on which we consider J = diag( j, . . . , j). Let U = Θ

(
0 J
J 0

)
. Since U

is a unitary and commutes with Π , we have U = diag(u0, u1), where u0 and u1 are
unitaries on C

2M . Since Θ2 = −1, we have u1 = AdJ (u∗0). Let W = diag(−u∗0, 1),
then WΘW ∗ =

(
0 J
J 0

)
. ��

We take this basis on V and express Π and Θ as above. By the chiral symmetry, we
take u in (18). By the TRS, we have u�⊗τ =J u∗J ∗ = u.

In class AII, theHamiltonian has odd TRS. The space V has a quaternionic structure
given by Θ , and the complex rank of V is even, for which we write 2M . There is an
orthonormal basis of V for identifying V with C

2M ∼= H
M and expressing Θ as

J = diag( j, . . . , j). Let u be a self-adjoint unitary in (16). By the TRS, we have
u�⊗τ = AdJ⊕J (u∗) = u∗.

In class CII, the Hamiltonian has both odd TRS and odd PHS. The chiral symmetry
is given by Π = ΘΞ and commutes with Θ and Ξ . As in the class BDI case, we take
an orthonormal basis of V to identify V with C

N and express Π and Θ as

Π =
(
1 0
0 −1

)
, Θ =

(
J 0
0 J

)
, (19)

where J = diag( j, . . . , j). By the chiral symmetry, we take u in (18). By the TRS,
we have u�⊗τ =J u∗J ∗ = u∗.

In class C, the Hamiltonian has odd PHS. SinceΞ provides a quaternionic structure
on V , its complex rank is even, for which we write 2M . We take an orthonormal basis
of V to identify V with C

2M ∼= H
M and express Ξ as J = diag( j, . . . , j). Let

u = sign(h), then we have u�⊗τ =J u∗J ∗ = −u by the PHS.
In class CI, the Hamiltonian has both even TRS and odd PHS. The chiral symmetry

is given by Π = iΘΞ and anticommutes with Θ and Ξ . As in Lemma 7, we take an
orthonormal basis of V to express,

Π =
(
1 0
0 −1

)
, Θ =

(
0 C
C 0

)
,

where C = diag(c, . . . , c). By the chiral symmetry, we take u in (18). By the TRS,
we have uτ = C u∗C ∗ = u.
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Table 10 i(♠) and c(♠) for
each of the Altland–Zirnbauer
classes ♠

♠ AI BDI D DIII AII CII C CI

i(♠) 0 1 2 3 4 5 6 −1
c(♠) 1 1 i 1 1 1 i 1

Definition 2 For a Hamiltonian in class ♠ = AI, BDI, D, DIII, AII, CII, C or CI
satisfying Assumption 1, let u be the unitary defined as above. As we have seen, this
unitary u satisfies the relationRi(♠) where i(♠) is as indicated in Table 10. We denote
its class9 [u] in the KO-group KOi(♠)(S

α,β ⊗ C(Tn−2), τ ) by I n,2,♠
Gapped(H).

The groups KO∗(S α,β ⊗ C(Tn−2), τ ) are computed by results in Sect. 3.2.

Remark 4 We expressed the symmetry operators in a specific way, though we may
choose another one. In class DIII, for example, the operatorΘ can also be expressed as(
0 −C
C 0

)
, whereC = diag(c, . . . , c). Then, we obtain unitaries satisfying uτ = −u,

which are treated in [39].

5.3 Gapless topological invariants

We next define another topological invariant by using our model for the corner Ĥα,β .
By Assumption 1 and Theorem 2.6 in [55], {Ĥα,β(t)}t∈Tn−2 is a continuous family
of self-adjoint Fredholm operators. Corresponding to its Altland–Zirnbauer classes,
this family provides a Z2-map from (Tn−2, ζ ) to some Z2-spaces of self-adjoint or
skew-adjoint Fredholm operators introduced in Appendix A as follows.

– Class AI, Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(0,1)
∗ , rΘ).

– Class BDI, let ε1 = Π . Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(0,2)
∗ , rΘ).

– Class D, Z2-map i Ĥα,β : (Tn−2, ζ ) → (Fred(1,0)
∗ , rΞ).

– Class DIII, let e1 = iΠ . Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(1,1)
∗ , qΘ).

– Class AII, Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(0,1)
∗ , qΘ).

– Class CII, let ε1 = Π . Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(0,2)
∗ , qΘ).

– Class C, Z2-map i Ĥα,β : (Tn−2, ζ ) → (Fred(1,0)
∗ , qΞ).

– Class CI, let e1 = iΠ . Z2-map Ĥα,β : (Tn−2, ζ ) → (Fred(1,1)
∗ , rΘ).

Here, we write rΘ = AdΘ whenΘ2 = 1 and qΘ = AdΘ whenΘ2 = −1. Involutions
rΞ and qΞ are defined as AdΞ in the same way. By Corollary 4, the Z2-homotopy
classes of Z2-maps from (Tn−2, ζ ) to the above Z2-space of self-adjoint or skew-
adjoint Fredholm operators is isomorphic to the KO-group KOi (C(Tn−2), τT) of
some degree i .

Definition 3 For ♠ = AI, BDI, D, DIII, AII, CII, C or CI, let i(♠), c(♠) and Fred♠
be numbers and the Z2-space as in Tables 10 and 11. For a Hamiltonian H in class

9 We simply write τ in place of τS ⊗ τT. In the following, these abbreviations for tensor products of
transpositions are employed, though the meaning will be clear from the context.
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Table 11 In each Altland–Zirnbauer class ♠, gapped invariants and gapless invariants are defined as ele-
ments of some K - and KO-groups of some degree, as indicated in this table

AZ Gapped Gapless

♠ K -group K -group Fred♠ U♠

A K0 K1 Fred
(0,1)∗ Ucpt

AIII K1 K0 Fred U
(0,1)
cpt

AI KO0 KO−1 (Fred
(0,1)∗ , rΘ) (Ucpt, r ◦ ∗)

BDI KO1 KO0 (Fred
(0,2)∗ , rΘ) (∼= (Fred

(1,1)∗ , rΞ )) (U
(0,1)
cpt , r)

D KO2 KO1 (Fred
(1,0)∗ , rΞ ) (Ucpt, r)

DIII KO3 KO2 (Fred
(1,1)∗ , qΘ) (∼= (Fred

(2,0)∗ , rΞ )) (U
(1,0)
cpt , r)

AII KO4 KO3 (Fred
(0,1)∗ , qΘ) (Ucpt, q ◦ ∗)

CII KO5 KO4 (Fred
(0,2)∗ , qΘ) (∼= (Fred

(1,1)∗ , qΞ )) (U
(0,1)
cpt , q)

C KO6 KO5 (Fred
(1,0)∗ , qΞ ) (Ucpt, q)

CI KO−1 KO6 (Fred
(1,1)∗ , rΘ) (∼= (Fred

(2,0)∗ , qΞ )) (U
(1,0)
cpt , q)

Classifying spaces for topological K - and K R-groups through self-adjoint or skew-adjoint Fredholm oper-
ators and unitaries are also included. (Z2-)spaces Fred♠ and U♠ are introduced in Appendix A

♠ satisfying Assumption 1, we denote I n,2,♠
Gapless(H) for the class [c(♠)Ĥα,β ] in the

group KOi(♠)−1(C(Tn−2), τT). We call I n,2,♠
Gapless(H) the gapless corner invariant.

If the gapless corner invariant is nontrivial, zero is contained in the spectrum of Ĥα,β .
In Sect. 5.6, we discuss more refined relations between the gapless corner invariant
and corner states when k = n − 1 and n.

5.4 Correspondence

By taking a tensor product of the extension (2) and (C(Tn−2), τT), we have the fol-
lowing short exact sequence of C∗,τ -algebras,

0→ (K ⊗ C(Tn−2), τ ) → (T̂ α,β ⊗ C(Tn−2), τ ) → (S α,β ⊗ C(Tn−2), τ ) → 0.

Let us consider the following diagram containing the boundary map of 24-term exact
sequence for KO-theory associated with this sequence:

KOi(♠)(S
α,β ⊗ C(Tn−2), τ )

∂̂i(♠)

L

K Oi(♠)−1(K (Ĥ α,β)⊗ C(Tn−2), τ )

[(Tn−2, ζ ),Fred♠]Z2

∼= [(Tn−2, ζ ), F♠]Z2

∼= exp
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where F♠ is the Z2-subspace of Fred♠ as in Appendix A, whose inclusion F♠ ↪→
Fred♠ is the Z2-homotopy equivalence. Maps L and exp are as follows.

– When i(♠) is odd, for [u] ∈ KOi(♠)(S
α,β ⊗ C(Tn−2), τ ), we take a lift a of u

and consider the matrix A as in Definition 10, and set L([u]) = [A]. The map exp
is defined as in Definition 10.

– When i(♠) = 0, 4, for [u] ∈ KOi(♠)(S
α,β ⊗C(Tn−2), τ ), we take a self-adjoint

lift a of u as in Definition 8.3 of [14] and set L([u]) = [a]. The map exp is defined
by exp([a′]) = [− exp(π ia′)].

– When i(♠) = 2, 6, for [u] ∈ KOi(♠)(S
α,β ⊗C(Tn−2), τ ), we take a self-adjoint

lift a of u as in Definition 8.3 of [14] and set L([u]) = [ia]. The map exp is defined
by exp([a′]) = [− exp(πa′)].

In each case, the map exp is an isomorphism by Proposition 10 and Sect. A.2. For
boundary maps ∂̂i(♠), we use its expressions through exponentials (see [14] for even
i(♠) and Appendix A.3 for odd i(♠)) and the diagram commutes. Note that, by
Proposition 3, the boundary map ∂̂i(♠) is surjective. The following is the main result
of this section.

Theorem 2 ∂̂i(♠)(I
n,2,♠
Gapped(H)) = I n,2,♠

Gapless(H).

Proof The operator Ĥα,β is a self-adjoint lift of (Hα, Hβ) and preserves the symme-
tries of the class♠. Therefore, we have L(I n,2,♠

Gapped(H)) = [c(♠)Ĥα,β ] and the results
follow from the commutativity of the above diagram. ��
Remark 5 (Relation with bulk weak invariants) Under Assumption 1, the bulk Hamil-
tonian H is also invertible. When we take H in place of h = (Hα, Hβ) and define the
unitary u′ as u in Sect. 5.2 for each symmetry classes10, we obtain an element [u′] in
KOi(♠)(C(Tn), τT), which classifies bulk invariants in class ♠. A relation between
gapped invariantsI n,2,♠

Gapped(H) and these bulk invariants can be discussed through the

map (σ ⊗ 1)∗ : KOi(♠)(S
α,β ⊗ C(Tn−2), τ ) → KOi(♠)(C(Tn), τT), which maps

[u] to [u′]. As a result, under Assumption 1, bulk strong invariants are trivial.
For bulk weak invariants, except for the cases when α and β are both rational

(or ±∞) and t = −ps + qr is even, only bulk weak invariants associated with the
direction parallel to the codimension-two corner can be non-trivial.

