
Letters in Mathematical Physics (2021) 111:110
https://doi.org/10.1007/s11005-021-01445-7

Temperature and entropy–area relation of quantummatter
near spherically symmetric outer trapping horizons

Fiona Kurpicz1 · Nicola Pinamonti2,3 · Rainer Verch1

Received: 5 March 2021 / Revised: 6 July 2021 / Accepted: 9 July 2021 /
Published online: 11 August 2021
© The Author(s) 2021

Abstract
We consider spherically symmetric spacetimes with an outer trapping horizon. Such
spacetimes are generalizations of spherically symmetric black hole spacetimes where
the central mass can vary with time, like in black hole collapse or black hole evap-
oration. While these spacetimes possess in general no timelike Killing vector field,
they admit a Kodama vector field which in some ways provides a replacement. The
Kodama vector field allows the definition of a surface gravity of the outer trapping
horizon. Spherically symmetric spacelike cross sections of the outer trapping hori-
zon define in- and outgoing lightlike congruences. We investigate a scaling limit of
Hadamard 2-point functions of a quantum field on the spacetime onto the ingoing
lightlike congruence. The scaling limit 2-point function has a universal form and a
thermal spectrum with respect to the time parameter of the Kodama flow, where the
inverse temperature β = 2π/κ is related to the surface gravity κ of the horizon cross
section in the same way as in the Hawking effect for an asymptotically static black
hole. Similarly, the tunnelling probability that can be obtained in the scaling limit
between in- and outgoing Fourier modes with respect to the time parameter of the
Kodama flow shows a thermal distribution with the same inverse temperature, deter-
mined by the surface gravity. This can be seen as a local counterpart of the Hawking
effect for a dynamical horizon in the scaling limit. Moreover, the scaling limit 2-point
function allows it to define a scaling limit theory, a quantum field theory on the ingoing
lightlike congruence emanating from a horizon cross section. The scaling limit 2-point
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function as well as the 2-point functions of coherent states of the scaling limit theory is
correlation-free with respect to separation along the horizon cross section; therefore,
their relative entropies behave proportional to the cross-sectional area. We thus obtain
a proportionality of the relative entropy of coherent states of the scaling limit theory
and the area of the horizon cross section with respect to which the scaling limit is
defined. Thereby, we establish a local counterpart, and microscopic interpretation in
the setting of quantum field theory on curved spacetimes, of the dynamical laws of
outer trapping horizons, derived by Hayward and others in generalizing the laws of
black hole dynamics originally shown for stationary black holes by Bardeen, Carter
and Hawking.

Keywords Black hole temperature · Black hole entropy · Quantum fields in curved
spacetime

Mathematics Subject Classification 83C57 · 83C47 · 81T05 · 81T20

1 Introduction

The famous four laws of black hole mechanics and their analogy with the laws of
thermodynamics have been derived and developed in [3] assuming stationarity. The
temperature thereby assigned to a black hole is related to the horizon’s surface gravity
and can physically be interpreted in terms of Hawking radiation [28] in the framework
of quantum field theory in curved spacetime, see also [21,37,55,59]. Similarly, the area
of the black hole horizon surface is analogous to an entropy. Discussion of black hole
entropy and its physical nature has been given in a variety of contexts ([4,19,42,47,56,
62] and literature cited therein is just a small sample of references on the topic), but it
has been difficult to find a simple, direct counterpart of the entropy–area relation for
black holes in the setting of quantum field theory in curved spacetime (see, however,
[33] and further discussion below).

Although Hawking radiation is derived neglecting backreaction, assuming that the
spacetime geometry is stationary (or asymptotically stationary), the emission rate of
Hawking radiation is usually associated with the rate of black hole mass loss due to
evaporation, see e.g. [9,19,28].However, black hole evaporation is a dynamical process
and should be described locally.A local theory for the geometry of non-stationary black
holes using concepts of dynamical horizons and trapped horizons has been developed,
see e.g. [2,29]. In particular, in [29] it is shown that the first law holds as an energy
balance along the trapped horizon. In contrast with the (asymptotically) stationary
case, Hawking radiation and a relation between temperature and local geometrical
quantities of dynamical or trapped horizons have so far not been derived for quantum
fields in the background of non-stationary (or dynamical) black holes.

An essentially local derivation of the Hawking effect has been proposed by Parikh
andWilczeck [46]. In that approach, an estimate is given for the tunnelling probability
of quantum particles across the horizon, showing that this probability has a thermal
distribution. This idea has been generalized to the case of dynamical black holes in
[16,17,27], hence furnishing a connection between the surface gravity and a thermal
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distribution of the tunnelling probability. These considerations didn’t use quantum
field theoretical methods as in the original derivation of the Hawking effect but relied
on single-particle quantum mechanics in a WKB-type approximation. In order to
overcome the limitations of such a quantum mechanical treatment, it has been shown
in [43] that for a scalar quantum field on a stationary black hole spacetime—more
generally, any spacetime with a bifurcate Killing horizon—a thermal distribution in
the tunnelling probability is obtained in a certain scaling limit located on the horizon
whenever the quantum field is in a Hadamard state. The associated temperature is
the Hawking temperature and is independent of the chosen Hadamard state. A sim-
ilar result can also be obtained in the case of self-interacting fields, see [11]. For
some related results, focusing on the thermal nature of field theories restricted on null
surfaces (horizons) and thus not focussing on the local aspect related to tunnelling
processes, see [21,22,26,37,55,57].

In this paper, we aim at generalizing the result of [43] to the case of spherically
symmetric, dynamical black holes. For generic spherically symmetric black holes,
there is no Killing vector field which generates an horizon. Nevertheless, there are
generalizations available that serve a similar purpose in the context of black hole
thermodynamics. In particular, we shall use the concept of outer trapping horizons
[2] and the Kodama vector field [39]. A spherically symmetric (non-stationary) black
hole spacetime is a warped product of a 2-dimensional Lorentzian space and a 2-
dimensional Euclidean sphere. The future-directed light rays in the two-dimensional
Lorentzian space determine, at each spacetime point, two geodesic congruences of
null type; one is called outgoing and the other ingoing. The outer trapping horizonH
is the 3-dimensional hypersurface which divides the inside regionwhere the expansion
parameters θ± of the ingoing(−) and outgoing(+) null geodesic congruences are both
negative from the outside region where θ+ > 0 and θ− < 0. The outside region
usually reaches out to spatial infinity. If the expansion parameter of the null geodesic
congruence is positive (negative), the area of a congruence orthogonal spatial sphere
grows (decreases) towards the future along the congruence. Hence, in the regionwhere
both θ± are negative, all light rays tend to fall into the black hole while in the region
where θ+ > 0 the outgoing lightrays tend to reach pointswhich are far away (measured
by the radius of the orthogonal spatial sphere) from the centre of the blackhole.Thus, an
outer trapping horizonH is the surface fromwhich nothing can escape instantaneously.
It is worth noting that in a dynamical spherically symmetric spacetime, H need not
be lightlike but can have timelike or spacelike parts.

In [39], Kodama has shown that in the case of spherically symmetric spacetimes,
it is possible to find a vector field1 Ka which can be used as a replacement of the
timelike Killing vector field of a stationary black hole (the full definition is given in
Sect. 2.2). This Kodama vector field Ka is a conserved current, and also WabKb is
a conserved current whenever Wab is a symmetric tensor field that is invariant under
the spherical symmetries of the spacetime. Furthermore, Ka is timelike outside of,
spacelike inside of, and lightlike on an outer trapping horizonH, respectively. OnH,

1 We shall mostly employ the abstract index notation for vector and tensor fields as in [60].
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one has

1

2
Ka(∇aKb − ∇bKa) = κKb (1)

where the function κ is the surface gravity along H.
Outer trapping horizons and the conservation of currents generated by the Kodama

vector field have been used by Hayward [29] to derive a first thermodynamical law
for dynamical black holes. In particular, it holds that

M′ = κ

8π
A′ + wV ′

with the derivative f ′ = za∇a f where za is any (nowhere vanishing) vector field
having zero angular components tangent to the outer trapping horizon. Furthermore,
M is the Hawking mass of the black hole, A = 4πr2 is the area of the surface,
V = 4

3πr
3 is the surface-enclosed volume, and κ is the surface gravity associated

with the Kodama vector field. The term w = −GUV gUV is related to the trace of
the Einstein tensor taken with respect to the lightlike coordinates of the horizon,
symbolized by indicesU and V ; see Sect. 2 for full details. As usual,M is interpreted
as the black hole’s internal energy, see (7), and wV ′ is the work done on the system.
Interpreting κ/(2π) as a temperature, A′/4 represents the variation in entropy.

We will consider a (for simplicity, scalar) quantum field φ(x) propagating on a
spherically symmetric spacetime with an outer trapping horizon and a Kodama vector
field. Here, we follow common practice to write symbolically φ(x) where x is a
spacetime point as if φ(x) was an operator-valued function, while actually it is an
operator-valued distribution. We will take due care of this circumstance whenever
required in the main body of the text. To further simplify matters, we assume that φ(x)
is a quantizedKlein–Gordonfield fulfilling thefield equation (∇a∇a−M(x))φ(x) = 0
where ∇ is the covariant derivative of the spacetime metric gab and M is a smooth,
real-valued function on spacetime. (This assumption could, in fact, be generalized.)

States (and in particular, quasifree states) of the quantized Klein–Gordon field on
curved spacetimes admitting a physical interpretation consistent with the principles
that apply for quantum field theory on Minkowski spacetime are Hadamard states.
These states are defined as having a 2-point function ofHadamard form, meaning that

w(2)(x1, x1) = 1

8π2

�1/2(x1, x2)

σε(x1, x2)
+ Wε(x1, x2), (2)

where� is the van Vleck–Morette determinant of the spacetime metric and σ(x1, x2)
is its Synge function, i.e. the squared geodesic distance divided by 2. Both quantities
are determined by the spacetime metric; the subscript ε denotes a regularization that
is used to properly define the quantity on the right-hand side as a distribution (after
integration with test functions) in the limit ε → 0 (see [37] and Sect. 3 for further
details). Similarly, in the limit ε → 0, Wε(x1, x2) is a distribution which diverges at
most logarithmically in σ for σ → 0 and contains the state dependence as a smooth
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Fig. 1 The picture represents the
U , V plane in adapted
coordinates (U , V , ϑ, ϕ). The
thick line corresponds to the
outer trapping horizon H;
S∗ ⊂ H is a sphere which is
used to identify the null
congruence C∗ towards which
we compute the scaling limit of
the quantum states. The scaling
limit state is then restricted onto
the null congruence T∗

V

C∗

U

T∗

H

S∗

contribution. For a discussion as to whyHadamard states are of particular significance,
see e.g. [20,38,61] and references cited there.

We will show that close to an outer trapping horizon of a spherically symmetric
spacetime, the universal leading short-distance singularity behaviour of anyHadamard
state results, in a scaling limit, in an interpretation of the surface gravity κ as a temper-
ature parameter, in close analogy to previous considerations for the case of quantum
fields on stationary black holes [22,31,37,43,57]. Our approach follows the spirit of
[43] very closely and thus makes contact with the tunnelling interpretation of Hawk-
ing radiation. For a spherically symmetric spacetime with outer trapping horizon H,
one introduces Eddington–Finkelstein coordinates v, r , ϑ, ϕ. Some point onHwill be
determined by certain coordinate values (v∗, r∗, ϑ∗, ϕ∗), and, by spherical symmetry,
it determines the associated spatial spherical cross section S∗ = S(v∗, r∗) of H. The
outgoing null geodesic congruence emanating from S∗ defines a null hypersurface
denoted by C∗, and similarly, the ingoing null geodesic congruence emanating from
S∗ defines a null hypersurface denoted by T∗. As will be discussed in the main body
of this paper, given S∗, there exists a natural choice of an affine parameter V along
the geodesic generators of C∗ and of an affine parameter U along the geodesic gener-
ators of T∗ so that local coordinates (U , V , ϑ, ϕ) near S∗ can be introduced, with the
following properties:

(1) U = 0 and V = 0 exactly for the points on S∗,
(2) U = 0 exactly for the points on C∗,
(3) V = 0 exactly for the points on T∗,
(4) ds2 = −2A(U , V )dU dV + r2(U , V )d�2 is the metric line element where d�2

denotes
the line element of the two-dimensional Euclidean sphere, and A = 1 on C∗ ∪ T∗,

(5) dUaKa(U , V = 0, ϑ, ϕ) = −κ∗U + O(U 2) on T∗ near U = 0, with κ∗ = κ|S∗ .
We call (U , V , ϑ, ϕ) with the properties stated above adapted coordinates with
respect to S∗ (see Fig. 1 for an illustration.)

