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Abstract
We introduce a new infinite family of higher-order difference operators that commute
with the elliptic Ruijsenaars difference operators of type A. These operators are related
to Ruijsenaars’ operators through a formula of Wronski type.
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1 Introduction

In Ruijsenaars’s study of relativistic quantum integrable systems [11,12], he intro-
duced a commuting family of linear difference operators in n variables, denoted by
D1, . . . , Dn , involving sigma functions as coefficients. In this paper, we construct
an explicit infinite family of difference operators H0, H1, H2, . . . in the commutative
algebra C[D1, . . . , Dn] which are related to Dr (r = 1, . . . , n) through a formula
of Wronski type. This construction is applicable also to difference operators with
trigonometric and rational coefficients. In order to deal with the elliptic, trigonometric
and rational cases simultaneously, as in [5,6] we formulate our results in terms of an
entire function [z] satisfying the three-term relation (1.1).

Masatoshi Noumi: On leave from: Department of Mathematics, Kobe University, Rokko, Kobe 657-8501,
Japan.

B Masatoshi Noumi
noumi@kth.se; noumi@math.kobe-u.ac.jp

1 Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

2 Department of Mathematics, Kobe University (graduate), Rokko, Kobe 657-8501, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-021-01435-9&domain=pdf
http://orcid.org/0000-0001-6003-5908


91 Page 2 of 17 M. Noumi, A. Sano

We fix a nonzero entire function [z] in one complex variable z ∈ C satisfying the
three-term relation of Hirota type

[z ± α][β ± γ ] + [z ± β][γ ± α] + [z ± γ ][α ± β] = 0 (1.1)

for any α, β, γ ∈ C, where [α ± β] = [α + β][α − β]. We remark that a generic
solution of this functional equation is given by

[z] = const. ecz
2
σ(z;�) (c ∈ C), (1.2)

where σ(z;�) denotes the Weierstrass sigma function associated with a period lattice
� = Zω1 ⊕ Zω2. It is also satisfied by the functions

[z] = const. ecz
2
sin(π z/ω), [z] = const. ecz

2
z, (1.3)

which are trigonometric and rational degenerations of the generic solution above. It is
known that any solution of (1.1) belongs to one of these three categories. Throughout
this paper, we denote by Dr = Dx

r (r = 1, . . . , n) the Ruijsenaars operators in
n variables x = (x1, . . . , xn) with parameters (δ, κ), associated with [z]. They are
defined by

Dx
r =

∑

I⊆{1,...,n}; |I |=r

∏

i∈I ; j /∈I

[xi − x j + κ]
[xi − x j ]

∏

i∈I
T δ
xi , (1.4)

where I runs over all subsets of indices of cardinality r and T δ
xi stands for the δ-shift

operator xi → xi + δ in xi for each i = 1, . . . , n. It is proved by Ruijsenaars [11] that
these operators Dr commute with each other, namely

Dr Ds = DsDr for all r , s = 1, . . . , n, (1.5)

on the basis of a certain functional identity for the sigma function. We denote by
R = C[D1, . . . , Dn] the commutative algebra generated by Dr (r = 1, . . . , n) and
refer to it as the commutative algebra of Ruijsenaars operators (of type An−1). We
also define D0 = 1, and Dr = 0 for r > n. Note also that these operators Dr

(r = 1, . . . , n) in the trigonometric case are the Macdonald q-difference operators
expressed additively.

We define an infinite family of difference operators Hl = Hx
l (l = 0, 1, 2 . . .) by

Hx
l =

∑

μ1+···+μn=l

∏

1≤i< j≤n

[xi −x j +(μi −μ j )δ]
[xi −x j ]

n∏

i=1

n∏

j=1

μi−1∏

k=0

[xi −x j +κ+kδ]
[xi −x j +δ+kδ]

n∏

i=1

Tμi δ
xi . (1.6)

These operators are expressed briefly as

Hx
l =

∑

μ∈Nn; |μ|=l

�(x + μδ)

�(x)

n∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

Tμδ
x , (1.7)
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in terms of the difference product �(x) = ∏
1≤i< j≤n [xi − x j ], and the δ-shifted

factorials
[z]k = [z][z + δ] · · · [z + (k − 1)δ] (k = 0, 1, 2, . . .) (1.8)

for [z]. Also, for each multi-index μ = (μ1, . . . , μn) ∈ N
n , N = {0, 1, 2, . . .}, we

define |μ| = μ1 + · · · + μn and Tμδ
x = Tμ1δ

x1 · · · Tμnδ
xn .