When α and β are both rational (or ±∞) and t = −ps + qr is even, some of
the bulk weak invariants can also be non-trivial as discussed in Remark 1. We here
discuss it from the viewpoint of the bulk-boundary correspondence for (first-order)
topological insulators, for that we restrict our attention to the case of n = 2 and, as
in Remark 1, replace α and β to 0 and γ , respectively. In this setup, let us consider
a bulk gapped Hamiltonian of class D or DIII (corresponding to cases of i = 2 or 3
in Remark 1) of non-trivial Z2-valued bulk weak invariant in the x-direction but of

10 For example, for class AI, class BDI and class D systems, we define u′ as follows,

u′ =
(
sign(H) 0

0 1N

)
class AI, sign(H) =

(
0 u′∗
u′ 0

)
class BDI, u′ = sign(H) class D.
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trivial bulk strong invariant and trivial bulk weak invariant in the y-direction. In this
case, the bulk-boundary correspondence prevents us to find invertible half-plane lift
Hamiltonian for the half-plane cut across y-axis (i.e. there is no invertible self-adjoint
element in thematrix algebra ofT ∞ preserving the symmetry of class D orDIII which
maps to our bulk Hamiltonian by themap σ∞) but not for half-planes cut across x-axis
and the line11 y = γ x . Therefore, there can be an invertible self-adjoint element in the
matrix algebra ofS 0,γ preserving the symmetry which maps to our bulk Hamiltonian
by σ . Elements [(v2, w+)] and [(v3, z+)] discussed in Sect 3.2 provide such examples,
which can be seen as a background of t dependence of Table 3 when i = 2 and 3.

Remark 6 (Convex and concave corners)When we fix α and β, there exist twomodels
of corners: convex and concave corners (Ĥ α,β and Ȟ α,β ).We have discussed convex
corners though, as in [34], similar results also hold for concave corners by using (3)
in place of (2) in our discussion. As in Remark 2, the gapless invariants of these two
are related by the factor −1.

5.5 Higher-codimensional cases

Let n and k be positive integers satisfying 3 ≤ k ≤ n. In this subsection, we consider
n-D systemwith a codimension-k corner. Let d = n−k.We consider a continuousmap
T
n → Herm(V ) and the bounded linear self-adjoint operator H on l2(Zn) generated

by this map, which is our model of the bulk. We next introduce models of corners
of codimension k − 1 whose intersection makes a codimension k corner. For this,
we choose d variables t j1, . . . , t jd in t1, t2, . . . , tn and consider the partial Fourier
transform in these d variables to obtain a continuous family of self-adjoint operators
{H(t)}t∈Td on l2(Zk; V ). On the Hilbert space l2(Zk; V ) ∼= (l2(Z)⊗· · ·⊗l2(Z))⊗V ,
we consider projections Pk = (P≥0⊗ · · · ⊗ P≥0)⊗ 1V , and Pk,i = (P≥0⊗ · · · ⊗ 1⊗
· · ·⊗ P≥0)⊗1V for 1 ≤ i ≤ k where inside the brackets is the tensor products of P≥0
except for the i-th tensor product replaced by the identity. By using these projections,
we define the following operators:

Hc(t) = PkH(t)Pk, Hi (t) = Pk,i H(t)Pk,i ,

for 1 ≤ i ≤ k and for t ∈ T
d . These two are our model for a codimension k

corner and codimension k − 1 corners, respectively. When we fix a basis on V , we
have (H1(t), . . . , Hk(t)) ∈ MN (S k) by the construction. We assume the following
condition in this subsection.

Assumption 2 (Spectral Gap Condition)Weassume that ourmodels for codimension
k − 1 corners H1, . . . , Hk are invertible.

Under this assumption, the model for the bulk, surfaces and corners of codimension
less than k, whose intersection makes our codimension-k corner, are invertible. As in
Sect. 5.1, let h = (H1, . . . , Hk).

11 If we transformH γ toH ∞ by an action of SL(2, Z) on the lattice, we can see that the corresponding
Z2-valued bulk weak invariant in the x-direction is trivial.
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Definition 4 For a Hamiltonian in class ♠ = AI, BDI, D, DIII, AII, CII, C or CI
satisfying Assumption 2, let u be a unitary defined by using this h in place of that
in Sect. 5.2. As in Sect. 5.2, this unitary u satisfies the relation Ri(♠) where i(♠) is
as indicated in Table 10. We denote its class [u] in the KO-group KOi(♠)(S

k ⊗
C(Td), τ ) by I n,k,♠

Gapped(H).

The KO-groups KOi (S k ⊗ C(Td), τ ) are computed by using Proposition 5. For
each t ∈ T

d , the operator Hc(t) is Fredholm by Corollary 1.

Definition 5 For♠ =AI, BDI, D, DIII, AII, CII, C or CI, let i(♠), c(♠) and Fred♠ be
numbers and the Z2-space as in Tables 10 and 11. For a Hamiltonian H in class♠ sat-
isfyingAssumption 2, we denoteI n,k,♠

Gapless(H) for [c(♠)Hc] ∈ KOi(♠)−1(C(Td), τT).

We call I n,k,♠
Gapless(H) the gapless corner invariant.

We next discuss a relation between these two topological invariants. As in Sect. 5.4,
we consider a tensor product of the extension (14) and (C(Td), τT) and consider
the boundary map ∂i(♠) : KOi(♠)(S

k ⊗ C(Td), τ ) → KOi(♠)−1(K k ⊗ C(Td), τ )

associated with it expressed through exponentials. Since Hc is a self-adjoint lift of
(H1, . . . , Hk), the following relation holds, as in Theorem 2.

Theorem 3 ∂i(♠)(I
n,k,♠
Gapped(H)) = I n,k,♠

Gapless(H).

Remark 7 As in Remark 5, under Assumption 2, some gapped invariants related to
corner states for corners of codimension < k are also defined, though, by Remark 3,
only bulk weak invariants associated with the direction parallel to the codimension-k
corner can be non-trivial.

Remark 8 Gapless corner invariants for each systems are elements of the KO-group
KOi (C(Td), τT) ∼= ⊕d

j=0
(d
j

)
KOi− j (C, id). As in the case of (first-order) topolog-

ical insulators [43], we call the component KOi−d(C, id) strong and others weak12.
That is, we call weak invariants when a corner Hamiltonian representing the K -class
can be obtained by stacking lower-dimensional one with the corner of the same codi-
mension, and others strong.

Complex cases can also be discussed in a similar way13. For class A systems
with a codimension ≥ 3 corner, under Assumption 2, we define gapped and gapless
invariants as elements of K0(S k ⊗ C(Td)) and K1(C(Td)), respectively, and the
boundary map ∂0 : K0(S k ⊗ C(Td)) → K1(K k ⊗ C(Td)) associated with (14)
relates these two, which is surjective by Proposition 6. In class AIII systems, we use
∂1 : K1(S k ⊗ C(Td)) → K0(K k ⊗ C(Td)) instead. Gapless corner invariants take
value in Ki (C(Td)) ∼=⊕d

j=0
(d
j

)
Ki− j (C), andwe call the component Ki−d (C) strong

and others weak.

12 For (first-order) topological insulators, strong and weak invariants may be introduced for gapped bulk
invariants, though we can also distinguish them through gapless boundary invariants by the bulk-boundary
correspondence. In this paper, we take the latter point of view for corners and distinguish strong and weak
invariants through gapless corner invariants since, when we define our gapped invariants, the shape of the
corner is to some extent fixed and our interest here is corner states.
13 In [33,34], there is a mistake in the computations of the group K0(S

α,β ) in the case where α and β are
rational numbers (there is a torsion part in general, as in KO0(S

α,β , τS ) computed in Sect. 4), which is
correctly stated in [56]. The author would like to thank Guo Chuan Thiang for pointing this mistake out.
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Strong invariants for each system are classified in Table 1.

5.6 Numerical corner invariants

Our gapless corner invariants are defined as elements of some KO-group. In this
subsection, we introduce Z- or Z2-valued numerical corner invariants for our systems
in cases where k = n and k = n−1 tomake the relation between our gapped invariants
and corner states more explicit. From Table 11, we discuss Hamiltonians in classes
BDI, D, DIII and CII when k = n and D, DIII, AII and CII when k = n − 1 satisfying
our spectral gap condition.

5.6.1 Case of k = n

In this case, our model of the corner Hc is a self-adjoint Fredholm operator which
has some symmetry corresponding to its Altland–Zirnbauer class14. An appropriate
definition of numerical topological invariants is introduced in [9] and we put them in
our framework.

In class BDI, the operator Hc is an element of the fixed point set (Fred(0,2)
∗ )rΘ of

the involution rΘ , where the Clifford action of Cl0,1 on the Hilbert space is given by
ε1 = Π (see also Lemma 13 and Remark 12). We express Π and Θ as in (17) and
express Hc as follows.

Hc =
(

0 (hc)∗
hc 0

)
. (20)

The operator hc is a Fredholm operator that commutes with C and thus is a real
Fredholm operator. Its Fredholm index is

ind(hc) = rankCKer(hc)− rankC Coker(hc) = Tr(Π |Ker(Hc)),

where the right-hand side is the trace ofΠ restricted to Ker(Hc). The Fredholm index
induces an isomorphism indBDI : [(pt, id), (Fred(0,2)

∗ , rΘ)]Z2 → Z.
In class D, i Hc commutes with the real structure Ξ and is a real skew-adjoint

Fredholm operator. Its mod 2 index [9] is

ind1(i H
c) = rankCKer(Hc) mod 2,

which induces the isomorphism indD : [(pt, id), (Fred(1,0)
∗ , rΞ)]Z2 → Z2.

In class DIII, Hc is an element of (Fred(1,1)
∗ )qΘ , where the action of Cl1,0 is given

by e1 = iΠ . The operator i Hc and e1 commute with the real structure Ξ ; thus, i Hc

is a real skew-adjoint Fredholm operator that anticommutes with e1. Its mod 2 index
[9] is

ind2(i H
c) = 1

2
rankCKer(Hc) mod 2,

14 In what follows, we also write Hc for Ĥα,β in k = 2 case.
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which induces the isomorphism indDIII : [(pt, id), (Fred(1,1)
∗ , qΘ)]Z2 → Z2.

In class CII, the operator Hc is an element of (Fred(0,2)
∗ )qΘ , where the Clifford

action of Cl0,1 is given by ε1 = Π . We express Θ and Π as in (19) and express
Hc as in (20). The operator hc commutes with J and is a quaternionic Fredholm
operator. Its Fredholm index ind(hc) is an even integer that induces an isomorphism
indCII : [(pt, id), (Fred(0,2)

∗ , qΘ)]Z2 → 2Z.

Definition 6 For n-D systems with codimension-n corners in classes BDI, D, DIII and
CII, we define the numerical corner invariant as follows.

– In class BDI, letN n,n,BDI
Gapless (H) = ind(hc) ∈ Z.

– In class D, let N n,n,D
Gapless(H) = ind1(i Hc) ∈ Z2.

– In class DIII, let N n,n,DIII
Gapless (H) = ind2(i Hc) ∈ Z2.

