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Abstract

We discuss some bulk-surface gapped Hamiltonians on a lattice with corners and
propose a periodic table for topological invariants related to corner states aimed at
studies of higher-order topological insulators. Our table is based on four things: (1)
the definition of topological invariants, (2) a proof of their relation with corner states,
(3) computations of K-groups and (4) a construction of explicit examples.
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1 Introduction

Recent developments in condensed matter physics have greatly generalized the
bulk-boundary correspondence for topological insulators to include corner states.
Topological insulators have a gapped bulk, which incorporates some topology that do
not change unless the spectral gap of the bulk Hamiltonian closes under deformations.
Examples include the TKNN number for quantum Hall systems [66] and the Kane-
Mele Z; index for quantum spin Hall systems [37]. It is known that, corresponding
to these bulk invariants, gapless edge states appear, which is called the bulk-boundary
correspondence [32]. After Schnyder—Ryu—Furusaki—-Ludwig’s classification of topo-
logical insulators [61] for ten Altland—Zirnbauer classes [2], Kitaev noted the role of
K -theory and Bott periodicity in the classification problem and obtained the famous
periodic table [43]. Recently, some (at least bulk) gapped systems possessing in-gap or
gapless states localized around a higher-codimensional part of the boundary (corners
or hinges) are studied [12,31,42], which are called higher-order topological insula-
tors (HOTIs) [60]. For example, for second-order topological insulators, not only is
the bulk gapped but also the codimension-one boundaries (edges, surfaces), and an
in-gap or a gapless state appears around codimension-two corners or hinges. In this
framework, conventional topological insulators are regarded as first-order topological
insulators. HOTIs are now actively studied and the classification of HOTIs has also
been proposed [26,41,53]. Generalizing the bulk-boundary correspondence, relations
between some gapped topology and corner states are much discussed [5,64,67].
Initiated by Bellissard, K-theory and index theory are known to provide a
powerful tool to study topological insulators. Bellissard—van Elst—Schulz-Baldes
studied quantum Hall effects by means of noncommutative geometry [10,11], and
Kellendonk—Richter—Schulz—Baldes went on to prove the bulk-boundary correspon-
dence by using index theory for Toeplitz operators [40]. The study of topological
insulators, especially regarding its classification and the bulk-boundary correspon-
dence for each of the ten Altland—Zirnbauer classes by using K-theory and index
theory, has been much developed [1,16,17,24,28,30,39,40,45,49,58,65,65]. In [33],
three-dimensional (3-D) class A bulk periodic systems are studied on one piece of a
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lattice cut by two specific hyperplanes, which is a model for systems with corners.
Based on the index theory for quarter-plane Toeplitz operators [23,55,63], a topolog-
ical invariant is defined assuming the spectral gap both on the bulk Hamiltonian and
on two half-space compressions of it. This gapped topological invariant is topolog-
ical in the sense that it does not change under continuous deformation of the bulk
Hamiltonians unless the spectral gap of one of the two surfaces closes. It is proved
that corresponding to this topology gapless corner states appear. A construction of
nontrivial examples by using two first-order topological insulators (of 2-D class A and
1-D class AIII) is also proposed. Class AIII codimension-two systems are also studied
through this method in [34] and, as an application to HOTTIs, the appearance of topo-
logical corner states in Benalcazar-Bernevig—Hughes’ 2-D model [12] is explained
based on the chiral symmetry. The construction of examples in [34] leads to a proposal
of second-order semimetallic phase protected by the chiral symmetry [52].

The purpose of this paper is to expand the results in [33] to all Altland—Zirnbauer
classes and systems with corners of arbitrary codimension. Since class A and class
AIII systems (with codimension-two corners) were already discussed in [33,34] by
using complex K -theory, we focus on the remaining eight cases, for which we use
real K-theory. For our expansion, a basic scheme has already been well developed
in the above previous studies, which we mainly follow: some gapped Hamiltonian
defines an element of a K O-group of a real C*-algebra, and its relation with corner
states are clarified by using index theory [16,17,24,30,39,40,45,65]. Although many
techniques have already been developed in studies of topological insulators, in our
higher-codimensional cases, we still lack some basic results at the level of K-theory
and index theory; hence, the first half of this paper is devoted to these K-theoretic
preliminaries, that is, the computation of K O-groups for real C*-algebras associated
with the quarter-plane Toeplitz extension and the computation of boundary maps for
the 24-term exact sequence of K O-theory associated with it, which are carried out
in Sect. 3. Since the quarter-plane Toeplitz extension [55] is a key tool in our study
of codimension-two corners, such a variant for Toeplitz operators associated with
higher-codimensional corners should be clarified, which are carried out in Sect. 4.
These variants of Toeplitz operators were discussed in [22,23], and the contents in
Sect. 4 will be well known to experts. Since the author could not find an appropriate
reference, especially concerning Theorem 1 which will play a key role in Sect. 5, the
results are included for completeness. Note that the idea there to use tensor products
of the ordinary Toeplitz extension for the study of these variants is based on the
work of Douglas—Howe [23], where these higher-codimensional generalizations are
briefly mentioned. The study of some gapped phases for systems with corners in
Altland—Zirnbauer’s classification is carried out in Sect. 5. In the framework of the
one-particle approximation, we consider n-D systems with a codimension k corner and
take compressions of the bulk Hamiltonian onto infinite lattices with codimension k — 1
corners! whose intersection makes the codimension k corner. We assume that they are
gapped. Note that, under this assumption, bulk, surfaces and corners up to codimension
k — 1 which constitute the codimension k corner are also gapped. For such a system,

! In standard terminologies, they will be called edges, surfaces, hinges or edge of edges depending on n
and k. In this paper, we may simply call them corners but state its codimensions.
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we define two topological invariants as elements of some K O-groups: one is defined
for these gapped Hamiltonians, while the other one is related to in-gap or gapless
codimension k corner states. We then show a relation between these two which states
that topologically protected corner states appear reflecting some gapped topology
of the system. We first study codimension-two cases (Sects. 5.1 to 5.4) and then
discuss higher-codimensional cases (Sect. 5.5). This distinction is made because many
detailed results have been obtained for codimension-two cases by virtue of previous
studies of quarter-plane Toeplitz operators [36,55] (the shape of the corner we discuss
is more general than in higher-codimensional cases, and a relation between convex
and concave corners is also obtained in [34]). Based on these results, we propose a
classification table for topological invariants related to corner states (Table 1). Note that
the codimension-one case of Table 1 is Kitaev’s table [43] and Table 1 is also periodic
by the Bott periodicity. In order further to clarify a relation between our invariants and
corner states, in Sect. 5.6, we introduce Z or Z-valued numerical corner invariants
when the dimension of the corner is zero or one. They are defined by (roughly speaking)
counting the number of corner states. A construction of examples is discussed in
Sect. 5.7. As in [33], this is given by using pairs of Hamiltonians of two lower-order
topological insulators. In the real classes, there are 64 pairs of them and the results are
collected in Table 12. By using this method, we can construct nontrivial examples of
each entry of Table 1, starting from Hamiltonians of first-order topological insulators.
The corner invariant for the constructed Hamiltonian is expressed by corner (or edge)
invariants of constituent two Hamiltonians. This is given by using an exterior product
of some K O-groups in general, though, as in [33,34], the formula for numerical
invariants introduced in Sect. 5.6 is also included. For computations of K O-groups
and classification of such gapped systems, we employ Boersema—Loring’s unitary
picture for K O-theory [14] whose definitions are collected in Sect. 2. Basic results
for some Toeplitz operators are also included there. In Appendix A, we revisit Atiyah—
Singer’s study of spaces of skew-adjoint Fredholm operators [9] and collect necessary
results from the viewpoint of Boersema-Loring’s K -theory. Definitions of some Z,-
spaces, maps between them, expression of boundary maps of 24-term exact sequences
used in this paper are collected there.

Finally, let us point out a relation with our results and the current rapidly developing
studies on HOTIs. In [26], the HOTIs are divided into two classes: intrinsic HOTISs,
which basically originate from the bulk topology protected by a point group symmetry,
and others extrinsic HOTIs. Our study will be for extrinsic HOTIs since no-point group
symmetry is assumed and our classification table (Table 1) is consistent with that of
Table 1 in [26].

2 Preliminaries

In this section, we collect the necessary results and notations.
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2.1 Boersema-Loring’s KO-groups via unitary elements

In this subsection, we collect Boersema—Loring’s definition of K O-groups by using
unitaries satisfying some symmetries [14]. The basics of real C*-algebras and K O-
theory can be found in [29,62], for example.

A C*T-algebrais a pair (<7, t) consisting of (complex) C*-algebra 7 and an anti-
automorphism? 7 of o7 satisfying > = 1. We call T the transposition and write a” for
7(a). There is a category equivalence between the category of C*'-algebras and the
category of real C*-algebras: for a C*7-algebra (A, 7), the corresponding real C*-
algebrais &/ = {a € &/ | a® = a*}, and its inverse is given by the complexification.
A real structure on a (complex) C*-algebra A is an antilinear x-automorphism t
satisfying v> = 1. For a real structure t, there is an associated transposition 7 given
by t(a) = t(a*), which gives a one-to-one correspondence between transpositions
and real structures on the C*-algebra’. We extend the transposition T on <7 to the
transposition (for which we simply write 7) on the matrix algebra M, (<7) by (a;;)* =
(ajf.i) where a;; € &/ and 1 < i, j < n. This induces a transposition 7 on % ® &/
where %~ = JZ (V) is the C*-algebra of compact operators on a separable complex
Hilbert space 7. Let § ® T be a transposition on M5 (.7) defined by*

an an \*" _( a3 —ap,

az axn —ay aj )’
If we identify the quaternions H with C2 by x +yj > (x, y), the left multiplication by
J corresponds to j(x, y) = (—y, X). Then, we have § ® id = Ad; o* where * denotes

the operation of taking conjugation of matrices and the C**-algebra (M (C), § ® id)
corresponds to the real C*-algebra H of quaternions. We extend this transposition to

M, (/) by (b;j)F®T = (bﬁ?’) where 1 < i, j < nand bjj € Ma(). On M, (),
we also consider a transposition 1 ® 7 defined by

E@t
cl 12 o 5 —c],
€21 €22 R ISIA
where ¢;; € M,(</). For an m x m matrix X, we write X,, for the mn x mn block

diagonal matrix diag(X, ..., X). For example, we write 1,, for the n x n diagonal
matrix diag(l, ..., 1).

Definition 1 (Boersema-Loring [14]) Let (<, t) be a unital C*7-algebra. For
i =-—1,0,...,6,letn; be a positive integer, #; be a relation and @) be a matrix, as
indicated in Table 2. Let U ,fi)(d , T) be the set of all unitaries in M, ., (<) satistying
the relation %;. On the set Uéf)) (o, 1) = U,f‘;lU,fi)(ﬂ, 7), we consider the equiva-
lence relation ~; generated by homotopy and stabilization given by ). We define

2 i.e., a complex linear automorphism of A that preserves * and satisfies t(ab) = t(b)7(a).

3 Boersema—Loring called t the real structure in [14]. In this paper, we distinguish these two since the
antilinear structure naturally appears in our application. We call 7 the transposition following [39].

4 For notations of the transpositions introduced here, we follow [14].
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Table 2 Boersema-Loring’s unitary picture for K O-theory [14]

i K O-group n; RB; 1@

—1 KO_i(#, 1) 1 Wt =u |

0 KOy, 7) 2 u=u*ut =u* diag(1, —1)

1 KO (<, 7) 1 U =t |

2 KOs, 1) 2 u=u*ut =—u (—1'0.1 lbl)

3 KO3(, 1) 2 wi®T — 1

4 KO4(, ) 4 u =u*,uj®f —u* diag(1y, — 1)
KOs(#,7) 2 Wi®T — % 1

6 K Og(, 7) 2 =, i — (_io. 1 z(~)1>

KOi(«/,t) = U (l)(sz{ ,T)/ ~; which is a group by the binary operation given by
[u] + [v] = [diag(u, v)].

For a nonunital C*"-algebra (A, 7), the i-th K O-group K O0;(«/, 7) is defined as
the kernel of A, : K 0;(«7, 1) — K O;(C, id), where < is the unitization of .7 and
A: o/ — C is the natural projection. In [14], they also describe the boundary maps
of the 24-term exact sequence for K O-theory associated with a short exact sequence
of C*T-algebras. In Appendix A.3, we discuss an alternative description for some of
them through exponentials.

2.2 Toeplitz operators

In this subsection, we collect the definitions and basic results for some Toeplitz oper-
ators used in this paper [22,55].

Let T be the unit circle in the complex plane C, and let ¢ be the complex conjugation
on C, that is, c(z) = z. Let n be a positive integer. On the n-dimensional torus T", we
consider an involution ¢ defined as the n-fold product of c. This induces a transposition
r on C(T") by (zpf)(t) = f(¢(¢)). Let Z>o be the set of nonnegative integers
and P, be the orthogonal projection of 12(Z") onto lz((Zzo)"). For a continuous
function f: T" — C, let M ; be the multiplication operator on 12(Z"") generated by
f. We consider the operator P, M ¢ P, on lz((Zzo)”), which is the Toeplitz operator
associated with the subsemigroup (Z>¢)" of Z" of symbol f. We write .7" for the
C*-subalgebra of A(l 2((230)")) generated by these Toeplitz operators. The algebra
! is the ordinary Toeplitz algebra, and we simply write .7. Note that the algebra
" is isomorphic to the n-fold tensor product of .7. The complex conjugation ¢ on
C induces an antiunitary operator> of order two on the Hilbert space [*(Z") by the
pointwise operation, for which we also write c. This induces a real structure ¢ on

5 An operator A on a complex Hilbert space 7 is called the antiunitary operator if A is an antilinear
bijection on ¥ satisfying (Av, Aw) = (v, w) for any v and w in ¥'.
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118 Page8of54 S. Hayashi

%’(12((220)")) by ¢(a) = Ad.(a) = cac*. We write T4 for the transposition on 7"
given by its restriction onto .7".

We next focus on the case of n = 2. We consider the Hilbert space /%(Z?) and take
its orthonormal basis {6, , | (m,n) € Z2}, where §,, , is the characteristic function
of the point (m, n) on Z>. When f € C(T?) is given by f(z1,22) = 7'z, we write
My, , for the multiplication operator M ¢. Let « < B be real numbers, and let 2,
AP, #%B and 4P be closed subspaces of [?(Z?) spanned by {Omn | —am+n >
0}, ¥mpn | —Bm+n <0}, ppn| —am+n > 0and — Bm +n < 0}, and
{mn | —am +n > 0or — Bm + n < 0}, respectively. In the following, we
may take « = —oo or § = oo, but not both. Let P¢, P8, P%B and P%P be the
orthogonal projection of 1%(Z?) onto #%, 7P, AP and AP, respectively. For
f € C(T?), the operators P*M ¢ P% on 7% and PﬁMfPﬁ on 7P are called half-
plane Toeplitz operators. The operator PrPM r PP on P is called the quarter-
plane Toeplitz operator, and PPy r PP on 7P isits concave corner analogue. We
write 7% and .7 P for C*-algebras generated by these half-plane Toeplitz operators and
P and TP for C *-algebras generated by the quarter-plane and concave corner
Toeplitz operators, respectively. There are s-homomorphisms ¢%: 7% — C(T?)
and of: 7P — C(T?), which map P*M ¢ P* and pﬁprﬂ to the symbol f,
respectively. We define the C*-algebra .*# as a pullback C*-algebra of these two
x-homomorphisms. The real structure ¢ on J# = 2(Z?) induces real structures ¢ on
g T8, ﬁ”"ﬁ, B and .#%P and thus induces transpositions 7y, 78, a8, Ta,p
andtyon %, T B, g ap 4B and . a.p respectively. For transpositions, we may
simply write T when it is clear from the context. The maps o® and o# preserve the
real structures, and we have the following pullback diagram:

B
(7B 1) L (TP, 1p)

pal loﬁ M

(T, 10) — (C(T2), 77)
We write o for the composition 6% o p® = o o p#. Let J be a x-homomorphism from
TP to 7P which maps PP My P%# to the pair (P*M s P%, PP M PP). This
map y preserves the real structures, and there is the following short exact sequence of

C*T-algebras (Park [55]):

0= (H(AUP), 00) > (F4B 2 g) Do (798 1) = 0, @

where the map from (2 (%Zmﬂ ), Ty ) to (ﬁ ap Ta,p) is the inclusion. Its concave
corner analogue is studied in [34], and the following exact sequence is obtained:

0 — (K (AP), ) > (TP 2 p) > (7%, 1) > 0, 3)
where p is a *-homomorphism mapping ﬁ“’ﬁMfﬁ“*ﬂ to (P“MyP“, PﬂMfPﬂ).
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3 KO-groups of C*-algebras associated with half-plane and
quarter-plane toeplitz operators

In this section, the K O-theory for half-plane and quarter-plane Toeplitz operators
is discussed. In Sect. 3.1, K O-groups of the half-plane Toeplitz algebra are com-
puted. Quarter-plane Toeplitz operators are discussed in the following sections, and
the K O-groups of the C**-algebra (.*#, t &) are computed in Sect. 3.2. In Sect 3.3,
the boundary maps of the 24-term exact sequence for K O-theory associated with
sequence (2) are discussed and the K O-groups of the quarter-plane Toeplitz algebra
(?A“’ﬂ, Tq,p) are computed.

3.1 KO-groups of (79, 14)

We compute the K O-groups of the C*T-algebra (7%, 14). The discussion is divided
into two cases whether « is rational (or —o0) or irrational.

We first consider the case when « is a rational number or —o0o. When o € Q, we
write @ = £ where p and ¢ are relatively prime integers and g is positive. Let m and
n be integers such that —pm + gn = 1 and let

I = ( ”p _q’”) e SL(2,7). 4)

Then, the action of I" on Z? induces the Hilbert space isomorphism #% = #°
and an isomorphism of C*7-algebras (7%, 74) = (7, 10). Thus, the C*"-algebra
(T%, 14) is isomorphic to (7, 1) ® (C(T), 7r), and its K O-groups are computed
as KO;(T%,14) = KO;(C(T), t1) = K O0;(C,id)® K 0;_1(C, id). For the firstiso-
morphism, see Proposition 1.5.1 of [62]. Generators of the group K O; (C(T), t) are
obtained in Example 9.2 of [14], and the unital x-homomorphism ¢: C — .7 induces
an isomorphism (id ® ¢),: KO;(C(T), ) — KO;(C(T),t1) ® (F,19)) =
K 0;(7°, 1p). Combined with them, K O-group KO;(T%, 14) and its generators
are given as follows.