To analyse the short distance behaviour of the 2-point function of Hadamard states
when both x1 and x2 are very close to H, we proceed as follows. Once a sphere S∗
(having radius r∗) of the outer trapping horizon is chosen and the null surface C∗ of
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outgoing null geodesics is determined, we take a suitable scaling limit of the 2-point
function towards C∗. As we shall prove in Theorem 4.1, the 2-point function (distri-
bution)  thus obtained is universal, and it can be tested with compactly supported
smooth functions on T∗. Using adapted coordinates, its regularized integral kernel has
the form

ε(U , ν;U ′, ν′) = − 1

π

r2∗
(U −U ′ + iε)2

δ(ν, ν′), (3)

where (U , ν) denotes a point on T∗, U is the null coordinate and ν = (ϑ, ϕ) denotes
standard angular coordinates on the sphere S∗. Furthermore, ε > 0 is a regulator (to
be taken to 0 after integrating against test functions) and δ(ν, ν′) is the Dirac delta
function supported on coinciding angles.2 As we shall see in Sect. 5.2, the thermal
properties are manifest when is tested with respect to the flow�τ (τ ∈ R) generated
by Ka . Applied to, the flow acts as�τ (U ) = eκ∗τU where κ∗ is the surface gravity
on S∗, and the Fourier frequencies, or energies, with respect to the flow parameter τ
in the spectrum of  are distributed according to the spectral density

ρ(E) = E

1 − e− 2π
κ∗ E

. (4)

The presence of a Bose factor with inverse temperature 2π/κ∗ in the spectral density
distribution makes the thermal interpretation manifest, analogously as in [43]. Making
use of this fact, in following [43] we show that the tunnelling probability, or transition
probability, between a one-particle state inside the outer trapping horizon H, i.e. for
U > 0, and another one particle state outside of H, i.e. for U < 0, takes in the
scaling limit the high-energy asymptotic form e−βE , when the one-particle states
have a Fourier distribution peaked at E . This is the form of a transition probability for
a thermal energy level occupation at inverse temperature β = 2π/κ∗.

The 2-point function  obtained in our scaling limit is very similar to the restric-
tion of 2-point functions to Killing horizons considered in [22,26,37,55,57]. In these
articles, the restrictions or scaling limits of 2-point functions to the analogues of C∗
exhibit a thermal spectrum with respect to the Killing flow. In contrast, in the case of
dynamical black holes the relevant part of the state is the transversal component of the
2-point function (the component supported on T∗), showing thermal properties with
respect to the Kodama flow in the scaling limit. The C∗-part of the 2-point function
depends on the details of the quantum matter entering the horizon, blurring an exact
thermal spectrum. On the other hand, at least in the case of static black holes, the T∗-
part is related to the radiation emitted by the black hole and is the source of Hawking
radiation, see e.g. [21].

The 2-point function can be used to define a quantum field theory—the “scaling
limit theory”—on the lightlike hypersurface T∗;  also induces a quasifree state ω
on the algebra of observablesW of the scaling limit theory, whereW is a CCR–Weyl
algebra. This state turns out to be a KMS-state [25] at inverse temperature β = 2π/κ∗
2 Formally, this means that f (ν) = ∫

S2 δ(ν, ν
′) f (ν′) d�2(ν′) for any continuous function f on the unit

sphere.
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with respect to the Kodama flow. It is then possible to define and calculate the relative
entropy S(ω|ωϕ) in the sense of Araki [1] between ω and coherent states ωϕ onW
analogously as in [32,41] where the function ϕ describes a coherent excitation of the
scalar field over the stateω.Wefind that S(ω|ωϕ) coincideswith the classical energy
of the coherent excitation, measured by an observer moving along the Kodama flow,
multiplied with the inverse temperature β = 2π/κ∗ (see equation (74)). Furthermore,
we observe that S(ω|ωϕ) is proportional to r2∗ , the geometrical area of the outer
trapping horizon’s cross section S∗ with respect to which the scaling limit theory is
constructed. We argue that this is not accidental but a consequence of the fact that ω
and ωϕ are correlation-free product states with respect to separation in the angular
coordinate ν of S∗, together with the additivity of the relative entropy for correlation-
free product states. Thus, we arrive at S(ω|ωϕ) ∼ r2∗ , analogous to the entropy–area
relation suggested in the classic article of Bardeen, Carter and Hawking [3].

The idea to relate the relative entropy of quantum field states on a spacetime con-
taining a horizon to a form of black hole entropy goes back to Longo [40] (in the setting
of quantum field theory on Minkowski spacetime, where the lightlike boundaries of
a wedge region play the role of a horizon). These ideas have been extended in [36]
to a relation between relative entropy of quantum field states and non-commutative
geometrical quantities for area. In a series of articles by Schroer [53,54], it was men-
tioned that—in the setting of quantum field theory inMinkowski spacetime—quantum
field theories restricted to lightlike hyperplanes typically show no correlations in the
transversal spacelike directions of the hyperplane, which would result in an additive
behaviour of entropy quantities for the restricted quantum fields and an area propor-
tionality. In our present article, we see that the earlier ideas of Longo and of Schroer
can indeed be combined to result, in our scaling limit, in a proportionality between
the relative entropy of quantum field states and the horizon area of a black hole space-
time and, more generally, the cross-sectional area of an outer trapping horizon. In
a recent work, Hollands and Ishibashi [33] consider linearized perturbations of the
spacetime metric around Schwarzschild spacetime which are quantized similarly like
a linear scalar field. Using preferred states for the characteristic data of the perturba-
tions (which on the black hole horizon take a form as our scaling limit state), they
define relative entropies in a similar way, and taking into account the backreaction
of the coherent excitation on the background geometry, they show that the combined
variation in the relative entropy and a cross-sectional area of the black-hole horizon
along Schwarzschild time equals the future out- and ingoing flux of radiation. Related
content, in the context of spherically symmetric dynamical black holes, appears also
in [12].

This article is organized as follows. In Sect. 2, we discuss the geometric setup of
spherically symmetric spacetimes in which a Kodama vector field and outer trapping
horizons can be defined. Section 3 contains the specification of the quantum field
theory on the spacetimes we consider, together with a discussion about Hadamard
2-point function. Section 4 begins by introducing a conformal transformation of the
spacetimes considered which is useful for deriving the scaling limit of Hadamard 2-
point functions, presented thereafter in Theorem 4.1. The behaviour of the scaling
limit 2-point function under the Kodama flow is also discussed. In Sect. 5, we show
how the scaling limit theory is constructed from the scaling limit 2-point function
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, and derive and discuss several of its properties, like the thermal spectrum and
thermal tunnelling probability with respect to the Kodama time. We also consider the
coherent states in the scaling limit theory and their relative entropy which we find to
be proportional to the area of the horizon cross section S∗ with respect to which the
scaling limit theory is defined. A conclusion is given in Sect. 6. Section 1 is a technical
appendix containing the proof of Theorem 4.1.

2 Geometric setup

2.1 Spherically symmetric spacetime, Eddington–Finkelstein coordinates

We consider a spacetime (M, gab), where M is the 4-dimensional spacetime manifold
and gab is the spacetime metric, with signature (− + + +). It will be assumed that
the spacetime is (spatially) spherically symmetric, i.e. its set of isometries contains
the group SO(3), and all the orbits of the SO(3) action are spacelike. We also assume
that the spacetime has an outer trapping horizonH and a Kodama vector field. Thus,
we assume that M contains an open subset N , diffeomorphic to L× S2 with an open,
connected subset L of R2, on which advanced Eddington–Finkelstein coordinates
(v, r , ϑ, ϕ) can be introduced, where (v, r) are coordinates onL and (ϑ, ϕ) are angular
coordinates for the sphere. The spherical symmetry group then acts on the S2 part of
N . Using such coordinates, the metric gab on N assumes the line element

ds2 = −e2�(v,r)C(v, r)dv2 + 2e�(v,r)dvdr + r2d�2 (5)

where d�2 is the normalized spherically symmetric Riemannian metric on S2. With
respect to angular coordinates (ϑ, ϕ), one has

d�2 = dϑ2 + (sin ϑ)2dϕ2 . (6)

The coordinate v takes values in a real interval and r in a positive real interval; the
precise form of the intervals depends on the smooth coordinate functions C ≥ 0 and
�. Furthermore, the function C can be written in terms of the Hawking mass

M(v, r) = r

2

(
1 − gab(v, r)∇ar∇br

)
(7)

as

C(v, r) = 1 − 2M(v, r)

r
. (8)

As a side remark, we notice that if�(v, r) = 0 andM(v, r) = M(v), the metric gab
reduces to the Vaidya metric, which is one of the simpler models of dynamical black
holes (see [23] and references cited there).
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Consider the following null vector fields,

�a = 2
∂

∂v

a

+ e�C
∂

∂r

a

, �a = −e−� ∂

∂r

a

. (9)

Then, �a is a future pointing outgoing null vector field and �a a future pointing ingoing
null vector field. Furthermore, in terms of these vector fields we have that

gab = −1

2

(
�a�b + �a�b

)
+ hab (10)

where hab = r2d�2 and it also holds that

gab�
a�b = −2. (11)

The expansion parameters of the congruences of outgoing and ingoing null
geodesics tangent to �a and �a are given by

θ+ = hab∇a�b = 2e�C

r
, θ− = hab∇a�b = −2e−�

r
. (12)

On N , θ− is always negative, while θ+ has the same sign as C , and vanishes if C = 0.
In the case of a black hole, we have that C is positive far from the centre; thus, far
from r = 0, the transversal area of the congruence tangent to �a increases towards the
future while the transversal area of the congruence tangent to �a decreases.

2.2 Outer trapping horizons

The set of points where C = 0 is the union of trapped surfaces. The possibility arises
that this set has several disjoint connected components. Thus, we define the outer
trapping horizon H as the outermost connected component, in the following sense:
We assume that there is a time function T on N so that all the r -coordinate values of
H on hypersurfaces of constant T are larger than the respective r -coordinate values
of the other connected components. If there is only one connected component then,
writing C = 0 in terms of the Hawking mass,

H =
{

(v, r , ν) ∈ N : 2M(v, r)

r
= 1

}

. (13)

The hypersurfaceH is spacelike for black holes which are growing in a collapse, it is
lightlike for stationary black holes, and it is timelike for black holes which evaporate.

In contrast with the case of Schwarzschild spacetime, there is in general no timelike
or causal Killing vector field near H that could be used to define and test black hole
thermodynamical quantities. Hayward [29] proposed to use the Kodama vector field
as a replacement (see also [30] for a review). The Kodama vector field [39] can be
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defined in terms of �, � and r as

Ka := 1

2

(
�[r ]�a − �[r ]�a) = e−� ∂

∂v

a

, (14)

with �[r ] = �a∇ar and similarly for �[r ]. The Kodama vector field is conserved and
can be used to build other conserved quantities: It holds that

∇aK
a = 0 , ∇a(W

abKb) = 0, (15)

for any symmetric tensor field Wab that is invariant under the spherical symmetries
of the spacetime.

Notice that Ka is timelike in the region where θ+ > 0 and is lightlike on H.
Furthermore, the surface gravityκ associatedwith theKodamavector field is a function
onH defined by

1

2
Ka(∇aKb − ∇bKa) = κKb on H . (16)

With respect to the metric component function C(v, r) of (5), one obtains

κ = 1

2

∂C(v, r)

∂r
if C(v, r) = 0, (17)

and in terms of the Hawking mass it is

κ =
(M(v, r)

r2
− ∂rM(v, r)

r

)∣
∣
∣
∣
r=2M(v,r)

. (18)

This definition generalizes the concept of surface gravity known for stationary black
hole horizons, or for bifurcate Killing horizons. In the case of a stationary black hole,
it is known that the surface gravity is proportional to the Hawking temperature.

2.3 Lightlike congruences emanating from the outer trapping horizon and
adapted null coordinates

We have already indicated in Introduction that there are lightlike congruences ema-
nating from the outer trapping horizonH . They are determined once one chooses any
point (v∗, r∗, ν∗) onH. Any such point then determines its orbit S∗ = {(v∗, r∗)} × S2

under the spherical symmetry group of the spacetime. Clearly, S∗ is a subset ofH. The
lightlike vector fields �a and �a restricted to S∗ are tangent to two lightlike congruences
C∗ (“outgoing”) and T∗ (“ingoing”), respectively. Owing to the spherical symmetry,
these lightlike congruences are 2-dimensional lightlike hypersurfaces. It holds that
S∗ = C∗ ∩ T∗.

One can introduce local coordinates (U , V ) covering an open neighbourhood of
(v∗, r∗) in the L-part of N . U and V are null (or lightlike) coordinates, so that the
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metric line element (5) takes the form

ds2 = −2A(U , V )dU dV + r2(U , V )d�2 , (19)

where the radial coordinate is now a function of U and V , r = r(U , V ). This can
actually always be achieved for a spherically symmetric spacetime metric; in the case
at hand, there is an integrating factor α = α(v, r) so that the required coordinates can
be defined on an open neighbourhood of S∗ by

α · dUa = 1

2
e2�(v,r)C(v, r)dva − e�(v,r)dra , dVa = dva . (20)

One can further re-define the coordinates U and V so that they have additional prop-
erties. First, we have the freedom to choose theU and V coordinates such thatU = 0
and V = 0 exactly for the points in S∗. Furthermore, we can choose the U and V
coordinates so thatU = 0 exactly for the points on C∗ and V = 0 exactly for the points
on T∗; this freedom of choice is related to the fact that we have �a = β(U ) · dUa on
T∗ and �a = β(V ) · dVa on C∗, with smooth, nonzero functions β(U ) and β(V ).
Re-defining U and V again so that β = 2 and β = 1, one obtains from (11) that

A(U , 0) = 1 and A(0, V ) = 1 . (21)

Thus, given S∗, we can choose coordinates (U , V , ϑ, ϕ) = (U , V , ν) in an open
neighbourhood of S∗ with the properties (1) to (4) stated in introduction. In the next
section, we shall see that also property (5) is satisfied.