– In class CII, letN n,n,CII
Gapless (H) = ind(hc) ∈ 2Z.

Note that by these definitions, they are images of gapless corner invariantsI n,n,♠
Gapless(H)

for each class♠ = BDI, D, DIII and CII through the isomorphism ind♠. In each case,
the numerical corner invariant is computed through Ker(Hc) and is related to the
number of corner states.

5.6.2 Case of k = n − 1

In this case, {Hc(t)}t∈T is a continuous family of self-adjoint Fredholm operators
preserving some symmetry. The numerical corner invariants are given by using (Z-
valued) spectral flow [8] and its Z2-valued variants [18,19]. We first review Z- and
Z2-valued spectral flow.

Spectral flow is, roughly speaking, the net number of crossing points of eigenvalues
of a continuous family of self-adjoint Fredholm operators with zero [8]. The following
definition of spectral flow is due to Phillips [57].

Definition 7 (Spectral flow) Let A : [−1, 1] → Fred(0,1)
∗ be a continuous map. We

choose a partition−1 = s0 < s1 < · · · < sn = 1 and positive numbers c1, c2, . . . , cn
so that for each i = 1, 2, . . . , n, the function t �→ χ[−ci ,ci ](As) is continuous and
finite rank on [si−1, si ], where χ[a,b] is the characteristic function of [a, b]. We define
the spectral flow of A as follows.

sf(A) =
n∑

i=1
(rankC(χ[0,ci ](Asi ))− rankC(χ[0,ci ](Asi−1)) ∈ Z.

Spectral flow is independent of the choice made and depends only on the homotopy
class of the path A leaving the endpoints fixed. Thus, the spectral flow induces a map
sf : [T,Fred(0,1)

∗ ] → Z which is a group isomorphism.
We next discuss Z2-valued spectral flow. Let ζ0 be an involution on the interval

[−1, 1] given by ζ0(s) = −s. Let A be a Z2-map from ([−1, 1], ζ0) to (Fred(0,1)
∗ , q).

123



118 Page 34 of 54 S. Hayashi

Then, the spectrum sp(As) of As is symmetricwith respect to ζ0, and roughly speaking,
Z2-valued spectral flow counts the mod 2 of the net number of pairs of crossing points
of sp(As) with zero. Z2-valued spectral flow is studied in [15,18,19,21] and we give
one definition following [19,57].

Definition 8 (Z2-Valued Spectral Flow)Let us consider aZ2-map A : ([−1, 1], ζ0)→
(Fred(0,1)

∗ , q).We choose a partition 0 = s0 < s1 < · · · < sn = 1 of [0, 1] and positive
numbers c1, c2, . . . , cn so that for each i = 1, 2, . . . , n, the map t �→ χ[−ci ,ci ](As) is
continuous and finite rank on [si−1, si ]. We define the Z2-valued spectral flow sf2(A)

of A as follows.

sf2(A) =
n∑

i=1
(rankC(χ[0,ck ](Asi ))+ rankC(χ[0,ci ](Asi−1))) mod 2 ∈ Z2.

Z2-valued spectral flow is independent of the choice made and depends only on the
Z2-homotopy class of the Z2-map A leaving the endpoints fixed or leaving these

points in the Z2-fixed point set (Fred(0,̂1)∗ )q. Thus Z2-valued spectral flow induces a
group homomorphism sf2 : [(T, ζ0), (Fred

(0,1)
∗ , q)]Z2 → Z2. By Appendix A, the Z2-

homotopy classes [(T, ζ0), (Fred
(0,1)
∗ , q)]Z2 is isomorphic to KO3(C(T), τT) ∼= Z2.

Example 2 On C
2, let us consider a family of self-adjoint operators given by Bs =

diag(s,−s) for s ∈ [−1, 1], and an antiunitary j given by j(x, y) = (−ȳ, x̄). Then,
we have a Z2-map B : ([−1, 1], ζ0) → (M2(C),Ad j ) whose Z2-valued spectral flow
sf2(B) is one. We extend this finite-dimensional example to an infinite-dimensional
one to give an example of a family parametrized by the circle of nontrivial Z2-
valued spectral flow. Let V be a separable infinite-dimensional complex Hilbert space
equipped with a quaternionic structure q. On V ′ = C

2 ⊕ V ⊕ V , we consider a
quaternionic structure q ′ = j ⊕ q ⊕ q and a family self-adjoint Fredholm opera-
tors given by Cs = diag(Bs, 1V ,−1V ). Let U (0,1)

∗ (V ′) the space of unitaries on V ′
whose spectrum is {±1} equipped with the norm topology. Then, its endpoints C±1
are contained in U (0,1)

∗ (V ′). Through an identification (V ⊕ V , q ⊕ q) ∼= (V ′, q ′),
the operator diag(1V ,−1V ) gives an element v0 ∈ U (0,1)

∗ (V ′) which satisfies
Ad′q(v0) = v0. The space U (0,1)

∗ (V ′) is homeomorphic to the homogeneous space
U (V ′)/(U (C ⊕ V ) × U (C ⊕ V )), which is contractible by the Kuiper’s theorem
[46]. Thus, there is a path l : [0, 1] → U (0,1)

∗ (V ′) whose endpoints are l(0) = v0

and l(1) = C1. We extend l to a Z2-map l ′ : ([−1, 1], ζ0) → (U (0,1)
∗ (V ),Adq ′) by

l ′(s) = Adq ′(l(−s)) for s ∈ [−1, 0]. Since l ′(±1) = C±1, we connect the endpoints
of C and l ′ to construct a Z2-map C ′ : (T, ζ ) → (Fred(0,̂1)∗ , q′), where q′ = Adq ′ .
Then, sf2(C ′) = sf2(B) = 1.

In class D, we have a Z2-map i Hc : (T, ζ ) → (Fred(1,0)
∗ , rΞ). The Z2-

homotopy classes [(T, ζ ), (Fred(1,0)
∗ , rΞ)]Z2 is isomorphic to KO1(C(T), τT) ∼=

Z2 ⊕ Z. By forgetting the Z2-actions and multiplying −i , we have a map
[(T, ζ ), (Fred(1,0)

∗ , rΞ)]Z2 → [T,Fred(0,1)
∗ ]. Combined with this map and the spectral

123



Classification of topological invariants Page 35 of 54 118

flow sf : [T,Fred(0,1)
∗ ] → Z, we obtain a homomorphism

sfD : [(T, ζ ), (Fred(1,0)
∗ , rΞ)]Z2 → Z, [A] �→ sf(−i A).

Example 3 Let B ′ : ([−1, 1], ζ0)→ (C,Adc) be a Z2-map defined by B ′s = is. Then,
sfD(B ′) is defined and sfD(B ′) = 1.

In class DIII, Hc : (T, ζ ) → (Fred(1,1)
∗ , qΘ) is a Z2-map, where the action of the

Clifford algebra on the right-hand side is given by e1 = iΠ . TheZ2-homotopy classes
[(T, ζ ), (Fred(1,1)

∗ , qΘ)]Z2 are isomorphic to KO2(C(T), τT) ∼= Z2 ⊕ Z2. Since the

Z2-space (Fred(1,1)
∗ , qΘ) is a Z2-subspace of (Fred(0,1)

∗ , qΘ), the inclusion induces
a map [(T, ζ ), (Fred(1,1)

∗ , qΘ)]Z2 → [(T, ζ ), (Fred(0,1)
∗ , qΘ)]Z2 . Combined with the

Z2-valued spectral flow, we obtain the following map:

sfDIII : [(T, ζ ), (Fred(1,1)
∗ , qΘ)]Z2 → Z2, [A] �→ sf2(A).

For b = 1 or −1, let ib be the inclusion {b} ↪→ T. We define w+ and w− as the
composite of the following maps when b = 1 and b = −1, respectively:

[(T, ζ ), (Fred(1,1)
∗ , qΘ)]Z2

i∗b−→ [({±1}, id), (Fred(1,1)
∗ , qΘ)]Z2

ind2−→ Z2.

Example 4 Let j , V , V ′, q, q ′, Bs and Cs be as in Example 2. Let e1 =
(
0 i
i 0

)
and

e′1 =
(

0 −1V
1V 0

)
whichgives aCl1,0-module structure onC

2 andV ⊕V , respectively.

Then, Cs = diag(Bs, 1,−1) gives a Z2-map from ([−1, 1], ζ0) to (Fred(1,1)
∗ , q′). The

operatorC1 is contained in the space of self-adjoint unitaries on V ′ that anticommutes
with e1⊕ e′1. As in [9], this space of unitaries is contractible by Kuiper’s theorem. We
embed [−1, 1] intoT by s �→ exp(π is

2 ) and, as in Example 2, extendC ontoT through

this contractible space of unitaries to obtain a Z2-map D : (T, ζ ) → (Fred(1,1)
∗ , q′).

For this example, we have sfDIII(D) = sfDIII(B) = 1, w+(D) = 1 and w−(D) = 0.
If we take D′ as D′s = D−s , then D′ is also such a Z2-map and its invariants are
sfDIII(D′) = 1, w+(D′) = 0 and w−(D′) = 1.

In class AII, Hc : (T, ζ ) → (Fred(0,1)
∗ , qΘ) is a Z2-map and its Z2-valued spectral

flow is defined. We denote sfAII for sf2.
In class C, we have a Z2-map i Hc : (T, ζ ) → (Fred(1,0)

∗ , qΞ). Note that the set
[(T, ζ ), (Fred(1,0)

∗ , qΞ)]Z2 is isomorphic to the group KO5(C(T), τζ ) ∼= Z. By forget-

ting theZ2-actions andmultiplying−i , there is a map from [(T, ζ ), (Fred(1,0)
∗ , qΞ)]Z2

to [T,Fred(0,1)
∗ ]. Combined with the spectral flow, we obtain a homomorphism

sfC : [(T, ζ ), (Fred(1,0)
∗ , qΞ)]Z2 → 2Z, [A] �→ sf(−i A).
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Note that the image of sfC are even integers since each eigenspace corresponding to
the crossing points of the spectrum of−i At with zero has a quaternionic vector space
structure given by Ξ .

Example 5 For s ∈ [−1, 1], let B ′′s = diag(is, is), and let j be the quaternionic
structure in Example 2. Then, B ′′ : ([−1, 1], ζ ) → (M2(C),Ad j ) is a Z2-map, and
we have sfC(B ′′) = sf(−i B ′′) = 2.

Lemma 8 (1) sfAII: [(T, ζ ), (Fred(0,1)
∗ , q)]Z2 → Z2 is an isomorphism.

(2) sfD : [(T, ζ ), (Fred(1,0)
∗ , r)]Z2 → Z is surjective.

(3) sfDIII, w+, w− : [(T, ζ ), (Fred(1,1)
∗ , q)]Z2 → Z2 are surjective

(4) sfC : [(T, ζ ), (Fred(1,0)
∗ , q)]Z2 → 2Z is an isomorphism.

Proof It is sufficient to find examples of Z2-maps which maps to generators of Z, Z2
and 2Z. Therefore, (1) and (3) follow from Examples 2 and 4. For (2) and (4), we can
construct such examples from Examples 3 and 5, as in Example 2. ��
In class DIII cases, we have three surjections sfDIII, w+ and w− from Z2 ⊕ Z2 to Z2.
There is the following relation between them.