- KOy(T%, 14) = Z and its generator is [1,].

- KO1(T%, 1y) = Zo ® Z. A generator of Zj is [—1] and that of Z is [P* M, _, P*].

— KOy(T% 1) = (Zz)z. A generator of one Z, is [—I@)1, and that of another Z,
0 iP*M, ,P"

—iP*M_, _, P* 0

- KO3(J%, 1y) = Zs and its generator is [diag(P*M, ,P%, P*M_, _, P*)].

— KO04(T*, 14) = Z and its generator is [14].

- KOs5(J%, 1o) = Z and its generator is [diag(P* M, , P*, P*M, , P*)].

- KOg(T%, 1) = KO_1(T%, 1) =0.

is

The case of « = —o0 is computed similarly, and its generators are given by replacing
p and g above with —1 and 0, respectively.

We next consider the cases of irrational «. In this case, complex K-groups of .7¢
are computed by Ji-Kaminker and Xia in [35,70].
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Lemma 1 For irrational o and for each i, we have K 0;(9%,1,) = KO;(C,id),
where the isomorphism is given by A$.

Proof As for complex K -groups, we have Ko(7%) = Z and K1 (7 %) = 0by [35,70].
We consider a split x-homomorphism of C* " -algebras A% : (7%, 7o) — (C, id) given
by the composition of 0% : (T %, 14) — (C(T?), 71) and the pull-back onto a fixed
point of the involution ¢ on T2. Let ¢ = Ker A*. By the six-term exact sequence

associated with the extension 0 — 7 — 7% X C — 0, complex K -groups of .7
are trivial. For a C* " -algebra (&7, 1), it follows from Theorem 1.12, Proposition 1.15,
and Theorem 1.18 of [13] that K O, (<7, t) = 0 if and only if K, (27) = 0. Therefore,
KO.(9%, 14) = 0. The result follows from the 24-term exact sequence of K O-
theory for C*7-algebras associated with the short exact sequence 0 — (F%, 74) —

(7%, 7,) 5 (C.id) — 0. o

3.2 KO-groups of (%P, 1)

In this subsection, we compute the K O-groups of the C**-algebra (.*#, 7). The
basic tool is the following Mayer—Vietoris exact sequence associated with the pullback
diagram (1) (see Theorem 1.4.15 of [62], for example):

S K 0;11(C(T?), 1)

0iy1

B«
KOs 15) ——> KOi((T%, 1) ® K 0i(T P, 7p) T koncm), ) (5)

(P%.p%) b

KOi_ (%P 19)

As in [55], the computation of the group K O (.% @p 1 ) is divided into three cases
corresponding to whether « and § are rational (or £00) or irrational. As in Sect. 3.1, we
have a unital s-homomorphism A% o p®: (#*#, 1) — (C, id) which splits. Corre-
spondingly, the K O-group K 0,(.#*#, T &) have a direct summand corresponding to
K 04 (C, id). Noting this, these K O-groups are computed by Lemma 1 and sequence
(5) when at least one of « and S is irrational. The results are collected in Tables 4 and
5. In the rest of this subsection, we focus on the cases when both « and 8 are rational
(or £00).

Whene, 8 € Q,wewritea = g and 8 = ? by using mutually prime integers where
q and s are positive. In the following discussion, the case of « = —oo corresponds
to the case where p = —1 and ¢ = 0, and the case of 8 = 400 corresponds to the
case where » = 1 and s = 0. By using the action of I" € SL(2, Z) in (4) on 72, there
are isomorphisms (7%, 7,) = (79, 79) and (7P, 78) = (I, 1)), where y = 5 for
u =ns —mr and t = —ps + gr. Note that ¢ is positive since « < . We have the
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following commutative diagram:

B__«a
KOi(T% 1) ® KO; (TP, 1) "% K 0;(C(T?), 7r)

:| » l;

KOi(7°, 1) ® KO;(T7. 1) =% K 0;(C(T?), 1)

where the vertical isomorphisms are induced by the action of I". In the following,
we discuss the lower part of the diagram, which is enough for our purpose since the
isomorphism K 0;(.%#, 1) = K0;(%7, 1) is also induced. We write ¢; for
the above map o] — 0. By the exact sequence (5), we have the following short exact
sequence.

0 — Coker(pit1) — K0;("7, 1) — Ker(¢;) — 0. 6)

We first compute kernels and cokernels of ¢;. Cases fori = —1, 0, 4, 6 are easy; thus,
we consider the other cases.

When i = 1, groups K 01(7°, 19) and K O{(T7, 1,) are both isomorphic to
Zo ®7Z. The Z direct summand is generated by [—1], and the other Z direct summand
is generated by [POMLQPO] and [PY M, ; P"], respectively. They map to [M| o] and
[M,]in KOl(C(’]I‘z), 7T) by Uf and o, respectively. We have KOl(C(']I‘Z), ) =
7o @® 72, where the Z, direct summand is generated by [—1]. For (m, n) € 72, the
element [M,, ,] € K 01(C(T?), t1) corresponds to (0, m, n) € Z, @ Z>. Therefore,
Ker(¢1) = Z, which is generated by ([—1], [—1]), and® Coker(¢;) = Z,.

We next consider the case of i = 2. We have K 0»(C(T?), t1) = Z» & (Z2)* &
Z, where the first Z, direct summand is generated by [—/ @1. For (m,n) € 72,
the element |:< . 0 Mo >i| in K 0(C(T?), 1) corresponds to (0, m mod
—iM_,—n O
2,nmod 2,0) € Zy ® (Z2)*> ® Z (Example 9.2 of [14]). Groups K 02(.7°, 79) and
KOy,(T7, 7,,) and their generators are obtained in Sect. 3.1, and we have

Zor @® 7 whent is even,
Z when ¢ is odd.

(Zg)2 when £ is even,

Ker =
(¢2) { Z» when 7 is odd,

Coker(¢gp) = {

When i = 3, we have K 03(C(T?), t1) = (Z»)3. For (m,n) € 72, we have an
element [diag(My, p, M—,,,—n)] € KO3 (C(T?), t7) which corresponds to (m mod
2,n mod 2,0) € (Z)*. By Sect. 3.1, we have

(Zz)2 when ¢ is even,
Zo,  when t is odd.

Z» whent is even,

K ~
er(es) { 0 whent is odd,

Coker(g3) = [

® When o = —00 and B € Q, we have Coker(¢) = Zs. This is the case when p = —1 and ¢ = 0 and
t = —ps + gr = s in this case. A similar remark also holds fori = 2, 3, 5.
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When i = 5, we have K O5(C(T?), r7) = Z?*. For (m,n) € Z?, we have an
element [diag(M,,., My »)] € K Os(C(T?), tr) which corresponds to (m, n) € Z2.
By Sect. 3.1, we have Ker(¢s) = 0 and Coker(¢s) = Z;.

Combined with the above computation and the exact sequence (6), we compute
K O-groups K 0;(.#*P,1). When i = 0, the sequence (6) is of the following
form,

0— Z — KOo("" , 19) > Z — 0,

Since Z is free, this sequence splits and we obtain K 0(F7 | 1 ) =7 & Z;. Other
cases are computed in a similar way though some complication appears wheni = 2, 3.
We discuss these two cases in the following subsections.

3.2.1 The group KO, (.7 %8B, 1 )

We compute the group K 02(.#7, 7.5), which is isomorphic to K 02(Z*#, t.»).
The computation is divided into two cases depending on whether ¢ is even or odd.
Note that u is odd when ¢ is even since r and s are mutually prime.

When 1 is odd, Ker(¢,) = Z, is generated by ([—I @], [—1®]) and sequence (6)
splits. Therefore, K Oy (.%#, 1 4) = (Z,)?.

‘We next discuss the cases of even t.In this case, both of the kernel and the cokernel
of @3 are isomorphic to (Z;)?. Let K 02(.#%7, 7.) be the kernel of the map A o
pE: KOy (S @B 1) — KO>(C,id) = Z, which splits. Then, sequence (6) reduces
to the following extension:

0 — (Z2)? = KO02(F" , 19) — Zr — 0. (7

In the following, we show that this sequence (7) splits. We find a lift of the generator
of Z in /15\0/2(5’ 0.7, 7.5) and show this lift has order two. For (m, n) € Z? andx = 0
and y, we write 7, , for P*M,, , P, and let Q be the projection Tu)tO TZu,O' Note that
1 — Q is the projection onto the closed subspace spanned by {§,, , |0 < ym —n <t }.
For j =1,...,t,let P; be a projection in .77, defined inductively as follows:

Pr=0-0)Mo,—r+1(1 — Q)Mo,—1(1 — Q),
j—1
Pj=(1—Q)Mo sj(1 = Q)Mo j(1—0) = Pi.

k=1

Specifically, P; is the orthogonal projection of 2”7 onto the closed subspace spanned
by {8n,in—j+1}nez. Note that 2321 Pi=1-Q.Forodd j =1,3,...,t — 1, let
sj=PjMo1Pjt+1 — Pjy1Mo_1Pjands = le';ll,odd sj. The element s satisfies the
relations (i) s* = —s, (ii) s¥ = —s, (i) s> = =1 + Q, (iv) Qs = sQ = 0 and (v)
sTuy,0 = Ti/u’os = 0. Note that 07 (s) = 0 since o7 (1 — Q) = 0. We first consider
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s

-0

Fig.1 Thecaseofu = l andt = 4. 1 — Q is the projection onto the closed subspace corresponding to lattice
points in between two lines (lattice points on the line y = yx are included, while thaton y = y(x — 1) are
noF). P j is th(? projection f)nto the closed subspace spanned by {3, 44— j+1 | n € Z}. s interchanges two
points in a pair up to the sign

the following elements:

B (I 0 [ +is iQ y

where the double sign corresponds. Elements a and b4 are self-adjoint unitaries sat-
istying a* = —a and b} = —b4, and pairs (a, b+) are elements of My (07);
therefore, they define the elements of K Oy (. 0.y To).

Lemma2 As elements of K 02(.7", ©5), we have [(a, bs+)] = [(a, b_)] = 0.

Proof We first show that [(a,by)] = 0. For j = 1,3,...,t — 1, let r; =
PiMo 1 Pjy1+Pj 1Mo 1 Pjandr = Z;_:ll,odd r;. Theelementr satisfies (i) r* = r,
(i)rf=r,Gi)rf=1-0,@{v) Or =rQ =0, (v) rT) =T, or =0and (vi) r

anticommutes with s. For 0 < 6 < 7, let
by — iscosf iQ+irsinf J— 0 i-lgy
9=\ —iQ —irsin® iscos® U (O :
This by is a self-adjoint unitary satisfying bj = —bg and by = b. Therefore, b, and

b% are homotopic in U 1(2)(9 ¥, 1,). We further discuss b%. Let us consider lattice

points (m,n) € Z? satisfying 0 < ym — n < t, as indicated in Fig. 1 for the case
where u = 1 and t = 4. Asin Fig. 1, we divide these points to % pairs of lattice points:
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forn € Zandodd j = 1,3,...,t—1, apair consists of {(n, tn — j), (n,tn — j+1)}.
The action of b% is closed on each pair of lattice points and is expressed by a 4 x 4
matrix (acting on C? ® C2; one C? corresponds to a pair of lattice points, and the other
C? corresponds to the 2 x 2 matrix we consider). Let V be the following matrix.

1 1 1 -1
1 1 1 -1 1
V=311 -1 1 1
-1 1 1 1
Then V € SO (4) and satisfies
0 0 01 0 0 i 0
0 0 i 0 % 0 0 0 i
v 0 — 00 Vi = —i 0 0 0]}
—i 0 00 0 —i 00

where the left matrix inside the conjugation is the restriction of bz onto the closed
subspace spanned by generating functions of these two lattice points tensor C> and
the right matrix is that of d (note that 0 = 0 on these lattice points). Let W be the
unitary on .77 ® C? defined by applying V to these pair of lattice points satisfying
0 < ym — n < t and the identity on the lattice points satisfying t < ym — n; then,
we have Wb% W* = d. Since SO (4) is path-connected, there is a path of self-adjoint
unitaries from b% to d preserving the relation of the K O,-group. Summarizing, we

have a pathin U 1(2) (77, 1,) from by to d. By its construction, the pair of the constant
path at a € M>(.7°) and this path gives a path in Ul(z) (%Y 14) from (a, by) to

(a, d). Therefore, we have [(a, b;)] = [(a,d)] = [I®]=01in K 02(%7, t).
We next discuss the class [(a, b_)]. For0 <6 < %, let

b — —iscosf iQ+i(l—Q)sind
87\ —iQg—i(1 - Q)sinf iscosf ’
Then, by, is a self-adjoint unitary satisfying (b,)" = —bj,. We have b; = b_ and

by = I@. Therefore, [(a, b_)] = [(a, b)) =[IP]1=0in KO2(¥"7,t5). 0O
2

2z
Let us consider the following elements:

0 iT?, 0 +is iT), y
U2_<_iT0u,O 0 ) EMATT), we = ~iT7, 0 € Mx(T7),

which are self-adjoint unitaries satisfying (v2)* = —v2 and wy = —wx. Since
o) = oV (wy), pairs (v2, w) are elements of My (70) satisfying (v2, wy)? =

—(v2, w4 ) and give elements [(v2, w4 )] of the group KO0, (707, T7).

Lemma3 In K 02(.7°7, t.%), we have [(v2, wy)] = [(v2, w_)].
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Proof For 0 < 6 < 7, let us consider the following element in M4(.7"):

iscosd iTuyo —irsinf® 0
"l ’

—lT_u’O 0 0 0

irsinf 0 iscos6d iQ |’
0 0 —iQ is

Ry =

Then, we have R wi @ by, Ry = w_ & b_ and Ry is a self-adjoint unitary
satisfying R} = —Ry. Since 6V (Ry) = o%(va @ a), the pair (v2 D a, Ryp) is contained

in U2(2) (%Y 14) and gives a path from (v, @ a, wy ® by) to (v2 D a, w_ ®b_).
By using Lemma 2, we obtain the following equality in K O,(.7%7, 75):

[(v2, w)] = [(2®a, wy @ bp)] = [(2Da, w- & b_)] = [(v2, w)].

O
Lemma4 In K 02(.7"7, 1), the element [(v, w4 )] has order two.
Proof For0 <0 < %, let
0 iTIRO cos 6 isinf 0
—iT% . cosf 0 0 —isinf
A§ = w0 My(T°
0 —isinf 0 0 iT),cosd € My(T,
0 isin6 —iTi)u’0 cos 6 0
iscosd iTuy0 cosf isiné 0
. ’ ..
y _ | —iTZ, gcoso 0 0 —isin® y
Ay = —isiné 0 —iscosé iTIZ0 cosd | € Ma(T7).
0 isin6 —inu)O cos b 0
Then, Ag and Ag are self-adjoint unitaries satisfying (Ag)’ = —Ag and (Ag)’ =
—AJ, and their pair (A, A}) is contained in M4(7%7). Note that (AJ, Ay) =
(v2 & v2, wy @ w-). Therefore, by Lemma 3, the following equality holds in
KO0y (%7, 19):
2 (w2, wi)l = L2, w)] + (w2, w)] = [(AG. AD] = [(A%. )] =0.
O
Proposition 1 When o« and B are rational numbers and t = —ps + qr is even, we

have K O2(.S%F | 1) = (Z)*.

Proof Since u is odd when ¢ is even, pair ([v], [wy]) € KOz(yO, T9) D
K 0,(77, 1)) constitutes a nontrivial element of the right Z, C Ker(gy) in the
sequence (7). The element [(v2, w4)] € K 02(#*Y, 1) is a lift of it. Therefore,
[(v2, w4)] is nontrivial and has order two by Lemma 4. This element belongs to
7(\52(5”0’7, T), and by mapping 1 € Z; to [(v2, w4 )], we obtain a splitting of the
sequence (7). Therefore, T(HZ(YO’V, Ty) = (Z2)? and the result follows. O
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3.2.2 The group KO3 (. %8B, 1 )

We next compute K O3(.% «B t). Note that Ker(¢3) depends on whether 7 is even
or odd. When ¢ is odd, Ker(¢3) is zero and, K O3 (PP, To) = Z; follows from (6).

We next discuss the cases of even 7. In this case, extension (6) is of the following
form:

0— Zy - KO3(S% 1) — Zp — 0. (®)

Asin Sect. 3.2.1, we show that this sequence splits by finding a lift of the generator of
the right Z, in K 03(.7%7, t») of order two. Let us consider the following elements:

70 0 TV, +s
_ u,0 0 _ u,0 14
vy = ( 5 TO“)) e My (7%, zo= ( 5 T_yu’()) € My (TY),

where the double-sign in the second equality corresponds. Pairs (v3, z+) are unitaries
in MZ(YO’V) satisfying (v3, 7% = (v3, z+) and define elements [(v3, z+)] of the
K O-group K 03(.7% , 1.5).

Lemma5 In K 03(%7, t&), we have [(v3, z4)] = [(v3,2-)].

TV i0
Proof For 0 < 0 < m,letzg = ( ‘(‘)*0 Tey s ) € M»(Z7) which gives a path
—u,0

{zo}o<o<x Of unitaries satisfying (z9)*®T = zg. Its endpoints are zo = z4 and z; =

z_. The pair (v3, zg) satisfies (v3, z9)*®7 = (v3, z9) and gives a homotopy between
. 3

(v3,24) and (v3, 2-) in UV (S0 7). o

Lemma 6 The element [(v3, z4+)] in K O3 (%Y 1) has order two.