Theorem 1.1 The linear difference operators Hl = Hx
l (l = 0, 1, 2, . . .) defined

as above belong to the commutative algebra R = C[D1, . . . , Dn] of Ruijsenaars
operators. In particular, one has

Dr Hs = HsDr , Hr Hs = HsHr (r , s = 0, 1, 2, . . .). (1.9)

Wefirst remark that the family of difference operators Hl (l = 0, 1, 2, . . .) originates
from the kernel identities for Ruijsenaars operators ([6]) and the duality transformation
formulas for multiple elliptic hypergeometric series ([5,10]). Let G(z) be a nonzero
meromorphic function on C such that G(z + δ) = [z]G(z), and define the kernel
function �(x; y) of Cauchy type by

�(x; y) =
n∏

i=1

n∏

k=1

G(xi + yk)

G(xi + yk + κ)
(1.10)

for x = (x1, . . . , xn) and y = (y1, . . . , yn). Then, from [5], Theorem 1.3, we have
the kernel identity

Dx
r �(x; y) = Dy

r �(x; y) (r = 0, 1, . . . , n) (1.11)

for the Ruijsenaars operators Dr (r = 0, 1, . . . , r ). On the other hand, the duality
transformation formula for multiple elliptic hypergeometric series implies

∑

μ∈Nm ; |μ|=r

�(x + μδ)

�(x)

n∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

n∏

i,k=1

[xi + yk ]μi

[xi + yk + κ]μi

=
∑

ν∈Nm ; |ν|=r

�(y + νδ)

�(y)

n∏

k,l=1

[yk − yl + κ]νk
[yk − yl + δ]νk

n∏

k,i=1

[yk + xi ]νk
[yk + xi + κ]νk

(r = 0, 1, 2, . . .),

(1.12)

as the special case where m = n and ai = bi = κ (i = 1, . . . , n) in the notation of
[5], Theorem 2.2. This means that

Hx
r �(x; y) = Hy

r �(x; y) (r = 0, 1, 2, . . .). (1.13)

Namely, the kernel function for the Ruijsenaars operators Dr (r = 0, 1, . . . , n) simul-
taneously intertwines the operators Hr (r = 0, 1, 2 . . .). In view of this fact, it would
be reasonable to expect that the operators Hr should already belong to the commuta-
tive algebra C[D1, . . . , Dn] of Ruijsenaars operators. Theorem 1.1 ensures that it is
actually the case.
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In this paper, we prove Theorem 1.1 as a consequence of the following recurrence
formula of Wronski type for Hl (l = 0, 1, 2, . . .).

Theorem 1.2 The difference operators Hl (l = 0, 1, 2, . . .) satisfy the following recur-
rence formula in relation to Dr (r = 1, . . . , n) :

∑

r+s=l

(−1)r [rκ + sδ] Dr Hs = 0 (l = 1, 2, . . .). (1.14)

Recall that the elementary symmetric functions

er = er (ξ) =
∑

1≤i1<···<ir≤m

ξi1 · · · ξir (r = 0, 1, 2, . . .) (1.15)

in ξ = (ξ1, . . . , ξn), and the complete homogeneous symmetric functions

hl = hl(ξ) =
∑

μ1+···+μn=l

ξ
μ1
1 · · · ξμn

n (l = 0, 1, 2, . . .) (1.16)

are related to each other through the Wronski formula1

∑

r+s=l

(−1)r er hs = 0 (l = 1, 2, . . .). (1.17)

See [7]. Theorem 1.2 can be thought of as an operator version of this Wronski formula
for symmetric functions. A proof of Theorem 1.2 will be given in Sect. 2 by using a
functional identity for [z] (Lemma 2.3).

From the recurrence formulas

[δ]H1 − [κ]D1 = 0,

[2δ]H2 − [κ + δ]D1H1 + [2κ]D2 = 0,

[3δ]H3 − [κ + 2δ]D1H2 + [2κ + δ]D2H1 − [3κ]D3 = 0,

. . . ,

(1.18)

we see inductively that Hl belongs to the commutative algebra R = C[D1, . . . , Dn]
of Ruijsenaars operators for all l = 0, 1, 2, . . .. In fact, we have

H1 = [κ]
[δ] D1,

H2 = [κ][κ + δ]
[δ][2δ] D2

1 − [2κ]
[2δ] D2,

H3 = [κ][κ + δ][κ + 2δ]
[δ][2δ][3δ] D3

1 − [2κ][κ + 2δ]
[2δ][3δ] D2D1 − [κ][2κ + δ]

[δ][3δ] D1D2 + [3κ]
[3δ] D3,

. . . .

(1.19)

1 These relations (1.17) are attributed to Józef Maria Hoene-Wroński in [1] and [14] (see also [15]).
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The relationship between the two families of difference operators Dr (r = 01, 2, . . .)
and Hl (l = 0, 1, 2, . . .) is described in the following.