Lemma 9 sfDIII = w+ + w−.

Proof Let D and D′ be Z2-maps in Example 4. Let D′′ = D ⊕ D′, then we have
sfDIII(D′′) = 0, w+(D′′) = 1 and w−(D′′) = 1. Invariants sfDIII, w− and w+ for D,
D′ and D′′ tell that non-trivial three elements in the group [(T, ζ ), (Fred(1,1)

∗ , q)]Z2

consists of classes of D, D′ and D′′. Therefore, we computed three maps sfDIII, w−
and w+, from which the result follows. ��
Remark 9 For our class DIII systems, Z2-valued spectral flow counts the strong
invariant. This corresponds to one direct summand of Z2⊕Z2, while the other corre-
sponds to a weak invariant. When w+ �= w−, the strong invariant is nonzero. When
w+ = w− = 1, the strong invariant is zero and the weak invariant is nonzero. When
w+ = w− = 0, both of them are zero.

Definition 9 For n-D systems with codimension n − 1 corners in classes D, DIII, AII
and C, we define the numerical corner invariant as follows.

– In class D, let N n,n−1,D
Gapless (H) = sf(Hc) ∈ Z.

– In class DIII, let N n,n−1,DIII
Gapless (H) = sf2(Hc) ∈ Z2.

– In class AII, letN n,n−1,AII
Gapless (H) = sf2(Hc) ∈ Z2.

– In class C, letN n,n−1,C
Gapless (H) = sf(Hc) ∈ 2Z.

For each of the above classes ♠, the numerical invariant N n,n−1,♠
Gapless (H) is the image

of the gapless corner invariant I n,n−1,♠
Gapless (H) through the map sf♠. These numerical

invariants account for strong invariants introduced in Remark 8. For (first-order) topo-
logical insulators, Z- or Z2-valued spectral flow counts the number of chiral or helical
edge states. Correspondingly, our numerical corner invariant accounts for chiral or
helical hinge states for n-D systems with codimension n − 1 corners.
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Remark 10 InDefinition 9, the numerical corner invariants for both classDIII and class
AII are defined by using Z2-valued spectral flow, though these two Z2 are different
from the viewpoint of index theory in the sense that they sit in different Bott clock. A
similar remark holds for, e.g., cases of n = k in classes BDI and CII, where both of
these numerical corner invariants are defined as Fredholm indices.

5.7 Product formula

In Sect. 4 of [33], a construction of the second-order topological insulators of 3-D
class A systems is proposed, which is given by using the Hamiltonians of 2-D class
A and 1-D class AIII topological insulators. In this subsection, we generalize this
construction to other pairs in the Altland–Zirnbauer classification. This provides a
way to construct nontrivial examples of each entry in Table 1 from the Hamiltonians
of (first-order) topological insulators15. For this purpose, we use an exterior product
of topological K R-groups [6].

For j = 1, 2, let Hj be a bulk Hamiltonian of an n j -D k j -th-order topological
insulator16 in real Altland–Zirnbauer class ♠ j (AI, BDI, D, DIII, AII, CII, C or CI).
Let n = n1 + n2, k = k1 + k2 and d j = n j − k j for j = 1, 2, and let d = d1 + d2.
Corresponding to the class in the Altland–Zirnbauer classification (for which we write
♠ j ) to which the Hamiltonian belongs, it preserves the symmetries as (even/odd)
TRS, (even/odd) PHS or chiral symmetry. We write Θ j , Ξ j and Π j for the symmetry
operator for Hj . As in Sect. 5, the models of corners Hc

i lead to a continuous family
of self-adjoint or skew-adjoint Fredholm operators and defines an element of the KO-
group KOi ′(♠ j )(C(Td j ), τ ) where i ′(♠ j ) = i(♠ j )− 1. As in Appendix A.1, we have
an exterior product of KO-groups

KOi ′(♠1)(C(Td1), τT)× KOi ′(♠2)(C(Td2), τT) → KOi ′(♠1)+i ′(♠2)(C(Td), τT),

described through these Fredholm operators. By using this form of the product, we
obtain an explicit formof the product of the gapless invariants of H1 and H2.As a result,
we can write down a bulk Hamiltonian H of an n-D k-th order topological insulator of
class♠. The lattice on which we consider Hc as a model of the codimension-k corner
is introduced as the product of that17 of Hc

1 and that of Hc
2 . By this construction, we

have the following relation between gapless invariants.

Theorem 4 For the Hamiltonian H indicated in Table 12, we have

I n1,k1,♠1
Gapless (H1) ·I n2,k2,♠2

Gapless (H2) = I n,k,♠
Gapless(H),

15 For the case of k = 2, the construction is restricted to α = 0 and β = ∞ case.
16 that in Sect. 5.1 satisfying Assumption 1 when k j = 2 or that in Sect. 5.5 satisfying Assumption 2 when
k j ≥ 3. When k j = 1, the bulk Hamiltonian is assumed to be gapped. When k j = 2, we consider the case
of α = 0 and β = ∞.
17 When k j = 1, the lattice is Z≥0 × Z

d j , where Hc
j is the compression of the bulk Hamiltonian onto

this half-space. Topological invariants for them are the one discussed in topological insulators. To clarify
our sign choices, we mention that they are obtained by applying the discussion in Sect. 5 to the Toeplitz
extension (11) in place of (2) or (12).
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where · denotes the exterior product of elements of the K O-groups.

Note that Theorem 4 is the product formula at the level of KO-group elements and
accounts for both strong and weak invariants. In order to show this theorem, we need
to write down the explicit form of H . In the following, we discuss them for some
classes.

Let us consider the case where ♠1 = BDI and ♠2 = BDI. In this case, each
Hj has even TRS, even PHS and chiral symmetry. We now consider the following
n-dimensional Hamiltonian:

H = H1 ⊗ 1+Π1 ⊗ H2, (21)

which satisfies even TRS given by Θ = Θ1 ⊗Θ2, even PHS given by Ξ = Ξ1 ⊗Ξ2
and the chiral symmetry given by Π = Π1 ⊗Π2. Thus, the Hamiltonian H belongs
to the class ♠ = BDI. The model of the codimension-k corner Hc of H is written by
using the model Hc

j of the codimension-k j corner as follows:

Hc(t1, t2) = Hc
1 (t1)⊗ 1+Π1 ⊗ Hc

2 (t2),

where t j is an element of the d j -dimensional torus (momentum space) corresponding
to a direction parallel to the corner of Hc

j for j = 1, 2. Note that (t1, t2) constitute the
parameter of the d-dimensional momentum space in a direction parallel to the corner
of Hc. By our assumption, Hc

j (t j ) is an element of the space Fred(0,2)
∗ and gives a

Z2-map (Td j , ζ ) → (Fred(0,2)
∗ , rΘ j ). The operator H

c(t1, t2) is the image of the pair
(Hc

1 , Hc
2 ) through the map,

(Fred(0,2)
∗ , rΘ1)× (Fred(0,2)

∗ , rΘ2) → (Fred(0,2)
∗ , rΘ),

in (23), where the action of Cl0,1 to define the left-hand side is given by ε j = Π j and
that for the right-hand side is given by ε = ε1 ⊗ ε2 = Π . Since this map induces the
exterior product of KO-groups (Appendix A.1),

KO0(C(Td1), τT)× KO0(C(Td2), τT) → KO0(C(Td), τT),

we obtain Theorem 4 in this case.
We next consider the case where ♠1 = DIII and ♠2 = D. In this case, H1 has odd

TRS, even PHS and the chiral symmetry, and H2 has even PHS. As in Sect. 5.3, Hc
1 (t1)

belongs to (Fred(1,1)
∗ , qΘ1), and i H

c
2 (t2) belongs to (Fred(1,0)

∗ , rΞ2). By using Proposi-

tion 7, we identify (Fred(1,1)
∗ , qΘ1) with (Fred(2,2)

∗ , qΘ1⊕Θ1) and (Fred(1,0)
∗ , rΞ2) with

(Fred(0,3)
∗ , rΞ2⊕Ξ2). We then use the map (23) of the form

(Fred(2,2)
∗ , qΘ1⊕Θ1)× (Fred(0,3)

∗ , rΞ2⊕Ξ2)→ (Fred(2,3)
∗ , q′),

where q′ is the conjugation of the fourfold direct sum ofΘ1⊗Ξ2. By Proposition 7, we
have the Z2-homeomorphism (Fred(2,3)

∗ , q′) ∼= (Fred(0,1)
∗ , qΘ1⊗Ξ2). Thus, we obtain
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a Z2-map Hc : (Td , ζ ) → (Fred(0,1)
∗ , qΘ1⊗Ξ2) from Hc

1 and Hc
2 which is a model

for the codimension-k corner in class ♠ = AII. Its bulk Hamiltonian H and (odd)
TRS operator Θ is expressed as (21) and Θ = Θ1 ⊗ Ξ2, respectively. Note that
Π1 = iΘ1Ξ1 in class DIII and Θ commutes with H . Since the map (23) induces the
exterior product of KO-groups, Theorem 4 holds for this class AII Hamiltonian H .

The other cases are computed in a similar way, and the results are summarized in
Table 12, where we write

H� =
(

0 H1 ⊗ 1− i ⊗ H2
H1 ⊗ 1+ i ⊗ H2 0

)
, Θ♣ =

(
Θ1 ⊗Ξ2 0

0 Θ1 ⊗Ξ2

)
,

H� =
(

0 −H1 ⊗ i − 1⊗ H2
H1 ⊗ i − 1⊗ H2 0

)
,Θ� =

(
Ξ1 ⊗Θ2 0

0 Ξ1 ⊗Θ2

)
,

Θ♦ =
(

0 −Ξ1 ⊗Ξ2
Ξ1 ⊗Ξ2 0

)
and Θ♥ =

(
0 Θ1 ⊗Θ2

Θ1 ⊗Θ2 0

)
.

Our product formula (Theorem 4) and the graded ring structure of KO∗(C, id)
(Theorem 6.9 of [7]) lead to the following product formula for numerical corner
invariants. We collect the results here where the form of H is as indicated in Table 12.

Corollary 2 (Cases of n = k) The case of k1 = n1 and k2 = n2.

– BDI × BDI→ BDI, N n1,n1,BDI
Gapless (H1) ·N n2,n2,BDI

Gapless (H2) = N n,n,BDI
Gapless (H).

– BDI × D→ D, (N n1,n1,BDI
Gapless (H1) mod 2) ·N n2,n2,D

Gapless (H2) = N n,n,D
Gapless(H).

– BDI × DIII→ DIII,
(N n1,n1,BDI

Gapless (H1) mod 2) ·N n2,n2,DIII
Gapless (H2) = N n,n,DIII

Gapless (H).

– BDI × CII→ CII, N n1,n1,BDI
Gapless (H1) ·N n2,n2,CII

Gapless (H2) = N n,n,CII
Gapless (H).

– D× D→ DIII, N n1,n1,D
Gapless (H1) ·N n2,n2,D

Gapless (H2) = N n,n,DIII
Gapless (H).