2.4 Kodama flow near S∗

As discussed above, once a sphere S∗ contained in the outer trapping horizon H is
fixed, we can determine the cone C∗ formed by outgoing radial null geodesics passing
through S∗, and the transversal cone T∗, formed by ingoing radial null geodesics
passing through S∗. Later we shall analyse the scaling towards C∗ of the 2-point
function of any Hadamard state. The resulting distribution can be restricted to T∗,
and it will be tested with respect to an observer moving along the integral line of the
Kodama field. Hence, we need to analyse the form of the action of Ka on T∗ near S∗.
We denote by �τ (τ ∈ R) the flow generated by Ka . We recall that this means that
whenever p ∈ N and τ0 ∈ R so that�τ (p) ∈ N for all τ in an open interval around τ0,
it holds that Ka∇a f |�τ0 (p)

= d
dτ |τ=τ0 f (�τ (p)) for all smooth, real-valued functions

f on N .
We use adapted coordinates (U , V , ν)with respect to S∗ as described in the previous

section. Then, we write

�τ (U , V , ν) = (uτ (U , V , ν), vτ (U , V , ν), ν) (22)
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i.e. uτ (U , V , ν) is the U -coordinate of �τ (U , V , ν) and vτ (U , V , ν) is the V -
coordinate. (Note that �τ doesn’t act on ν, and therefore, uτ and vτ actually do
not depend on ν.)

Lemma 2.1 With κ∗ the value of κ on S∗ (corresponding to U = 0 and V = 0), there
is an open interval of U coordinate values around 0 so that, on using the notation
O(τ,U 2) = O(τ ) · O(U 2) with the usual meaning of the Landau symbol for a single
argument,

(a) dUaKa(U , V = 0, ν) = −κ∗U + O(U 2) ,
(b) uτ (U , V = 0, ν) = e−κ∗τU + O(τ,U 2)

Proof On using that �a = ∂
∂U

a and the definition of Ka , one obtains that dUaKa =
− 1

2�[r ] = ∂τuτ . On the other hand, 1
2�[r ] vanishes on S∗, and it holds that

−1

2
�[�[r ]]

∣
∣
∣
∣
S∗

= 1

2

∂C

∂r

∣
∣
∣
∣
S∗

= κ∗ . (23)

This yields dUaKa(U , V = 0, ν) = −κ∗U + O(U 2), having used �a = ∂
∂U

a once
more and the fact that S∗ is the locus of U = 0 and V = 0. This proves (a).

Furthermore, we have ∂τuτ (U , V = 0, ν) = dUaKa(U , V = 0, ν) = −κ∗U +
O(U 2), yielding on integration

uτ (U , V = 0, ν) = e−κ∗τU + O(τ,U 2)

on fixing the constants of integration such that u0(U , 0, ν) = (U , 0, ν) to be consistent
with �τ=0(p) = p. This proves (b). �

This shows that the property (5) stated for adapted coordinates in Introduction is
also fulfilled.

3 The quantized linear scalar field

The main point of our article is an investigation of quantized fields on a spherically
symmetric spacetime (M, gab) with an outer trapping horizon H and Kodama vector
field Ka . To this end, our investigation starts with the free quantized scalar field φ(x).
We assume that the underlying spacetime (M, gab) is globally hyperbolic. Actually,
global hyperbolicity of the spacetime at large distances fromH is not required for our
considerations; what we need is a spherically symmetric, globally hyperbolic open
neighbourhood of the outer trapping horizonH contained in the open set N � L× S2

on which the Eddington–Finkelstein coordinates discussed before can be introduced.
For notational convenience,we assume in the following that this spherically symmetric
globally hyperbolic open neighbourhood just coincides with M .

The quantized real free scalar field on (M, gab) is then defined in the standard
manner which we will briefly sketch. For a fuller discussion, the reader may con-
sult [34,38,61]. As (M, gab) is globally hyperbolic by assumption, there are uniquely
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determined advanced and retarded fundamental solutions Gadv/ret (“Green’s opera-
tors”) for the second-order hyperbolic Klein–Gordon operator ∇a∇a − M defined on
smooth scalar test functions on M . Here, ∇a denotes the covariant derivative of the
spacetime metric gab, and M ≡ M(x) is a smooth, real-valued function on M . Then,
one can define the causal Green’s function

G (F, F ′) =
∫

M

(
F(x)(GadvF ′)(x) − F(x)(GretF ′)(x)

)
dvolg(x) ,

F, F ′ ∈ C∞
0 (M,R) ,

where dvolg denotes the volume form of the spacetime metric gab. Hence, there is
a ∗-algebra A = A (M, gab,M) which is generated by a family of elements φ(F),
F ∈ C∞

0 (M,R), and a unit element 1, subject to the relations:

(i) F �→ φ(F) is R-linear (i i) φ((∇a∇a + M)F) = 0

(i i i) φ(F)∗ = φ(F) (iv) [φ(F), φ(F ′)] = iG (F, F ′) · 1 ,
F, F ′ ∈ C∞

0 (M,R) .

Here, [φ(F), φ(F ′)] = φ(F)φ(F ′)− φ(F ′)φ(F) denotes the algebraic commutator.
The φ(F) are abstract field operators, at this level without a Hilbert space representa-
tion. One can symbolically write φ(x) to mean that φ(F) = ∫

M φ(x)F(x) dvolg(x)
which can best be made rigorous when the φ(F) are given in some Hilbert space
representation.

We recall thatw(2) is a 2-point function for the Klein–Gordon field operators φ(F)
if w(2) : C∞

0 (M,R) × C∞
0 (M,R) → C, F, F ′ �→ w(2)(F, F ′) is real-bilinear,

extends to a distribution in D′(M × M), and moreover, fulfils

w(2)(F, F) ≥ 0 , w(2)(F ′, F) = w(2)(F, F ′) , Imw(2)(F, F ′) = 1

2
G (F, F ′) ,

(24)

w(2)((∇a∇a − M)F, F ′) = 0 = w(2)(F, (∇a∇a − M)F ′) (F, F ′ ∈ C∞
0 (M,R)) .

(25)

There is a one-to-one correspondence between states onA and Hilbert space repre-
sentations ofA which is given by the Gelfand–Naimark–Segal (GNS) representation.
At this point, however, we don’tmake use of this, but we come back to amore operator-
algebraic point of view in Sect. 5. Rather, we are interested in quasifree Hadamard
states on A ; as these are completely determined by their 2-point function w(2), it is
the behaviour of these 2-point functions near the outer trapping horizon that will be
in the focus of our investigation.

At this point, it is useful, for later purpose, to look at the Hadamard form of the
2-point function in more detail, following mainly [37,50,51] (see also [52] for the
relation of the Hadamard condition with equilibrium states).

Having chosen some S∗, in the adapted coordinates, we can define the time function
T (x) = T (U , V , ϑ, ϕ) = (U + V )/2. We can consider the hypersurface � = {x =
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(U , V , ϑ, ϕ) : T (x) = 0}. Then, there is an open neighbourhood B in M of S∗ so that
�B = � ∩B is a spacelike, acausal hypersurface containing S∗, and the open interior
of the domain of dependence D(�B) is a globally hyperbolic open neighbourhood
of S∗ having �B as a Cauchy surface. Then, an open neighbourhood NB of �B is
called a causal normal neighbourhood if, given x and x ′ in NB, with x ′ ∈ J+(x),
there is a convex normal neighbourhood (with respect to the metric gab) containing
J−(x ′)∩ J+(x). It has been shown in [37] that causal normal neighbourhoods always
exist.

Then, a 2-point function w(2) is said to be of Hadamard form near S∗ if, for all
F, F ′ ∈ NB, it holds that

w(2)(F, F ′) = lim
ε→0+

∫
wε(x, x

′)F(x)F ′(x ′) dvolg(x) dvolg(x ′)

(F, F ′ ∈ C∞
0 (NB,R)) , (26)

where (for any k ∈ N)

wε(x, x
′) = ψ(x, x ′)

(
1

8π2

�1/2(x, x ′)
σε(x, x ′)

+ ln(σε(x, x
′))Yk(x, x ′)

)

+ Zk(x, x
′)

(27)

with

σε(x, x
′) = σ(x, x ′) − 2iεt(x, x ′) + ε2 and t(x, x ′) = T (x) − T (x ′). (28)

The important point here is the appearance of a smooth cutoff function ψ whose
purpose is to make the terms in the brackets in (27) well defined and smooth. We
explain this here briefly and refer for full details to the references [37,50,51] and also
the review [38]; note that in the references, our cutoff function ψ is denoted by χ

(however, we use χ as a different cut-off function in the proof of Theorem 4.1).3

We denote by X the set of causally related pairs of points (x, x ′) ∈ NB × NB,
i.e. (J+(x) ∩ J−(x ′)) ∪ (J−(x) ∩ J+(x ′)) is non-empty. Then, there is an open
neighbourhoodU ofX in NB×NB onwhich σ(x, x ′) (the half of the squared geodesic
distance) and�(x, x ′) (the van Vleck–Morette determinant) are well defined and C∞
for (x, x ′) ∈ U—however, it seems that a proof of existence of such a neighbourhood
U has never previously been given in the literature. That issue is discussed in a recent
paper by Moretti [44], where an argument showing that actually there is such a U
is presented. Furthermore, there is a well-defined sequence of functions Yk(x, x ′)
(determined by the Hadamard recursion relations) which can be chosen in Ck(U ,R)
for any k ∈ N. The functions Zk(x, x ′) are correspondingly in Ck(NB × NB,R).
There is then a further open neighbourhood of X in NB × NB, denoted by U∗, so that
U∗ ⊂ U . Then, choose some ψ ∈ C∞(NB × NB, [0, 1]) with ψ(x, x ′) = 1 on U∗
and ψ(x, x ′) = 0 outside of U . Consequently, the bracket term in (27) is well defined

3 We thank an anonymous referee for pointing out that a previous version of our definition of the cut-off
function was incomplete.

123



Temperature and entropy–area relation of quantum... Page 15 of 44 110

and Ck due to the presence of the cut-off function ψ . There is a freedom of choice for
ψ ; a different choice is compensated by a re-definition of the Zk . Otherwise, different
sequences Zk correspond to different two-point functions.

4 Scaling limit of Hadamard 2-point functions near S∗ and restriction
to T∗

4.1 Conformal transformation

In the adapted coordinates (U , V , ϑ, ϕ) discussed in Sect. 2.3, the line element of the
spacetime (M, gab) under consideration assumes the form

ds2 = −2A(U , V )dUdV + r2(U , V )d�2 .

Our investigation of the scaling limit of the quantized linear scalar field near points of
an outer trapping horizonH that we will consider below will be facilitated by using a
conformally transformedmetric. This applies in particular to the proof of Theorem 4.1.
To simplify notation, we will write again ν for (ϑ, ϕ) noting that the angular variables
(ϑ, ϕ) really represent an element ν of the unit sphere.

The conformal transformation is defined with respect to an arbitrarily chosen point
(v∗, r∗) on H defining S∗ and consequently C∗ and T∗, as explained in Introduction.
Given (v∗, r∗) (or equivalently, the corresponding S∗), we introduce the conformally
transformed metric g̃ab on M by

g̃ab = η2gab with the conformal factor η2(U , V ) = r2∗
r2(U , V )

; (29)

the associated line element is

ds̃2 = −2
A(U , V )r2∗
r2(U , V )

dUdV + r2∗d�2 . (30)

One feature of g̃ab is the splitting of the squared geodesic distance between points
(U , V , ν) and (U ′, V ′, ν′) according to the Pythagorean theorem:

σ̃ (U , V , ν;U ′, V ′, ν′) = σ̃ (L)(U , V ;U ′, V ′) + s(ν; ν′) (31)

where σ̃ (L)(U , V ;U ′, V ′) denotes the squared geodesic distance between the points
(U , V ) and (U ′, V ′) on the two-dimensional “Lorentzian” part of the spacetime with

metric line element −2 A(U ,V )r2∗
r2(U ,V )

dUdV and where s(ν; ν′) is the squared geodesic

distance between points ν and ν′ on the two-dimensional sphere with radius r∗.
It is worth noting that on S∗ where r = r∗, the conformal factor is equal to 1:

η|S∗ = 1 .
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At the level of 2-point functions, the conformal transformation has the following
effect. Suppose that

w(2)(F, F ′) = lim
ε→0

∫
wε(x, x

′)F(x)F ′(x ′) dvolg(x) dvolg(x ′)

(F, F ′ ∈ C∞
0 (NB,R))

is a 2-point function of Hadamard form, near S∗, for the quantized scalar field that we
consider on (M, gab). Then, defining

w̃ε(x, x
′) = η−1(x)wε(x, x

′)η−1(x ′) ,

the distribution

w̃(2)(F, F ′) = lim
ε→0

∫
w̃ε(x, x

′)F(x)F ′(x ′) dvolg̃(x) dvolg̃(x ′)

(F, F ′ ∈ C∞
0 (NB̃,R)),

is a 2-point function of Hadamard form near S∗ on the conformally related spacetime
(M, g̃ab), with a suitably small neighbourhood B̃ of S∗, and an associated causal
normal neighbourhood NB̃ defined with respect to g̃ab. This has been shown in [48].