Proposition 1.3 For each l = 0, 1, 2, . . ., the difference operator Hl is expressed in
terms of Dr (r = 0, 1, . . .) by the determinant formula

Hl = det

( [(i− j+1)κ+( j−1)δ]
[iδ] Di− j+1

)l

i, j=1
(l = 0, 1, 2, . . .). (1.20)

Conversely,

Dl = det

( [(i− j+1)δ+( j−1)κ]
[iκ] Hi− j+1

)l

i, j=1
(l = 0, 1, 2, . . .). (1.21)

Proposition 1.4 For each l = 1, 2, . . ., the difference operator Hl is expressed explic-
itly as

Hl =
l∑

d=1

(−1)l−d
∑

r1+···+rd=l;ri≥1

(
d∏

i=1

[(r1+· · ·+ri−1)δ + riκ]
[(r1 + · · · + ri )δ]

)
Dr1 · · · Drd

(1.22)
in terms of Dr (r = 0, 1, . . .).

We also summarize the kernel identities relevant to the difference operators Dr and
Hr for the sake of reference.

Theorem 1.5 (1) For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , yn),
the kernel function �(x, y) of Cauchy type in (1.10) satisfies the following two types
of kernel identities:

(DD) Dx
r �(x; y) = Dy

r �(x; y) (r = 0, 1, . . . , n), (1.23)

(HH) Hx
r �(x; y) = Hy

r �(x; y) (r = 0, 1, 2, . . .). (1.24)

(2) For two sets of variables x = (x1, . . . , xm) and y = (y1, . . . , yn), let

�(x; y) =
m∏

i=1

n∏

k=1

[xi − yk] (1.25)

be the kernel function of dual Cauchy type. Under the balancing condition mκ +nδ =
0, �(x; y) satisfies the kernel identity

(HD) Hx
r �(x; y) = (−1)r D̂y

r �(x; y) (r = 0, 1, 2, . . .), (1.26)

where D̂y
r denotes the difference operator obtained from Dy

r by exchanging the param-
eters δ and κ .
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Propositions 1.3 and 1.4 are consequences of the recurrence formula of Wronski
type (see Sect. 3). After a complement on kernel identities for theRuijsenaars operators
(Sect. 4), we finally give some remarks on the trigonometric case in Sect. 5.

Notes: This paper is based on a collaboration of the authorswhichwas completed
as master’s thesis [13] of the second author in Japanese. Also, an earlier version
of the present paper, written around 2012, has been circulated among some
researchers. For these reasons, some of the results in this paper are already cited
in several studies [2,3,8,9] with reference to a private communication or to a
paper in preparation.

2 Recurrence formula of Wronski type

In this section, we give a proof of Theorem 1.2. Our goal is to establish the recurrence
formula of Wronski type between the two sequences of difference operators Dr (r =
0, 1, 2, . . .) and Hs (s = 0, 1, 2, . . .).

Theorem 2.1 The difference operators Hl (l = 0, 1, 2 . . .) defined by (1.6) satisfy the
recurrence formulas

∑

r+s=l

(−1)r [rκ + sδ] Dr Hs = 0 (l = 1, 2, . . .). (2.1)

Since D0 = 1, by this theorem we see inductively that Hl belong to C[D1, . . . , Dn]
for all l = 0, 1, 2, . . ..

Theorem 2.2 The difference operators Hl (l = 0, 1, 2 . . .) belong to the commutative
algebra C[D1, . . . , Dn] of Ruijsenaars operators. In particular, one has

Dr Hs = HsDr , Hr Hs = HsHr (r , s = 0, 1, 2, . . .). (2.2)

Proof of Theorem 2.1 We express the difference operators Dr as

Dr =
∑

|I |=r

AI (x)T
εI δ
x , AI (x) =

∏

i∈I ; j /∈I

[xi − x j + κ]
[xi − x j ] = �(x + εI κ)

�(x)
, (2.3)

where we define εI = ∑
i∈I εi by using the unit vectors ε1, . . . , εn of Nn . Similarly,

we express Hl as

Hl =
∑

|μ|=l

Hμ(x)Tμδ
x , Hμ(x) = �(x + μδ)

�(x)

n∏

i, j=1

[x j − xi + κ]μ j

[x j − xi + δ]μ j

. (2.4)
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When r + s = l, we compute

Dr Hs =
∑

|I |=r

∑

|μ|=s

AI (x)Hμ(x + εI δ)T
(εI+μ)δ
x

=
∑

|λ|=l

∑

I⊆ supp(λ); |I |=r

AI (x)Hλ−εI (x + εI δ)T λδ
x ,

(2.5)

where supp(λ) = {i ∈ {1, . . . , n} | λi > 0}. Hence, the recurrence formula (2.1) is
equivalent to

∑

|λ|=l

( ∑

I⊆ supp(λ)

(−1)|I |
[ |I |κ + (|λ| − |I |)δ ]

AI (x)Hλ−εI (x + εI δ)

)
T λδ
x = 0,

(2.6)
saying that

∑

I⊆ supp(λ)

(−1)|I |
[ |I |κ + (|λ| − |I |)δ ]