– CII× CII→ BDI, N n1,n1,CII
Gapless (H1) ·N n2,n2,CII

Gapless (H2) = N n,n,BDI
Gapless (H).

Corollary 3 (Cases of n = k − 1) The case of k1 = n1 and k2 = n2 − 1.

– BDI × D→ D, N n1,n1,BDI
Gapless (H1) ·N n2,n2−1,D

Gapless (H2) = N n,n−1,D
Gapless (H).

– BDI × DIII→ DIII,
(N n1,n1,BDI

Gapless (H1) mod 2) ·N n2,n2−1,DIII
Gapless (H2) = N n,n−1,DIII

Gapless (H).
– BDI × AII→ AII,

(N n1,n1,BDI
Gapless (H1) mod 2) ·N n2,n2−1,AII

Gapless (H2) = N n,n−1,AII
Gapless (H).

– BDI × C→ C, N n1,n1,BDI
Gapless (H1) ·N n2,n2−1,C

Gapless (H2) = N n,n−1,C
Gapless (H).

– D× D→ DIII,
N n1,n1,D

Gapless (H1) · (N n2,n2−1,D
Gapless (H2) mod 2) = N n,n−1,DIII

Gapless (H).

– D× DIII→ AII, N n1,n1,D
Gapless (H1) ·N n2,n2−1,DIII

Gapless (H2) = N n,n−1,AII
Gapless (H).

– DIII× D→ AII,
N n1,n1,DIII

Gapless (H1) · (N n2,n2−1,D
Gapless (H2) mod 2) = N n,n−1,AII

Gapless (H).

– CII× D→ C, N n1,n1,CII
Gapless (H1) ·N n2,n2−1,D

Gapless (H2) = N n,n−1,C
Gapless (H).

– CII× C→ D, N n1,n1,CII
Gapless (H1) ·N n2,n2−1,C

Gapless (H2) = N n,n−1,D
Gapless (H).
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Table 12 The forms of the Hamiltonians and symmetry operators in class ♠ constructed from two pairs of
Hamiltonians and symmetry operators in classes ♠1 and ♠2

♠1 ♠2 ♠ Hamiltonian (H ) TRS (Θ) PHS (Ξ ) Chiral (Π )

AI AI CI H� Θ♥ iΘΠ diag(1,−1)
AI BDI AI H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 — —

AI D BDI H� Θ♣ Ξ = ΘΠ diag(1,−1)
AI DIII D H1 ⊗Π2 + 1⊗ H2 — Θ1 ⊗Θ2Π2 —

AI AII DIII H� Θ♥ iΠΘ diag(1,−1)
AI CII AII H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 — —

AI C CII H� Θ♣ Ξ = −ΘΠ diag(1,−1)
AI CI C H1 ⊗Π2 + 1⊗ H2 — Θ1 ⊗Θ2Π2 —

BDI AI AI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 — —

BDI BDI BDI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

BDI D D H1 ⊗ 1+Π1 ⊗ H2 — Ξ1 ⊗Ξ2 —

BDI DIII DIII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

BDI AII AII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 — —

BDI CII CII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

BDI C C H1 ⊗ 1+Π1 ⊗ H2 — Ξ1 ⊗Ξ2 —

BDI CI CI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

D AI BDI H� Θ� Ξ = ΘΠ diag(1,−1)
D BDI D H1 ⊗Π2 + 1⊗ H2 — Ξ1 ⊗Ξ2 —

D D DIII H� Θ♦ iΠΘ diag(1,−1)
D DIII AII H1 ⊗Π2 + 1⊗ H2 Ξ1 ⊗Θ2 — —

D AII CII H� Θ� Ξ = −ΘΠ diag(1,−1)
D CII C H1 ⊗Π2 + 1⊗ H2 — Ξ1 ⊗Ξ2 —

D C CI H� Θ♦ iΘΠ diag(1,−1)
D CI AI H1 ⊗Π2 + 1⊗ H2 Ξ1 ⊗Θ2 — —

DIII AI D H1 ⊗ 1+Π1 ⊗ H2 — Θ1Π1 ⊗Θ2 —

DIII BDI DIII H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

DIII D AII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Ξ2 — —

DIII DIII CII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2Π2 Π1Θ1 ⊗Θ2 Π1 ⊗Π2

DIII AII C H1 ⊗ 1+Π1 ⊗ H2 — Θ1Π1 ⊗Θ2 —

DIII CII CI H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

DIII C AI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Ξ2 — —

DIII CI BDI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2Π2 Θ1Π1 ⊗Θ2 Π1 ⊗Π2

AII AI DIII H� Θ♥ iΠΘ diag(1,−1)
AII BDI AII H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 — —

AII D CII H� Θ♣ Ξ = −ΘΠ diag(1,−1)
AII DIII C H1 ⊗Π2 + 1⊗ H2 — Θ1 ⊗Θ2Π2 —

AII AII CI H� Θ♥ iΘΠ diag(1,−1)
AII CII AI H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 — —

AII C BDI H� Θ♣ Ξ = ΘΠ diag(1,−1)
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Table 12 continued

♠1 ♠2 ♠ Hamiltonian (H ) TRS (Θ) PHS (Ξ ) Chiral (Π )

AII CI D H1 ⊗Π2 + 1⊗ H2 — Θ1 ⊗Θ2Π2 —

CII AI AII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 — —

CII BDI CII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

CII D C H1 ⊗ 1+Π1 ⊗ H2 — Ξ1 ⊗Ξ2 —

CII DIII CI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

CII AII AI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 — —

CII CII BDI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

CII C D H1 ⊗ 1+Π1 ⊗ H2 — Ξ1 ⊗Ξ2 —

CII CI DIII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

C AI CII H� Θ� Ξ = −ΘΠ diag(1,−1)
C BDI C H1 ⊗Π2 + 1⊗ H2 — Ξ1 ⊗Ξ2 —

C D CI H� Θ♦ iΘΠ diag(1,−1)
C DIII AI H1 ⊗Π2 + 1⊗ H2 Ξ1 ⊗Θ2 — —

C AII BDI H� Θ� Ξ = ΘΠ diag(1,−1)
C CII D H1 ⊗Π2 + 1⊗ H2 — Ξ1 ⊗Ξ2 —

C C DIII H� Θ♦ iΠΘ diag(1,−1)
C CI AII H1 ⊗Π2 + 1⊗ H2 Ξ1 ⊗Θ2 — —

CI AI C H1 ⊗ 1+Π1 ⊗ H2 — Θ1Π1 ⊗Θ2 —

CI BDI CI H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

CI D AI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Ξ2 — —

CI DIII BDI H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2Π2 Θ1Π1 ⊗Θ2 Π1 ⊗Π2

CI AII D H1 ⊗ 1+Π1 ⊗ H2 — Θ1Π1 ⊗Θ2 —

CI CII DIII H1 ⊗Π2 + 1⊗ H2 Θ1 ⊗Θ2 Ξ1 ⊗Ξ2 Π1 ⊗Π2

CI C AII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Ξ2 — —

CI CI CII H1 ⊗ 1+Π1 ⊗ H2 Θ1 ⊗Θ2Π2 Π1Θ1 ⊗Θ2 Π1 ⊗Π2

A A AIII H� — — diag(1,−1)
A AIII A H1 ⊗Π2 + 1⊗ H2 — — —

AIII A A H1 ⊗ 1+Π1 ⊗ H2 — — —

AIII AIII AIII H1 ⊗ 1+Π1 ⊗ H2 — — Π1 ⊗Π2

Complex cases are also included [33,34]

We also have a similar formula by exchanging H1 and H2 (e.g. pairs like D×BDI→
D). Note that in the case of CII × CII→ BDI in Corollary 2, we take the product of
two even integers, which is necessarily a multiple of four. A similar remark also holds
in the case of CII× C→ D in Corollary 3.
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A Z2-spaces of self-adjoint/skew-adjoint Fredholm operators and
Boersema–Loring’s K -theory

In this Appendix, we collect necessary results and notations used in this paper.
The results have been developed in much generality [6,9,15,27,38,44,69], and we
contain minimal background for this paper focusing on their relation with Boersema–
Loring’s K -theory [14]. InAppendixA.1, we introduce someZ2-spaces of self-adjoint
and skew-adjoint Fredholm operators following [9]. Some proofs for known results
are contained simply to fix isomorphisms used in this paper (e.g. the derivation of
Table 12). In Appendix A.2, we discuss its relationwith Boersema–Loring’s K -theory.
In Appendix A.3, inspired by exponential maps in [9,69], we write the boundary maps
of the 24-term exact sequence of KO-theory in Boersema–Loring’s unitary picture
through exponentials. Some of them are already expressed by exponentials in [14];
thus, we consider the remaining cases. This form of boundary maps is useful when
we discuss a relation between our gapped invariants and gapless invariants through
boundary maps [14,45].

A.1 Z2-spaces of self-adjoint/skew-adjoint Fredholm operators

For nonnegative integers k and l, let Clk,l be the Clifford algebra that is an associative
algebra with unit over R generated by k+ l elements e1, . . . , ek and ε1, . . . , εl , which
satisfy e2i = −1 (i = 1, . . . , k) and ε2j = 1 ( j = 1, . . . , l) and anticommute with
each other. The following are well-known Clifford algebra isomorphisms [48].

Lemma 10 (1) Clk,l+1 ∼= Cll,k+1.
(2) Clk,l ⊗ Cl1,1 ∼= Clk+1,l+1.
(3) Clk,l ⊗ Cl4,0 ∼= Clk+4,l and Clk,l ⊗ Cl0,4 ∼= Clk,l+4.
(4) Clk,l ⊗ Cl8,0 ∼= Clk+8,l and Clk,l ⊗ Cl0,8 ∼= Clk,l+8.

Proof (1) Let e1, . . . , ek and ε1, . . . , εl+1 be generators of theClifford algebraClk,l+1.
Let ẽi = εi+1ε1 (i = 1, . . . , l), ε̃1 = ε1 and ε̃i = ei−1ε1 (i = 2, . . . , k + 1).
Then, ẽ1, . . . , ẽl and ε̃1, . . . , ε̃k+1 correspond to generators of the Clifford algebra
Cll,k+1.

(2) Let e1, . . . , ek and ε1, . . . , εl be generators of the Clifford algebra Clk,l , and let
e1 and ε1 be those of Cl1,1. We write ω1,1 for e′1ε′1 ∈ Cl1,1. Then, ẽi = ei ⊗ ω1,1
(i = 1, . . . , k), ẽk+1 = 1 ⊗ e′1, ε̃i = εi ⊗ ω1,1 (i = 1, . . . , l) and ε̃l = 1 ⊗ ε′1
correspond to generators of the Clifford algebra Clk+1,l+1.

(3) We show that Clk,l ⊗Cl0,4 ∼= Clk,l+4; the other is proved similarly. Let e1, . . . , ek
and ε1, . . . , εl be generators of the Clifford algebra Clk,l , and let ε′1, ε′2, ε′3, and
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ε′4 be those of Cl0,4. We write ω0,4 for −ε′1ε′2ε′3ε′4 ∈ Cl0,4. Then, ẽi = ei ⊗ ω0,4
(i = 1, . . . , k), ε̃i = εi ⊗ ω0,4 (i = 1, . . . , l) and ε̃i = 1 ⊗ ε′i (i = 1, . . . , 4)
correspond to generators of the algebra Clk,l+4.