The scaling limit which we will consider in the next section gives the same results
on w(2) or on w̃(2) on account of η|S∗ = 1, but it is easier to study the scaling limit
using w̃(2) because of (31). To this end, we put on record the following observations
for later use.
The volume form dvolg of the original metric and the volume form dvolg̃ of the
conformally transformed metric are related according to dvolg̃(x) = η4(x)dvolg(x)
and therefore one has

w(2)(F, F ′) = w̃(2)(F̃, F̃ ′) with F̃ = η−3F , F̃ ′ = η−3F (32)

for all F, F ′ ∈ C∞
0 (M,R). The statement that w̃(2) is of Hadamard form near S∗ on

(M, g̃ab) means that

w̃ε(x, x
′) = ψ̃(x, x ′)

(
1

8π2

�̃1/2(x, x ′)
σ̃ε(x, x ′)

+ ln(σ̃ε(x, x
′))Ỹ (x, x ′)

)

+Z̃(x, x ′) (x, x ′ ∈ NB̃) (33)

where �̃ and σ̃ refer to g̃ab, ψ̃ has properties analogous to ψ , and Ỹ and Z̃ (dropping
the index k on Y and Z ) can be chosen as Ck function for any k ∈ N.
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4.2 Scaling limit and restriction

We select a sphere S∗ of radius r∗ lying in the outer trapping horizon, and a patch of
adapted coordinates (U , V , ν) relative to S∗. Moreover, we assume that NB is a causal
normal neighbourhood of a partial Cauchy surface �B so that S∗ ⊂ �B, as described
in Sect. 3. Then, if l0 > 0 is small enough, the open set

O = {(U , V , ν) : |U | < l0 , |V | < l0 , ν ∈ S2} (34)

is a subset of NB and an open neighbourhood of S∗. We assume that l0 is chosen small
enough so that O is also contained in a causal normal neighbourhood NB̃ of S∗ with
respect to the conformally transformed metric g̃ab described in Sect. 4.1.

Note that if 0 < λ ≤ 1 and 0 < μ ≤ 1, then (U , V , ν) ∈ O ⇒ (λU , μV , ν) ∈ O.
Consequently, when defining the scaling transformations

(uλF)(U , V , ν) = 1

λ
F(U/λ, V , ν) , (35)

for 0 < λ ≤ 1, one can see that the uλ map the space of test functions C∞
0 (O,R) into

itself, and

supp(uλF) = {(λU , V , ν) : (U , V , ν) ∈ supp(F)} (0 < λ ≤ 1) . (36)

We stress that the scaling transformations are defined with respect to the chosen S∗
and the corresponding adapted coordinates.

We also define another type of transformations which serve, in a limit, to restricting
distributions to T∗ by effectively acting like a δ-distribution concentrated at V = 0.
Let ζ ∈ C∞

0 ((−l0, l0),R) with ζ(V ) ≥ 0 and
∫
ζ(V ) dV = 1. Then, we define, for

any F ∈ C∞
0 (O,R),

(vμF)(U , V , ν) = 1

μ
ζ(V /μ)F(U , V , ν) (0 < μ ≤ 1) . (37)

Clearly, also every vμ maps C∞
0 (O,R) into itself.

Adopting this notation, we now present the result on scaling limits of Hadamard 2-
point functions near S∗ and subsequent restriction to T∗.

Theorem 4.1 Let w(2) be any 2-point function of Hadamard form for the scalar field
φ on the spacetime (M, gab) as in Sect. 3.
(I) For all f , f ′ ∈ C∞

0 (O,R), it holds that

lim
λ→0

w(2)(uλ(2∂U f ), uλ(2∂U ′ f ′)) = L( f , f ′) , where

L( f , f ′) = lim
ε→0+ − 1

r2∗π

∫
f (U , V , ν) f ′(U ′, V ′, ν)

(U −U ′ + iε)2

× Q(V , V ′, ν) dU dU ′dV dV ′ d�2(ν) (38)
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with

Q(V , V ′, ν) = �̃1/2(0, V , ν, 0, V ′, ν)P(0, V , 0, V ′) , (39)

P(U , V ,U ′, V ′) = r4∗η−1(U , V )A(U , V )η−1(U ′, V ′)A(U ′, V ′) . (40)

(II) For all f , f ′ ∈ C∞
0 (O,R) it holds that

lim
μ→0

lim
λ→0

w(2)(vμuλ(2∂U f ), vμuλ(2∂U ′ f ′)) = lim
μ→0

L(vμ f , vμ f ′) = ( f , f ′)

(41)

where

( f , f ′) = lim
ε→0+ −r2∗

π

∫
f (U , 0, ν) f ′(U ′, 0, ν)

(U −U ′ + iε)2
dU dU ′ d�2(ν) (42)

The proof of this theorem is given in Appendix (Sect. 1).

Remark (i) The more difficult step is proving Part (I) of the theorem, Part (II) then
is merely a corollary. Actually, the statement follows easily when inserting the scaled
test functions uλ(2∂U f ) and uλ(2∂U ′ f ′) into the ε-regulated integral expression of
the Hadamard form and exchanging the λ → 0 and ε → 0 limits. The more involved
part of the proof consists in showing that this can be justified. We have opted to give a
full, self-consistent proof in this article, despite some similarities of our proof with a
related argument in [43] (that relied in parts also on results from [37]) which applies
to the case of the quantized Klein–Gordon field on spacetimes with bifurcate Killing
horizons.

(ii) As is familiar from the quantization of the massless free quantum field in 2-
dimensional Minkowski spacetime, respectively, its chiral components on lightrays,
the 2-point function is well defined for test functions which are first derivatives of
compactly supported smooth functions. Without derivatives, an infrared divergence
occurs, see e.g. [5], Sect. on the “Schwinger model”. This is the reason why the test
functions used for the scaling limit considerations are U -derivatives of compactly
supported smooth functions.
(iii) One may chooseU or V -coordinates so that the Van Vleck–Morette determinant
is equal to 1; this simplifies the form of the function Q in the first part of Theorem 4.1;
however, we need not make use of this possibility here.
(iv) The factor 2 in the definition of the scaling transformations uλ has been introduced
to match with the convention for 2-point functions on lightlike hyperplanes used in
the literature, see e.g. [15]. See also the remark towards the end of Sect. 5.5.

4.3 Kodama flow projected toT∗ and its action in the scaling limit

Under the same assumptions as for the previous theorem, we can establish that the
projected action Tτ on T∗ of the flow of the Kodama vector field Ka acts like the
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dilation group in the scaling limit. To make this more precise, we define

Tτ (U , V , ν) = (uτ (U , 0, ν), V , ν) (τ ∈ R) (43)

for all (U , V , ν) ∈ O, with the convention that the definition applies whenever
(uτ (U , 0, ν), V , ν) is again in O. Recall that (cf. Lemma 2.1) uτ (U , V = 0, ν) =
e−κ∗τU + O(τ,U 2) so that the projected action of the Kodama flow on T∗ takes the
form

Tτ (U , V , ν) = (e−κ∗τU + O(τ,U 2), V , ν) (44)

and there is some τ0 > 0 and an open neighbourhood O0 of S∗ with O0 ⊂ O so that
Tτ (U , V , ν) ∈ O for all (U , V , ν) in O0 and all |τ | < τ0. We also define:

(T τ F)(U , V , ν) = F(T−τ (U , V , ν)) (F ∈ C∞
0 (O0,R) , |τ | < τ0) , (45)

Sτ (U , ν) = (e−κ∗τU , ν) ((U , ν) ∈ T∗ , τ ∈ R) , (46)

(Sτ ϕ)(U , ν) = ϕ(S−τ (U , ν)) (ϕ ∈ C∞
0 (T∗,R) , τ ∈ R) (47)

Proposition 4.2 For any 2-point function w(2) of φ that is of Hadamard form,

lim
μ→0+ lim

λ→0+w(2)(T τ vμuλ(∂U f ), T τ ′vμuλ(∂U ′ f ′)) = (Sτ f , Sτ ′ f ′) (48)

holds for all f , f ′ ∈ C∞
0 (O0,R) and |τ |, |τ ′| < τ0.

Proof For any F ∈ C∞
0 (O0,R) and |τ | < τ0, one obtains

(T τuλF)(U , V , ν) = (uλF)(T−τ (U , V , ν))

= (uλF)(e
κ∗τU + O(τ,U 2), V , ν)

= 1

λ
F(λ−1(eκ∗τU + O(τ,U 2)), V , ν)

= 1

λ
F(eκ∗τ (U/λ) + O(λ) · O(τ, (U/λ)2), V , ν) (49)

for small enough λ > 0. One can now see that in the proof of Theorem 4.1, all esti-
mates involving Fλ(x) = (uλF)(U , V , ν) (and similarly, the primed counterparts)
are preserved when replacing (uλF)(U , V , ν) by (T τuλF)(U , V , ν) (and similarly
for the primed counterparts). Moreover, the limit considerations in the proof of The-
orem 4.1 where F(x) = F(U , V , ν) appears (and the primed counterpart) render the
analogous results upon replacing F(U , V , ν) by F(eκ∗τU + O(λ) · O(τ,U 2), V , ν)
(analogously for the primed counterpart) as λ → 0, except that F(U , V , ν) is in
the limit to be replaced by F(eκ∗τU , V , ν) and F ′(U ′, V ′, ν′) by F ′(eκ∗τ ′

U ′, V ′, ν′).
That follows from the fact that O(λ) · O(τ,U 2) → 0 as λ → 0 uniformly as τ and
U vary over compact sets. Observing this and carrying out the steps of the proof of
Theorem 4.1 thus yield the claimed result. �
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5 Thermal properties and entropy–area relation for the scaling limit
theory on T∗

5.1 The scaling limit theory onT∗ (and its extension)

The 2-point function  defines a quantum field theory on T∗ which naturally extends
to a (chiral, conformal) quantum field theory on R × S∗ � R × S2. We will refer to
this as the “scaling limit theory” induced by the scaling limit 2-point function .

To discuss this, fix again S∗ ⊂ H, which is a copy of the sphere S2 with radius r∗.
Then, one can introduce on the (real-linear) function space DS∗ = C∞

0 (R × S∗,R)
the symplectic form

ς(ϕ, ϕ′) = 2Im(ϕ, ϕ′) = r2∗
∫
(∂Uϕ(U , ν)ϕ′(U , ν) − ϕ(U , ν)∂Uϕ

′(U , ν)) dU d�2(ν) .

(50)

Note the dependence of ς on r2∗ . Given this symplectic form, one can form the Weyl
algebra W(DS∗ , ς) (the “exponentiated CCR algebra”) over the symplectic space
(DS∗ , ς); by definition, it is a C∗ algebra with unit element 1, generated by unitary
elements W (ϕ), ϕ ∈ DS∗ , fulfilling the Weyl relations

W (0) = 1 , W (ϕ)∗ = W (−ϕ) , W (ϕ)W (ϕ′) = e− i
2 ς(ϕ,ϕ

′)W (ϕ + ϕ′) . (51)

As is common in the operator algebraic approach to algebraic quantum field theory
(cf. [24] and in the present context, see also [15,22,37,57]) one can introduce a family
{W(G)} of C∗ algebras indexed by open, relatively compact subsets G of R × S∗
by defining W(G) as the C∗-subalgebra generated by all W (ϕ) with supp(ϕ) ⊂ G.
Then, it is easy to see that {W(G)} fulfils the condition of isotony, meaning that
W(G1) ⊂ W(G2) if G1 ⊂ G2, and it fulfils also a condition of locality, which in the
present case means that W(G1) and W(G2) commute elementwise if G1 ∩ G2 = ∅.
Furthermore, there are certain symmetries that act covariantly on the manifoldR× S∗:
The dilations Sτ (U , ν) = (e−κ∗τU , ν), the translations La(U , ν) = (U + a, ν), and
rotations R(U , ν) = (U , Rν), where τ, a ∈ R and R ∈ SO(3). The actions of these
symmetry operations can be lifted toDS∗ by setting Sτ ϕ = ϕ◦S−1

τ , Laϕ = ϕ◦L−1
a and

Rϕ = ϕ ◦R−1. Each of those is a symplectomorphism with respect to the symplectic
form ς , i.e. one has ς(Sτ ϕ, Sτ ϕ′) = ς(ϕ, ϕ′) for all ϕ, ϕ′ ∈ DS∗ , etc. This implies
that these symplectomorphisms can be lifted to C∗-algebraic morphisms α(τ,a,R) of
W(DS∗ , ς), given by

α(τ,a,R)W (ϕ) = W (Sτ La Rϕ) . (52)

We also adopt the notation to write ατ for α(τ,0,1) and αa for α(0,a,1) etc whenever no
ambiguity can arise. It is plain that thereby, a representation of the group of symmetries
generated by dilations, translations and rotations by automorphisms of W(DS∗ , ς) is

123



Temperature and entropy–area relation of quantum... Page 21 of 44 110

established. It is also easily seen that these automorphisms act covariantly (or geo-
metrically) on the family {W(G)} in the sense that

ατ (W(G)) = W(SτG) , αa(W(G)) = W(LaG) , αR(W(G)) = W(RG) .
(53)

We recall that a linear functional ω : W(DS∗ , ς) → C is a state if it is positive,
i.e. ω(A∗A) ≥ 0 for all A ∈ W(DS∗ , ς), and normalized, i.e. ω(1) = 1. Moreover,
every state ω induces the associated GNS representation (Hω, πω,�ω) of W(DS∗),
characterized by the properties that πω is a unital ∗-representation of W(DS∗ , ς)
by bounded linear operators on the Hilbert space Hω, and �ω is a unit vector in
Hω so that πω(W(DS∗ , ς))�ω is dense in Hω and 〈�ω, πω(A)�ω〉 = ω(A) for all
A ∈ W(DS∗ , ς) (on writing 〈ξ, ψ〉 for the scalar product of ξ, ψ ∈ Hω). Thus, once
given a state ω on W(DS∗ , ς), one can introduce the system {N (G)} of local von
Neumann algebras in the GNS representation of ω given by

N (G) = πω(W(G)) = πω(W(G))′′ (54)

where the overlining means taking the weak closure in B(Hω) (the set of bounded
linear operators on Hω); the double prime denotes the double commutant: For X ⊂
B(Hω), X ′ = {B ∈ B(Hω) : AB − BA = 0 for all A ∈ X } is the commutant of X ,
and X ′′ = (X ′)′. Whenever X contains the unit operator, it holds that X = X ′′. For
full details on these operator algebraic facts, see [6–8].
The 2-point function  induces a quasifree state ω onW(DS∗ , ς) defined by linear
extension of the assignment ω(W (ϕ)) = e−(ϕ,ϕ)/2. We denote the associated local
von Neumann algebras again by N (G) (unless a more detailed notation is required).
Of particular interest are the von Neumann algebras NR = N ((−∞, 0) × S∗) and
NL = N ((0,∞) × S∗).