AI (x)Hλ−εI (x + εI δ) = 0 (2.7)

for any λ ∈ N
n with |λ| > 0. We now make the expression AI (x)Hλ−εI (x + εI δ)

explicit. Setting L = supp(λ), we have

AI (x)Hλ−εI (x + εI δ) = �(x + εI κ)

�(x)

�(x + λδ)

�(x + εI δ)

·
∏

i∈I ; j∈I

[x j − xi + κ]λ j−1

[x j − xi + δ]λ j−1

∏

i∈I ; j∈L\I

[x j − xi + κ − δ]λ j

[x j − xi ]λ j

·
∏

i /∈I ; j∈I

[x j − xi + κ + δ]λ j−1

[x j − xi + 2δ]λ j−1

∏

i /∈I ; j∈L\I

[x j − xi + κ]λ j

[x j − xi + δ]λ j

.

(2.8)
Noting that

�(x + εI κ)

�(x)

�(x + λδ)

�(x + εI δ)
= �(x + λδ)

�(x)

�(x + εI κ)

�(x + εI δ)

= �(x + λδ)

�(x)

∏

i /∈I ; j∈I

[x j − xi + κ]
[x j − xi + δ] , (2.9)

we can compute AI (x)Hλ−εI (x + εI δ) as follows:

AI (x)Hλ−εI (x + εI δ) = �(x + λδ)

�(x)

∏

i /∈I ; j∈L

[x j − xi + κ]λ j

[x j − xi + δ]λ j

·
∏

i∈I ; j∈I

[x j − xi + κ]λ j−1

[x j − xi + δ]λ j−1

∏

i∈I ; j∈L\I

[x j − xi + κ − δ]λ j

[x j − xi ]λ j
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= �(x + λδ)

�(x)

∏

i∈{1,...,n}; j∈L

[x j − xi + κ]λ j

[x j − xi + δ]λ j

·
∏

i∈I ; j∈L\I

[x j −xi +κ−δ]
[x j −xi ]

∏

i∈I ; j∈L

[x j −xi +λiδ]
[x j −xi +κ+(λ j −1)δ] .

(2.10)

Hence, (2.7) is equivalent to

∑

I⊆L

(−1)|I |
[ |I |κ+(|λ|−|I |)δ ] ∏

i∈I ; j∈L\I

[x j −xi +κ−δ]
[x j −xi ]

∏

i∈I ; j∈L

[x j −xi +λ jδ]
[x j −xi +κ+(λ j −1)δ] = 0 (2.11)

for any L �= φ and λ ∈ N
n with supp(λ) = L . Setting λ = εL + ν, we rewrite this in

the form

∑

I⊆L

(−1)|I |
[ |I |κ+(|ν|+|L|−|I |)δ ] ∏

i∈I ; j∈L\I

[x j −xi +κ−δ]
[x j −xi ]

∏

i∈I ; j∈L

[x j −xi +δ+ν jδ]
[x j −xi +κ+ ν jδ] = 0 (2.12)

for any ν ∈ N
n with supp(ν) ⊆ L . Since this formula contains only those variables xi

with i ∈ L , we have only to consider the case where L = {1, . . . , n} (n ≥ 1):

∑

I⊆{1,...,n}
(−1)|I |

[ |I |κ+(|ν|+n−|I |)δ ]

·
∏

i∈I ; j /∈I

[x j −xi +κ−δ]
[x j −xi ]

∏

i∈I ; j∈{1,...,n}

[x j −xi +δ+ν jδ]
[x j −xi +κ+ ν jδ] = 0

(2.13)

for any ν ∈ N
n . This identity follows from the following functional identity by the

change of variables

zi = xi , wi = xi + δ + νiδ (i = 1, . . . , n); a = κ − δ. (2.14)

	

Lemma 2.3 Given two sets of variables z = (z1, . . . , zn), w = (w1, . . . , wn)

and a parameter a, the following identity holds as a meromorphic function in
(z1, . . . , zn, w1, . . . , wn) for n ≥ 1:

∑

I⊆{1,...,n}
(−1)|I | [|w| − |z| + |I |a]

[ |w| − |z| ]
∏

i∈I ; j /∈I

[z j −zi + a]
[z j −zi ]

∏

i∈I ; k∈{1,...,n}

[wk − zi ]
[wk − zi + a] = 0,

(2.15)
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where |z| = ∑n
i=1 zi , |w| = ∑n

k=1 wk .