Proof For0 <6 < Z let

7>
TMO’ 0 Cos 0 0 sin 6
e I A R
—sind 0 0 TBu,O cos @
Tu’fo cosf scosf 0 sin 6
% .
Bg - 8 T_—u’(s)ifloes ’ TMVS;I:::?S 0 —s ((:)os 0
—sind 0 ’ 0 TZM’O cosf
For each 6, matrices Bg and Bg are unitaries satisfying (Bg)"“®t = Bg and

(B))*®® = B)Y. We have B] = v3 ® v3 and B} = z; & z_. Note that matri-
ces Bg and By are contained in M4(C), where they coincide. Since this unitary

2 2
satisfies the symmetry of the K O3-group, this is an element of the quaternionic uni-
tary group U (2, H). Since U (2, H) is path-connected, there is a path of unitaries in
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Table3 K O, (%P, 7 ) when both « and § are rational (or £00)

i 0 1 2
t=—ps+gqr Even Odd Even Odd
KOj(7%P 1) Z&1L (22 © 7 7, ®L (Zy)* (29)*
3 4 5 6 7
Even Odd

(Zp)? Zy Z®Zs Z 0 0

Table4 K 04 (%5, 7o) when one of « and g is rational (or +00) and the other is irrational

i 0 1 2 3 4 5 6 7

KO; (%P 1) 72 )} ez (Z5)3 7 72 7 0 0

Table5 K 0*(5”“*5, 7o) when both « and 8 are irrational

i 0 1 2 3 4 5 6 7

KO;(.7%P, t9) 73 Y/ (Z)* Zs 73 Z 0 0

U2(3) (%7, 1) connecting (B, BY) to (1.)4. By using Lemma 5, we obtain the
2 2
following equality in K O3(.%"7, 1.):

213,201 = (3 B 3. 24 D 2)] = [(BY. BY)] = [(1y)a] = 0.

Proposition 2 When « and B are rational numbers and t = —ps + qr is even, we
have K 03(7%P 15) = (Z,)*.

Proof The pair ([vs],[z+]) € KO3(7° 19) @ KO3(T7, 7,) is contained in
Ker(¢3) = Z, and is nontrivial. The element [(v3, z4)] € K O03(7%7, 1) is its
lift. Therefore, the class [(v3, z4)] is nontrivial and has order two by Lemma 6. We
thus obtain a splitting of the sequence (8) and the group K 03(.#%7, 7 &) is isomorphic
to (Z2)>. u]

The results in this subsection are summarized in Tables 3, 4 and 5.
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3.3 Boundary maps associated with quarter-plane Toeplitz extensions and
KO-groups of (7 %P, 74 p)

We next consider the boundary maps’ of the 24-term exact sequence for K O-theory
associated with the sequence (2):

3 KOj(SYP 10) = KO;_{(H (H#4P), t4). ©9)

Proposition 3 For each i, the boundary map 3 in (9) is surjective.

Proof When i = —1,0,4, 6, the group KOi,l(Jﬁ/(L%Z""ﬂ), T ) is trivial and the
statement is obvious. We discuss the other cases. The proof is given by constructing
explicit elements of the group K 0; (%, t5), which maps to a generator of the
group K O;_ (%(%z"‘*ﬂ), 7). As in [36], by using the action of SL(2, Z) on Z?,
we assume 0 < o < % and 1 < B < 400 without loss of generality. Let @mn =
PP M, ,P*PM_,, _, P*P.Asin[36], we consider the following element in .7 *F:

A=Po1+Mi (1 —P_10)+ M o(P_10— Po.1). (10)

The operator A is Fredholm whose kernel is trivial and has one-dimensional cokernel
[36]. We also have the following.

- ;Z(A) is a unitary in /%8, . . . . .
— A is areal operator, that is t(A) = A, and AT = t(A*) = A* holds.

From these preliminaries, the proof of Proposition 3 is parallel to the computation in
Example 9.4 of [14]. We summarize the results here.

— Letu; = )?(A). uy is a unitary satisfying u] = u} and gives an element [u;] €
KO1(%P 14). a1 ([u1]) is a generator of KOO(%(j?“'ﬁ), Ty) EZ.

— Letu, = ,AOA iy (4)

—iy(A)* 0
gives [uz] € K Oy (%P, T). éz[uz]is thegeneratorofK01(%(%2“’/3), ) =
Zo.

— Letus = diag(;?(ﬁ), )7(14)*). u3 is aunitary satisfying u§®f = uz and gives [u3] €
K O3(%F, T7). 53([u3]) is the generator of the group KOQ(J{(C%Z“’/S), Ty) =
Zs.

— Letus = diag(;?(fi), )7(14)). us is a unitary satisfying u§®t = uj and gives [us] €
KOs5(%P 14). 55([145)] is a generator of the group K04(=%/(<%2“"3), Ty) =
7.

> .uz is aself-adjoint unitary satisfyinguj = —u and

O

Remark 1 In the case when «, g are both rational (or £o00) and t = —ps + gr is
even, the group K 0, (7%7 Ty) = (Z2)* is generated by =11, [(va, w4)], [uz]

7 We write 3,- for boundary maps associated with (2) and write 5,- for that with (3).
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Table 6 KO*(j“*ﬁ, Zy,p) wWhen both &, f are rational (or £00)

i 0 1 2 3
t=—ps+qr Even Odd Even Odd Even Odd
KOu( TP t0p)  ZOLZ (L) Iy 22 Ty Zy 0

4 5 6 7

7 ® Zy 0 0 0

Table7 K O04(T%P, %y p)

0 1 2 3 4 5 6 7
when one of @ and g is rational

(or 00) and the other is [ FaB 2 2 2 2 2
irrational KOi(7*7. fap) T (Z2) ) oz 000
Table8 K O4(T%F, %, p) 0 1 N 3 4 5 6 7

when both @ and f§ are irrational

(=]
&
(=]
S
(=]

KOi(T%P 24 p) 73 (I (Zn)?

and [(w’, 12(2))], where?
w' =Y diag(1, 1 — 2T, Ty, 2T T)_y — 1, =Y *,

By the map o,.: KO; (L% 14) — KO;(C(T?), t1), the components generated by
[(v2, wy)] (wheni = 2) and [(v3, z4+)] (when i = 3) maps injectively.

The K O-groups of (,7A @p Ta,p) are computed by the 24-term exact sequence of
K O-theory associated with (2) and Proposition 3. The results are collected in Tables 6,
7 and 8.

Remark 2 Similar results in this section also hold for convex corners. Let A € 7%F
be an operator defined by replacing PP in the definition of A by PP This A is a
Fredholm operator satisfying AT = A* which have one-dimensional kernel and trivial
cokernel [34]. As in Proposition 3, by using this example, we see that the boundary
maps 3 of K O-theory associated with the sequence (3) is surjective. The K O-groups
of (j @p 7o, ) is computed by the 24-term exact sequence associated with (3), and the
results are the same as in Tables 6, 7 and 8. Through the stabilization isomorphism, we
have two boundary maps 9; and 9; from K O; (%P 1) to KO;—- 1(C, id) associated
with (2) and (3). Since y(A) = y(A) the relation 8 = —8 holds, as in Corollary 1
of [34].

8 The matrix Yf) is introduced in Appendix A.3.
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4 Toeplitz operators associated with subsemigroup (Z>¢)" of Z"

In this section, Toeplitz operators associated with the subsemigroup (Z=()" of Z" for
n > 3 are discussed. They are an n-variable generalization of the ordinary Toeplitz and
quarter-plane Toeplitz operators and are briefly discussed in [22,23], where a necessary
and sufficient condition for these Toeplitz operators to be Fredholm is obtained. We
revisit these operators since, in our application to condensed matter physics, models
of higher-codimensional corners are given by using these n-variable generalizations.
Since the Toeplitz extension (11) and the quarter-plane Toeplitz extension (3) provide
a framework for these applications, we seek this extension for our n-variable cases
(Theorem 1). Note that we consider corners of arbitrary codimension, though of a
specific shape compared to the codimension-two case [55]. In this section, let n be a
positive integer bigger than or equals to three.

To study such Toeplitz operators, we follow Douglas—Howe’s idea [23] to use the
tensor product of the Toeplitz extension,

0> #5725 () —o, (11

where % = ¢ (I Z(Zzo))- There is a linear splitting of the x-homomorphism y given
by the compression onto 12(Z>0) Forasubset.” C {l,...,n},let 7)), = A1®---®
A, where A; is C(T) wheni € o/ andis .7 wheni ¢ ,;27 Note that 9 s 1somorph1c

to 7" introduced in Sect. 2.2. For subsets 2 Cc Z C {1, ..., n}, let n’@ : 9 — ﬁ
be the x-homomorphism induced by y. Specifically, ng =a1 ® - Qay,, Where a;
isidcer)y wheni € Z,is y wheni € Z \ Z and is id # otherwise. Note that ng
is a surjection and JTg = id. In the following, we use a subset ./ of {1,...,n} as
a label to distinguish C*-algebras and the morphisms between them, which we may
abbreviate brackets {-} in our notation. For example, we write 91"2 for ﬁ{’f’z}, m; for

{QZ’} and 711] , for n{{ll }2} For each &/ C {1, ..., n}, the map 7, has a linear splitting
po: T, — T given by the compression onto 12((Z>0)”) By these preliminaries,
we con51der the following C*-subalgebra of .7}" - I

Forl<i<n, T; € 7",

n_ ¥, ... . T L .
7 {( e T Forl <i < j<n, n/;(T}) =} (T))

Let (Ty,...,Ty) € 5’”: For a nonempty subset <7 C {1, ..., n}, we take i € < and
consider the element nL’Q{(Y}) € 3 - This element does not depend on the choice of

i € o, and we write Ty = n;{(Ti). Let p': .#" — 7" be a linear map defined by

P Ty =) Y (=) oy (Ty)
k=1 | |=k

for (Ty, ..., T,) € ", where the second summation is taken over all subsets .o/ C
{1, ..., n} consisting of k elements. Let #™" = %/(12((220)”)), and let y,: I" —
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" be an x-homomorphism given by y,(T) = (71(T), ..., 7, (T)). Let ¢, be the
n-fold tensor product of ¢.

Theorem 1 There is the following short exact sequence of C*-algebras:
0 "8 gn gn o, (12)

where the map y, has a linear splitting given by p’.

Proof The map ¢, is injective since ¢ is injective. We first show the exactness at .7".
Since y ot = 0, we have y,, o (, = 0, and thus, Im(¢,) C Ker(y,). Let T € Ker(y,).
Sincem1(T) = (y®1®---®1)(T) =0, there exists some S} € X R T Q- Q@ T
suchthat ( ® 1 ® --- ® 1)(S1) = T. Since

0=010y®1®--- DM =1y RIQ---D®L®---® (1)
=(R1®---NIRYyR®1®---&1)(S1)

and(®1®---®lisinjective, 1@y @1 ®---®1)(S1) = 0. Therefore, there exists
someH e X QR QT Q---® Tsuchthat S| = (1 :R1Q®---® 1)(S2). By
continuing this argument, we see that there exists some S, € # Q --- Q A& = H™"
such that (1 ® - - - ® 1)(S,) = T. Thus, we have Ker(y;,,) C Im(,).

For the surjectivity of y,, we see that p is a linear splitting of y,, that is, for
(Th,...,T,) € S"and 1 <i < n,therelation 7w; o p'(Ty, ..., T,) = T; holds. In the

following, we show 7 o p’(T1, ..., T,) = T and the other case is proved similarly.
Note that
n
miop (Th,....T) =Y Y (=D"'m0py(Tey) (13)
k=1 | |=k

and that 7r; o p1(T7) = Tj. Thus, it is sufficient to show that the sum over o7 (£ {1})
is zero. Note that for2 < i; < --- < i;_1 < n, we have

T1 O Piy,... ix_1 (T11 ..... ikfl) = 1 O Pl,iy,..ik—1 (Tl,il,...,ikfl)-

By using this relation, we compute the sum on the right-hand side of (13). Fork =1
and k = 2 of the sum, we have the following:

Y. mopyTy)— Y mopy(Tey)
| |=1, o #{1} | |=2

n
=Y mop(T)— Y. mopTip=— Y  miopij(Ty).
i=2

1<i<j<n 2<i<j<n
For 2 < k < n, we have

(_l)k Z AN Pil,...,ik_l(Til ..... ik—l)

2<i|<-<ip_1<n
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Table9 K O-groups of

" ) i 0 1 2 3 4 5 6 7
KOj(S" 1) 7 7®Zy (Z)*> Zo Z Z 0 0
k+1

+ (_1) + Z 1 9 Piy, ..., ik(Til ..... ik)
1<ij<---<ix<n
k+1
=D Y o (Thy i),
2<ij<--<ip<n
and since

(—=D)'m10p2 w(Ta )+ (=110 p1 u(Th,. ) =0,
we have w0 p'(Th, ..., T) = Tj. O

Theorem 13 leads to the necessary and sufficient condition for Toeplitz operators
associated with these codimension-n corners to be Fredholm.

Corollary 1 (Theorem 18 of [22]) Let k be a positive integer. An operator T €
My (T") is a Fredholm operator if and only if v, (T) is invertible in M (") o,
equivalently, if and only if w; (T) is invertible for any 1 <i < n.

As in Sect. 2.2, the real structure ¢ on [2(Z") induces real structures on " and S
We write T for the transposition on ." associated with this real structure. The
map y, preserves the real structure, and we obtain the following exact sequence of
C*T-algebras:

0— (A" 10) 3 (T, 17) B (", 19) > 0. (14)

We next compute the K -groups of the C*-algebra .#" and K O-groups of the C**-
algebra (", t.&).

Proposition4 K;(") = Z fori =0, 1.

Proof Note that K;(9") = K;(C). The result follows from the six-term exact
sequence of K -theory associated with the sequence (12) in Theorem 1. O

Proposition 5 For each i, we have
KO;(S", t9) = KO;(C,id) ® KO,;_1(C,id).

The results are collected in Table 9.

Proof Note that K O; (7", 1) = K 0;(C, id). The result follows from the 24-term
exact sequence of K O-theory associated with the sequence (14). O
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A Fredholm Toeplitz operator associated with a codimension-n corner whose Fred-
holm index is one is constructed as follows.

Example 1 (A Fredholm Operator of Index One) Let T, be the Toeplitz operator whose
symbol z: T — C is the inclusion. Its adjoint 7" is a Fredholm operator on lz(Zzo)
of index one. Let p = T;T and ¢ = 17 — p, then p,q € 7 and are projections
onto I%(Z=1) and C8y, respectively, where & is the characteristic function of the point
0 € Z.Forasubset. o/ C {1,...,n},let Pg{ =r®---Qry, wherer; is p wheni € &/
and is g otherwise. The operator P, is a projection which satisfies Yo Pl =1gn.

Let T = T} ®q ® --- ® q and consider the following element in .7":

where the sum is taken over all subsets of {1, ..., n} except {1}. Then, we can see that
Ker(G) = C and Coker(G) = 0, thatis, G is a Fredholm Toeplitz operator associated
with codimension-n corners whose Fredholm index is one.

This example leads to the following result.

Proposition 6 The boundary maps of the six-term exact sequence for K -theory asso-
ciated with (12) are surjective. Moreover, the boundary maps of the 24-term exact
sequence for K O-theory associated with (14) are surjective.

Proof The result for complex K -theory is immediate from Example 1. For K O-theory,
since the operator G in Example 1 satisfies G* = G*, the result follows as in Propo-
sition 3. O

Note that, we have y,,(G) = (71(G), 1,---, 1) € %" by using

TG =M®q® - ®q+ > leay ® P

The element y,,(G) is a unitary and defines an element [y, (G)] of the group K1 ().
Since the Fredholm index of G is one, this gives a generator of K(") = Z. As
in the proof of Proposition 3, generators of the K O-groups K O; (", t) are also
obtained by using G.

Remark 3 Let 1 < j < n. We have the following *-homomorphisms:

7" — 7 g oM =S o1 g o(T).

where the first map maps (71, ..., T,) to T;. We write o™~ for the composite of the
above maps which induces the map 0"~ ': K;(#") — K;(#"~! ® C(T)). When
i =0, Ko(¥") = Zis generated by [15] and 0"~ ![15] = [1,]. Wheni = 1, the map
oy "=lis zero since, by Example 1, the element [y, (G)] is a generator of K1 (") = Z
and af’"_l[yn (G)] = [1] = 0. A similar observation also holds in real cases. The
map " from K 0; (", Ty) to KO0; ("' ® C(T), t) maps direct summands
corresponding to K O-groups of a point injectively and the other components to zero.

@ Springer



118 Page 24 of 54 S. Hayashi

5 Topological invariants and corner states in Altland-Zirnbauer
classification

In this section, some gapped Hamiltonians on a lattice with corners are discussed
in each of the Altland—Zirnbauer classes. Since two of them (class A and AIIl) are
already studied in [33,34], we consider the remaining cases here. The codimension of
the corner will be arbitrary, though we mainly discuss codimension-two cases, with
many detailed results being obtained by [34,36,55] and the results in Sect. 3. Higher-
codimensional cases are discussed in a similar way, whose results are collected in
Sect. 5.5.

5.1 Setup

Let V be a finite rank Hermitian vector space of complex rank N. Let n be a positive
integer. Let @ and Z be antiunitary operators on V whose squares are +1 or —1. Let
IT be a unitary operator on V whose square is one. These operators @, = and IT are
naturally extended to the operator on [2(Z"; V) by the fiberwise operation; we also
denote them as @, = and I1, respectively. Let Herm(V) be the space of Hermitian
operators on V. We consider a continuous map T” — Herm(V), t — H(t), where
t = (t1, f, ..., ty) in T". Through the Fourier transform L2(T"; V) = [2(Z", V),
the multiplication operator generated by this continuous map defines a bounded linear
self-adjoint operator H on the Hilbert space [>(Z"; V). We consider the lattice Z"
as a model of the bulk and call H the bulk Hamiltonian. The Hamiltonian is said to
preserve time-reversal symmetry (TRS) if it commutes with ® (i.e., ® HO* = H),
particle-hole symmetry (PHS) if it anticommutes with = (i.e., EHE* = —H) and
chiral symmetry if it anticommutes with IT (i.e., [T HIT* = —H). Furthermore, TRS
or PHS is called even (resp. odd) if Or=1lorg?=1 (resp. Or=—lorE?=-1).
Hamiltonians may preserve both TRS and PHS. In that case, ® and Z are assumed to
commute, and I7 is identified with ® & or i © £ such that IT? = 1 is satisfied.