Several important properties ofω have been established and are well known, from
related contexts or from investigations of chiral conformal quantum field theory. We
collect some of those properties here; proofs and further exposition can be found in
[15,22,37,57]. For notational simplicity, the GNS representation ofω will be denoted
by (H, π,�).

(1) The state ω is invariant under the action α: ω ◦ α(τ,a,R) = ω . Conse-
quently, there is a unitary action U (τ,a,R)π(A)� = π(α(τ,a,R)A)� (A ∈
W(DS∗ , ς)) implementing the action of α in the GNS-representation of ω with
U (τ,a,R)� = �.

(2) ω is a ground state for the translations αa , i.e. there is a non-negative self-adjoint
generator H in H so that Ua = ei Ha . (We are here using the same convention
as previously explained for α to write Ua = U (0,a,1), etc.)

(3) � is a cyclic and separating vector for the von Neumann algebras NR and NL .
Let �R denote the modular operator with respect to NR and �. Then, it holds
that

�iτ
R = Uβτ with β = 2π/κ∗ (τ ∈ R) (55)
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(4) The previous relation (55) can equivalently be expressed as stating that the state
ω restricted to the C∗-subalgebra WR = W((−∞, 0) × S∗) of W(DS∗ , ς) is a
KMS-state for the action of theατ at inverse temperatureβ = 2π/κ∗. Analogously,
ω restricted toWL = W((0,∞)× S∗) is a KMS state for the action of the ατ at
inverse temperature β = −2π/κ∗.

5.2 Thermal interpretation of the 2-point function3

Wewill now point out that the thermal properties expressed in (3) and (4) at the end of
the previous subsection can be directly read off from the Fourier spectrum of  with
respect to the Kodama time parameter, analogously as in [43].

To this end, we recall the results presented in Sect. 2.4 and the action of the Kodama
flow on the scaling limit state discussed in Sect. 4.3. In particular, points of T∗ outside
the HorizonH can be parametrized by (u, ν) where here the coordinate u is related to
U by the following coordinate transformation

U = −e−κ∗u, U < 0. (56)

In particular, we have seen in Proposition 4.2 that the Kodama flow in the scaling
limit, described by Sτ , acts as u-translation, u �→ u + τ . Thus, if ϕ and ϕ′ are both
contained in C∞

0 ((−∞, 0) × S∗,R), i.e. they are supported on U < 0, one obtains

(ϕ, ϕ′) = lim
ε→0+ −r2∗κ2∗

4π

∫
ϕ(u, ν)ϕ′(u′, ν)

sinh
(
(u − u′) κ∗

2 + iε
)2 du du′ d�2(ν) . (57)

A similar relation holds if ϕ and ϕ′ are both supported on U > 0, on using the
coordinate transformation U = eκ∗u . The Fourier transform along u − u′ of that
distribution can be directly computed, see e.g. Appendix of [14]; it yields

(ϕ, ϕ′) = 2r2∗
∫

ϕ̂(E, ν)ϕ̂′(E, ν)
1 − e−βE

E dE d�2(ν) , β = 2π/κ∗ , (58)

if ϕ and ϕ′ are both supported either onU < 0 orU > 0, where the Fourier transform
with respect to u has been denoted by a hat

ϕ̂(E, ν) = 1√
2π

∫
e−i Euϕ(u, ν) du . (59)

The appearance of the Bose thermal distribution factor (1 − e−βE )−1 for the Fourier
“energies” in the integral expression (58) manifestly shows the thermal Fourier spec-
trum of the 2-point function for an observer moving along the Kodama flow, where
the inverse temperature is given by β = 2π/κ∗.
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5.3 Tunneling probability

Again proceeding as in [43], we now look at the Fourier transformed expression for
the 2-point function  in the case that ϕ is supported on U < 0, i.e. outside of the
outer trapping horizon, while ϕ′ is supported on its inside, onU > 0. The result is (cf.
[43], Sect. 3.3 b) )

(ϕ, ϕ′) = r2∗
∫

ϕ̂(E, ν)ϕ̂′(E, ν)
sinh(β2 E)

E dE d�2(ν) . (60)

This formula is the basis for estimating the tunnelling probability or rather, transition
probability between a one-particle state inside, and another one outside of the outer
trapping horizon H in the scaling limit. To this end, we choose some E0 > 0, and
define, for small a > 0, η̂a(E) = 1 if |E − E0| < a, and η̂a(E) = 0 otherwise (i.e. η̂a
is the characteristic function of an interval of width 2a around E0). We furthermore
choose any nonzero, real, integrable, bounded function b on S∗ and define

ĥa(E, ν) = 1√
2a

η̂a(E)b(ν) , ϕ̂a(E, ν) = ĥ(E, ν)

||ha ||() (61)

where

||ha ||2() = (ha, ha) = 2r2∗
∫ |ĥa(E, ν)|2

1 − e−βE
E dE d�2(ν) , β = 2π/κ∗ , (62)

defines the one-particle norm on DS∗ which is evidently finite for any ĥa . Therefore,

ha (the inverse Fourier transform of ĥa) defines an element inDS∗
()

, the completion
of DS∗ with respect to the norm || . ||(), supported on U < 0, the outside of H.

Consequently, ϕa , the inverse Fourier transform of ϕ̂a , is an element of DS∗
()

which
is supported on U < 0 and which is normalized, ||ϕa ||() = 1. An a-parametrized

family ϕ′
a of elements in DS∗

()
with ||ϕ′

a ||() = 1, but supported on U > 0, is

defined in complete analogy. We note that for each a, there is a sequence ϕ(n)a ∈ DS∗
(n ∈ N) supported onU < 0 with ||ϕa −ϕ

(n)
a ||() −→

n→∞ 0. The same holds for primed

counterparts of the functions involved, supported on U > 0.
It also follows from the properties of the GNS representations of W for quasifree

states that, defining “one-particle vectors”ψ[ϕ(n)a ] = −i ln(π(W (ϕ
(n)
a )))� inH,

||ψ[ϕ(n)a ] − ψ[ϕ(m)a ]||H
= ||ϕ(n)a − ϕ(m)a ||() (63)

holds. Therefore, the one-particle vectorsψ[ϕ(n)a ] formaCauchy sequence, converging
for any fixed a to a unit vector, denoted by ψ[ϕa], inH.

We may now insert the expressions for ha and the analogously defined h′
a into (58)

and (60). Making use of the fact that |ĥa |2, |ĥ′
a |2 and ĥa ĥ′

a are delta-sequences with
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respect to E peaked at E0 as a → 0, one finds in the limit a → 0 for the transition
probability

lim
a→0

|〈ψ[ϕa], ψ[ϕ′
a]〉|2 = lim

a→0

∣
∣(ϕa, ϕ

′
a)

∣
∣2 = 1

4

(
1 − e−βE0

sinh(βE0/2)

)2

= e−βE0 .

(64)

For large enough values of βE0, this approaches the Boltzmann thermal distribution
since, if e.g. βE0 ≥ ln(2), then

∣
∣
∣
∣

e−βE0

1 − e−βE0
− e−βE0

∣
∣
∣
∣ ≤ 2e−2βE0 (65)

showing that in the limit of large E0, the transition probability becomes exponentially
suppressed as is characteristic of a thermal occupation of energy levels at inverse
temperature β = 2π/κ∗. This observation is in agreement with [16,17,27].

5.4 Coherent states of the scaling limit theory and their relative entropy

Given the state ω, its associated coherent states are of the form

ωϕ(A) = ω(W (ϕ)∗AW (ϕ)) (A ∈ W(DS∗ , ς)) . (66)

This definition applies, in the first place, for all ϕ ∈ DS∗ , but it is easy to see that it may

be extended to all functions which lie in the completion DS∗
()

of DS∗ with respect

to the norm ||ϕ||() = (ϕ, ϕ)1/2. It is also easy to check that DS∗
()

contains, e.g.
C∞
0 (R,R) ⊗ L2

R
(S∗, d�2) (algebraic tensor product without completion). There is

a particular feature shared by all coherent states: They are completely uncorrelated
with respect to the spatial (i.e. spherical) degrees of freedom. This means if there are
finitely many subsets G j = I j × � j ( j = 1, . . . , n; n ≥ 2) where the I j are real
open intervals (admitting the full real line) and the � j are open subsets of S∗ � S2

which are pairwise disjoint, � j ∩ �k = ∅ if j �= k, then

ωϕ(A1A2 · · · An) = ωϕ(A1) · ωϕ(A2) · · ·ωϕ(An) (67)

holds for all A j ∈ W(G j ). This relation generalizes to the case that A j ∈ N (G j ),
on extending ω in the GNS representation to B(H) as ω(B) = 〈�, B�〉
(B ∈ B(H)). Note that ω itself is a coherent state (corresponding to ϕ = 0).

For coherent states, the relative entropy can be easily calculated. Without going
into full details at his point, the relative entropy of a faithful, normal state on a von
Neumann algebra with respect to another faithful, normal state was introduced by
Araki [1] (see also [58]). It is a concept with an information theoretic background,
see e.g. [18,45] for further discussion. If ωϕ is any coherent state on W(DS∗ , ς) as
just described, then in the GNS representation (H, π,�) it is induced by the
unit vector�ϕ = π(W (ϕ))�. If ϕ is compactly supported in (−∞, 0)× S∗ so that
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π(W (ϕ)) is contained inNR , then it is not difficult to see that�ϕ is a standard vector
for NR , meaning that �ϕ is cyclic and separating for NR . In this case, the definition
of relative entropy in the sense of Araki applies for any pair of coherent states. In
particular, the relative entropy of ωϕ with respect to ω on NR is given as [32,41]

S(ω|ωϕ) = i
d

dt

∣
∣
∣
∣
t=0

〈�ϕ,�
i t
R�ϕ〉 (68)

where �R is, as above, the modular operator with respect to NR and �.
To calculate S(ω|ωϕ) in the case at hand (cf. again [32,41] for similar calculations),

we use (55) to obtain

S(ω|ωϕ) = i
d

dt

∣
∣
∣
∣
t=0

〈�ϕ,�
i t
R�ϕ〉 = i

d

dt

∣
∣
∣
∣
t=0

〈�ϕ,�ϕt 〉 (69)

where

ϕt (U , ν) = (S2π t/κ∗ϕ)(U , ν) = ϕ(e2π tU , ν) . (70)

Then, we observe

〈�ϕ,�ϕt 〉 = ω(W (−ϕ)W (ϕt )) = e
i
2 ς(ϕ,ϕ

t )ω(W (ϕt − ϕ))

= e
i
2 ς(ϕ,ϕ

t )e−(ϕt−ϕ,ϕt−ϕ)/2 (71)

Now we note that

d

dt

∣
∣
∣
∣
t=0

(ϕt − ϕ, ϕt − ϕ) =
(

(
d

dt
(ϕt − ϕ), ϕt − ϕ) + (ϕt − ϕ,

d

dt
(ϕt − ϕ))

)∣
∣
∣
∣
t=0

= 0 (72)

since ϕt |t=0 = ϕ. Hence, we find

S(ω|ωϕ) = 1

2

d

dt

∣
∣
∣
∣
t=0

ς(ϕt , ϕ) = −2πr2∗
∫

(−∞,0)×S2
U (∂Uϕ)

2(U , ν) dU d�2(ν).

(73)

In order to relate this entropy with the energy content of the coherent state measured
by an observer moving along the Kodama flow, we rewrite the relative entropy formula
with respect to the coordinate (56). We then obtain

S(ω|ωϕ) = βEϕ (74)

where

Eϕ = r2∗
∫

R×S2
(∂uϕ)

2(u, ν) du d�2(ν) (75)
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is the energy content of the coherent state ωϕ measured by the Kodama observer and
β = 2π

κ
is the inverse temperature of the KMS state ω (cf. Sect. 6.4 in [37]).

5.5 Relative entropy is proportional to outer trapping horizon surface area

The previous equality (73) establishes a proportionality between the relative entropy
of coherent states of the scaling limit theory and the cross section S∗ of the outer
trapping horizon, having the geometrical area 4πr2∗ , with respect to which the scaling
limit and the restriction to T∗ of the quantized scalar field on the ambient spacetime
are taken. This is justified if, for different such cross sections, say S∗1 and S∗2, with
respective radii r∗1 and r∗2, the associated coherent states ω and ωϕ are identified.
This is certainly very natural for the scaling limit state ω, but for ωϕ that may, at
first sight, not appear compelling. Let us therefore provide further motivation why the
proportionality between the relative entropy of coherent states and the surface area
of the cross section of the outer trapping horizon at which the scaling limit theory is
considered arises naturally. The key point lies in the fact that the coherent states in
the scaling limit theory are completely correlation-free across spatial (i.e. spherical)
separation as expressed in (67), together with the additivity of the relative entropy
with respect to correlation-free states.