Proof We give a proof of the functional identity (2.15) for the case where
[z] = σ(z;�) is the Weierstrass sigma function associated with a period lattice�. By
the classification of [z], it is not difficult to derive (2.15) for any [z] in this class from
the case of σ(z;�), by the limiting procedures from σ(z;�) to sin(π z/ω) and z, and
by the invariance of (2.15) under the transformation [z] → ecz

2 [z].
Identity (2.15) for [z] = σ(z;�) can be proved by the induction on n. Since it

holds trivially for n = 1, we assume n ≥ 2. We regard the left-hand side of (2.15)
as a meromorphic function of wn and denote it by F(wn) assuming that the other
variables are generic. Note first that F(wn) is an elliptic function possibly with simple
poles at wn ≡ z1 − a, . . . , zn − a and wn ≡ |z| − |w′| modulo the period lattice �,
where w′ = (w1, . . . , wn−1). We first compute the residue of F(wn) at wn = zn − a.
Nontrivial residues possibly arise from the terms corresponding to I containing n; we
parametrize such I ’s as I = J ∪ {n} with J ⊆ {1, . . . , n − 1}. Then, we have

Reswn=zn−a(F(wn)dwn)

= [a][|w′| − |z′|]
[|w′|−|z′|−a]

∏

j∈{1,...,n−1}

[z j − zn + a]
[z j − zn]

∏

k∈{1,...,n−1}

[wk − zn]
[wk − zn + a]

·
∑

J⊆{1,...,n−1}
(−1)|J | [|w′|−|z′|+|J |a]

[|w′| − |z′|]
·

∏

i∈J ; j∈{1,...,n−1}\J

[z j −zi + a]
[z j −zi ]

∏

i∈J ;k∈{1,...,n−1}

[wk − zi ]
[wl−zi +a]

= 0

(2.16)

by the induction hypothesis (z′ = (z1, . . . , zn−1)). Since F(wn) is symmetric with
respect to (z1, . . . , zn), we see thatwn ≡ z1−a, . . . , zn −a are all removable poles of
F(wn). Hence, F(wn) has at most one simple pole in each fundamental parallelogram,
which is impossible unless F(wn) is a constant function since it is an elliptic function.
We next look at the value of F(wn) at wn = zn . It is computed as

F(zn) =
∑

I⊆{1,...,n−1}
(−1)|I | [|w

′| − |z′| + |I |a]
[|w′| − |z′|]

·
∏

i∈{1,...,n−1}\I ; j∈I

[z j −zi + a]
[z j −zi ]

∏

i∈I ;k∈{1,...,n−1}

[wk − zi ]
[wk − zi + a]

= 0

(2.17)

again by the induction hypothesis. This implies that F(wn) is identically zero as a
meromorphic function of wn . 	
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Remark 2.4 Lemma2.3 can be proved in a differentway ifwemake use of the argument
of [5]. Recall that in (1.14) of Sect. 1, [5], the following identity is derived from the
determinant formula of Frobenius:

E(Tz; u)D(z;w)

D(z;w)

=
∑

I⊆{1,...,n}
u|I | [λ + |z| + |w| + |I |δ]

[λ + |z| + |w|]
∏

i∈I ; j /∈I

[zi − z j + δ]
[zi − z j ]

∏

i∈I ; j∈{1,...,n}

[zi + wk ]
[zi + wk + δ] ,

(2.18)
where D(z;w) is the Frobenius determinant

D(z;w) = det

( [λ + zi + w j ]
[λ][zi + w j ]

)n

i, j=1
= [λ + |z| + |w|]�(z)�(w)

[λ] ∏n
i, j=1[zi + w j ] , (2.19)

and E(Tz; u) = ∏n
i=1(1 + uT δ

zi ). This means that

[λ] ∏n
i, j=1[zi + w j ]

[λ + |z| + |w|]�(z)�(w)
det

( [λ + zi + w j ]
[λ][zi + w j ] + u

[λ + zi + w j + δ]
[λ][zi + w j + δ]

)n

i, j=1

=
∑

I⊆{1,...,n}
u|I | [λ + |z| + |w| + |I |δ]

[λ + |z| + |w|]
∏

i∈I ; j /∈I

[zi − z j + δ]
[zi − z j ]

∏

i∈I ; j∈{1,...,n}

[zi + wk ]
[zi + wk + δ] .

(2.20)
By setting u = −1, we obtain

[λ] ∏n
i, j=1[zi + w j ]

[λ + |z| + |w|]�(z)�(w)
det

(
1

[λ]
( [λ + zi + w j ]

[zi + w j ] − [λ + zi + w j + δ]
[zi + w j + δ]

))n

i, j=1

=
∑

I⊆{1,...,n}
(−1)|I | [λ + |z| + |w| + |I |δ]

[λ + |z| + |w|]
∏

i∈I ; j /∈I

[zi − z j + δ]
[zi − z j ]

∏

i∈I ; j∈{1,...,n}

[zi + wk ]
[zi + wk + δ] .

(2.21)
Note that in the limit λ → 0, each entry of the matrix of the left-hand side has a finite
limit

lim
λ→0

1

[λ]
( [λ + zi + w j ]

[zi + w j ] − [λ + zi + w j + δ]
[zi + w j + δ]

)
= [zi + w j ]′

[zi + w j ] − [zi + w j + δ]′
[zi + w j + δ] .