(4) We show that Clk,l ⊗Cl0,8 ∼= Clk,l+8; the other is proved similarly. Let e1, . . . , ek
and ε1, . . . , εl be generators of Clk,l , and let ε′1, . . . , ε′8 be those of Cl0,8. We write
ω0,8 for ε′1 · · · ε′8 ∈ Cl0,8. Then, ẽi = ei ⊗ ω0,8 (i = 1, . . . , k), ε̃i = εi ⊗ ω0,8
(i = 1, . . . , l) and ε̃i = 1 ⊗ ε′i (i = 1, . . . , 8) correspond to generators of the
algebra Clk,l+8.

��
Let W be a (ungraded) complex left Clk,l -module. We say that W is a (ungraded)

real (resp. quaternionic) Clk,l -module18 if W is equipped with an antilinear map
r : W → W (resp. q : W → W ), which commutes with the Clk,l -action and satisfies
r2 = 1 (resp. q2 = −1). We call this r (resp. q) the real (resp. quaternionic) structure
on the Clifford module. Since a real (resp. quaternionic) Clk,l -module is the same
thing as a module of Clk,l ⊗Cl1,1 ∼= Clk+1,l+1 (resp. Clk,l ⊗Cl2,0 ∼= Cll+2,k) over R,
the algebra Clk,l has one inequivalent irreducible real or quaternionic module when
k − l �≡ 3 mod 4 and has two when k − l ≡ 3 mod 4.

Lemma 11 (1) LetΔ1,1 be a complex irreducible representation of Cl1,1. There exists
a real structure r1,1 on Δ1,1 that commutes with the Clifford action.

(2) LetΔ0,4 (resp.Δ4,0) be a complex irreducible representation of Cl0,4 (resp. Cl4,0).
There exists a quaternionic structure q0,4 (resp. q4,0) on Δ0,4 (resp. Δ4,0) that
commutes with the Clifford action.

(3) LetΔ0,8 (resp.Δ8,0) be a complex irreducible representation of Cl0,8 (resp. Cl8,0).
There exists a real structure r0,8 (resp. r8,0) on Δ0,8 (resp. Δ8,0) that commutes
with the Clifford action.

For the proof of this lemma, see [25], for example. For a Z2-space (X , ζ ) with two
Z2-fixed points x0, x1 ∈ X ζ , we write P(X; x0, x1) for the path space starting from
x0 and ending at x1, that is, the space of continuous maps f : [0, 1] → X satisfying
f (0) = x0 and f (1) = x1 equipped with the compact-open topology. On this space,
we consider an involution, for which we also write ζ by abuse of notation, defined as
(ζ( f ))(t) = ζ( f (t)) for t in [0, 1], and obtain a Z2-space (P(X; x0, x1), ζ ). When
x0 = x1, we write Ωx0X for P(X; x0, x0), which is the based loop space of X with
the base point x0.

Remark 11 Banach Z2-spaces and its open Z2-subspaces are Z2-absolute neighbor-
hood retracts [3], and have the homotopy type of Z2-CW complexes [47]. The path
spaces and loop spaces we discuss in the following also have the homotopy type of
Z2-CW complexes [68]. By the equivariant Whitehead theorem, weak Z2-homotopy
equivalences between these spaces are Z2-homotopy equivalences [4,51].

Let V be a separable infinite-dimensional complex Hilbert space. LetB(V ) be the
space of bounded complex linear operators onV equippedwith the norm topology. Let

18 Note that the “real Z2-graded Cliff(Rk,l )-module” introduced in [6] is the same as the (ungraded) real
Cll,k+1-module discussed in this paper.
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GL(V ), U (V ), Fred(V ) andK (V ) be subspaces ofB(V ) consisting of invertible,
unitary, Fredholm and compact operators on V , respectively. We assume that our
Hilbert spaceV has a real structure r or a quaternionic structureq, that is, an antiunitary
operator on V satisfying r2 = 1 or q2 = −1, respectively. Correspondingly, the space
B(V ) has an (antilinear) involution r = Adr or q = Adq . These involutions induce
involutions on GL(V ), U (V ), Fred(V ) and K (V ), for which we also write r or q.
We write a for r or q and a for r or q. We also assume that there is a complex linear
action of the Clifford algebra Clk,l on the Hilbert space V that commutes with the
real or the quaternionic structure. For an element v ∈ Clk,l , we also write v for its
action on V , for simplicity. When k − l ≡ 3 mod 4, we further assume that each
of the two inequivalent irreducible real or quaternionic representations of Clk,l has
infinite multiplicity. In the following, we discuss the subspaces of B(V ); we may
abbreviate the Hilbert space V from its notation when it is clear from the context.

When the Hilbert space V is such a Clk,l -module, letB
(k+1,l)
sk (resp.B

(k,l+1)
sa ) be the

subspace of B(V ) consisting of skew-adjoint (resp. self-adjoint) operators A on V
satisfying ei A = −Aei for i = 1, . . . , k and ε j A = −Aε j for j = 1, . . . , l. Let

Fred(k,l)
sk = Fred ∩B

(k,l)
sk and Fred(k,l)

sa = Fred ∩B
(k,l)
sa . The involution a on B(V )

induces involutions on Fred(k,l)
sk and Fred(k,l)

sa for which we also write a. Consider the

space Fred(k,l)
sk , and let Υ = e1 · · · ek−1ε1 · · · εl . When k− l is odd, the space Fred(k,l)

sk

is decomposed into three components Fred(k,l)
+ , Fred(k,l)

− and Fred(k,l)
∗ corresponding

towhether the following element is essentially positive, essentially negative or neither:
i−1Υ Awhen k− l ≡ 1 mod 4 andΥ Awhen k− l ≡ 3 mod 4 for A ∈ Fred(k,l)

sk . As in
[9], each of these three components is nonempty.When k−l ≡ 1 mod 4, the involution
a maps Fred(k,l)

± to Fred(k,l)
∓ (double-sign corresponds), and Fred(k,l)

∗ is closed under
the action of a. When k − l ≡ 3 mod 4, each of the three components is closed under
the action of a. The space Fred(k,l)

sa is also decomposed into three components in the
same way, except that we take e1 · · · ekε1 · · · εl−1 for Υ in this case, and we define the
space Fred(k,l)

∗ when k− l is odd. When k− l is even, we set Fred(k,l)
∗ = Fred(k,l)

sk and

Fred(k,l)
∗ = Fred(k,l)

sa . Summarizing, we have the following Z2-spaces:

(Fred(k,l)
∗ , r), (Fred(k,l)

∗ , r), (Fred(k,l)
∗ , q), (Fred(k,l)

∗ , q). (22)

Proposition 7 The following Z2-homeomorphisms exist.

(1) (Fred(k,l)
∗ , a) ∼= (Fred

(k+1,l+1)
∗ , a) and (Fred(k,l)

∗ , a) ∼= (Fred
(k+1,l+1)
∗ , a),

(2) (Fred(k,l)
∗ , a) ∼= (Fred

(k+4,l)
∗ , ã) and (Fred(k,l)

∗ , a) ∼= (Fred(k+4,l)
∗ , ã),

(3) (Fred(k,l)
∗ , a) ∼= (Fred(k,l+4)

∗ , ã) and (Fred(k,l)
∗ , a) ∼= (Fred

(k,l+4)
∗ , ã),

(4) (Fred(k,l)
∗ , a) ∼= (Fred

(k+8,l)
∗ , a) and (Fred(k,l)

∗ , a) ∼= (Fred(k+8,l)
∗ , a),

(5) (Fred(k,l)
∗ , a) ∼= (Fred(k,l+8)

∗ , a) and (Fred(k,l)
∗ , a) ∼= (Fred

(k,l+8)
∗ , a),

(6) (Fred
(k+1,l+1)
∗ , a) ∼= (Fred

(l,k+2)
∗ , a),

where ã = q when a = r and ã = r when a = q.
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Proof Once the Clifford module structure on the left-hand side of these homeomor-
phisms is fixed that on the right-hand side is given following the isomorphisms of
Clifford algebras in Lemma 10. By using Lemma 11, the Z2-homeomorphisms are
given as follows.

(1) The map (Fred(k,l)
∗ (V ),Ada) → (Fred

(k+1,l+1)
∗ (V ⊗ Δ1,1),Ada⊗r1,1) given by

A �→ A ⊗ ω1,1 is a Z2-homeomorphism. The other one is proved similarly.

(3) Themap (Fred(k,l)
∗ (V ),Ada)→ (Fred

(k,l+4)
∗ (V ⊗Δ0,4),Ada⊗q0,4)givenby A �→

A ⊗ ω0,4 is a Z2-homeomorphism. The other one and (2), (4) and (5) follow in a
similar way.

(6) The map (Fred
(k+1,l+1)
∗ (V ), a) → (Fred

(l,k+2)
∗ (V ), a) given by A �→ Aε1 is a

Z2-homeomorphism.

��
Proposition 8 The following Z2-homotopy equivalences exist.

(1) (Fred
(k+1,l)
∗ , a) ! (ΩekFred

(k,l)
∗ , a), for k ≥ 1 and l ≥ 0.

(2) (Fred
(k,l+1)
∗ , a) ! (ΩεlFred

(k,l)
∗ , a), for k ≥ 0 and l ≥ 1.

(3) (Fred(1,0)
∗ , a) ! (Ω1Fred, a).

Proposition 8 is proved as in [9]. In what follows, we outline its proof since some
spaces introduced there are of our interest.

Proposition 9 The following maps are Z2-homotopy equivalences.

(1) α1 : (Fred(k+1,l)
∗ , a) → (P(Fred(k,l)

∗ ; ek,−ek), a), where
α1(A)(t) = ek cos(π t)+ A sin(π t) for 0 ≤ t ≤ 1.

(2) α2 : (Fred(k,l+1)
∗ , a) → (P(Fred(k,l)

∗ ; εl ,−εl), a), where
α2(A)(t) = εl cos(π t)− A sin(π t) for 0 ≤ t ≤ 1.

(3) α3 : (Fred(1,0)
∗ , a) → (P(Fred; 1,−1), a), where

α3(A)(t) = cos(π t)+ A sin(π t) for 0 ≤ t ≤ 1.