To discuss this in more detail, fix a horizon cross section S∗ with radius r∗ and
consider the corresponding scaling limit Weyl-algebra W(DS∗ , ς) with the scaling
limit state ω, its GNS representation (H, π,�) and the von Neumann algebras
N (G) for open subsets G of R × S∗ as introduced in Sect. 5.1. Specifically, for open
subsets � of S∗ � S2, we define the von Neumann algebras

NR(�) = N ((−∞, 0) × �). (76)

We recall thatNR(�) is the von Neumann algebra contained in B(H) generated by
the π(W (ϕ))where supp(ϕ) ⊂ (−∞, 0). Hence, on account of (55), theNR(�) are
invariant under the adjoint action of the modular group �i t

R (t ∈ R) with respect to
NR and �.

When we denote by ωϕ,� the state on NR(�) given by

A �→ ωϕ,�(A) = 〈�ϕ, A�ϕ〉 (A ∈ NR(�)) , (77)

i.e. the restriction of the coherent stateωϕ defined previously toNR(�), and if likewise
the restriction ofω toNR(�) is denoted byω,� , thenwefind for the relative entropy
in the same way as before,

S(ω,� |ωϕ,�) = −2πr2∗
∫

(−∞,0)×S2
U (∂Uϕ)

2(U , ν) dU d�2(ν) = S(ω|ωϕ) .
(78)
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Then, if �1 and �2 are any two disjoint open subsets of S2, and if supp(ϕ j ) ⊂
(−∞, 0) × � j ( j = 1, 2), and setting ϕ12 = ϕ1 + ϕ2, one finds

S(ω,�1∪�2 |ωϕ12,�1∪�2) = S(ω|ωϕ12)
= −2πr2∗

∫

(−∞,0)×S2
U (∂Uϕ12)

2(U , ν) dU d�2(ν)

= −2πr2∗
∫

(−∞,0)×S2
U

[
(∂Uϕ1)

2(U , ν) + (∂Uϕ2)
2(U , ν)

]
dU d�2(ν)

= S(ω|ωϕ1) + S(ω|ωϕ2)
= S(ω,�1 |ωϕ1,�1) + S(ω,�2 |ωϕ2,�2) (79)

where we passed from the 3rd equality to the 4th since ϕ1 and ϕ2 are assumed to
have disjoint ν-supports. This shows that the relative entropy of coherent states in any
scaling limit is additive with respect to angular separation; actually, a corresponding
additivity of the relative entropy across angular separation holds upon replacing the
two open, disjoint subsets�1 and�2 of S2 by finitelymany�1, . . . , �N , and similarly
ϕ1 and ϕ2 by finitely many ϕ1, . . . , ϕN with supp(ϕ j ) ⊂ (−∞) × � j .

In fact, this can be seen to be, more generally, a consequence of the fact that the
coherent states in the scaling limit are correlation-free across angular separation and
the additivity of the relative entropy of correlation-free states. One can show that
there is a joint unitary equivalence ωϕ12,�1∪�2 � ωϕ1,�1 ⊗ ωϕ2,�2 and ω,�1∪�2 �
ω,�1 ⊗ ω,�2 , where the correlation-free product state ωϕ1,�1 ⊗ ωϕ2,�2 is the state
defined on NR(�1) ⊗ NR(�2) by linear extension of

A1 ⊗ A2 �→ ωϕ1,�1 ⊗ ωϕ2,�2(A1 ⊗ A2) = ωϕ1,�1(A1) · ωϕ2,�2(A2) . (80)

For (faithful, normal) correlation-free product states, the equation

S(ω,�1 ⊗ ω,�2 |ωϕ1,�1 ⊗ ωϕ2,�2) = S(ω,�1 |ωϕ1,�1) + S(ω,�2 |ωϕ1,�2) (81)

holds (cf. [45], eq. (5.22)), whereupon one may conclude that

S(ω,�1∪�2 |ωϕ12,�1∪�2) = S(ω,�1 |ωϕ1,�1) + S(ω,�2 |ωϕ1,�2) (82)

obtains.
Therefore, the scaling of the relative entropy of coherent states proportional to the

geometric area of the horizon cross section arises naturally. This is seen particularly

clearlywhen considering coherent states corresponding to elements ϕ ∈ DS∗
()

which
are of the form ϕ = h � χ� where

(h � χ�)(U , ν) = h(U ) · χ�(ν) (U ∈ (−∞, 0) , ν ∈ S2) (83)
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with h ∈ C∞
0 ((−∞, 0),R) and χ� the characteristic function of an open, or more

generally, measurable subset � of S2. In this case,

S(ω|ωh�χ� ) = −2π
∫ 0

−∞
U (∂Uh)

2(U ) dU · r2∗
∫

�⊂S2
d�2(ν)

= −2π
∫ 0

−∞
U (∂Uh)

2(U ) dU · A(�r∗ ⊂ S∗) (84)

where A(�r∗ ⊂ S∗) is the geometrical surface of � viewed as subset of the horizon
cross section S∗ which is a copy of the 2-dimensional sphere with radius r∗, i.e. the
surface of � as subset of S2, scaled by r2∗ .

In the light of these observations, it is entirely natural to identify if � = S2,
the coherent states ωh�1 for different horizon cross sections S∗ with different radii
r∗, which renders a proportionality of the relative entropies with the horizon cross-
sectional area A(S∗),

S(ω|ωh�1) = −2π
∫ 0

−∞
U (∂Uh)

2(U ) dU · A(S∗) (85)

for the coherent states of the said type, when considering the scaling limit theory taken
at S∗, arising from any Hadamard state of the quantum field theory on the underlying
spherically symmetric spacetime with an outer trapping horizon.

Remark Without the factor 2 in the definition of the scaling transformations uλ, one
would obtain that the relative entropy S(ω|ωh�1) equals one quarter of the horizon
cross-sectional area times −2π

∫ 0
−∞ U (∂Uh)2(U ) dU , where the latter is the relative

entropy of the coherent state induced by h of the free chiral conformal quantum field
theory defined on the real line with the vacuum two-point function

(1)(h, h
′) = lim

ε→0+ − 1

π

∫
h(U )h′(U ′)

(U −U ′ + iε)2
dU dU ′ (h, h′ ∈ C∞

0 (R,R)) (86)

This is in close analogy to the classical derivation where black hole entropy is equated
to one quarter of the cross-sectional horizon area. Yet, it should be borne in mind that
it refers not to the entropy of the outer trapping horizon itself but to quantities of a
quantum field theory arising in the scaling limit towards a spherical cross section of
the outer trapping horizon. Therefore, the value of the relative entropy depends on the
states chosen and also on the field content of the initially considered quantum field
theory. Nevertheless, regardless of such choices, there is a characteristic scaling of
that relative entropy proportional to (one quarter of) the cross-sectional area of the
outer trapping horizon with respect to which the scaling limit is considered.
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6 Conclusion

In this paper, we have investigated the scaling limits of Hadamard 2-point functions
on the lightlike submanifold T∗ of a spherically symmetric outer trapping horizon
generated by lightlike geodesics traversing the outer trapping horizon. The scaling
limit 2-point function  was found to have a universal form, independent of which
Hadamard 2-point function of the quantum field theory on the underlying spherically
symmetric spacetime is initially chosen. The projectedKodama flow acts in the scaling
limit like a dilation, and the scaling limit 2-point function shows a thermal spectrum
with respect to the projected Kodama flow at inverse temperature β = 2π/κ∗ where
κ∗ is the surface gravity of the horizon cross section S∗ where the lightlike generators
of T∗ traverse the outer trapping horizon. Consequently, one can derive a tunnelling
probability in the scaling limit for Fourier modes peaked at Fourier energy E0 with
respect to the Kodama time behaving like e−βE0 for large E0, analogous to a thermal
distribution of energy modes. These results are in agreement with earlier, related
results for stationary black horizons or bifurcate Killing horizons, in particular [43]
(see also [16,17,37]), and also with the first law of non-stationary black hole dynamics
discussed by Hayward [29], M′ = κ

8πA′ + wV ′ mentioned in Introduction.
Furthermore, the scaling limit 2-point function  defines a quantum field theory

on each T∗, the scaling limit theory, determined by the horizon cross section S∗. The
thermal Fourier spectrum with respect to the Kodama time in the scaling limit is
equivalent to the KMS property of the scaling limit state ω induced by  when
restricted to observables localized on the part of T∗ lying either inside or outside
of the outer trapping horizon. Furthermore, the state ω as well as all the coherent
states ωϕ in the scaling limit theory are correlation-free product states with respect
to separation in the angular coordinate ν of S∗, and we have seen that this leads
naturally to a proportionality of the relative entropy S(ω|ωϕ) with 4πr2∗ , the area of
the cross section S∗ defining the scaling limit theory. Again, this is in keeping with
the classical theory of black hole thermodynamics [3,4,29]. We emphasize that this is
a consequence of our scaling limit analysis and seems to be the first such result in the
setting of quantum field theory in curved spacetime (apart from the related arguments
of [33]).

We should remark that our scaling limit consideration is akin to an adiabatic limit in
the sense that effectively, in the scaling limit all processes or dynamical changes at finite
time scales are scaled away. In this sense, our concepts of inverse temperature and of
relative entropy in the scaling limit theory are not dynamical, and that is a considerable
limitation of our approach. The entropy concept, in our the scaling limit, bears some
similarity to that in Bekenstein’s early article [4] on the subject: When an object (e.g. a
table, a chair or a tankard) traverses the horizon, then the information about the object
is lost outside of the horizon. In [4], the example of beams of light entering a black
hole horizon is used. Our scaling limit theory can be seen as a bunch of elementary
theories for such beams of light, namely, a free chiral conformal field theory, one for
each point on S∗. As the area of S∗ is increased, for example, it accommodates for
more such ingoing light beams as measured by the area, and correspondingly, a larger
amount of information along “elementary light beams” passing the horizon through
S∗ can be absorbed, which corresponds to the scaling of entropy—a measure for the
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lost amount of information—proportional to the area of S∗. See also the article [10]
which can be regarded as a quantum version of Bekenstein’s attribution of entropy to
beams of light.

We think that similar results can also be obtained for other types of horizons, like
cosmological horizons [12] or isolated horizons. A greater challenge is to attempt to
obtain a more dynamical concept of temperature and entropy for dynamical black hole
horizons in the setting of quantum field theory in curved spacetimes and semiclassical
gravity, in the spirit of the approach of [33]which takes dynamicalmetric perturbations
around a static Schwarzschild black hole horizon into account (see e.g. the recent work
[13]). It would also be of interest to see if the notions of temperature and entropy in
the context of our semiclassical approach to the temperature and entropy of black hole
horizons can be linked to more “holographic” entropy concepts [35].
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Appendix

In Appendix, we present the proof of Theorem 4.1. The proof will be facilitated by
the following auxiliary result.

Lemma 7.1 Let ( α)0<αk≤1 (k = 1, . . . , n) be a family of measurable functions  α :
R
m → C, indexed by α = (α1, . . . , αn) ∈ R

n, so that for any compact subset C of
R
m there is some 0 < a0 ≤ 1 with

sup
0<αk≤a0

sup
y∈C

| α(y)| ≤ 1

2
(87)

Furthermore, let ( jα)0<|λ|≤1 be a family of continuous functions jα : Rm → C, with
the properties:

(i) supp( jα) ⊂ Jm with some fixed compact real interval J ;
(ii) | jα(y)| ≤ b for all α and all y ∈ Jm with a fixed finite constant b > 0.

Then, the following statements hold.
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(A) There are some 0 < a0 ≤ 1 and a finite positive constant κ so that, if 0 < δ ≤ 1
2 ,

it holds that (writing y = (y1, y) and dm y = dy1 dm−1y)

sup
0<αk≤a0

∫

Rm−1

∫ δ

0

∣
∣
∣ln | α(y) + y21 |

∣
∣
∣ | jα(y)| dy1dm−1y ≤ κδ1/3 . (88)

(B) There are some 0 < a0 ≤ 1 and a finite constant κ so that if δ ≤ 1
2 , it holds that

(writing y = (y0, y1, y) and dm y = dy0dy1dm−2y))

sup
0<αk≤a0

∫

Rm−2

∫

|y20−y21 |<δ2

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1dm−2y ≤ κδ1/3 .

(89)

Proof of Lemma 7.1 Part (A)
Making use of the integration coordinate substitution z = y21 , thus dz = 2y1dy1,

∫

Rm−1

∫ δ

0

∣
∣
∣ln | α(y) + y21 | jα(y)

∣
∣
∣ dm y

=
∫

Rm−1

∫ δ2

0

∣
∣
∣
∣
∣
ln | α(√z, y) + z| jα(

√
z, y)

2
√
z

∣
∣
∣
∣
∣
dz dm−1y . (90)

Hölder’s integral inequality with p = 3, q = 3/2 (so that 1/p+1/q = 1) with respect
to the z-integration yields

∫

Rm−1

∫ δ2

0

∣
∣
∣
∣
∣
ln | α(√z, y) + z| jα(

√
z, y)

2
√
z

∣
∣
∣
∣
∣
dz dm−1y

≤ 1

2

∫

Rm−1

[∫ δ2

0
| ln | α(√z, y) + z| |3 dz

]1/3

×
[∫ δ2

0
z−3/4| jα(√z, y)|3/2 dz

]2/3

dm−1y (91)

Choosing 0 < a0 ≤ 1 so that

sup
0<αk≤a0

sup
y∈Jm

| α(y)| ≤ 1

2
, (92)

then for 0 < αk ≤ a0, the last integral can be estimated by

sup
0<| |≤1/2

1

2

[∫ δ2

0
| ln | + z| |3 dz

]1/3 [∫ δ2

0
z−3/4b3/2 dz

]2/3

|J |m−1 (93)
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where |J | is the length of the interval J .
We observe that since | | ≤ 1/2 and 0 < z ≤ δ2 with δ ≤ 1/2, we obtain

|Re( )+z|2+|Im( )|2 = | +z|2 < 1.Consequently, under the integral, | ln | +z| | ≤
| ln |Re( ) + z| |. This results in

sup
0<| |≤1/2

[∫ δ2

0
| ln | + z| |3 dz

]1/3

≤ sup
0<| |≤1/2

[∫ δ2

0
| ln |Re( ) + z| |3 dz

]1/3

= sup
0<|r |≤1/2

[∫ δ2−r

−r
| ln |z| |3 dz

]1/3

≤ K

(94)

with a finite, positive real constant K . On the other hand, we obtain

[∫ δ2

0
z−3/4 dz

]2/3

= 42/3δ1/3 . (95)

Putting all the previous steps together, we find

sup
0<αk≤a0

∫

Rm−1

∫ δ

0

∣
∣
∣ln | α(y) + y21 |

∣
∣
∣ | jα(y)| dy1dm−1y ≤ 42/3

2
b|J |m−1K δ1/3 .