(2.22)
Hence, the left-hand side converges to zero as λ → 0. This implies that

∑

I⊆{1,...,n}
(−1)|I | [|z| + |w| + |I |δ]

[|z| + |w|]
∏

i∈I ; j /∈I

[zi − z j + δ]
[zi − z j ]

∏

i∈I ; j∈{1,...,n}

[zi + wk ]
[zi + wk + δ] = 0.

(2.23)
By replacing each zi with −zi , and δ with a, we obtain Lemma 2.3.
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3 Explicit relations between the two commuting families

Setting

D(l)
r = [rκ + (l − r)δ]

[lδ] Dr (0 ≤ r ≤ l), (3.1)

we rewrite the recurrence formula of Theorem 2.1 as

(−1)l Hl + (−1)l−1D(l)
1 Hl−1 + · · · − D(l)

l−1H1 = −D(l)
l (l = 1, 2, . . .). (3.2)

In the matrix form, this means that

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

D(2)
1 1 0 . . .

...

D(3)
2 D(3)

1 1
...

...
. . . 0

D(l)
l−1 D(l)

l−2 . . . D(l)
1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−H1

H2

−H3

...

(−1)l Hl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

D(1)
1

D(2)
2

D(3)
3
...

D(l)
l

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

Hence, by Cramer’s formula we obtain

Hl = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(1)
1 1 0 . . . 0

D(2)
2 D(2)

1 1
...

... D(3)
2 D(3)

1
. . .

...

...
...

. . .
. . . 1

D(1)
l D(l)

l−1 . . . . . . D(l)
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det
(
D(i)
i− j+1

)l
i, j=1

(l = 1, 2, . . .).

(3.4)

Namely, we have

Hl = det

( [(i − j + 1)κ + ( j − 1)δ]
[iδ] Di− j+1

)l

i, j=1
(l = 1, 2. . . .). (3.5)

By symmetry, we also have

Dl = det

( [(i − j + 1)δ + ( j − 1)κ]
[iκ] Hi− j+1

)l

i, j=1
(l = 1, 2. . . .). (3.6)

The recurrence formula (2.1) can also be written as

Hl = D(l)
1 Hl−1 − · · · + (−1)l−2D(l)

l−1H1 + (−1)l−1D(l)
l (l = 1, 2, . . .). (3.7)
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Applying this formula repeatedly, we obtain

Hl =
l∑

d=1

(−1)l−d
∑

0=l0<l1<···<ld=l

D(ld )
ld−ld−1

D(ld−1)

ld−1−ld−2
· · · D(l1)

l1−l0

=
l∑

d=1

(−1)l−d
∑

r1+···+rd=l;ri>0

d∏

i=1

D(r1+···+ri )
ri

=
l∑

d=1

(−1)l−d
∑

r1+···+rd=l;ri>0

(
d∏

i=1

[(r1 + · · · + ri−1)δ + riκ]
[(r1 + · · · + ri )δ]

)
Dr1 · · · Drd .

(3.8)

4 Kernel identities

We recall from [5] the duality transformation formula for multiple elliptic hypergeo-
metric series (of type A): Under the balancing condition a1+· · ·+am = b1+· · ·+bn ,

∑

μ∈Nm ; |μ|=r

�(x + μδ)

�(x)

m∏

i, j=1

[xi − x j + a j ]μi

[xi − x j + δ]μi

m∏

i=1

n∏

k=1

[xi + yk − bk ]μi

[xi + yk ]μi

=
∑

ν∈Nn ; |ν|=r

�(y + νδ)

�(y)

n∏

k,l=1

[yk − yl + bl ]νk
[yk − yl + δ]νk

n∏

k=1

m∏

i=1

[yk + xi − ai ]νk
[yk + xi ]νk

(r = 0, 1, 2, . . .),

(4.1)

where x = (x1, . . . , xm) and y = (y1, . . . , yn). As we already remarked, whenm = n
and ai = bi = κ (i = 1, . . . , n), this implies

Hx
r �(x; y) = Hy

r �(x; y) (r = 0, 1, 2, . . .). (4.2)

Let a1 = · · · = am = κ , b1 = · · · = bn = −δ. Then, this transformation formula
implies that under the condition mκ + nδ = 0,

∑

μ∈Nm ; |μ|=r

�(x + μδ)

�(x)

m∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

m∏

i=1

n∏

k=1

[xi + yk + μi δ]
[xi + yk ]

= (−1)r
∑

K⊆{1,...,n}; |K |=r

∏

k∈K , l /∈K

[yk − yl − δ]
[yk − yl ]

∏

k∈K

m∏

i=1

[yk + xi − ki ]
[yk + xi ] (r = 0, 1, 2, . . .).