By taking the partial Fourier transform in the variables #; and #,, we obtain a
continuous family of bounded linear self-adjoint operators { H (£)};cn—2 on 3¢ @ V.
By taking a compression onto % ® V, 7 ® V and #*F @V, we obtain a family
of operators H%(t), HP(t) and I:I“’ﬂ(t) parametrized by t = (13,...,1,) € T" 2.
HY(t) and HP(¢) are our models for two surfaces (codimension-one boundaries),
and H*P (¢) is our model of the corner (codimension-two corner). We assume the
following spectral gap condition.

Assumption 1 (Spectral Gap Condition) We assume that both H* and H? are invert-
ible.

Under this assumption, the bulk Hamiltonian H is also invertible since, when we take
a basis of V and identify V with CV, there is a unital *-homomorphism My (.#*f ®
C(T"2)) — My (C(T")) that maps (H?, HP)to H.Inclasses Al and AIl, we further
assume that the spectrum of H is not contained in either R.. ¢ or R . Note that in other
classes where Hamiltonians preserve PHS or chiral symmetry, this condition follows
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from Assumption 1. Let / be the pair (H%, H?). Under Assumption 1, we set
sign(h) = h|h|~". (15)

When the bulk Hamiltonian H satisfies TRS, PHS or chiral symmetry, the operators
H* HP, H*P and sign(h) also satisfy the symmetry, that is, commutes with ® or
anticommutes with & or I7.

5.2 Gapped topological invariants

In the following, starting from a Hamiltonian satisfying Assumption 1 in each class
Al, BDI, D, DIII, All, CII, C and CI, we construct a unitary and see that this unitary
satisfies the relation %; in Table 2. By using this unitary, we define a topological
invariant as an element of some K O-group.

In class Al, the Hamiltonian has even TRS. We take an orthonormal basis of V to
identify V with CV and express @ as ¢ = diag(c, ..., c). Under our spectral gap
condition, let

. (Sigg(h) 0 ) (16)

In

This u is a self-adjoint unitary satisfying u® = Adg gy (u™) = u* by the TRS.

In class BDI, the Hamiltonian has both even TRS and even PHS. Note that the chiral
symmetry is given by [T = ® Z and commutes with ® and Z. For a Hamiltonian
satisfying chiral symmetry and Assumption 1 to exist, the even/odd decomposition
V = Vogp V! with respect to I1 should satisfy rankc VO = ranke V!, and we assume
that. Then, there is an orthonormal basis of V to identify V with CV such that IT and
® are expressed as follows:

10 % 0
H=<04)’@=<0%)’ a7

where ¥ = diag(c, ..., c). Since the Hamiltonian H anticommutes with 7, the
operator sign(h) in (15) is written in the following off-diagonal form:

. 0 u*

sign(h) = (u 0 ) , (18)

where u is a unitary. By the TRS, we have u® = €u*¢* = u*.

In class D, the Hamiltonian has even PHS. We take an orthonormal basis of V to
identify V = CV and express & as ¥ = diag(c, ..., c). Let u = sign(h), then we
have u* = Eu&™* = —u by the PHS.

In class DIII, the Hamiltonian has both odd TRS and even PHS. Note that the
chiral symmetry is given by [T = i® & and anticommutes with ® and &'. For such
a Hamiltonian H satisfying Assumption 1 to exist, the complex rank of V must be a
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multiple of 4 since sign(H (¢)), i1, i and ® provides a Cly,; ® Cla,0 = H(2)-module
structure on V. We assume rankc V = 4M for some positive integer M.

Lemma 7 If a Hamiltonian H satisfying Assumption 1 exists, there is an orthonormal
basis of V such that I1 and @ are expressed as follows.

r-(30)#-(54)

We write ¢ = diag(j, ..., j), where j is the quaternionic structure on H.

Proof By using IT, we decompose V = VO @ V1. We identify V0 = V! = C?M =
HM | on which we consider F =diag(j,...,j).LetU = © (} {) Since U
is a unitary and commutes with I7, we have U = diag(ug, u1), where up and u are
unitaries on C2M . Since ®% = —1, we have u; = Ad (up). Let W = diag(—ug, 1),

then W@W*:( 0 j) O
7 0

We take this basis on V and express [T and ® as above. By the chiral symmetry, we

take u in (18). By the TRS, we have u*®® = Zu* 7* =u.

In class All, the Hamiltonian has odd TRS. The space V has a quaternionic structure
given by @, and the complex rank of V is even, for which we write 2M. There is an
orthonormal basis of V for identifying V with C*¥ = HM and expressing © as
J = diag(j, ..., j). Let u be a self-adjoint unitary in (16). By the TRS, we have
M®T=Ad/@/oﬁ)=uf

In class CII, the Hamiltonian has both odd TRS and odd PHS. The chiral symmetry
is given by IT = ® & and commutes with @ and &'. As in the class BDI case, we take
an orthonormal basis of V to identify V with C" and express IT and @ as

()es(10) o

where ¢ = diag(j, ..., j). By the chiral symmetry, we take u in (18). By the TRS,
we have u*®% = gZu* 7% =u*.

In class C, the Hamiltonian has odd PHS. Since & provides a quaternionic structure
on V, its complex rank is even, for which we write 2M. We take an orthonormal basis
of V to identify V with C?* = HM and express & as ¢ = diag(j, ..., j). Let
u = sign(h), then we have u*®* = Zu* ¢#* = —u by the PHS.

In class CI, the Hamiltonian has both even TRS and odd PHS. The chiral symmetry
is given by IT = i® & and anticommutes with ® and &. As in Lemma 7, we take an
orthonormal basis of V to express,

10 0%
H=<04>’62<%0>

where ¥ = diag(c, ..., ¢). By the chiral symmetry, we take u in (18). By the TRS,
we have u® = Gu*6¢™* = u.
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Table 10 i(®) and c(®) for

each of the Altland—Zirnbauer . Al BDI b bt All cu ¢ a
classes & i® 0 1 2 3 .
c() 1 1 i 1 1 1 i 1

Definition 2 For a Hamiltonian in class # = Al, BDI, D, DIII, AIl, CII, C or CI
satisfying Assumption 1, let # be the unitary defined as above. As we have seen, this
unitary u satisfies the relation %; @) where i (#) is as indicated in Table 10. We denote

its class” [u] in the K O-group K O; ) (.7** ® C(T"2), 1) by fgéﬁb‘;d(m.

The groups K O, (.7%# @ C(T"~?), t) are computed by results in Sect. 3.2.

Remark 4 We expressed the symmetry operators in a specific way, though we may
choose another one. In class DIII, for example, the operator & can also be expressed as

<<; _(;g), where ¢ = diag(c, ..., ¢). Then, we obtain unitaries satisfying u® = —u,

which are treated in [39].

5.3 Gapless topological invariants

We next define another topological invariant by using our model for the corner HYP.
By Assumption 1 and Theorem 2.6 in [55], {I:I“'ﬂ(t)}tewfz is a continuous family
of self-adjoint Fredholm operators. Corresponding to its Altland—Zirnbauer classes,
this family provides a Z,-map from (T"~2, ¢) to some Z-spaces of self-adjoint or
skew-adjoint Fredholm operators introduced in Appendix A as follows.

— Class AL Zo-map H%P: (T2, ¢) — (Fred™V vo).

— Class BDL, let ] = I1. Zo-map H*P: (T"2,¢) — (Fred®? t).

— Class D, Z,-map iH%P (T"2,7) - (Fredil’o), tE).

— Class DIIL let e; = iIT. Zo-map H*P: (T"~2,¢) — (Fred"Y, q0).

_ Class All, Zp-map H%#: (T"2,¢) — (Fred""?, q0).

— Class CII, let €] = I1. Zy-map HYP (T"2,7) - (Fredfko’g), qe).

— Class C, Zy-map i H*#: (T""2,¢) — (Fred?, qz).

— Class CI let ey = iIT. Zo-map H*F: (T""2,¢) — Fred" ¢).
Here, we write tg = Adg when ©®2 = 1 and ge = Ade when ©? = —1. Involutions
vz and qz are defined as Adz in the same way. By Corollary 4, the Z;-homotopy
classes of Zp-maps from (T"~2, ¢) to the above Z,-space of self-adjoint or skew-
adjoint Fredholm operators is isomorphic to the K O-group K O;(C (T2, z7) of
some degree i.

Definition 3 For &# = AI, BDI, D, DIII, Al CII, C or CI, let i (#), c(#) and Fred®
be numbers and the Z;-space as in Tables 10 and 11. For a Hamiltonian H in class

9 We simply write 7 in place of T~ ® 7. In the following, these abbreviations for tensor products of
transpositions are employed, though the meaning will be clear from the context.
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Table 11 In each Altland—Zirnbauer class #, gapped invariants and gapless invariants are defined as ele-
ments of some K- and K O-groups of some degree, as indicated in this table

AZ Gapped Gapless

® K-group K -group Fred® U®

A Ko K Fred >V Uept

ATII K Ko Fred e

Al K0y KO_, Fred ™V o) (Uept, T 0 %)
BDI KO, KO0 Fred®? vo) (= Fredd V. 1)) (7o)
D KO, KO, Fred? ¢2) (Uept, ©)
DIl K 05 KO, Fred"V 40) @ Fred®?, c5)) ()
Al KOy KO3 Fred®P  46) (Uept, 90 %)
cu KOs KOy Fred®? ) & FreddV, q2)) (e
c KOs KOs (Fred™” qz) Uept D)
1 Ko_, K O¢ Fred "V o) @ Fred2?, q5)) (2

Classifying spaces for topological K - and K R-groups through self-adjoint or skew-adjoint Fredholm oper-
ators and unitaries are also included. (Z,-)spaces Fred® and U® are introduced in Appendix A

® satisfying Assumption 1, we denote gafﬂe:s(H ) for the class [C(Q)H @A] in the

group K O;@)—1(C (T"=2), 7). We call fgaf)l:ss(H ) the gapless corner invariant.

If the gapless corner invariant is nontrivial, zero is contained in the spectrum of HYP,

In Sect. 5.6, we discuss more refined relations between the gapless corner invariant
and corner states when k = n — 1 and n.

5.4 Correspondence

By taking a tensor product of the extension (2) and (C (T"2), 77), we have the fol-
lowing short exact sequence of C* 7 -algebras,

0— (# @CT"2),1)—> (7 @ C(T"?),1) > (¥*F @ C(T"?), 1) > 0.

Let us consider the following diagram containing the boundary map of 24-term exact
sequence for K O-theory associated with this sequence:

o, B n—2 é[(‘) 2o, B n—2
KOi@a)(S*P @ C(T" %), 1) —= KOi(@)-1(H (%) @ C(T"), 1)

Ll ) ;Texp

[(Tn—Z’ o), Fl‘ed‘]Zz - [(Tn—Z’ 0), F.]Zz
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where F® is the Z,-subspace of Fred® as in Appendix A, whose inclusion F® —
Fred® is the Z>-homotopy equivalence. Maps L and exp are as follows.

— When i (#) is odd, for [u] € K O; @) (7*# @ C(T"72), 1), we take a lift @ of u
and consider the matrix A as in Definition 10, and set L([u]) = [A]. The map exp
is defined as in Definition 10.

— Wheni(®) =0, 4, for [u] € KO (P QC(T"2), 1), we take a self-adjoint
lift @ of u as in Definition 8.3 of [14] and set L ([#]) = [a]. The map exp is defined
by exp([a']) = [—exp(wia’)].

— When i (#) =2, 6, for [u] € K O;a) (%P ® C(T"2), 1), we take a self-adjoint
lift @ of u as in Definition 8.3 of [14] and set L([u]) = [ia]. The map exp is defined
by exp([a]) = [~ exp(wa)].

In each case, the map exp is an isomorphism by Proposition 10 and Sect. A.2. For
boundary maps 9; e, We use its expressions through exponentials (see [14] for even
i(®) and Appendix A.3 for oddAi (®)) and the diagram commutes. Note that, by
Proposition 3, the boundary map 0; ) is surjective. The following is the main result
of this section.
A 2 2

Theorem 2 0 ) (S (H)) = Jioi& (H).

Proof The operator H*Pisa self-adjoint lift of (H*, H?) and preserves the symme-
tries of the class #®. Therefore, we have L(,ﬂé’ 2,8 (H)) = [c(®#) H*#] and the results

apped
follow from the commutativity of the above diagram. O

Remark 5 (Relation with bulk weak invariants) Under Assumption 1, the bulk Hamil-
tonian H is also invertible. When we take H in place of h = (H%, H P and define the
unitary u’ as u in Sect. 5.2 for each symmetry classes!?, we obtain an element [«'] in
K O; @) (C(T"), 71), which classifies bulk invariants in class ®. A relation between

gapped invariants jgéib:d(H ) and these bulk invariants can be discussed through the

map (0 ® Dy KOja) (L% @ C(T"2),7) — K O;(4)(C(T"), 77), which maps
[u] to [u']. As a result, under Assumption 1, bulk strong invariants are trivial.

For bulk weak invariants, except for the cases when « and g are both rational
(or +00) and t = —ps + gr is even, only bulk weak invariants associated with the
direction parallel to the codimension-two corner can be non-trivial.

When « and g are both rational (or +00) and t = —ps + gr is even, some of
the bulk weak invariants can also be non-trivial as discussed in Remark 1. We here
discuss it from the viewpoint of the bulk-boundary correspondence for (first-order)
topological insulators, for that we restrict our attention to the case of n = 2 and, as
in Remark 1, replace « and B to 0 and y, respectively. In this setup, let us consider
a bulk gapped Hamiltonian of class D or DIII (corresponding to cases of i = 2 or 3
in Remark 1) of non-trivial Z;-valued bulk weak invariant in the x-direction but of

10 por example, for class Al class BDI and class D systems, we define u’ as follows,

. 1%
u = (mgr;)(H) 10 ) class Al, sign(H) = <1?’ uo ) class BDI, u' = sign(H) class D.
N
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trivial bulk strong invariant and trivial bulk weak invariant in the y-direction. In this
case, the bulk-boundary correspondence prevents us to find invertible half-plane lift
Hamiltonian for the half-plane cut across y-axis (i.e. there is no invertible self-adjoint
element in the matrix algebra of .7 preserving the symmetry of class D or DIII which
maps to our bulk Hamiltonian by the map o °°) but not for half-planes cut across x-axis
and the line!' y = yx. Therefore, there can be an invertible self-adjoint element in the
matrix algebra of .#%” preserving the symmetry which maps to our bulk Hamiltonian
by . Elements [(v2, wy)] and [(v3, z4)] discussed in Sect 3.2 provide such examples,
which can be seen as a background of ¢ dependence of Table 3 when i = 2 and 3.

Remark 6 (Convex and concave corners) When we fix « and B, there exist two models
of corners: convex and concave corners (77*# and 77*#). We have discussed convex
corners though, as in [34], similar results also hold for concave corners by using (3)
in place of (2) in our discussion. As in Remark 2, the gapless invariants of these two
are related by the factor —1.

5.5 Higher-codimensional cases

Let n and k be positive integers satisfying 3 < k < n. In this subsection, we consider
n-D system with a codimension-k corner. Letd = n—k. We consider a continuous map
T" — Herm(V) and the bounded linear self-adjoint operator H on [>(Z") generated
by this map, which is our model of the bulk. We next introduce models of corners
of codimension k£ — 1 whose intersection makes a codimension k corner. For this,
we choose d variables ¢, ...,t;, in 11,2, ..., 1, and consider the partial Fourier
transform in these d variables to obtain a continuous family of self-adjoint operators
{H (t)};cra on[*(Z*; V). On the Hilbert space I*(Z¥; V) = (*(2)®- - -Q1*(Z) @V,
we consider projections Py = (P>0® - ® P>0)®ly,and P ; = (P>0® - ®1®
-+ ® P>0)® 1y for 1 <i < k where inside the brackets is the tensor products of Pxq
except for the i-th tensor product replaced by the identity. By using these projections,
we define the following operators:

HE(t) = PcH@)Pe, H;i(t) = Pi;iH ()P,

for 1 < i < k and for ¢t € T?. These two are our model for a codimension k
corner and codimension k — 1 corners, respectively. When we fix a basis on V, we
have (Hi(¢), ..., Hi(t)) € My (75 by the construction. We assume the following
condition in this subsection.

Assumption 2 (Spectral Gap Condition) We assume that our models for codimension
k — 1 corners Hi, ..., Hy are invertible.

Under this assumption, the model for the bulk, surfaces and corners of codimension
less than &k, whose intersection makes our codimension-k corner, are invertible. As in
Sect. 5.1, leth = (Hy, ..., Hy).

1 1f we transform 27 to S by an action of SL(2, Z) on the lattice, we can see that the corresponding
Z-valued bulk weak invariant in the x-direction is trivial.
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Definition 4 For a Hamiltonian in class & = Al, BDI, D, DIII, AIl, CII, C or CI
satisfying Assumption 2, let u be a unitary defined by using this 4 in place of that
in Sect. 5.2. As in Sect. 5.2, this unitary u satisfies the relation %; ) Where i (#®) is
as indicated in Table 10. We denote its class [u] in the K O-group K O; () (5”]‘ ®

C(T%), 7) by S (H).

The K O-groups K 0;(.#* ® C(T¢), r) are computed by using Proposition 5. For
each t € T9, the operator H¢(t) is Fredholm by Corollary 1.

Definition 5 For & = Al, BDIL, D, DIII, Al CII, C or CL, let i (#), c(#) and Fred® be
numbers and the Z,-space as in Tables 10 and 11. For a Hamiltonian H in class @ sat-

isfying Assumption 2, we denote fé‘éﬁigss(H) for [c(M)H ] € K O; (@)1 (C(Td), ).

We call fgéﬁie’ss(H ) the gapless corner invariant.