(96)

This proves the statement of Part (A), with κ = 42/3
2 b|J |m−1K .

Part (B)
First we note that the set |y20 − y21 | < δ2 in the y0-y1-plane can be split into the four
parts

H1(δ) =
{

|y1| ≤ y0 <
√
y21 + δ2

}

, H2(δ) =
{

−
√
y21 + δ2 < y0 ≤ −|y1|

}

(97)

H3(δ) =
{

|y0| ≤ y1 <
√
y20 + δ2

}

, H4(δ) =
{

−
√
y20 + δ2 < y1 ≤ −|y0|

}

(98)

The sets overlap only at their boundaries, y0 ± y1 = 0. Therefore,

∫

Rm−2

∫

|y20−y21 |<δ2

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1 dm−2y

=
4∑

�=1

∫

Rm−2

∫

H�(δ)

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1 dm−2y (99)
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The integrals involving the H�(δ) all have a very similar structure, and thus, it suffices
to show that, e.g.

sup
0<αk≤a0

∫

Rm−2

∫

H1(δ)

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1 dm−2y ≤ κ1δ

1/3

(100)

since similar estimates for the other H�(δ) can be deduced by analogous arguments.
Carrying out a substitution z = y20 followed by a Hölder-type integral inequality
similarly as in the proof of Part (A), we find, on making a0 small enough so that (92)
holds, for all 0 < αk ≤ a0,

∫

Rm−2

∫

H1(δ)

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1 dm−2y

=
∫

Rm−2

∫

J

∫
√
y21+δ2

|y1|

∣
∣
∣ln | α(y) + y20 − y21 |

∣
∣
∣ | jα(y)| dy0 dy1 dm−2y

≤ 1

2

∫

Rm−2

∫

J

[∫ y21+δ2

y21

∣
∣
∣ln | α(√z, y1, y) + z − y21 |

∣
∣
∣
3
dz

]1/3

(101)

×
[∫ y21+δ2

y21

| jα(√z, y1, y)|3/2
z3/4

dz

]2/3

dy1 d
m−2y

≤ 1

2
sup

| |<1/2

[∫ δ2

0
|ln | + z||3 dz

]1/3

b|J |m−1 sup
y1∈J

[∫ y21+δ2

y21

z−3/4 dz

]2/3

(102)

where an obvious substitution of z by z − y21 has been carried out in the integral
involving the logarithm. It is easy to check that

sup
y1∈J

[∫ y21+δ2

y21

z−3/4 dz

]2/3

≤
[∫ δ2

0
z−3/4 dz

]2/3

(103)

and therefore, we see that the integral expression in (102) can be estimated by

42/3

2
b|J |m−1K δ1/3 (104)

just as in the proof of Part (A). This concludes the proof of Part (B) �

Proof of Theorem 4.1 It will be convenient to introduce the following abbreviations,
referring to adapted coordinates (U , V , ν) near the chosen S∗:
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x =(U , V , ν) , x ′ = (U ′, V ′, ν′) , xλ = (λU , V , ν) , x ′
λ = (λU ′, V ′, ν′) ,

(105)

dX = dX(x) = dU dV d�2(ν) = dU dV sin(ϑ)dϑ dϕ (106)

using ν = (ϑ, ϕ) in spherical angular coordinates as before; dX ′ is defined analo-
gously. Other abbreviations that we will use are

F̃λ(U , V , ν) = η−3(U , V )Fλ(U , V , ν) , Fλ(U , V , ν) = (uλ2∂U f )(U , V , ν)
(107)

and analogously for symbols endowed with primes.
Recalling (32), we have

w(2)(Fλ, F
′
λ) = w̃(2)(F̃λ, F̃

′
λ)

= lim
ε→0+

∫
w̃ε(x, x

′)F̃λ(x)F̃ ′
λ(x

′) dvolg̃(x) dvolg̃(x ′)

= lim
ε→0+

∫
w̃ε(x, x

′)Fλ(x)F ′
λ(x

′)P(U , V ,U ′, V ′) dX dX ′ (108)

having made use of dvolg̃(x) = η(U , V )2A(U , V )r2∗ dX in the adapted coordinates
for S∗ which, as we recall, is a copy of a 2-sphere with radius r∗. We introduce on
a smooth partition of unity on S2 × S2, consisting of two functions χ and χ⊥, as
follows: Choose some 0 < δ2 < π2/64 and choose a non-negative C∞ function χ ,
bounded by 1, on S2× S2 so that χ(ν, ν′) = 1 if s(ν, ν′)/r2∗ ≤ δ2/2, and χ(ν, ν′) = 0
if s(ν, ν′)/r2∗ ≥ δ2. We then write χ⊥(ν, ν′) = 1 − χ(ν, ν′). Note that χ = χδ and
χ⊥ = χ⊥

δ depend on the choice of δ. With this notation, we can write

w̃ε(x, x
′) = w̃ε(x, x

′)χ(ν, ν′) + w̃ε(x, x
′)χ⊥(ν, ν′) . (109)

In a further step, we observe that, on a change of theU andU ′ integration coordinates,
∫
w̃ε(x, x

′)χ⊥(x, x ′)Fλ(x)F ′
λ(x

′)P(U , V ,U ′, V ′)r2∗ dX dX ′

=
∫ [

ψ̃(xλ, x
′
λ)

(
1

8π2

�̃1/2(xλ, x ′
λ)

σ̃ε(xλ, x ′
λ)

+ ln(σ̃ε(xλ, x
′
λ))Ỹ (xλ, x

′
λ)

)

+ Z̃(xλ, x
′
λ)

]

× P(λU , V , λU ′, V ′)χ⊥(ν, ν′)F(x)F(x ′) dX dX ′ . (110)

In view of the particular form of the half of the squared geodesic distance (31), we
have

σ̃ε(xλ, x
′
λ) = σ̃ (L)(λU , V , λU ′, V ′) + s(ν, ν′) + 2iεt(λU , V , λU ′, V ′) + ε2

(111)
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Since in the integral on the right-hand side of (110), s(ν, ν′) ≥ δ > 0 owing to the
presence of χ⊥, the integrand functions remain uniformly bounded in the limits as
ε → 0 and λ → 0, and they converge almost everywhere to an integrable function.
Therefore, one obtains

lim
λ→0+ lim

ε→0+

∫
w̃ε(x, x

′)χ⊥(x, x ′)Fλ(x)F ′
λ(x

′)P(U , V ,U ′, V ′) dX dX ′

=
∫

h(V , V ′, ν, ν′)∂U f (U , V , ν)∂U ′ f ′(U ′, V ′, ν′) dX dX ′ = 0 (112)

for some bounded L1 function h; the integral on the right-hand side vanishes since,
after the limit λ → 0, h is independent of U and U ′, and f and f ′ have compact
support (in particular, compact support with respect toU , respectively, U ′). Note that
this holds no matter how small δ > 0 has been chosen.

Next we notice that s(ν, ν′) is invariant under rotations R ∈ SO(3), s(Rν, Rν′) =
s(ν, ν′); similarly, the surface-integration form d�2 is invariant under the rotations,
d�2(Rν) = d�2(ν). Therefore, given ν′, we can regard it as obtained from a standard

“north pole point”
◦
ν′ by a suitable rotation Rν′ ∈ SO(3) so that ν′ = Rν′

◦
ν′, hence

s(ν, ν′) = s(ν, Rν′
◦
ν′) = s(R−1

ν ν,
◦
ν′). The relation between ν′ and Rν′ is bijective

and smooth as long as ν′ is bounded away by a finite distance from the antipode point

−◦
ν′ (on identifying

◦
ν′ = (0, 0, 1) ∈ R

3). In the following integrals we will consider
this is always the case owing to the presence of the function χ(ν, ν′). Introducing the
abbreviations

σ̃
(L)
[λ] = σ̃ (L)(λU , V , λU ′, V ′) , t[λ] = t(λU , V , λU ′, V ′) , (113)

we thus have, for any λ-parametrized family qλ(x, x ′) of bounded, compactly sup-
ported C1 functions, writing Rν′x = (U , V , Rν′ν) for x = (U , V , ν)

∫
qλ(x, x ′)
σ̃ε(xλ, x ′

λ)
χ(ν, ν′) dX dX ′ =

∫
qλ(x, x ′)

σ̃
(L)
[λ] + s(R−1

ν′ ν,
◦
ν′) + 2iεt[λ] + ε2

χ(ν, ν′) dX dX ′

=
∫

qλ(Rν′x, x ′)
σ̃
(L)
[λ] + s(ν,

◦
ν′) + 2iεt[λ] + ε2

χ(Rν′ν, ν′) dX dX ′ .

(114)

Using the standard spherical angular coordinates (ϑ, ϕ) = ν, with ϑ = 0 correspond-

ing to the “north pole point” = ◦
ν′, the half of the squared geodesic distance on the

sphere with radius r∗ takes the simple form

s(ϑ, ϕ,
◦
ν′) = r2∗ϑ2

2
, (115)
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and we thus obtain, on writing ξλ(x, x ′) = χ(Rν′ν, ν′)qλ(Rν′x, x ′),
∫

qλ(Rν′x, x ′)
σ̃
(L)
[λ] + s(ν,

◦
ν′) + 2iεt[λ] + ε2

χ(Rν′ν, ν′) dX dX ′

=
∫ ∫ δ

ϑ=0

ξλ(x, x ′)
σ̃
(L)
[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2

sin(ϑ)dϑ dϕ dU dV dX ′ (116)

since in the polar coordinates chosen, r2∗ϑ2/2 is the half of the squared geodesic

distance between
◦
ν′ and ν on the sphere with radius r∗, and ξλ(x, x ′) = 0 if ϑ > δ

by the properties of χ . Now carrying out a partial integration with respect to ϑ and
observing

1

σ̃
(L)
[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2

= 1

r2∗ϑ
∂ϑ ln(σ̃ (L)

[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2) ,

(117)

we are led to

∫ ∫ δ

ϑ=0

ξλ(x, x ′)
σ̃
(L)
[λ] + r2∗ϑ2/2 − 2iεt[λ] + ε2

sin(ϑ)dϑ dϕ dU dV dX ′

=
∫ [

ln(σ̃ (L)
[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2)ξλ(x, x

′) sinc(ϑ)
r2∗

]δ

ϑ=0
dϕ dU dV dX ′

(118)

−
∫ ∫ δ

ϑ=0
ln(σ̃ (L)

[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2) ∂ϑ

(

ξλ(x, x
′) sinc(ϑ)

r2∗

)

dϑ dϕ dU dV dX ′ .

(119)

We note that

ln(σ̃ε(x, x
′)) = ln |σ̃ (L)(U , V ,U ′, V ′) + s(ν, ν′) + 2iεt(x, x ′) + ε2|

+ iarg(σ̃ (L)(U , V ,U ′, V ′) + s(ν, ν′) + 2iεt(x, x ′) + ε2) (120)

so that Lemma 7.1 applies to the expression in (119), with α = (λ, ε) ∈ R
2 , on

noting that the argument function part stays uniformly bounded in (λ, ε), resulting in
a contribution in (119) which is O(δ) as δ → 0. Therefore, supposing that λ and ε
have been chosen sufficiently small, and likewise that δ > 0 is sufficiently small, we
can conclude that

sup
λ,ε

∣
∣
∣
∣

∫ ∫ δ

ϑ=0
ln(σ̃ (L)

[λ] + r2∗ϑ2/2 − 2iεt[λ] + ε2)

× ∂ϑ

(

ξλ(x, x
′) sinc(ϑ)

r2∗

)

dϑ dϕ dU dV dX ′
∣
∣
∣
∣ ≤ κ1δ

1/3 (121)
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with a suitable positive constant κ1.
In a similar manner we find, provided that λ, ε and δ are sufficiently close to 0, on

account of Lemma 7.1

sup
λ,ε

∣
∣
∣
∣

∫
ln(σ̃ε(xλ, x

′
λ))Ỹ (xλ, x

′
λ)χ(ν, ν

′)F(x)F(x ′)P(λU , V , λU ′, V ′) dX dX ′
∣
∣
∣
∣

≤ sup
λ,ε

∣
∣
∣
∣

∫ ∫ δ

ϑ=0
ln(σ̃ (L)

[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2)kλ(x, x
′) dϑ dϕ dU dV dX ′

∣
∣
∣
∣

≤ κ2δ
1/3 (122)

with a family of smooth functions kλ(x, x ′) of x and x ′ which is uniformly bounded
and uniformly compactly supported in λ; κ2 > 0 is a suitable constant.