(4.3)

By replacing yk by −yk for k = 1, . . . , n, we obtain

∑

μ∈Nm ; |μ|=r

�(x + μδ)

�(x)

m∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

m∏

i=1

n∏

k=1

[xi − yk + μi δ]
[xi − yk ]
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= (−1)r
∑

K⊆{1,...,n}; |K |=r

∏

k∈K , l /∈K

[yk − yl + δ]
[yk − yl ]

∏

k∈K

m∏

i=1

[xi − yk − κ]
[xi − yk ] (r = 0, 1, 2, . . .).

(4.4)

This means that the dual Cauchy kernel

�(x; y) =
m∏

i=1

n∏

k=1

[xi − yk] (4.5)

satisfies

H (x;δ,κ)
r �(x; y) = (−1)r D(y;κ,δ)

r �(x; y) (r = 0, 1, 2, . . .) (4.6)

under the condition mκ + nδ = 0.

5 The trigonometric cases

In this section, we consider the trigonometric cases where [x] = e(x/2) − e(−x/2)
in the notation e(u) = exp(2π

√−1u) of the exponential function. Instead of the
parameter δ, κ ∈ C, we use the multiplicative parameters q = e(δ) and t = e(κ)

assuming that Im(δ) > 0 so that |q| < 1. Note that when z = e(x), we have [x] =
z
1
2 − z− 1

2 = −z− 1
2 (1 − z), and hence,

[x]k = (−1)kq− 1
2 (

k
2)z−

1
2 (z; q)k (k = 0, 1, 2, . . .), (5.1)

in the standard notation (z; q)k = (1−z)(1−qz) · · · (1−qk−1z) ofq-shifted factorials.
We denote by z = (z1, . . . , zn) the multiplicative variables defined by zi = e(xi )

(i = 1, . . . , n) corresponding to x = (x1, . . . , xn). For these z variables, we denote by
Tq,zi the q-shift operator with respect to zi (i = 1, . . . , n) and set Tμ

q,z = Tμ1
q,z1 · · · Tμn

q,zn
for each multi-index μ = (μ1, . . . , μn) ∈ N

n . In this multiplicative notation, it is
convenient to introduce the q-difference operators Dz

r and Hz
l normalized so that

Dx
r = t−

1
2 r(n−r)Dz

r (r = 0, 1, . . . , n), Hx
l = q− 1

2 l t−
1
2 ln Hz

l (l = 0, 1, 2, . . .).
(5.2)

These q-difference operators are given explicitly by

Dz
r = t(

r
2)

∑

I⊆{1,...,n}; |I |=r

∏

i∈I ; j /∈I

t zi − z j
zi − z j

T εI
q,z (5.3)

and

Hz
l =

∑

μ∈Nn; |μ|=l

∏

1≤i< j≤n

qμi zi − qμ j z j
zi − z j

∏

1≤i, j≤n

(t zi/z j ; q)μi

(qzi/z j ; q)μi

Tμ
q,x . (5.4)

123



91 Page 14 of 17 M. Noumi, A. Sano

The recurrence relation (2.1) of Wronski type is then rewritten as follows:

∑

r+s=l

(−1)r (1 − tr qs)Dz
r Hz

s = 0 (l = 1, 2, . . .). (5.5)

It is known by [7] that the commuting family of q-difference operators Dz
r (r =

0, 1, . . . , n) act on the ring C[z]Sn = C[z1, . . . , zn]Sn of symmetric polynomials
in z = (z1, . . . , zn) and that they are simultaneously diagonalized by the (monic)
Macdonald polynomials Pλ(z) = Pλ(z|q, t) indexed by partitions λ = (λ1, . . . , λn)

with l(λ) ≤ n:

Dz
r Pλ(z) = Pλ(z) er (t

δqλ) (r = 0, 1, 2, . . . , n), (5.6)

where er (ξ) stands for the elementary symmetric polynomial of degree r for each
r = 0, 1, . . . , n, and tδqλ = (tn−1qλ1 , tn−2qλ2 , . . . , qλn ). In terms of the generating
function

Dz(u) =
n∑

r=0

(−u)rDz
r =

∑

I⊆{1,...,n}
t(

|I |
2 )

∏

i∈I ; j /∈I

t zi − z j
zi − z j

T εI
q,z, (5.7)

formula (5.6) is equivalent to

Dz(z)Pλ(z) = Pλ(z)
n∏

i=1

(1 − utn−i qλi ). (5.8)

SinceHz
l ∈ C[Dz

1, . . . ,Dz
n], the q-difference operatorsHz

l (l = 0, 1, 2 . . .) satisfy

Hz
l Pλ(z) = Pλ(z) gl(t

δqλ) (l = 0, 1, 2, . . .) (5.9)

for some symmetric polynomials gl(ξ) ∈ C[ξ ]Sn . By theWronski-type formula (5.5),
these polynomials are determined by the recurrence relation

∑

r+s=0

(−1)r (1 − tr qs)er (ξ) gs(ξ) = 0 (l = 1, 2, . . .). (5.10)