We next discuss a relation between these two topological invariants. As in Sect. 5.4,
we consider a tensor product of the extension (14) and (C ('H‘d), 1) and consider
the boundary map 9; () : K O; @) (7% ® C(T?), 1) — K O;4)-1(#* ® C(T?), 7)
associated with it expressed through exponentials. Since H€ is a self-adjoint lift of

(Hy, ..., Hy), the following relation holds, as in Theorem 2.
k k
Theorem 3 3 a) (S (H)) = Fasi ().

Remark7 As in Remark 5, under Assumption 2, some gapped invariants related to
corner states for corners of codimension < k are also defined, though, by Remark 3,
only bulk weak invariants associated with the direction parallel to the codimension-k
corner can be non-trivial.

Remark 8 Gapless corner invariants for each systems are elements of the K O-group
KO;(C(T9), tp) = @‘;:0 (j)K 0;—;(C,id). As in the case of (first-order) topolog-
ical insulators [43], we call the component K O;_4(C, id) strong and others weak!2.
That is, we call weak invariants when a corner Hamiltonian representing the K -class
can be obtained by stacking lower-dimensional one with the corner of the same codi-
mension, and others strong.

Complex cases can also be discussed in a similar way!3. For class A systems
with a codimension > 3 corner, under Assumption 2, we define gapped and gapless
invariants as elements of Ko(.* ® C(T¢)) and K;(C(T%)), respectively, and the
boundary map dy: Ko(Z* @ C(T¢)) — K(#* @ C(T?)) associated with (14)
relates these two, which is surjective by Proposition 6. In class AIII systems, we use
91: K1 (% ® C(T9) — Ko(#* @ C(T?)) instead. Gapless corner invariants take
value in K; (C(T9)) = @?:0 (7) K;_;(C), and we call the component K; 4 (C) strong
and others weak.

12 For (first-order) topological insulators, strong and weak invariants may be introduced for gapped bulk
invariants, though we can also distinguish them through gapless boundary invariants by the bulk-boundary
correspondence. In this paper, we take the latter point of view for corners and distinguish strong and weak
invariants through gapless corner invariants since, when we define our gapped invariants, the shape of the
corner is to some extent fixed and our interest here is corner states.

B [33,34], there is a mistake in the computations of the group Ko (. .p ) in the case where « and B are
rational numbers (there is a torsion part in general, as in K 00(5"’"‘*/S , T ) computed in Sect. 4), which is
correctly stated in [56]. The author would like to thank Guo Chuan Thiang for pointing this mistake out.
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Strong invariants for each system are classified in Table 1.

5.6 Numerical corner invariants

Our gapless corner invariants are defined as elements of some K O-group. In this
subsection, we introduce Z- or Z;-valued numerical corner invariants for our systems
in cases where k = n and k = n— 1 to make the relation between our gapped invariants
and corner states more explicit. From Table 11, we discuss Hamiltonians in classes
BDI, D, DIII and CII when k = n and D, DIII, AIl and CIl when k = n — 1 satisfying
our spectral gap condition.

5.6.1 Caseofk =n

In this case, our model of the corner H¢ is a self-adjoint Fredholm operator which
has some symmetry corresponding to its Altland—Zirnbauer class'4. An appropriate
definition of numerical topological invariants is introduced in [9] and we put them in
our framework.

In class BDI, the operator H¢ is an element of the fixed point set (Fredio’;))t@ of
the involution tg, where the Clifford action of Cly 1 on the Hilbert space is given by
€1 = IT (see also Lemma 13 and Remark 12). We express /7 and ® as in (17) and
express H¢ as follows.

c_ (0 M)
H —<hc 0 ) (20)

The operator i is a Fredholm operator that commutes with 4" and thus is a real
Fredholm operator. Its Fredholm index is

ind(h“) = rankc Ker(h¢) — rankc Coker(h¢) = Tr(IT|Ker(zc)).

where the right-hand side is the trace of I7 restricted to Ker(H¢). The Fredholm index
induces an isomorphism indBPI; [(pt,id), (Fredfko’b ,te)lz, = Z.

In class D, i H commutes with the real structure & and is a real skew-adjoint
Fredholm operator. Its mod 2 index [9] is

ind; (i H) = rankc Ker(H¢) mod 2,

which induces the isomorphism indP: [(pt, id), (Fredfkl’o), tg)lz, = Zo.

In class DIII, H¢ is an element of (Fredfkl’l) )€, where the action of Cl ¢ is given
by e; = iI1. The operator i H¢ and ¢; commute with the real structure &'; thus, i H¢
is a real skew-adjoint Fredholm operator that anticommutes with e;. Its mod 2 index
[9]is

. 1 .
indy(i H®) = 5 rankc Ker(H¢) mod 2,

14 In what follows, we also write H¢ for H%# in k = 2 case.
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which induces the isomorphism indPII . [(pt,id), (Fredil’b ,q90)lz, = 7.

In class CII, the operator H€ is an element of (Fredfko‘g))q@, where the Clifford
action of Cly 1 is given by €; = I1. We express ©@ and [T as in (19) and express
H¢ as in (20). The operator h° commutes with ¢ and is a quaternionic Fredholm
operator. Its Fredholm index ind(4€) is an even integer that induces an isomorphism

ind!: [(pt, id), (Fred"?, qo)lz, — 27Z.

Definition 6 For n-D systems with codimension-n corners in classes BDI, D, DIII and
CII, we define the numerical corner invariant as follows.

In class BDL, let AP (H) = ind(h°) € Z.

In class D, let A2 (H) = ind) (i H) € Z.

In class DIIL, let Ag 2 (H) = inda (i HC) € Z.

In class CIL let A2 N (H) = ind(h) € 27.

apless

Note that by these definitions, they are images of gapless corner invariants fGnégie‘:s (H)

for each class # = BDI, D, DIII and CII through the isomorphism ind®. In each case,
the numerical corner invariant is computed through Ker(H¢) and is related to the
number of corner states.

5.6.2 Caseofk =n—1

In this case, {H“(¢t)}ser is a continuous family of self-adjoint Fredholm operators
preserving some symmetry. The numerical corner invariants are given by using (Z-
valued) spectral flow [8] and its Z,-valued variants [18,19]. We first review Z- and
Z»-valued spectral flow.

Spectral flow is, roughly speaking, the net number of crossing points of eigenvalues
of a continuous family of self-adjoint Fredholm operators with zero [8]. The following
definition of spectral flow is due to Phillips [57].

Definition 7 (Spectral flow) Let A: [—1, 1] — Fredfko’l) be a continuous map. We
choose a partition —1 = 59 < §1 < --- < s, = | and positive numbers cy, 2, ..., ¢y
so that for each i = 1,2, ..., n, the function ¢ > x[_; ¢;](Ay) is continuous and
finite rank on [s;_1, s;], where x[4,p] is the characteristic function of [a, b]. We define
the spectral flow of A as follows.

n
sf(A) = ) (ranke (x(0,;1(Ay;)) — ranke (xgo.1(Ay;_,) € Z.
i=1

Spectral flow is independent of the choice made and depends only on the homotopy
class of the path A leaving the endpoints fixed. Thus, the spectral flow induces a map
st: [T, Fredio’l)] — Z which is a group isomorphism.

We next discuss Z,-valued spectral flow. Let {y be an involution on the interval

[—1, 1] given by ¢o(s) = —s. Let A be a Zy-map from ([—1, 1], &) to (Fredio’b, q).
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Then, the spectrum sp(Ay) of A, is symmetric with respect to £y, and roughly speaking,
Z»-valued spectral flow counts the mod 2 of the net number of pairs of crossing points
of sp(Ay) with zero. Z;-valued spectral flow is studied in [15,18,19,21] and we give
one definition following [19,57].

Definition 8 (Z,-Valued Spectral Flow) Letus consideraZ;-map A: ([—1, 1], {p) —
(Fredio’l), q). We choose a partition0 = sg < 51 < --- < 5, = 10f [0, 1] and positive
numbers ¢y, ¢2, ..., ¢, sothatforeachi =1,2,...,n,themap t = x[_¢; ¢;1(As) is
continuous and finite rank on [s;_1, s5;]. We define the Z,-valued spectral flow sfy(A)
of A as follows.

n

sf(4) = > (rankc (x0,6,1(As;)) + ranke (Xj0,¢,1(Ag_,)) mod 2 € Zo.
i=1

Z»-valued spectral flow is independent of the choice made and depends only on the
Zy-homotopy class of the Z;-map A leaving the endpoints fixed or leaving these

points in the Z,-fixed point set (Fredio’l))q. Thus Z;-valued spectral flow induces a
group homomorphism sfs : [(T, o), (Fredfko’l), a)1z, — Z,. By Appendix A, the Z,-
homotopy classes [(T, ¢o), (Fredfko’b, q)1z, is isomorphic to K O3(C(T), t1) = Z,.

Example2 On C?, let us consider a family of self-adjoint operators given by By =
diag(s, —s) for s € [—1, 1], and an antiunitary j given by j(x, y) = (—y, x). Then,
we have a Zp-map B: ([—1, 1], o) — (M2(C), Ad;) whose Z>-valued spectral flow
st (B) is one. We extend this finite-dimensional example to an infinite-dimensional
one to give an example of a family parametrized by the circle of nontrivial Z;-
valued spectral flow. Let 7" be a separable infinite-dimensional complex Hilbert space
equipped with a quaternionic structure g. On ¥’ = C> @& ¥ @ ¥, we consider a
quaternionic structure ¢’ = j @ g ® ¢ and a family self-adjoint Fredholm opera-
tors given by Cy = diag(By, 1y, —1y). Let UiO’D(”i/’) the space of unitaries on ¥’
whose spectrum is {1} equipped with the norm topology. Then, its endpoints C

are contained in UiO’D(”V’). Through an identification (¥ & ¥, q¢ ® q) = (¥, ¢'),

the operator diag(ly, —14) gives an element vy € Uio'l)(“I// ) which satisfies

Ad;(vo) = vg. The space UiO’D(“// ") is homeomorphic to the homogeneous space
U/ (UC® V) x UC @ ¥)), which is contractible by the Kuiper’s theorem
[46]. Thus, there is a path /: [0, 1] — UﬂEO’D(”I//) whose endpoints are [(0) = vg
and I(1) = C;. We extend [ to a Zo-map I': ([—1, 1], Zo) — (U (9), Ady) by
I'(s) = Adg (I(—s)) for s € [—1,0]. Since I'(£1) = C+, we connect the endpoints

of C and !’ to construct a Zy-map C': (T, ¢) — (Fredfko’]), q'), where ' = Ad,.
Then, sf,(C’) = sfr(B) = 1.

In class D, we have a Z,-map iH¢: (T,¢) — (Fredil’o),tg). The Z,-
homotopy classes [(T, ¢), (Fredsﬁl‘o),tg)]z2 is isomorphic to K O((C(T), ) =
Zp, @ Z. By forgetting the Z,-actions and multiplying —i, we have a map

[(T, ¢), (Fredf}’o) ,t2)lz, — [T, Fred,(ko’l)]. Combined with this map and the spectral
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flow sf: [T, Fredio’l)] — 7, we obtain a homomorphism

S22 [(T, ¢), (Fred?  v2)1z, — Z. [A] > sf(—iA).

Example 3 Let B': ([—1, 1], &) — (C, Ad,) be a Z,-map defined by B, = is. Then,
sfP(B’) is defined and sfP(B’) = 1.

In class DIII, H¢: (T, ¢) — (Fredil’l), ge) is a Zo-map, where the action of the

Clifford algebra on the right-hand side is given by e; = i [1. The Z,-homotopy classes
[(T, ), (Fredfﬁl’l), ge)lz, are isomorphic to K O2(C(T), t1) = Zp @ Z». Since the
Zp-space (Fredfkl’l), ge) is a Z,-subspace of (FrediO’D , o), the inclusion induces
amap [(T, ¢), Fred!"Y qo)1z, — [(T. 7). (Fred™" q¢)lz,. Combined with the

Z»-valued spectral flow, we obtain the following map:
st (T, 0), (Fredi™ . qo)lz, — Zo. [A] > sfa(A).

For b = 1 or —1, let i be the inclusion {b} — T. We define wy and w_ as the
composite of the following maps when b = 1 and b = —1, respectively:

indp

i*
[(T, ¢), (Fred!"", qo)lz, —> ({1}, id), (Fred"", qo)lz, — Za.

Example4 Let j, ¥, 7", q, q', By and Cy be as in Example 2. Let ¢ = <(z) 6) and

e] = ( 1(; N 1)7/ ) which gives a Clj o-module structure on C2%and ¥ @7, respectively.

Then, Cy = diag(Bs, 1, —1) gives a Zp-map from ([—1, 1], o) to (Fredil’l), q). The
operator C| is contained in the space of self-adjoint unitaries on ¥ that anticommutes
with e; @ e]. As in [9], this space of unitaries is contractible by Kuiper’s theorem. We
embed [—1, 1]into T by s +— exp(”T”) and, as in Example 2, extend C onto T through
this contractible space of unitaries to obtain a Zy-map D: (T, ¢) — (Fredfﬁl’l), q).
For this example, we have sfPI(D) = sfPI(B) = 1, w4+ (D) = 1and w_(D) = 0.
If we take D’ as D, = D_g, then D’ is also such a Zp-map and its invariants are
sty =1, wy (D) =0and w_(D’) = 1.

Inclass AIl, H¢: (T, ¢) — (Fredfko’l), qe) is a Zp-map and its Z;-valued spectral
flow is defined. We denote st for sf.
In class C, we have a Z,-map i H: (T, ¢) — (Fre , qz). Note that the set

[(T, ¢), (Fredf,}’o), q5)]z, isisomorphic to the group K Os(C(T), ;) = Z. By forget-

ting the Z,-actions and multiplying —i, there is a map from [(T, ¢), (Fredfkl’o), az)1z,

a0

to [T, Fredfko’l)]. Combined with the spectral flow, we obtain a homomorphism

SEC: [(T, 2), (Fred™”, q2)1z, — 2Z, [A] — sf(—iA).
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Note that the image of sfC are even integers since each eigenspace corresponding to
the crossing points of the spectrum of —i A; with zero has a quaternionic vector space
structure given by ='.

Example5 For s € [—1,1], let B = diag(is, is), and let j be the quaternionic
structure in Example 2. Then, B”: ([—1, 1],¢) — (M2(C), Ad;) is a Z-map, and
we have sf€(B”) = sf(—iB") = 2.

Lemma8 (/) AL [(T, Z), (Fredio’l), D1z, — Zo is an isomorphism.
(2) sfP: [(T, 2), (Fred,k@’o), v)lz, = Z is surjective.

(3) P w w_: [(T, ), (Fredil’l), )1z, — Zy are surjective

(4) stC: [(T, ¢), (Fredfkl’o), D]z, — 27 is an isomorphism.

Proof 1t is sufficient to find examples of Z,-maps which maps to generators of Z, Z,
and 27Z. Therefore, (1) and (3) follow from Examples 2 and 4. For (2) and (4), we can
construct such examples from Examples 3 and 5, as in Example 2. O

In class DIII cases, we have three surjections sf DI w4 and w_ from Zy @ Z; to Zs.
There is the following relation between them.

SfDHI

Lemma 9 =ws +w-_.

Proof Let D and D’ be Z,-maps in Example 4. Let D" = D @ D/, then we have
sfPI(D”y = 0, wy(D”) = 1 and w_(D") = 1. Invariants sfP' w_ and w, for D,
D’ and D" tell that non-trivial three elements in the group [(T, ¢), (Fredfkl’D , D]z,
consists of classes of D, D" and D”. Therefore, we computed three maps sfP!Il, w_
and w, from which the result follows. O

Remark 9 For our class DIII systems, Z,-valued spectral flow counts the strong
invariant. This corresponds to one direct summand of Z, @ Z;, while the other corre-
sponds to a weak invariant. When wy # w_, the strong invariant is nonzero. When
w4 = w_ = 1, the strong invariant is zero and the weak invariant is nonzero. When
w4 = w_ = 0, both of them are zero.

Definition 9 For n-D systems with codimension n — 1 corners in classes D, DIII, AIl
and C, we define the numerical corner invariant as follows.

— Inclass D, let A WP (H) = sf(HC) € Z.

— In class DIIL let A PM (H) = sty (HC) € Zo.

— Inclass AIL let A= M (H) = sty (HC) € Z.

~1.C .
— Inclass C, let JVGna’;:lless’ (H) = sf(H®) € 27.
For each of the above classes #, the numerical invariant 4"~ "®*(H) is the image

Gapless
of the gapless corner invariant ﬂG"églz:f(H ) through the map sf®. These numerical

invariants account for strong invariants introduced in Remark 8. For (first-order) topo-
logical insulators, Z- or Z;-valued spectral flow counts the number of chiral or helical
edge states. Correspondingly, our numerical corner invariant accounts for chiral or
helical hinge states for n-D systems with codimension n — 1 corners.
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Remark 10 In Definition 9, the numerical corner invariants for both class DIII and class
All are defined by using Z,-valued spectral flow, though these two Z, are different
from the viewpoint of index theory in the sense that they sit in different Bott clock. A
similar remark holds for, e.g., cases of n = k in classes BDI and CII, where both of
these numerical corner invariants are defined as Fredholm indices.

5.7 Product formula

In Sect. 4 of [33], a construction of the second-order topological insulators of 3-D
class A systems is proposed, which is given by using the Hamiltonians of 2-D class
A and 1-D class AIII topological insulators. In this subsection, we generalize this
construction to other pairs in the Altland—Zirnbauer classification. This provides a
way to construct nontrivial examples of each entry in Table 1 from the Hamiltonians
of (first-order) topological insulators'>. For this purpose, we use an exterior product
of topological K R-groups [6].