Furthermore, since Z̃(x, x ′) is C∞, we see that

sup
λ,ε

∣
∣
∣
∣

∫
Z̃(x, x ′)χ(ν, ν′)Fλ(x)Fλ(x ′)P(U , V ,U ′, V ′)r2∗ dX dX ′

∣
∣
∣
∣ = O(δ) (123)

if λ and δ are small enough.
Summarizing our findings up to this point, we see that, on choosing

qλ(x, x
′) = ψ̃(xλ, x

′
λ)
�̃1/2(xλ, x ′

λ)

8π2 F(x)F(x ′)P(λU , V , λU ′, V ′) (124)

in (114), we obtain

lim
λ→0+w(2)(Fλ, F

′
λ)

= lim
λ→0+ lim

ε→0+

∫ [

ln(σ̃ (L)
[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2)ξλ(x, x

′) sinc(ϑ)
r2∗

]δ

ϑ=0
dϕ dU dV dX ′

+ O(δ1/3) (125)

for any sufficiently small δ > 0. However, the integral expression is independent of
δ: Recalling that ξλ(x, x ′) = 0 if ϑ > δ, the evaluation of the integral expression at
ϑ = δ vanishes, and the resulting expression, as we will see, is independent of χδ
which is contained in the definition of ξλ(x, x ′). Therefore, since δ may be chosen
arbitrarily small, we now obtain

lim
λ→0+ w(2)(Fλ, F

′
λ)

= lim
λ→0+ lim

ε→0+

∫
− ln(σ̃ (L)

[λ] + r2∗ϑ2/2 + 2iεt[λ] + ε2)ξλ(x, x
′) sinc(ϑ)

r2∗

∣
∣
∣
∣
ϑ=0

dϕ dU dV dX ′ .

(126)
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Evaluating the integral expression at ϑ = 0, observing ξλ(x, x ′) = χ(Rν′ν, ν′)
qλ(Rν′x, x ′), results in

lim
λ→0+ w(2)(Fλ, F

′
λ)

= lim
λ→0+ lim

ε→0+

∫
− ln(σ̃ (L)

[λ] + 2iεt[λ] + ε2)qλ(U , V , ν′,U ′V ′, ν′)2π
r2∗

dU dV dU ′ dV ′ d�2(ν′)

(127)

To see this, note first that, in the coordinates chosen, x |ϑ=0 = (U , V ,
◦
ν′), implying

s(Rν′ν, ν′) = s(ν,
◦
ν′) = s(

◦
ν′, ◦

ν′) = 0 and therefore, χ(Rν′ν, ν′) = 1. On the other

hand, ν = ◦
ν′ alsomeans that there is noϕ-dependence in the integrand, and the integral

with respect to ϕ can be carried out, just contributing a factor 2π . Moreover, it implies
that qλ(Rν′x, x ′) = qλ(U , V , ν′,U ′, V ′, ν′) in the last integral.
We are thus left with having to evaluate the limits of the right-hand side in (127). We
note that

σ̃
(L)
[λ]

∣
∣
∣
λ=0

= σ̃ (L)(λU , V , λU ′, V ′)
∣
∣
∣
λ=0

= 0 (128)

and therefore, the Taylor expansion of σ̃ (L)
[λ] in λ at λ = 0 up to second-order yields

σ̃
(L)
[λ] = λ(U −U ′)(Ṽ − Ṽ ′) + Rλ(U , V ,U ′, V ′) (129)

with Rλ = O(λ2) uniformly on compact sets in U ,U ′ and V , V ′ while Ṽ (and Ṽ ′)
is a geodesic parameter of the lightlike curves V �→ (0, V , ν) with respect to the
conformally transformed metric g̃ab chosen such that dUa = g̃ab(∂/∂ Ṽ )b. This can
be seen from eqns. (3.3) and (3.4) in [49]; note that V is an affine parameter for the said
lightlike curves with respect to gab but not necessarily with respect to the conformally
transformed metric g̃ab. Using the form of the “Lorentzian” part of the conformally
transformed metric

−2η2(U , V )A(U , V )dUdV , (130)

it is not difficult to check that Ṽ = Ṽ (V ) has the property

Ṽ − Ṽ ′ =
∫ V ′

V
η2(0, V1) dV1 implying Ṽ − Ṽ ′ = (V − V ′)γ (V , V ′) (131)

with a positive, jointly continuous function γ (V , V ′)where γ (V , V ′) and 1/γ (V , V ′)
are bounded when V and V ′ range over compact sets. Consequently, we have that
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lim
λ→0+ w(2)(Fλ, F

′
λ)

= lim
λ→0+ lim

ε→0+

∫
− ln(λ(U −U ′)(V − V ′)γ (V , V ′) + Rλ + 2iεt[λ] + ε2)

× qλ(U , V , ν′,U ′V ′, ν′)2π
r2∗

dU dV dU ′ dV ′ d�2(ν′)

= lim
λ→0+ lim

ε→0+

∫
−[ln(λγ ) + ln((U −U ′)(V − V ′) +  λ + λ−1γ−1[2iεt[λ] + ε2])]

× qλ(U , V , ν′,U ′V ′, ν′)2π
r2∗

dU dV dU ′ dV ′ d�2(ν′)

(132)

with  λ = λ−1γ−1Rλ, and we have abbreviated γ = γ (V , V ′).
Let us first consider the ε-independent part in (132). We split ln(λγ ) = ln(λ) +

ln(γ ). Then, the limits can be carried out to yield4

lim
λ→0+

∫
− ln(γ (V , V ′))qλ(U , V , ν′,U ′, V ′, ν′)2π

r2∗
dU dV dX ′ = 0 (133)

because the onlyU andU ′ dependence in q0(U , V ,U ′, V ′) comes from ∂U f (U ) and
∂U ′ f ′(U ′) and therefore, since f and f ′ are compactly supported, we find that the
resulting integral vanishes. On the other hand, we also have qλ(U , V , ν′,U ′, V ′, ν′) =
q0(U , V , ν′,U ′, V ′, ν′) + q(1)λ (U , V ,U ′, V ′; ν′) where q(1)λ (U , V ,U ′, V ′; ν′) =
O(λ) uniformly on compact sets in U ,U ′ and V , V ′. Then,

lim
λ→0+

∫
ln(λ)(q0(U , V , ν′,U ′, V ′, ν′) + q(1)λ (U , V ,U ′, V ′; ν′))2π

r2∗
dU dV dX ′ = 0

(134)

since, as in the previous argument, q0(U , V , ν′,U ′, V ′, ν′) depends onU andU ′ only
through ∂U f and ∂U ′ f ′, and ln(λ)q(1)λ (U , V ,U ′, V ′; ν′) → 0 as λ → 0 uniformly
on compact sets.

Therefore, setting βλ,ε(U , V ,U ′, V ′) =  λ(U , V ,U ′, V ′) + γ−1[2iεt[λ] + λε2],
we obtain

lim
λ→0+ w(2)(Fλ, F

′
λ) = lim

λ→0+ lim
ε→0+

∫
− ln((U −U ′)(V − V ′) + βλ,ε(U , V ,U ′, V ′))

× qλ(U , V , ν′,U ′, V ′, ν′)2π
r2∗

dU dV dX ′ (135)

where we have made use of the fact that, owing to the limit ε → 0+ being taken prior
to λ → 0+, one may redefine ε as ε/λ without changing the result of the limits.

4 We reinsert the abbreviation dX ′ = dU ′ dV ′ d�2(ν′).
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Then, we choose δ > 0 and split the integration over the U ,U ′ and V , V ′ coordi-
nates into the domains

D>(δ) = |(U −U ′)(V − V ′)| ≥ δ2 , D<(δ) = |(U −U ′)(V − V ′)| < δ2 .

(136)

Furthermore, we change from the (U , V ) coordinates to (T ,Y ) coordinates where

T = 1

2
(U + V ) , Y = 1

2
(U − V ) (137)

and using a coordinate substitution T̄ = T − T ′, Ȳ = Y − Y ′, one arrives at

∫

D<(δ)

ln((U −U ′)(V − V ′) + βλ,ε(U , V ,U ′, V ′))qλ(U , V , ν′,U ′, V ′, ν′)2π
r2∗

dU dV dX ′

=
∫ ∫

4|T̄ 2−Ȳ 2|<δ2
ln(T̄ 2 − Ȳ 2 + β̄λ,ε(T̄ , Ȳ , T

′, Y ′))q̄λ(T̄ , Ȳ , T ′, Y ′; ν′)2π
r2∗

dT̄ dȲ dT ′ dY ′ d�2(ν′)

(138)

where β̄λ,ε and q̄λ are the T̄ , Ȳ , T ′,Y ′-coordinate versions of βλ,ε and qλ. We see
that the right-hand side is in a form to which Part (B) of Lemma 7.1 applies (with
α = (λ, ε)), and arguing analogously as with (119) before, we conclude that, once
ε, λ and δ have been chosen sufficiently small, it holds that

sup
λ,ε

∣
∣
∣
∣

∫

D<(δ)

ln((U −U ′)(V − V ′) + βλ,ε(U , V ,U ′, V ′))qλ(U , V , ν′,U ′, V ′, ν′)2π
r2∗

dU dV dX ′
∣
∣
∣
∣

= O(δ1/3) (139)

allowing to conclude

lim
λ→0+ w(2)(Fλ, F

′
λ) = lim

δ→0
lim

λ→0+ lim
ε→0+

∫

D>(δ)
ln((U −U ′)(V − V ′) + βλ,ε(U , V ,U ′, V ′))

× qλ(U , V , ν′,U ′, V ′, ν′)2π
r2∗

dU dV dX ′ (140)

The limits can now be carried out performing the limit ε → 0 followed by λ → 0
prior to integration, to yield

lim
λ→0+ w(2)(Fλ, F

′
λ)

=
∫

[ln(|(U −U ′)|) − iπθ(U −U ′)]q0(U , V , ν′,U ′, V ′, ν′)

2π

r2∗
dU dV dX ′ (141)
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where θ denotes the Heaviside function. To see this, we note that

lim
λ→0+ lim

ε→0+ ln((U −U ′)(V − V ′) + βλ,ε(U , V ,U ′, V ′))qλ(U , V , ν′,U ′, V ′, ν′)

= [ln(|(U −U ′)(V − V ′)|) + iπθ((U ′ −U )(V − V ′))sign(γ−1(V − V ′))]q0(U , V , ν′,U ′, V ′, ν′)
(142)

Using ln(|(U −U ′)(V −V ′)|) = ln |U −U ′|+ ln |V −V ′|, one can see again that the
ln |V −V ′| term gives a vanishing contribution on integration with respect toU andU ′
because q0(U , V , ν′,U ′, V ′, ν′) depends on U and U ′ only through ∂U f and ∂U ′ f ′.
Moreover, since γ−1 = γ−1(V , V ′) > 0,we have θ((U ′−U )(V−V ′))sign(γ−1(V−
V ′)) = θ((U ′ −U )sign(V − V ′))sign(V − V ′); and since

∫
[θ(U −U ′) + θ(U ′ −U )]∂U f (U , V , ν′)∂U ′ f ′(U ′, V ′, ν′)dU dU ′ = 0 (143)

we can conclude that
∫

iπθ((U ′ −U )(V − V ′))sign(γ−1(V − V ′))q0(U , V , ν′,U ′, V ′, ν′) dU dV dX ′

= −
∫

iπθ(U −U ′)q0(U , V , ν′,U ′, V ′, ν′) dU dV dX ′ (144)

showing that (141) holds.
It is well known—or can easily be derived by arguments analogous to those given

in the proof up to now, using partial integrations with respect to U and U ′—that

∫
[ln(|(U −U ′)|) − iπθ(U −U ′)]q0(U , V , ν′,U ′, V ′, ν′)2π

r2∗
dU dV dX ′

= lim
ε→0+

∫
q0(U , V , ν′,U ′, V ′, ν′)

(U −U ′ + iε)2
2π

r2∗
dU dV dX ′ . (145)

Finally, we observe that ψ̃(0, V , ν′, 0, V ′, ν′) = 1 because the points (0, V , ν′) and
(0, V ′, ν′) are causally related and lie, by assumption, in a causal normal neighbour-
hood. Therefore, we have shown that

lim
λ→0+ w(2)(Fλ, F

′
λ) = lim

ε→0+

∫
q0(U , V , ν′,U ′, V ′, ν′)

(U −U ′ + iε)2
2π

r2∗
dU dV dX ′

= − 1

r2∗π

∫
f (U , V , ν) f ′(U ′, V ′, ν)

(U −U ′ − iε)2
Q(V , V ′, ν)

× dU dU ′dV dV ′ d�2(ν) (146)

as claimed in the statement (I) of the theorem.
The second statement is easily proved since the μ → 0 limit can be taken directly

as the distribution L only involves integrations against continuous, bounded functions
with respect to the V and V ′ coordinates. In fact, the limits ε → 0 in the definition of
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L (resp.,) can be interchanged with the limit μ → 0 used to pass from L to. The
result claimed in (II) then follows on observing that the square root of the van Vleck–
Morette determinant equals the unit at coinciding points, so �̃1/2(0, 0, ν, 0, 0, ν) = 1,
and η−1(0, 0) = 1 as well as A(0, 0) = 1.

This completes the proof of the theorem. �
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