In view of

E(ξ ; u) =
n∑

r=0

(−u)r er (ξ) =
n∏

i=1

(1 − uξi ), (5.11)

let us introduce the generating function G(ξ ; u) =
∞∑
l=0

ul gl(ξ). Then, the recurrence

formula above is equivalent to the functional equation

E(ξ ; u)G(ξ ; u) = E(ξ ; tu)G(ξ ; qu), (5.12)
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namely

G(ξ ; u) = E(ξ ; tu)

E(ξ ; u)
G(ξ ; qu) =

(
n∏

i=1

1 − tuξi

1 − uξi

)
G(ξ ; qu). (5.13)

Hence, we have

G(ξ ; u) =
∞∑

l=0

ulgl(ξ) =
n∏

i=1

(tuξi ; q)∞
(uξi ; q)∞

, (5.14)

where (u; q)∞ = ∏∞
i=0(1 − qiu). This means that

gl(ξ) =
∑

ν1+···+νn=l

(t; q)ν1 · · · (t; q)νn

(q; q)ν1 · · · (q; q)νn
ξ

ν1
1 · · · ξνn

n = (t; q)l

(q; q)l
P(l)(ξ) (l = 0, 1, 2, . . .).

(5.15)

We introduce the generation function

Hz(u) =
∞∑

l=0

ul Hz
l =

∑

μ∈Nn

u|μ| ∏

1≤i< j≤n

qμi zi − qμ j z j
zi − z j

∏

1≤i, j≤n

(t zi/z j ; q)μi

(qzi/z j ; q)μi

Tμ
q,x

(5.16)

for our q-difference operatorsHz
l (l = 0, 1, 2, . . .). Then, the argument above implies

that

Hz(u) Pλ(x) = Pλ(x)
n∏

i=1

(utn−i+1qλi ; q)∞
(utn−i qλi ; q)∞

(5.17)

for any partitionλ = (λ1, . . . , λn)with l(λ) ≤ n. Note also that the recurrence formula
of Wronski type is equivalent to

Dz(u)Hz(u) = Dz(tu)Hz(qu). (5.18)

Finally, we give comments on the kernel identities for the trigonometric case. Con-
sider two sets of variables z = (z1, . . . , zm) and w = (w1, . . . .wn), assuming that
m ≥ n. The Cauchy-type kernel for this case is given by

�(z;w) =
m∏

i=1

n∏

k=1

(t ziwk; q)∞
(ziwk; q)∞

. (5.19)

Then, we have the kernel identities

(DD) Dz(u)�(z;w) = (u; t)m−nDw(tm−nu)�(z;w), (5.20)
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(HH) Hz(u)�(z;w) = (tm−nu; q)∞
(u; q)∞

Hw(tm−nu)�(z;w). (5.21)

By the kernel function of dual Cauchy type

�(z;w) =
m∏

i=1

n∏

k=1

(zi − wk), (5.22)

the two families of q-difference operators are exchanged as follows:

(HD) (u; q)∞Hz(u)�(z;w) = (tmqnu; q)∞D̂w(u)�(z;w), (5.23)

where D̂w(u) = D(w|t,q)(u)denotes theq-difference operator obtained fromDw(u) =
D(w|q,t)(u) by exchanging q and t .

The three kernel identities (DD), (HH) and (HD) are equivalent to certain special
cases of Kajihara’s Euler transformation formula [4]: For two sets of variables z =
(z1, . . . , zm),w = (w1, . . . , wn) and parameters a = (a1, . . . , am), b = (b1, . . . , bn),

(u/α; q)∞
(u; q)∞

∑

μ∈Nm

(u/α)|μ| ∏

1≤i< j≤m

qμi zi − qμ j z j
zi − z j

m∏

i, j=1

(a j zi/z j ; q)μi

(qzi/z j ; q)μi

m∏

i=1

n∏

l=1

(ziwl/bl; q)μi

(ziwl; q)μi

= (u/β; q)∞
(u; q)∞

∑

ν∈Nn

(u/β)|ν| ∏

1≤k<l≤n

qνkwk − qνlwl

wk − wl

n∏

k,l=1

(blwk/wl; q)νk

(qwk/wl; q)νk

n∏

k=1

m∏

j=1

(wk z j/a j ; q)νk

(wk z j ; q)νk
, (5.24)

where α = a1 · · · am and β = b1 · · · bn . In fact, one can verify directly that these three
kernel identities are equivalent to the following special cases of (5.24), respectively:

(DD) : a j = q−1 ( j = 1, . . . ,m), bl = q−1 (l = 1, . . . , n),

(HH) : a j = t ( j = 1, . . . ,m), bl = t (l = 1, . . . , n),

(HD) : a j = t ( j = 1, . . . ,m), bl = q−1 (l = 1, . . . , n).

(5.25)
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