Proposition 8 follows from Proposition 9 since, in each case, there is a path connecting
the endpoints of each path space in the unitaries preserving the Clifford action and the
Z2-action. As in [9], the proof of Proposition 9 reduces to showing the Z2-homotopy
equivalences between some spaces of Fredholm operators and some spaces of unitary
operators (Proposition 10). Let F (k,l)

∗ (resp. F (k,l)
∗ ) be the subspace of Fred(k,l)

∗ (resp.
Fred(k,l)

∗ ) consisting of those operators whose essential spectra are {i,−i} (resp.
{1,−1}) and whose operator norms are 1. The spaces F

(k,l)
∗ and F

(k,l)
∗ are closed

under the action of a; thus, we have Z2-spaces (F
(k,l)
∗ , a) and (F

(k,l)
∗ , a). Inclusions

(F
(k,l)
∗ , a) ↪→ (Fred(k,l)

∗ , a) and (F
(k,l)
∗ , a) ↪→ (Fred(k,l)

∗ , a) are Z2-homotopy equiv-
alences. LetUcpt be the subspace ofU (V ) consisting of unitary operators of the form

1 + T , where T ∈ K (V ). When the Hilbert space V is a Clk,l -module, let U (k,l)
cpt

(resp.U (k,l)
cpt ) be the subspace ofU (V )∩B

(k,l)
sk (resp.U (V )∩B

(k,l)
sa ) consisting of a

unitary u satisfying u2 = −1 (resp. u2 = 1) and u ≡ ek (resp. u ≡ εl ) modulo com-
pact operators. If the Hilbert space has a real or quaternionic structure, these spaces
of unitaries are closed under the action of a, and we obtain Z2-spaces.
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Proposition 10 The following maps are Z2-homotopy equivalences:

(1) p1 : (F (k+1,l)
∗ , a) → (−U (k,l)

cpt , a), p1(A) = ek exp(π Aek), for k ≥ 1, l ≥ 0.

(2) p2 : (F (k,l+1)
∗ , a) → (−U (k,l)

cpt , a), p2(A) = εl exp(π Aεl), for k ≥ 0, l ≥ 1.

(3) p3 : (F (1,0)
∗ , a) → (−Ucpt, a), p3(A) = exp(π A).

(4) p4 : (F (0,1)
∗ , a) → (−Ucpt, a ◦ ∗), p4(A) = exp(π i A).

Proof By Remark 11, it is sufficient to show that these maps are weak Z2-homotopy
equivalences. Equivalently, to show that pi and its restriction to the Z2-fixed point

sets (the map pZ2
1 : (F

(k+1,l)
∗ )a → (−U (k,l)

cpt )a in the case of (1)) are weak homotopy
equivalences. They are proved by using quasifibrations on some dense subspaces of
contractible fibers as in [9]. ��
Lemma 12 There is a Z2-homeomorphism (Fred, a) ∼= (Fred(0,2)

∗ , a).

Proof This is given by a Z2-map (Fred(V ), a) → (Fred(0,2)
∗ (V ⊕ V ), a⊕ a), A �→(

0 A∗
A 0

)
, where the action of Cl0,1 on V ⊕ V is given by ε1 = diag(1,−1). ��

Proposition 7, Proposition 8 and Lemma 12 lead to the following.

Corollary 4 The following Z2-homotopy equivalences exist.

(1) (Fred(k,l)
∗ , r) ! (Ωk−lFred, r).

(2) (Fred(k,l)
∗ , q) ! (Ωk−l+4Fred, r).

(3) (Fred(k,l)
∗ , r) ! (Ω l−k+6Fred, r).

(4) (Fred(k,l)
∗ , q) ! (Ω l−k+2Fred, r).

When the subscript m on Ωm is negative, this should be replaced by m+ 8n by taking
a sufficiently large integer n to make the subscript nonnegative.

Note that when k and l are relatively small, we further have the following Z2-
homeomorphisms.

Lemma 13 Multiplication by the imaginary unit i = √−1 induces the following Z2-
homeomorphisms:

(1) (Fred(0,2)
∗ ,Adr )→ (Fred(1,1)

∗ ,Adr̃ ), where r̃ = rε1.
(2) (Fred(0,2)

∗ ,Adq)→ (Fred(1,1)
∗ ,Adq̃), where q̃ = −qε1.

(3) (Fred(1,1)
∗ ,Adq)→ (Fred(2,0)

∗ ,Adr̃ ), where r̃ = qe1.

(4) (Fred(1,1)
∗ ,Adr )→ (Fred(2,0)

∗ ,Adq̃), where q̃ = −re1.
Remark 12 The Z2-spaces in Lemma 13 appear in the study of topological insula-
tors. Specifically, Table 11 is obtained by taking the quantum symmetries as real or
quaternionic Clifford module structures as follows.

– In class BDI, we put r = Θ and ε1 = Π in (1); then, r̃ = Ξ .
– In class CII, we put q = Θ and ε1 = Π in (2); then, q̃ = Ξ .
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– In class DIII, we put q = Θ and e1 = iΠ in (3); then, r̃ = Ξ .
– In class CI, we put r = Θ and e1 = iΠ in (4); then, q̃ = Ξ .

For l ≥ 1, let us consider the map

(Fred
(k,l+1)
∗ , a)× (Fred

(k′,l ′+1)
∗ , a′) → (Fred

(k+k′,l+l ′)
∗ , a⊗ a′) (23)

defined by (A, B) �→ A⊗1+εl⊗B, where the Clifford action to define Fred
(k+k′,l+l ′)
∗

is generated by ẽi = ei ⊗1 (i = 1, . . . , k), ẽk+i = εl⊗ ei (i = 1, . . . , k′), ε̃i = εi ⊗1
(i = 1, . . . , l − 1) and ε̃l+i−1 = εl ⊗ εi (i = 1, . . . , l ′). As in [9], this map induces
the exterior product of topological K R-groups which appears in the Künneth formula
for united K -theory as discussed in [13] for some real C∗-algebras.

A.2 Relation with Boersema–Loring’s unitary picture

In this subsection, we discuss a relation between theseZ2-spaces of self-adjoint/skew-
adjoint Fredholm operators and Boersema–Loring’s K -theory.

Let {Wi }i∈I be the set of mutually inequivalent irreducible real (resp. quaternionic)
representations ofClk,l withHermitian inner-productswhich {Wi }i∈I consists of oneor
two elements corresponding to k and l. LetW = ⊕i∈I Wi andV = l2(Z≥0)⊗W which
has a real (resp. quaternionic) Clk,l -module structure induced by that of {Wi }i∈I . We
take a complete orthonormal basis {δ j } j∈Z≥0 of l2(Z≥0) given by generating functions
of each points in Z≥0. Let Vn be the subspace of V spanned by {δ j ⊗ w | 0 ≤
j ≤ n, w ∈ W }, which is a real (resp. quaternionic) Clk,l -module. Let GLcpt be the
space of invertible operators on V of the form ek + T for some compact operator
T . Let GL

(k,l)
cpt = GLcpt ∩B

(k,l)
sk (V ) and GL

(k,l)
cpt = GLcpt ∩B

(k,l)
sa (V ). Let GL

(k,l)
n

(resp.GL
(k,l)
n ) be the subspace ofB(k,l)

sk (Vn) (resp.B
(k,l)
sa (Vn)) consisting of invertible

operators, and letU (k,l)
n (resp.U (k,l)

n ) be its subspace of unitaries.We have an injection
GL

(k,l)
n ↪→ GL

(k,l)
n+1 (resp. GL

(k,l)
n ↪→ GL

(k,l)
n+1 ) given by mapping A to A ⊕ ek (resp.

A ⊕ εl ), and let GL
(k,l)
∞ (resp. GL

(k,l)
∞ ) be its inductive limit colim−−−→GL

(k,l)
n (resp.

colim−−−→GL
(k,l)
n ). We also define U

(k,l)
∞ and U

(k,l)
∞ for unitaries in the same way. The

space GL
(k,l)
n (resp. GL

(k,l)
n ) is identified with the subspace of GL

(k,l)
cpt (resp. GL

(k,l)
cpt )

consisting of operators of the form ek+T (resp. εl+T ),where T ∈ B(Vn), andwehave
an injective Z2-map (GL

(k,l)
∞ , a) → (GL

(k,l)
cpt , a) (resp. (GL

(k,l)
∞ , a) → (GL

(k,l)
cpt , a)).

As in [54], the following holds19.

Proposition 11 Themap (GL
(k,l)
∞ , a) → (GL

(k,l)
cpt , a)and (GL

(k,l)
∞ , a) → (GL

(k,l)
cpt , a)

are Z2-homotopy equivalences.

By using a deformation of invertibles to unitaries, (U
(k,l)
∞ , a) and (U

(k,l)
∞ , a) are Z2-

homotopy equivalent to (U
(k,l)
cpt , a) and (U

(k,l)
cpt , a), respectively. We denote U♠∞ for

these subspaces of U♠ as indicated in Table 11.

19 In [54], an upper semicontinuous function is introduced to show that an injection GL∞ → GLcpt is a
homotopy equivalence. In our setup, this function is Z2-invariant, and the result follows as in [54].
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These Z2-spaces of unitaries appears in Boersema–Loring’s KO-theory [14]. Let
(X , ζ ) be a compact Hausdorff Z2-space, and consider a C∗,τ -algebra (C(X), τζ ) of
continuous functions on X , whose transposition τζ is given by f τζ (x) = f (ζ(x)).
Then, the Z2-homotopy classes [(X , ζ ),U♠∞]Z2 can be identified with the group
KOi(♠)−1(C(X), τζ ) where i(♠) is as indicated in Table 10. In the following, we
discuss two of eight KO-groups and the others are discussed in a similar way.

As for the KO−1-group, an element of the set [(X , ζ ), (U∞, r◦∗)]Z2 is represented
by a Z2-map f : (X , ζ ) → (Un, r ◦ ∗). This f is a unitary element of Mn(C(X))

satisfying f (ζ(x)) = r( f (x))∗ which is the same as the relation f τζ = f to define
KO−1-groups. Thus, the set [(X , ζ ), (U∞, r ◦ ∗)]Z2 is the same as KO−1(C(X), τζ )

by the definition of Boersema–Loring’s KO−1-group.
Finally, we discuss the KO6-group. By the multiplication of −i , we have a Z2-

homeomorphism (U (1,0)
∞ , q) → (U (0,1)

∞ ,−q). A Z2-continuous map f : (X , ζ ) →
(U (0,1)

n ,−q) is a self-adjoint unitary in Mn(C(X)) satisfying f �⊗τζ = − f ∗ = − f .
The Clifford algebra Cl1,0 has just one irreducible quaternionic representation up to
equivalence, which is constructed as follows. On W = C

2, we consider the action ρ

of Cl1,0 ⊗ Cl2,0 defined as follows:

ρ(1⊗ e1) =
(
i 0
0 i

)
, ρ(1⊗ e2) =

(
0 −c
c 0

)
, ρ(e1 ⊗ 1) =

(
0 −1
1 0

)
,

where c is the complex conjugation on C. The spaceU (1,0)
∞ is defined as the inductive

limit of mapsU (1,0)
n → U (1,0)

n+1 , A �→ A⊕ I where I = ρ(e1⊗1) and the spaceU (0,1)
∞

is defined as that of maps A �→ A ⊕−i I where −i I = I (6).