For j = 1,2, let H; be a bulk Hamiltonian of an n;-D kj-th-order topological
insulator!® in real Altland—Zirnbauer class #; (AI, BDI, D, DIII, A, CII, C or CI).
Letn =ny+na,k =k +kyandd; =nj —kjfor j =1,2,and letd = d| + d>.
Corresponding to the class in the Altland—Zirnbauer classification (for which we write
®;) to which the Hamiltonian belongs, it preserves the symmetries as (even/odd)
TRS, (even/odd) PHS or chiral symmetry. We write ®, Z; and I1; for the symmetry
operator for H;. As in Sect. 5, the models of corners Hf lead to a continuous family
of self-adjoint or skew-adjoint Fredholm operators and defines an element of the K O-
group KO,-/(.J.>(C(T‘I-/), 7) where i’(#;) = i(#;) — 1. As in Appendix A.1, we have
an exterior product of K O-groups

K Ojr(a)(C(TM), 71) X K O (y) (C(T%), 71) = K Ojr(ay)+i (@) (C(TY), 71),

described through these Fredholm operators. By using this form of the product, we
obtain an explicit form of the product of the gapless invariants of H; and H>. As aresult,
we can write down a bulk Hamiltonian H of an n-D k-th order topological insulator of
class #. The lattice on which we consider H¢ as a model of the codimension-k corner
is introduced as the product of that'” of H { and that of HS. By this construction, we
have the following relation between gapless invariants.

Theorem 4 For the Hamiltonian H indicated in Table 12, we have

ni.ki, 8 ny.k2, 8 _ ghk®
jGapless (Hy) - <fGapless (Hy) = jGapless(H)’

15 For the case of k = 2, the construction is restricted to « = 0 and B = oo case.

16 that in Sect. 5.1 satisfying Assumption 1 when k; = 2 or that in Sect. 5.5 satisfying Assumption 2 when
k;j > 3. When k; = 1, the bulk Hamiltonian is assumed to be gapped. When k; = 2, we consider the case
ofa =0and g = oo.

17 When k = 1, the lattice is Z>q x de , where H]‘f is the compression of the bulk Hamiltonian onto
this half-space. Topological invariants for them are the one discussed in topological insulators. To clarify
our sign choices, we mention that they are obtained by applying the discussion in Sect. 5 to the Toeplitz
extension (11) in place of (2) or (12).
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where - denotes the exterior product of elements of the K O-groups.

Note that Theorem 4 is the product formula at the level of K O-group elements and
accounts for both strong and weak invariants. In order to show this theorem, we need
to write down the explicit form of H. In the following, we discuss them for some
classes.

Let us consider the case where #; = BDI and #, = BDI. In this case, each
H; has even TRS, even PHS and chiral symmetry. We now consider the following
n-dimensional Hamiltonian:

H=H ®1+I1 ® H, (21)

which satisfies even TRS given by ® = &1 ® @;, even PHS givenby & = 1 ® &>
and the chiral symmetry given by IT = [1; ® I1,. Thus, the Hamiltonian H belongs
to the class # = BDI. The model of the codimension-k corner H of H is written by
using the model H of the codimension-k; corner as follows:

HE(ty,t2) = H{(t}) ® 1 + IT} ® H; (t2),

where ¢ is an element of the d;-dimensional torus (momentum space) corresponding
to a direction parallel to the corner of Hj‘f for j = 1, 2. Note that (¢1, ¢7) constitute the
parameter of the d-dimensional momentum space in a direction parallel to the corner
of H¢. By our assumption, Hj‘.'(t j) is an element of the space Fredfko’;) and gives a
Zp-map (T4, ¢) — (Fredio’g)
(H, H3) through the map,

. t@;). The operator H(¢, t2) is the image of the pair

(Fred"? vo,) x (Fred"? to,) > (Fred"?, o),

in (23), where the action of Cly,; to define the left-hand side is given by €; = I1; and
that for the right-hand side is given by € = €; ® e = I1. Since this map induces the
exterior product of K O-groups (Appendix A.1),

K Og(C(T™), 71) x K Op(C(T®), t1) — K Og(C(T?), 71),

we obtain Theorem 4 in this case.

We next consider the case where #; = DIII and &, = D. In this case, H; has odd
TRS, even PHS and the chiral symmetry, and H; has even PHS. Asin Sect. 5.3, H{ (¢1)
belongs to (Fredfkl’D, qe,), and i HS (¢>) belongs to (Fredfkl’o), tz,). By using Proposi-

tion 7, we identify (Fred\"", qo,) with (Fred'?, g, ge,) and (Fred "

(Fredio’i), t5,@5,). We then use the map (23) of the form

s tgz) with

2,2 0,3 2,3
(Fredfk 2 Jo,86,) X (Fredi = t5,08,) — (Fredfk = 1),

where ¢ is the conjugation of the fourfold direct sum of @ ® Z5. By Proposition 7, we

have the Z,-homeomorphism (Fredfé) ,q) = (FrediO’D, qe,®5,)- Thus, we obtain
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a Zo-map HS: (T4, ¢) — (Fredfko’l), qe,®5,) from H{ and H; which is a model
for the codimension-k corner in class # = All. Its bulk Hamiltonian H and (odd)
TRS operator @ is expressed as (21) and ® = @) ® Z,, respectively. Note that
ITy = i@ Z] in class DIII and ® commutes with H. Since the map (23) induces the
exterior product of K O-groups, Theorem 4 holds for this class AIIl Hamiltonian H.

The other cases are computed in a similar way, and the results are summarized in
Table 12, where we write

Ha — 0 H®1l—-i® H Oa — O R &> 0
* T\ R1+ieH 0 P U= 0 65)
®
0

He — 0 —-H®i—1® H Or = El1 ® & 0
DT\ \Hei-19H 0 oA E1® 6,
_ 0 —-E1Q® & _ 0 O ® O
OQ_<E1®EZ 0 )andOo_(@l®@2 0 )

Our product formula (Theorem 4) and the graded ring structure of K O, (C, id)
(Theorem 6.9 of [7]) lead to the following product formula for numerical corner
invariants. We collect the results here where the form of H is as indicated in Table 12.

Corollary 2 (Cases of n = k) The case of k| = n| and ko = n».

,n1,BDI ,n2,BDI ,n,BDI
— BDI x BDI — BDI, g™ (H) - Agaia” (H) = Agin O (H).

— BDIx D — D, (AGHPP (H)) mod 2) - AGZI2P (Hy) = AN (H).

— BDI x DIII — DIII,

ny,ni,BDI no,ny, DI _ n,n,DII
(JVGapless (H1) mod 2) - ’/%}apless (Ha) = ‘/‘{}ap]ess (H).

,n1,BDI ,ny,CII n,C
— BDI x CIl — CIL, AP (H) - AG2 0 (Hy) = J@agesf(H).

ni,ni,D ny,na,D n,n,DII
- D x D — DI, ‘/VGalple;s (H1) - </VGazpleis (H) = ‘/VGapless (H).

— CII x CIl - BDI, JVC;;;{;;;CH(HI) ~ /@agl’gggcn(Hz) = %j;;ﬁf‘(f]).

Corollary 3 (Cases of n = k — 1) The case of k| = nj and ky = ny — 1.

,n1,BDI ,n2—1,D .n—1,D
- BDIxD — D, '/‘/C?alplrélss (Hy) - '/VGnai)lréis (Hz) = JVCgagless (H).

— BDI x DIII — DIII,

ny,ni,BDI ny,ny—1,DII _ n,n—1,DIIT
(JVGapless (Hp) mod 2) - JVGapless (Ha) = JVGapless (H).

— BDI x AIl — All,
(%nl,nl,BDI(Hl) mod 2) . </Van,nzfl,AIl(I_Iz) _ (/VGn,n—l,AII(H).

apless apless apless

BDI ~1,Cc _
— BDI x C — C, AGLUPP (HY) - AG22 N (Hy) = A € (H).
— D x D — DIII,

n1,D ,na—1,D n—1,
Aapies (1) - (AGid TP () mod 2) = A PV (H).
— D x DI — AL, AGLP () - gz P () = g M (H).
— DIII x D — AIl

np,DII n2—1,D n—1,
Ao P CHY) - (s P (Hy) mod 2) = Agc A (HD.

ni,np,CI np,no—1,D n,n—1,C

- CIxD—C ‘/1/Ge11ple}s‘s (H) - JVGai)leis (H) = ‘/VGapless (H).
ny,np,CII ny,ny—1,C _ n,n—1,D

- ClIxC—D, ‘/VGalple;s (Hy) - ‘/VGazp]eis (Hy) = JVGapless (H).
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Table 12 The forms of the Hamiltonians and symmetry operators in class @ constructed from two pairs of
Hamiltonians and symmetry operators in classes #1 and #;

L) L) ® Hamiltonian (H) TRS (®) PHS (&) Chiral (IT)
Al Al CI Hy O ier diag(1l, —1)
Al BDI Al HQ®Ih+1Q® Hy 01 6, — —

Al D BDI Hy Os E =00 diag(1l, —1)
Al DIII D H QI +1Q H — O Q@ O 11 —

Al All DIl Hy O ine diag(1, —1)
Al CII AIl Hi @I +1® H 01 ® 6, — —

Al C CII Hye Og g =-0I diag(1l, —1)
Al CI C H QI+ 1R H — O Q@ O 11 —

BDI Al Al Hi®1+1 ® H 01 ® 6, — —

BDI BDI BDI H®1+11 ® Hy O] ® O F1® &En I ® I
BDI D D Hi @1+ ® Hy — El® &) —

BDI DIIL DIl HQ®1l+111 ® Hy 01 ® 6y 21 ® &y T ® I
BDI All All H ®1+1T ® Hy 01 ® 6, — —

BDI CII cn H®l+11 ® Hy 01 ® 6y E1® &) I ® I
BDI C C H®l+1TI @ Hy — E1® &y —

BDI CI CI H Q1+ @ Hy O] R Oy E1Q® &) I ® I
D Al BDI Hp Op E=0I diag(1, —1)
D BDI D Hi @I +1® H) — E1® & —

D D DIl Hy Op ine diag(1l, —1)
D DIII All Hi @I, +1® Hy E1® 06, — —

D Al cn HQO Opn E=-0I diag(l, —1)
D CI C Hi @I +1® Hy — E1® & —

D C CI Hye O eIl diag(l, —1)
D CI Al H QI +1Q H E1® 6, — —

DIl Al D H®1+11 @ Hy — O] @ ® —

DIII BDI DIIT Hi®II, +1® H 01 ® 6, E1® & Iy ® I
DIl D All H ®@1+1T @ Hy O ® &y — —

DIII DIIT (@1} H®1l+111 ® Hy O1 ® O I110] ® I ® I
DIlI All C Hi @1+ ® H — 60111 ® Oy —

DII CII CI Hi @I +1® H 01 ® 6, E1® & I ® I
DIl C Al H ®1+11) ® H 01 Q & — —

DII CI BDI H®1+I1® H A1 Q O, O Q@ &y I ® Iy
All Al DIl Hy O ine diag(1l, —1)
All BDI All Hi®II, +1® Hy 01 6, — —

All D cn Hye Og E=-0I1 diag(1l, —1)
All DIII C H QI +1Q H — O ® OI1 —

All All CI Hy O eI diag(1, —1)
All CII Al H @I +1Q H 01 6, — —

All C BDI Hye Og E=0I diag(1, —1)
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Table 12 continued

LI L)) ® Hamiltonian (H) TRS (®) PHS (&) Chiral (IT)
All CI D H QI +1Q H — O ® OrI1) —

CI Al All H®1+1 @ Hy 01 ® 6 — —

Clt BDI (@11 H Q1+ ® Hy O] ® Oy E1® &) I ® I
CI D C H®1+11 ® Hy — g1 ® &) —

CIL DIII CI H @1+ ® H 01 ® 6, E1® &) I ® I
CII All Al Hi @1+ ® H 01 6, — —

CII CI BDI H Q1+ ® Hy O ® O E1Q® &) I ® I
CII C D Hi®1+1) ® Hy — E1® &) —

(@i CI DIl H Q1+ ® Hy O] ® Oy E1® &) I ® I
C Al Cl HO Oa E=-0I diag(1l, —1)
C BDI C Hi @I +1® H — E1® & —

C D CI Hy O eI diag(1l, —1)
C DIIT Al H®Ih+1Q® H Z1 ® 6y — —

C All BDI HO Op E=0Il diag(1l, —1)
C CIl D Hi @I +1Q® H — E1® &) —

C C DIIT Hy Op ine diag(l, —1)
C CI All Hi @I +1® Hy E1® 6 — —

CI Al C H Q1+ ® Hy — O @ O —

CI BDI CI H QI +1® H O] ® Oy E1® &) I ® I
CI D Al H®1+1 ® Hy O] ® & — —

CI DIII BDI H®1+111 @ Hy O ® O 11 O] ® O I ® I
CI All D H Q1+ ® Hy — O ® O —

CI CI DIIL H ®I)+1Q Hy 01 ® Oy E1Q® &) I ® I
CI C All Hi®1+1I) ® Hy 01Q & — —

CI CI CII H®1+111 ® Hy A1 Q O, IO 6, 1 ® I
A A ATl Hy — — diag(l, —1)
A Alll A H®Ih+1® Hy — — —

Alll A A Hi @1+ ® H — — —

ATl Alll Alll Hi @1+ ® H — — I ® I

Complex cases are also included [33,34]

We also have a similar formula by exchanging H and H> (e.g. pairs like D x BDI —
D). Note that in the case of CII x CII — BDI in Corollary 2, we take the product of
two even integers, which is necessarily a multiple of four. A similar remark also holds
in the case of CII x C — D in Corollary 3.
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A Z>-spaces of self-adjoint/skew-adjoint Fredholm operators and
Boersema-Loring’s K-theory

In this Appendix, we collect necessary results and notations used in this paper.
The results have been developed in much generality [6,9,15,27,38,44,69], and we
contain minimal background for this paper focusing on their relation with Boersema—
Loring’s K -theory [14]. In Appendix A.1, we introduce some Z,-spaces of self-adjoint
and skew-adjoint Fredholm operators following [9]. Some proofs for known results
are contained simply to fix isomorphisms used in this paper (e.g. the derivation of
Table 12). In Appendix A.2, we discuss its relation with Boersema—Loring’s K -theory.
In Appendix A.3, inspired by exponential maps in [9,69], we write the boundary maps
of the 24-term exact sequence of K O-theory in Boersema—Loring’s unitary picture
through exponentials. Some of them are already expressed by exponentials in [14];
thus, we consider the remaining cases. This form of boundary maps is useful when
we discuss a relation between our gapped invariants and gapless invariants through
boundary maps [14,45].

A.1 Z,-spaces of self-adjoint/skew-adjoint Fredholm operators

For nonnegative integers k and /, let Cl; ; be the Clifford algebra that is an associative
algebra with unit over R generated by k +/ elements eq, ..., e; and €1, . . ., €/, which
satisfy ¢f = —1 (i = 1,...,k) and €; = 1 (j = 1,...,/) and anticommute with
each other. The following are well-known Clifford algebra isomorphisms [48].

Lemma 10 (1) Cli 41 = Cljgt1.

(2) Cliy ® Cli i = Cligt,141-

(3) Cli1 ® Clao = Clgyay and Cli; ® Clo.ga = Cli j44.
(4) Cli,; ® Clg.o = Clgyg,; and Cli; ® Clo,g = Cl 1.

Proof (1) Letey, ..., erandey, ..., €41 be generators of the Clifford algebra Cl ;.
Lete; = €411 (= 1,...,]),€; = €1 and € = ej_1€1 (i = 2,...,k+1).
Then, ey, ..., ¢ and €1, ..., €41 correspond to generators of the Clifford algebra
Cli 1.

(2) Letey,...,ex and €1, ..., ¢ be generators of the Clifford algebra Cl ;, and let

e1 and €1 be those of Cly . We write ) | for €€} € Cly 1. Then, & = ¢; ® wi,1
i=1,...,k), 1 = l®€/l,€,' =€ Qw1 ((=1,...,0)and § = l®€i
correspond to generators of the Clifford algebra Cli41 j41.

(3) We show that Cli ; ® Clp 4 = Cli 1+4; the other is proved similarly. Let e, ..., ex
and €, ..., ¢ be generators of the Clifford algebra Cli , and let €/, €5, €5, and
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€4 be those of Cly 4. We write wq 4 for —€|€sesey € Clo 4. Then, & = e; ® wo 4

(=1,...,k,&§ =6 ®@wys (i =1,....0)and § = 1 Q€ (i =1,...,4)
correspond to generators of the algebra Cly ;4.

(4) We show that Cli ; ® Cly g = Cli 1+3; the other is proved similarly. Letey, . .., e
and €y, ..., € be generators of Cli ;, and let ei, e, eé be those of Clp 3. We write
wp g for ei .. ~Eé € Clpg.Then, e; = ¢, @wog (i = 1,...,k), €& =€ @ wo g
@i=1,....,.D)and & = 1 ® elf (i =1,...,8) correspond to generators of the

algebra Clj ;3.
O

Let W be a (ungraded) complex left Cl ;-module. We say that W is a (ungraded)
real (resp. quaternionic) Cly j-module'® if W is equipped with an antilinear map
r: W — W (resp. g: W — W), which commutes with the CIj ;-action and satisfies
r2=1 (resp. g = —1). We call this r (resp. q) the real (resp. quaternionic) structure
on the Clifford module. Since a real (resp. quaternionic) Cli ;-module is the same
thing as a module of Cly ; ® Cl1,1 = Clg1,141 (resp. Clk,; ® Clao = Clj42.1) over R,
the algebra Cli ; has one inequivalent irreducible real or quaternionic module when
k — [ #% 3 mod 4 and has two when k — [ = 3 mod 4.

Lemma 11 (1) Let Ay 1 be a complex irreducible representation of Cly 1. There exists
a real structure r1,1 on Ay 1 that commutes with the Clifford action.

(2) Let Ag 4 (resp. Ag o) be a complex irreducible representation of Clg 4 (resp. Cla ).
There exists a quaternionic structure qo 4 (resp. qa.0) on Ag4 (resp. A4 o) that
commutes with the Clifford action.

(3) Let Ag g (resp. Ag o) be acomplex irreducible representation of Cly g (resp. Clg o).
There exists a real structure ro g (resp. rg0) on Agg (resp. Ag.o) that commutes
with the Clifford action.