A.3 Boersema–Loring’s K-theory and exponential maps

We describe boundary maps of the 24-term exact sequence of KO-theory (which we
denote as ∂BLi in this section) in Boersema–Loring’s unitary picture through expo-
nential maps. The map ∂BLi for even i has already been expressed as an exponential
map in [14]; thus, we focus on ∂BLi for odd i . A clue is the exponential maps given in
Proposition 10. For a short exact sequence of C∗,τ -algebras,

0→ (I , τ ) → (A , τ )
ϕ→ (B, τ ) → 0, (24)

and for each odd i , we construct a group homomorphism

∂
exp
i : KOi (B, τ ) → KOi−1(I , τ ) (25)

and show they coincide with ∂BLi up to a factor of −1. Let W2n ∈ M2n(C) and
Q4n ∈ M4n(C) be the following matrices:

W2n = 1√
2

(
i · 1n 1n
1n i · 1n

)
, Q4n = 1√

2

(
12n −I (2)

n

I (2)
n 12n

)
,
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and let V2n ∈ M2n(R) and X4n ∈ M4n(R) be the permutation matrices satisfying20

V2ndiag(x1, . . . , x2n)V ∗2n = diag(x1, xn+1, x2, xn+2, . . . , xn, x2n),
X4ndiag(x1, . . . , x4n)X∗4n

= diag(x1, x2, x2n+1, x2n+2, x3, x4, x2n+3, x2n+4, . . . , x4n).

As in [14], let Y (−1)
2n = V2nW2n , Y

(1)
2n = V2n , Y

(3)
4n = V4nQ4nW4n and Y (5)

4n = X4n .

Definition 10 Suppose we have a short exact sequence ofC∗,τ -algebras as in (24). We
assumeI = Ker(ϕ) and identify the unit in Ĩ with that of Ã . For i ∈ {−1, 1, 3, 5},
suppose [u] ∈ KOi (B, τ ), where u ∈ Mni ·n(B̃) is a unitary satisfying the relation

Ri and λ(u) = I (i)
n , for which ni ,Ri and I (i) are as in Table 2. Let a in Mni ·n(Ã ) be

a lift of u satisfying the relation Ri and ‖a‖ ≤ 1. Then, define

∂
exp
i ([u]) =

[
−Y (i)

2ni ·n
(
ε1 exp(π Aε1)

)
Y (i)∗
2ni ·n

]
∈ KOi (I , τ ),

where A =
(
0 a∗
a 0

)
and ε1 = diag(1ni ·n,−1ni ·n).

Lemma 14 ∂
exp
i for odd i are well-defined group homomorphisms.

Proof We need to show that (a) the unitaries constructed all satisfy the correct relation,
(b) the choice of lift is not important, (c) some lift is always available, (d) homotopy is
respected, (e) compatible with respect to the stabilization by I (i) and (f) the addition
is respected. (c), (b) and (d) are proved in the same way as in Lemma 8.2 of [14]
and we discuss the other parts. For convenience, let C(a) = −ε1 exp(π Aε1) and
C ′(a) = Y (i)

2ni ·nC(a)Y (i)∗
2ni ·n .

(1) We first consider the case of i = 1. Let u ∈ Mn(B̃) be a unitary satisfying
uτ = u∗ and λn(u) = I (1)

n . We take a lift a ∈ Mn(Ã ) of u such that ‖a‖ ≤ 1
and aτ = a∗. Since ϕ(C ′(a)) = V2nε1V ∗2n = I (0)

n , we have C ′(a) ∈ Mn( Ĩ ) and

λ(C ′(a)) = I (0)
n . Since Aτ = A, we have,

C(a)τ = − exp(π Aε1)
τ ετ

1 = −ε21 exp(πετ
1 A

τ )ε∗1 = −ε1 exp(πε21 Aε∗1 ) = C(a).

Since Y (1)
2n = V2n is the orthogonal matrix, (Y (1)

2n )τ = Y (1)∗
2n , and thus, C ′(a)τ =

C ′(a) holds. When u = 1, we can take a = 1 and C ′(1) = I (1) in this case. Com-
bined with this, the proof is completed once we have checked that ∂exp1 preserves
the addition. Let u ∈ Mm(B̃) and v ∈ Mn(B̃). We take their lift a and b such that
aτ = a∗ and bτ = b∗. Then, we have C ′(diag(a, b)) = diag(C ′(a),C ′(b)) since

C

((
a 0
0 b

))
= −

(
1m+n 0
0 −1m+n

)
exp

(
π

(
0 diag(−a∗,−b∗)

diag(a, b) 0

))
,

20 MatricesW2n , Q4n , V2n and X4n are what we borrowed from Sect. 8 of [14]. Some of the basic formulas
that they satisfy can be found there.
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AdV2m+2n exp
(

π

(
0 diag(−a∗,−b∗)

diag(a, b) 0

) )

= exp

(
π · diag

(
AdV2m

(
0 −a∗
a 0

)
,AdV2n

(
0 −b∗
b 0

)))
,

which shows that ∂exp1 ([u] + [v]) = ∂
exp
1 ([u])+ ∂

exp
1 ([v]).

(2) We next consider the case of i = −1. Let u ∈ Mn(B̃) be a unitary satisfying uτ = u and λn(u) =
I (−1)n . We take a lift a ∈ Mn(Ã ) of u such that ‖a‖ ≤ 1 and aτ = a. Since ϕ(C ′(a)) = I (6)n , we have

C ′(a) ∈ Mn(Ĩ ) and λ(C ′(a)) = I (6)n . Since Ã�⊗τ = −A, we have

C(a)̃�⊗τ = − exp(π Aε1 )̃
�⊗τ ε̃

�⊗τ
1 = exp(πε̃

�⊗τ
1 Ã�⊗τ )ε1

= exp(πε1A)ε1 = ε1 exp(π Aε1) = −C(a).

Since (V2nxV
∗
2n)�⊗τ = V2nx

�̃⊗τ V ∗2n and W �̃⊗τ
2n = −W∗

2n , the relation C ′(a)�⊗τ = −C ′(a) holds.

For u = 1, we take a = 1 and C ′(1) = I (6) holds. Therefore, as in (1), all we have to show is
the additivity of ∂

exp
−1 . Let a ∈ Mm (Ã ) and b ∈ Mn(Ã ) be lifts of the unitaries u and v. Then,

C ′(diag(a, b)) = diag(C ′(a),C ′(b)) follows from

V2m+2nW2m+2n
(

0 diag(−a∗,−b∗)
diag(a, b) 0

)
W∗
2m+2nV ∗2m+2n

= diag

(
V2mW2m

(
0 −a∗
a 0

)
W∗
2mV ∗2m , V2nW2n

(
0 −b∗
b 0

)
W∗
2nV

∗
2n

)
.

(3) Let us consider the case of i = 5. Let u ∈ M2n(B̃) be a unitary satisfying u�⊗τ = u∗ and

λ2n(u) = I (5)n = 12n . We take a lift a ∈ M2n(Ã ) of u such that ‖a‖ ≤ 1 and a�⊗τ = a∗.
Since (X4nx X4n)�⊗τ = X4nx

�⊗τ X4n , A�⊗τ = A and ε
�⊗τ
1 = ε1, the relation

C ′(a)�⊗τ = −X4n exp(πε1A
�⊗τ )ε1X

∗
4n = −X4n exp(πε1A)ε1X

∗
4n = C ′(a)

holds. We have C ′(12) = I (4), and for the additivity of ∂
exp
5 , note that

X4m+4n
(

0 diag(−a∗,−b∗)
diag(a, b) 0

)
X∗4m+4n

= diag

(
X4m

(
0 −a∗
a 0

)
X∗4m , X4n

(
0 −b∗
b 0

)
X∗4n

)
.

(4) Consider the case of i = 3. Let u ∈ M2n(B̃) be a unitary satisfying u�⊗τ = u and λ2n(u) = I (3)n =
12n . We take a lift a ∈ M2n(Ã ) of u such that ‖a‖ ≤ 1 and a�⊗τ = a. Since Ã�⊗�⊗τ = −A and

ε̃
�⊗�⊗τ
1 = −ε1, the relation C(a)̃�⊗�⊗τ = −C(a) holds. Since (Q4nxQ

∗
4n)τ = Q4nx

�̃⊗�⊗τ Q∗4n
and W �̃⊗�

4n = −W∗
4n , we have C

′(a)τ = −C ′(a). For the remaining part, we note that C ′(12) = I (2)2
and

Y (3)
4m+4n

(
0 diag(−a∗,−b∗)

diag(a, b) 0

)
Y (3)∗
4m+4n

= diag

(
Y (3)
4m

(
0 −a∗
a 0

)
Y (3)∗
4m , Y (3)

4n

(
0 −b∗
b 0

)
Y (3)∗
4n

)
.

��
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Lemma 15 Each ∂
exp
i is natural with respect to themorphisms of short exact sequences

of C∗-algebras. That is, suppose we have the following commutative diagram of exact
lows:

0 (I1, τ )

ι

(A1, τ )
ϕ1

α

(B1, τ )

β

0

0 (I2, τ ) (A2, τ )
ϕ2

(B2, τ ) 0

Then, we have ι∗ ◦ ∂
exp
i = ∂

exp
i ◦ β∗.

Proof As inLemma8.5of [14], this lemma is provedby following thedefinitionof each
map. We assume Ker(ϕ j ) = I j ( j = 1, 2) for simplicity. Let [u1] ∈ KOu

i (B1, τ )

be an element represented by a unitary u1 ∈ Mni ·n(B̃1) satisfying the symmetry
relation Ri . Let a1 ∈ Mni ·n(Ã ) be a lift of u1 such that ||a1|| ≤ 1, and satisfy
the relation Ri . Then, a2 = α(a1) is a lift of u2 satisfying the symmetry, and thus,
∂
exp
i ([u2]) = [C ′(a2)] holds. Since α(C ′(a1)) = C ′(α(a1)) = C ′(α2), we have

ι∗ ◦ ∂
exp
i ([u1]) = ι∗[C ′(a1)] = [α(C ′(a1)]

= ∂
exp
i ([u2]) = ∂

exp
i ◦ β∗[u1].

��
Proposition 12 ∂BLi = −∂

exp
i for odd i .

As in the proof of Theorem 8.9 of [14], we can reduce the proof to the complex case,
and Proposition 12 follows from the lemma below. In the complex case, the boundary
map ∂

exp
1 : K1(B)→ K0(I ) is defined by forgetting the real structure in the case of

i = 1 of Definition 10.

Lemma 16 The boundary maps ∂BL1 and ∂
exp
1 from K1(B) to K0(I ) satisfy the rela-

tion ∂BL1 = −∂
exp
1 .

Proof Suppose that [u] ∈ K1(B) where u ∈ Mn(B̃) and λ(u) = 1n . We take a lift a

of u in Mn( Ã) satisfying ||a|| ≤ 1. Consider the partial isometry v =
(

a 0√
1− a∗a 0

)

and let V =
(
0 v∗
v 0

)
. ∂exp1 ([u]) is computed as

∂
exp
1 ([u]) =

[
−Y (1)

4n

(
ε1 exp(πV ε1)

)
Y (1)∗
4n

]

= [Y (1)
4n (1− 2vv∗)Y (1)∗

4n ] − [Y (1)
4n (1− 2v∗v)Y (1)∗

4n ].

As in [59], ∂BL1 ([u]) is also expressed by using v, which is −∂
exp
1 ([u]). ��
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