For the proof of this lemma, see [25], for example. For a Z,-space (X, ¢) with two
Zo-fixed points xq, x; € X¢, we write P(X; xo, x1) for the path space starting from
xo and ending at x1, that is, the space of continuous maps f: [0, 1] — X satisfying
f(0) = xp and f(1) = x; equipped with the compact-open topology. On this space,
we consider an involution, for which we also write { by abuse of notation, defined as
&))@ = ¢(f(2)) for ¢ in [0, 1], and obtain a Z;-space (P(X; xo, x1), {). When
xo = x1, we write £2,, X for P(X; xq, xp), which is the based loop space of X with
the base point xg.

Remark 11 Banach Z;-spaces and its open Z;-subspaces are Z;-absolute neighbor-
hood retracts [3], and have the homotopy type of Z,-CW complexes [47]. The path
spaces and loop spaces we discuss in the following also have the homotopy type of
Z»-CW complexes [68]. By the equivariant Whitehead theorem, weak Z,-homotopy
equivalences between these spaces are Z,-homotopy equivalences [4,51].

Let ¥ be a separable infinite-dimensional complex Hilbert space. Let (%) be the
space of bounded complex linear operators on ¥ equipped with the norm topology. Let

18 Note that the “real Zp-graded Cliff (Rk*l)—module” introduced in [6] is the same as the (ungraded) real
Cly j1-module discussed in this paper.
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GL(),U(¥), Fred(¥') and .# (¥') be subspaces of A(¥’) consisting of invertible,
unitary, Fredholm and compact operators on ¥/, respectively. We assume that our
Hilbert space ¥ has areal structure r or a quaternionic structure ¢, thatis, an antiunitary
operator on ¥ satisfying r> = 1 or g> = —1, respectively. Correspondingly, the space
(V) has an (antilinear) involution t = Ad, or q¢ = Ad,. These involutions induce
involutions on GL(¥), U(Y), Fred(¥) and # ('), for which we also write t or .
We write a for r or ¢ and a for v or q. We also assume that there is a complex linear
action of the Clifford algebra Cl;; on the Hilbert space ¥ that commutes with the
real or the quaternionic structure. For an element v € Cly;, we also write v for its
action on ¥/, for simplicity. When k& — [ = 3 mod 4, we further assume that each
of the two inequivalent irreducible real or quaternionic representations of Cli; has
infinite multiplicity. In the following, we discuss the subspaces of A(¥); we may
abbreviate the Hilbert space 7 from its notation when it is clear from the context.
When the Hilbert space ¥ is such a Cl ;-module, let ﬂillzil,l) (re %éa il)) be the
subspace of Z(7) consisting of skew-adjoint (resp. self—adjomt) operators Aon?¥V
satisfying eiA = —Ae¢;j fori = 1,...,kand ;A = —Aej for j = 1,...,1. Let
= Fred N ,%(k D and Fred(k l) = Fred N %’(k D' The involution a on B(Y)
induces involutions on Fredgg D and FredSa kD for which we also write a. Consider the
space Fredéfl), andletY =ej---ex_1€1 - -- €. When k — [ is odd, the space Frediﬁ‘l)
is decomposed into three components Fredﬁrk’l), Fred(f’l) and Fredfkk’[) corresponding
to whether the following element is essentially positive, essentially negative or neither:
i~'7Awhenk—I =1 mod 4and YA whenk —I = 3 mod 4 for A € Fred'l"”. Asin
[9], each of these three components isnonempty. When k—/ = 1 mod 4, the involution
a maps Fredi ) to Fred( (double-sign corresponds), and Fredik’l) is closed under

the action of a. When k — l = 3 mod 4, each of the three components is closed under

the action of a. The space Fredgj’l) is also decomposed into three components in the

same way, except that we take eq - - - er€1 - - - €,_1 for 7 in this case, and we define the
space Fred( = when k — [ is odd. When k — [ is even, we set Fred( D — Fr d(k D and
Fredfkk D = Fr edg; D . Summarizing, we have the following Z,-spaces:

(Fred®™" v), (Fred®?® . v), (Fred™”, q), (Fred?, q). (22)

Proposition 7 The following Z,-homeomorphisms exist.

(1) (Fred®™" a) = (Fred ™" a) and (Fred ™ | a) = (Fred " Y q),
2) (Fred® o) = (Fred ™™ ) and (Fred®™, ) = (Frea®™ 7,

(3) (Fred®” a) = (Fred®** . 3) and (Fred™ 1>7a) (Fr ed(kl %,
(4) (Fredt o) = (Fred! ™ o) and (Fredy ) o) = (e ),
(5) (Fred®" | a) = (Fred®*® a) and (Fred®?, a) = (Fre d(k Y

(6) (Fr d("+1 D oy (Fred ) o)

where d = q when a = v and @ = v when a = q.
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Proof Once the Clifford module structure on the left-hand side of these homeomor-
phisms is fixed that on the right-hand side is given following the isomorphisms of
Clifford algebras in Lemma 10. By using Lemma 11, the Z;-homeomorphisms are
given as follows.

(1) The map (Fred®" (), Ad,) — (Fredl "™ (7 ® A} 1), Adugr, ) given by
A~ A ® wi, is a Zy-homeomorphism. The other one is proved similarly.

(3) Themap (Fred*™? (), Ady) — (Fred® ™™ (#® A9 4). Adugy, ) givenby A
A ® wo 4 is a Zp-homeomorphism. The other one and (2), (4) and (5) follow in a
similar way.

(6) The map (Frediﬁ’lﬂ)(”//), a) — (Fredi[’w)(”f), a) given by A — A€ is a
Z»-homeomorphism.

O
Proposition 8 The following Z;,-homotopy equivalences exist.

(1) (Fred ™" q) ~ (2, Fred®™" ), fork = 1 and 1 > 0.
(2) (Fred "™ q) ~ (2., Fred™™? ), fork = 0 and > 1.

(3) (Fred™? ) ~ (£2;Fred, a).

Proposition 8 is proved as in [9]. In what follows, we outline its proof since some
spaces introduced there are of our interest.

Proposition 9 The following maps are Z,-homotopy equivalences.

(1) ar: Fred™ 0y o (PFEred®”; er, —er), a), where
a1(A)(t) = ercos(mt) + Asin(mt) for0 <t < 1.

(2) ar: (Fredik’ﬂ), a) - (P(Fredfkk’D; €1, —€]), a), where
a2(A)(t) = € cos(mt) — Asin(mt) forO <t < 1.

(3) a3: (Fred®? q) — (P(Fred; 1, —1), ), where
a3(A)(t) = cos(mt) + Asin(rwt) for0 <t < 1.

Proposition 8 follows from Proposition 9 since, in each case, there is a path connecting
the endpoints of each path space in the unitaries preserving the Clifford action and the
Z-action. As in [9], the proof of Proposition 9 reduces to showing the Z,-homotopy
equivalences between some spaces of Fredholm operators and some spaces of unitary
operators (Proposition 10). Let F,Ek’l) (resp. F,:k’b) be the subspace of Fred,(k&’l) (resp.
Fredik’D ) consisting of those operators whose essential spectra are {i, —i} (resp.
{1, —1}) and whose operator norms are 1. The spaces Fgfk’l) and F,Ek’D are closed
under the action of a; thus, we have Z;-spaces (Fik’l) ,a) and (ka’D , a). Inclusions
(F*@’l) ,a) — (Fredik‘l), a) and (F,Ek’D ,a) — (Fredfkk’D, a) are Z,-homotopy equiv-
alences. Let Ucp be the subspace of U (7") consisting of unitary operators of the form

1 + T, where T € J# (7). When the Hilbert space ¥ is a Cl j-module, let U, &D

cpt
(resp. Uc(ll;[’l)) be the subspace of U (7)) N %’iﬁ’” (resp. U(¥) N %éﬁ’D) consisting of a

unitary u satisfying u> = —1 (resp. u> = 1) and u = ¢; (resp. u = ;) modulo com-
pact operators. If the Hilbert space has a real or quaternionic structure, these spaces
of unitaries are closed under the action of a, and we obtain Z,-spaces.

@ Springer



118 Page 46 of 54 S. Hayashi

Proposition 10 The following maps are Z-homotopy equivalences:

k+1,1 k,l
(1) pr: (B ) — (—USD. 0, pi(A) = exexp(r Aer), fork = 1,1 > 0.
2) p2: (F ) — (~USP . 0), pa(A) = eexp(a Aep), fork = 0,1 > 1.

cpt
1,0
(3) p3: (F? a) > (—Ucprr @), p3(A) = exp(r A).

0,1 .
(4) pa: (FY a) > (—Ucpr. a0 %), pa(A) = exp(iA).

Proof By Remark 11, it is sufficient to show that these maps are weak Zj-homotopy

equivalences. Equivalently, to show that p; and its restriction to the Z;-fixed point

sets (the map plZz : (Fiki’l))a — (—Uc%t’[))“ in the case of (1)) are weak homotopy

equivalences. They are proved by using quasifibrations on some dense subspaces of
contractible fibers as in [9]. O

Lemma 12 There is a Zo-homeomorphism (Fred, a) = (Fredio’@ , ).

Proof This is given by a Zo-map (Fred(¥), a) — (Fred"2(¥ @ %), a ® a), A >

*
(?\ %), where the action of Cly 1 on ¥ @ 7/ is given by €; = diag(1, —1). o

Proposition 7, Proposition 8 and Lemma 12 lead to the following.

Corollary 4 The following Z,-homotopy equivalences exist.

(1) (Fred®? v) ~ (2% Fred, v).

2) Fred®" q) ~ (2k+4Fred, v).
(3) (Fred®? v) ~ (2!~k+0Fred, v).
4) Fred®? q) ~ (2!"*2Fred, v).

When the subscript m on 2™ is negative, this should be replaced by m + 8n by taking
a sufficiently large integer n to make the subscript nonnegative.

Note that when k and [ are relatively small, we further have the following Z;-
homeomorphisms.

Lemma 13 Multiplication by the imaginary unit i = ~/—1 induces the following Z-
homeomorphisms:

(1) (Fred™?, Ad,) — (Fred™", Ady), where 7 = re;.

(2) (Fred™?, Ad,) — (Fred®™" | Adg), where G = —ge.

(3) (Fred{"", Ad,) — (Fred®”, Ady), where F = ge,.

(4) (Fred{"", Ad,) — (Fred>”, Adg), where § = —re.

Remark 12 The Z,-spaces in Lemma 13 appear in the study of topological insula-
tors. Specifically, Table 11 is obtained by taking the quantum symmetries as real or
quaternionic Clifford module structures as follows.

— Inclass BDI, we putr = @ and €] = IT in (1); then, ¥ = Z.
— Inclass CII, we put ¢ = ® and €; = I in (2); then, g = &
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— In class DIII, we put g = @ and e; = i [T in (3); then, 7 = ".
— Inclass CI, we put r = @ and ey = i1 in (4); then, é

For [ > 1, let us consider the map

(Fredik’ﬂ) a) x (Fredfkk ’li), a) — (FredikJrk ’ﬂ), a®a) (23)
. . (k+k' 1+
defined by (A, B) > A®1+¢€;® B, where the Clifford action to define Fred, —

is generatedby é; = e; @1 (i =1,..., k), ér1i =€ Qe (i=1,...,k), & =¢®1
i=1,....,1—1Dand &1 =€ R¢ (i =1,...,1'). As in [9], this map induces
the exterior product of topological K R-groups which appears in the Kiinneth formula
for united K -theory as discussed in [13] for some real C*-algebras.

A.2 Relation with Boersema-Loring’s unitary picture

In this subsection, we discuss a relation between these Z;-spaces of self-adjoint/skew-
adjoint Fredholm operators and Boersema-Loring’s K -theory.

Let {W;};cs be the set of mutually inequivalent irreducible real (resp. quaternionic)
representations of Cli ; with Hermitian inner-products which { W; }; < consists of one or
two elements correspondingtok and . Let W = ®;c; W, and ¥ = ZZ(ZEO)@) W which
has a real (resp. quaternionic) Clj ;-module structure induced by that of {W;};c;. We
take a complete orthonormal basis {8} jez.., of / 2(Z=¢) given by generating functions
of each points in Zxq. Let 7, be the subspace of ¥ spanned by {§; @ w | 0 <
J < n,w € W}, which is a real (resp. quaternionic) Cli ;-module. Let G Lcp be the
space of invertible operators on ¥ of the form e¢; + T for some compact operator

T.Let GLG) = GLey N BY" (#) and GLYY = GLey N B4 (9). Let GL"

(resp. GL(k D) be the subspace of 93(* )(”f/ ) (resp. %éﬁ’b (7)) consisting of invertible
operators, and let U,E b (resp. Uy (k. )be its subspace of unitaries. We have an injection
GL,(lk & GLn%ll) (resp. GLf,k D GLflkJr)1 ) given by mapping A to A & e (resp.
A @ €), and let GL(k’l) (resp. GL kD ) be its inductive limit %nGL(k’l) (resp.

colim GL( ). We also define Uy ED and Uso %D for unitaries in the same way. The

space GL (resp. GLY *)) is identified with the subspace of GLCpt (resp. GLEII;) )
consisting of operators of the form ex +T (resp €+T),where T E PB(Vy),and we have
an injective Zp-map (GL(%I), a) —> (GL *D

a) (resp. (GL( ,a) —> (GLCpt ,a)).
As in [54], the following holds!®.
(kD)

Proposition 11 The map (GLC%I), a) — (Gch{t ,
are Zy-homotopy equivalences.

cpt ’

(k.)
cpt )

0)and (GLYY @) — (GL
. . . . . (k1) ()

By using a deformation of invertibles to unitaries, (Uy , @) and (Ux,'™, a) are Zo-

homotopy equivalent to (UC%t ), a) and (Uc(pt), a), respectively. We denote Uo‘O for

these subspaces of U* as indicated in Table 11.

19 1 [54], an upper semicontinuous function is introduced to show that an injection GLoo — GLcpt is a
homotopy equivalence. In our setup, this function is Z;-invariant, and the result follows as in [54].
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These Z,-spaces of unitaries appears in Boersema—Loring’s K O-theory [14]. Let
(X, ¢) be a compact Hausdorft Z,-space, and consider a C**-algebra (C(X), t;) of
continuous functions on X, whose transposition t; is given by f%(x) = f(¢(x)).
Then, the Z,-homotopy classes [(X, ¢), UC?O]Z2 can be identified with the group
K O;@)-1(C(X), t7) where i(#) is as indicated in Table 10. In the following, we
discuss two of eight K O-groups and the others are discussed in a similar way.

As for the K O_1-group, an element of the set [(X, ¢), (Uwo, to*)lz, is represented
by a Zy-map f: (X,¢) — (U,,t o). This f is a unitary element of M, (C(X))
satisfying f(¢(x)) = v(f(x))* which is the same as the relation f% = f to define
K O_1-groups. Thus, the set [(X, ¢), (Uso, t 0 *)]z, is the same as K O_1(C(X), 7¢)
by the definition of Boersema—Loring’s K O_1-group.

Finally, we discuss the K Og-group. By the multiplication of —i, we have a Z;-
homeomorphism (UO%’O), q) — (Uc()g’l), —q). A Zp-continuous map f: (X,¢) —
WY _g) is a self-adjoint unitary in M, (C (X)) satisfying fi®% = — f* = —f.
The Clifford algebra Cl; ¢ has just one irreducible quaternionic representation up to
equivalence, which is constructed as follows. On W = C2, we consider the action P
of Cl; o ® Clz o defined as follows:

p(1®e1)=<6?>, p(1®ez)=<(c)_oc>, p(€1®1)=<(1)_01),

where c is the complex conjugation on C. The space U(%’O) is defined as the inductive

limit of maps U,El’o) — U,%r’(l)), A+ A®I where I = p(e; ® 1) and the space Uég’D

is defined as that of maps A — A @ —il where —i[ = I(©.

A.3 Boersema-Loring’s K-theory and exponential maps

We describe boundary maps of the 24-term exact sequence of K O-theory (which we
denote as 8I.BL in this section) in Boersema—Loring’s unitary picture through expo-
nential maps. The map 8I.BL for even i has already been expressed as an exponential

map in [14]; thus, we focus on 81.BL for odd i. A clue is the exponential maps given in
Proposition 10. For a short exact sequence of C*-algebras,

0= (F,1) = (A, 1) > (B, 1) > 0, (24)
and for each odd i, we construct a group homomorphism
3P KOi(B, 1) > KOi_1(F, 1) (25)

and show they coincide with 8iBL up to a factor of —1. Let Wp, € Mp,(C) and
Q4n € M4, (C) be the following matrices:

1 i 1n ln ) 1 12n _1152)
u/ = — . s = — s
"2 ( i) =R,
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and let Vo, € M5, (R) and X4, € M4, (R) be the permutation matrices satisfyingzo

V2ndiag(xl» ceey x2n)V2*n = diag(-xlv Xn+1, X2y Xp42,5 - -+ s Xy x2n),
Xyndiag(xy, ..., x40) X},

= diag(x1, X2, X2n11, X2042, X3, X4, X2043, X2ntd» - - - » Xdn)-

Asin [14], let Y0 = Vo, W, YA = Vi, Y2 = Vi, 04 Way and Y = X4,

Definition 10 Suppose we have a short exact sequence of C**-algebras as in (24). We
assume ¥ = Ker(¢) and identify the unit in .# with that of o .Fori € {—1,1,3,5},
suppose [u] € KO;(A, t), where u € Mp,., (93) is a unitary satisfying the relation
X; and A(u) = 1,5’), for which n;, %; and IV are as in Table 2. Let a in M, ,,(;zf) be
a lift of u satisfying the relation %; and ||a|| < 1. Then, define

o7 (D = [~¥i) (1 exp(mAen) Vi, | € K014, ),

*

where A = (2 % ) and €1 = diag(ly;.n, —1p;.0).

Lemma 14 8? * for odd i are well-defined group homomorphisms.

Proof We need to show that (a) the unitaries constructed all satisfy the correct relation,
(b) the choice of lift is not important, (c) some lift is always available, (d) homotopy is
respected, (e) compatible with respect to the stabilization by /) and (f) the addition
is respected. (c), (b) and (d) are proved in the same way as in Lemma 8.2 of [14]

and we discuss the other parts. For convenience, let C(a) = —e;jexp(mwAe€p) and
C'(@) = Yy, ,,C@Y,,)",.

(1) We first consider the case of i = 1. Letu € M, (ﬂ?) be a unitary satisfying
u® = u* and r,(u) = I". We take a lift @ € M, (/) of u such that [la| < 1
and a® = a*. Since ¢(C'(a)) = V2,1 V5, = 1,50), we have C'(a) € M,l(IN) and
A(C'(a)) = (0) . Since AT = A, we have,

C(a)" = —exp(mAe)Te = —61 exp(e[ AT)ef = —ey exp(rrelAel) = C(a).

Since Yz(;i) = V>, is the orthogonal matrix, (Y(l))r = Yz(,ll)*, and thus, C'(a)" =
C’(a) holds. When u = 1, we can take ¢ = 1 and C’(1) = IV in th1s case. Com-
bined with this, the proof is completed once we have checked that 8 *P preserves

the addltlon Letu € My, (%’) andv € M, (%’) We take their lift a and b such that
a® = a* and b" = b*. Then we have C’ (dlag(a b)) = diag(C’(a), C’' (b)) since

a0\\ _ (lmtn O 0 diag(—a*, —b%)
c((53) == ("5 ) ool o™ 5 ™))

20 Matrices Won, Qan, Vo, and Xy, are what we borrowed from Sect. 8 of [14]. Some of the basic formulas
that they satisfy can be found there.
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0 diag(—a*, —b*)
AdV2m+2n exP(” (diag(a, b) 0

. 0 —a* 0 —b*
= exp (n - diag <AdV2m (a 0 >’AdVZn (b 0 ))) ,

which shows that 3" ([u] + [v]) = 8} " ([u]) + " ([v]).

(2) We next consider the case of i = —1. Letu € M, (%) be a unitary satisfying u* = u and A, () =
15V We take alifta € My (<7) of u such that Jaf| < 1 anda™ = a. Since ¢(C’ (@) = I\, we have
C'(a) € Mp(F) and A(C'(a)) = I\®). Since AP®T = — A, we have

C(a)*®T = 7exp(nA€1)n®fe?®r = exp(ne?(@fAﬁ@T)gl

=exp(mreyA)e; = €1 exp(mAer) = —C(a).

Since (Vo x Vz*n)ﬁ‘gf = Vg,ﬂcg@’ Vv, and W;;?T = —W},,, the relation C'(a)*®T = —C'(a) holds.
Foru = 1, we take a = 1 and C’(1)~: 71© holds. Therefore, as in (1), all we have to show is
the additivity of 8ix1p .Leta € My, (&) and b € My (<) be lifts of the unitaries u and v. Then,

C/(diag(a, b)) = diag(C/(a), C’(b)) follows from
0 diag(—a™*, —b*)
Vam+2n Wam+2n (diag(a, b) 0 W2*m+2n V2*m+2n

. 0 —a* x ok 0 —b* % 1%
= diag | Vo, Wor, 4 0 W Vo Voan Won b 0 W3, Vo, | -

(3) Let us consider the case of i = 5. Let u € Mz,l(gZ) be a unitary satisfying u®T — y* and
Aon () = 1Y = 1,,. We take a lift @ € My, (<7) of u such that [la]] < 1 and af®T = a*.

Since (X4, xX4,)?®7 = X4, x¥®T X4, AT®T = A and e$®r = €1, the relation

C'(@)*®" = — Xy, eXp(ﬂElAj®r)61XIn = —Xupy exp(e| A)e X, = C'(a)
holds. We have C’(15) = I¥ { itivity of 5P
S. 2) = I'", and for the additivity of 05", note that

0 diag(—a*, —b*) *
Xam+an (diag(a, b) 0 Xamtan

. 0 —a* 0 —b*
= diag <X4m (a 0 )Xf{m, Xan (b 0 )Xj{n> .

Consider the case of i = 3. Letu € My, ((%7) be a unitary satisfying ult®t =y and Az, (u) = [,53) =
lp,. We take a lift a € Mo, () of u such that [la]| < 1 and a*®7 = a. Since A*®F®T = _4 and
BT — ¢ the relation C(a)7®%®T = —C(a) holds. Since (Qu,x Q%) = Q4 x*®HOT OF
i

(4

=

and Wf};@t = —Wj,, we have C’(a)" = —C’(a). For the remaining part, we note that C'(15) =

and

y® 0 diag(=a™, =b%) ) 3«
4m+4n diag(a, b) 0 4m+4n

— @ (0 —a*\ 3% ,3) (00" G
= diag <Y4m <a 0 >Y4m ’Y4n (b 0 Y4n :
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Lemma 15 Each Bt.e *P is natural with respect to the morphisms of short exact sequences
of C*-algebras. That is, suppose we have the following commutative diagram of exact
lows:

0— > (S, 1) —> (A, 1T) —2> (B, 1) —>0

I T

00— (S, 1) — (h, 1) —2> (Br. 1) —=0

Then, we have i, o 8,.eXp = afo o B

Proof AsinLemma 8.5 of[14], thislemma is proved by following the definition of each
map. We assume Ker(¢;) = .#; (j = 1,2) for simplicity. Let [u] € KO/ (%4, 1)
be an element represented by a unitary u; € Mpy;.n (,%71) satisfying the symmetry
relation %;. Let a; € Mpy,.,(2/) be a lift of u; such that ||a1|| < 1, and satisty
the relation %;. Then, a, = «(ay) is a lift of u; satisfying the symmetry, and thus,
3P ([u]) = [C’(a2)] holds. Since a(C'(a1)) = C'(a(a1)) = C’'(a2), we have

L O 8ieXp([u1]) = 1[C'(a)] = [a(C'(a1)]
= 07" (wal) = 57 0 fulur].

Proposition 12 9B = —37™" for odd i.

As in the proof of Theorem 8.9 of [14], we can reduce the proof to the complex case,
and Proposition 12 follows from the lemma below. In the complex case, the boundary
map 8pr 1 K1(AB) — Ko(F) is defined by forgetting the real structure in the case of
i = 1 of Definition 10.

Lemma 16 The boundary maps BFL and BTXP from K{(A) to Ko(.F) satisfy the rela-

tion BFL = —Bpr.

Proof Suppose that [u] € K|(%) where u € M, (%) and A(u) = 1,. We take a lift a
. ~ e . L. a 0

of u in M), (A) satisfying ||a|| < 1. Consider the partial isometry v = <m 0)

0 v*

andlet V = (v 0

). 8pr([u]) is computed as

TP ([u]) = [—Yﬂl)(e] exp(r Vel))YS,)*]
= vV =200y - vV — 20t 0y V7.

As in [59], 9BL([u]) is also expressed by using v, which is —a;"" ([u]). o

@ Springer



118 Page 52 of 54 S. Hayashi

References

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

. Alldridge, A., Max, C., Zirnbauer, M.R.: Bulk-boundary correspondence for disordered free-fermion

topological phases. Commun. Math. Phys. 377(3), 1761-1821 (2020)

. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconduction

hybrid structures. Phys. Rev. B 55(2), 1142-1161 (1997)

. Antonian, S.: Equivariant embeddings into G-ARs. Glas. Math. Ser. I1I 22(2), 503-533 (1987)
. Antonyan, S.A., Elfving, E.: The equivariant homotopy type of G-ANR'’s for proper actions of locally

compact groups. In: Algebraic topology—old and new. Banach Center Publ., vol. 85, pp. 155-178.
Polish Acad. Sci. Inst. Math., Warsaw (2009)

. Araki, H., Mizoguchi, T., Hatsugai, Y.: Z¢ Berry phase for higher-order symmetry-protected topolog-

ical phases. Phys. Rev. Res. 2, 012009 (2020)

. Atiyah, M.F.: K-theory and reality. Quart. J. Math. Oxford Ser. 2(17), 367-386 (1966)
. Atiyah, M.F,, Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3-38 (1964)
. Atiyah, M.F,, Patodi, V.K., Singer, LM.: Spectral asymmetry and Riemannian geometry. III. Math.

Proc. Cambridge Philos. Soc. 79(1), 71-99 (1976)

. Atiyah, MLF,, Singer, LM.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Etudes Sci.

Publ. Math. 37, 5-26 (1969)

Bellissard, J.: K -theory of C*-algebras in solid state physics. In: Statistical mechanics and field theory:
mathematical aspects (Groningen, 1985), Lecture Notes in Phys., vol. 257, pp. 99-156. Springer, Berlin
(1986)

Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall
effect. J. Math. Phys. 35(10), 5373-5451 (1994)

Benalcazar, W.A., Bernevig, B.A., Hughes, T.L.: Quantized electric multipole insulators. Science 357,
61-66 (2017)

Boersema, J.L.: Real C*-algebras, united K -theory, and the Kiinneth formula. K-Theory 26(4), 345—
402 (2002)

Boersema, J.L., Loring, T.A.: K -theory for real C*-algebras via unitary elements with symmetries.
New York J. Math. 22, 1139-1220 (2016)

Bourne, C., Carey, A.L., Lesch, M., Rennie, A.: The KO-valued spectral flow for skew-adjoint fredholm
operators. J. Topol, Anal (2020)

. Bourne, C., Carey, A.L., Rennie, A.: The bulk-edge correspondence for the quantum Hall effect in

Kasparov theory. Lett. Math. Phys. 105(9), 1253-1273 (2015)

Bourne, C., Kellendonk, J., Rennie, A.: The K-theoretic bulk-edge correspondence for topological
insulators. Ann. Henri Poincaré 18(5), 1833-1866 (2017)

Carey, A.L., Phillips, J., Schulz-Baldes, H.: Spectral flow for skew-adjoint Fredholm operators. J.
Spectr. Theory 9(1), 137-170 (2019)

De Nittis, G., Schulz-Baldes, H.: Spectral flows of dilations of Fredholm operators. Canad. Math. Bull.
58(1), 51-68 (2015)

tom Dieck, T.: Transformation Groups, De Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter
& Co., Berlin (1987)

Doll, N., Schulz-Baldes, H., Waterstraat, N.: Parity as Z,-valued spectral flow. Bull. Lond. Math. Soc.
51(5), 836-852 (2019)

Douglas, R.G.: Banach algebra techniques in the theory of Toeplitz operators. CBMS Regional Con-
ference Series in Mathematics, no. 15. American Mathematical Society, Providence, R.I. (1973)
Douglas, R.G., Howe, R.: On the C*-algebra of Toeplitz operators on the quarterplane. Trans. Am.
Math. Soc. 158, 203-217 (1971)

Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927-2023 (2013)
Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25.
American Mathematical Society, Providence, RI (2000). Translated from the 1997 German original
by Andreas Nestke

Geier, M., Trifunovic, L., Hoskam, M., Brouwer, P.W.: Second-order topological insulators and super-
conductors with an order-two crystalline symmetry. Phys. Rev. B 97, 205135 (2018)

Gomi, K.: Freed-Moore K-theory (2017). arXiv:1705.09134 [math.KT]

Gomi, K., Thiang, G.C.: ‘Real’ gerbes and Dirac cones of topological insulators (2021).
arXiv:2103.05350 [hep-th]

@ Springer


http://arxiv.org/abs/1705.09134
http://arxiv.org/abs/2103.05350

Classification of topological invariants Page530f54 118

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.
39.

40.

41.

42.

43.

44.
45.

46.
47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

Goodearl, K.R.: Notes on Real and Complex C*-Algebras. Shiva Mathematics Series, vol. 5. Shiva
Publishing Ltd., Nantwich (1982)

GroBmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topo-
logical insulators. Commun. Math. Phys. 343(2), 477-513 (2016)

Hashimoto, K., Wu, X., Kimura, T.: Edge states at an intersection of edges of a topological material.
Phys. Rev. B 95, 165443 (2017)

Hatsugai, Y.: Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett. 71(22),
3697-3700 (1993)

Hayashi, S.: Topological invariants and corner states for Hamiltonians on a three-dimensional lattice.
Commun. Math. Phys. 364(1), 343-356 (2018)

Hayashi, S.: Toeplitz operators on concave corners and topologically protected corner states. Lett.
Math. Phys. 109(10), 2223-2254 (2019)

Ji, R., Kaminker, J.: The K -theory of Toeplitz extensions. J. Oper. Theory 19(2), 347-354 (1988)
Jiang, X.: On Fredholm operators in quarter-plane Toeplitz algebras. Proc. Am. Math. Soc. 123(9),
2823-2830 (1995)

Kane, C.L., Mele, E.J.: Z, topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95,
146802 (2005)

Karoubi, M.: Espaces classifiants en K -théorie. Trans. Am. Math. Soc. 147, 75-115 (1970)
Kellendonk, J.: On the C*-algebraic approach to topological phases for insulators. Ann. Henri Poincaré
18(7), 2251-2300 (2017)

Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer
quantum Hall effect. Rev. Math. Phys. 14(1), 87-119 (2002)

Khalaf, E.: Higher-order topological insulators and superconductors protected by inversion symmetry.
Phys. Rev. B 97, 205136 (2018)

Khalaf, E., Po, H.C., Vishwanath, A., Watanabe, H.: Symmetry indicators and anomalous surface states
of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018)

Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134(1),
22-30 (2009)

Kubota, Y.: Notes on twisted equivariant K-theory for C*-algebras. Int. J. Math. 27(6), 1650058 (2016)
Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys.
349(2), 493-525 (2017)

Kuiper, N.H.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19-30 (1965)
Kwasik, S.: On the homotopy type of G-manifolds and G-ANRs. Bull. Acad. Polon. Sci. Sér. Sci.
Math. 28(9-10), 509-515 (1981)

Lawson Jr., H.B., Michelsohn, M.L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton
University Press, Princeton, NJ (1989)

Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence. Commun. Math. Phys.
345(2), 675-701 (2016)

Matumoto, T.: Equivariant K -theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo Sect. I A Math.
18, 109-125 (1971)

Matumoto, T.: On G-CW complexes and a theorem of JHC Whitehead. J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 18, 363-374 (1971)

Okugawa, R., Hayashi, S., Nakanishi, T.: Second-order topological phases protected by chiral sym-
metry. Phys. Rev. B 100, 235302 (2019)

Okuma, N., Sato, M., Shiozaki, K.: Topological classification under nonmagnetic and magnetic point
group symmetry: Application of real-space Atiyah-Hirzebruch spectral sequence to higher-order topol-
ogy. Phys. Rev. B 99, 085127 (2019)

Palais, R.S.: On the homotopy type of certain groups of operators. Topology 3, 271-279 (1965)
Park, E.: Index theory and Toeplitz algebras on certain cones in Z2. 1. Oper. Theory 23(1), 125-146
(1990)

Park, E.L.: The index theory of Toeplitz operators on the skew quarter plane. Ph.D. thesis, State
University of New York at Stony Brook (1988)

Phillips, J.: Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39(4), 460-467
(1996)

Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators:
From K-theory to physics. Mathematical Physics Studies. Springer, Berlin (2016)

@ Springer



118 Page 54 of 54 S. Hayashi

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

Rgrdam, M., Larsen, F., Laustsen, N.: An Introduction to K -Theory for C*-Algebras, London Math-
ematical Society Student Texts, vol. 49. Cambridge University Press, Cambridge (2000)

Schindler, F., Cook, A.M., Vergniory, M.G., Wang, Z., Parkin, S.S.P., Bernevig, B.A., Neupert, T.:
Higher-order topological insulators. Sci. Adv. 4(6), eaat0346 (2018)

Schnyder, A.P,, Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and
superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)

Schroder, H.: K-Theory for Real C*-Algebras and Applications. Pitman Research Notes in Mathe-
matics Series, vol. 290. Longman Scientific & Technical, Harlow; copublished in the United States
with John Wiley & Sons, New York (1993)

Simonenko, I.B.: Operators of convolution type in cones. Math. Sb. N.S. 74(116), 298-313 (1967)
Takahashi, R., Tanaka, Y., Murakami, S.: Bulk-edge and bulk-hinge correspondence in inversion-
symmetric insulators. Phys. Rev. Res. 2, 013300 (2020)

Thiang, G.C.: On the K -theoretic classification of topological phases of matter. Ann. Henri Poincaré
17(4), 757-794 (2016)

Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-
dimensional periodic potential. Phys. Rev. Lett. 49, 405-408 (1982)

Trifunovic, L., Brouwer, P.W.: Higher-order bulk-boundary correspondence for topological crystalline
phases. Phys. Rev. X 9, 011012 (2019)

Waner, S.: Equivariant homotopy theory and Milnors theorem. Trans. Am. Math. Soc. 258(2), 351-368
(1980)

Wood, R.: Banach algebras and Bott periodicity. Topology 4, 371-389 (1966)

Xia, J.: The K-theory and the invertibility of almost periodic Toeplitz operators. Integral Equ. Oper.
Theory 11(2), 267-286 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Classification of topological invariants related to corner states
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Boersema–Loring's KO-groups via unitary elements
	2.2 Toeplitz operators

	3 KO-groups of C*-algebras associated with half-plane and quarter-plane toeplitz operators
	3.1 KO-groups of (mathcalTα, τα)
	3.2 KO-groups of (mathcalSα, β, τmathcalS)
	3.2.1 The group KO2(mathcalSα, β, τmathcalS)
	3.2.2 The group KO3(mathcalSα, β, τmathcalS)

	3.3 Boundary maps associated with quarter-plane Toeplitz extensions and KO-groups of (α,β,α,β)

	4 Toeplitz operators associated with subsemigroup (mathbbZ0)n of mathbbZn

	5 Topological invariants and corner states in Altland–Zirnbauer classification
	5.1 Setup
	5.2 Gapped topological invariants
	5.3 Gapless topological invariants
	5.4 Correspondence
	5.5 Higher-codimensional cases
	5.6 Numerical corner invariants
	5.6.1 Case of k=n
	5.6.2 Case of k=n-1

	5.7 Product formula

	Acknowledgements
	A mathbbZ2-spaces of self-adjoint/skew-adjoint Fredholm operators and Boersema–Loring's K-theory
	A.1 mathbbZ2-spaces of self-adjoint/skew-adjoint Fredholm operators
	A.2 Relation with Boersema–Loring's unitary picture
	A.3 Boersema–Loring's K-theory and exponential maps

	References




