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Abstract
Some features of the notion of sufficiency in quantum statistics are investigated. Three
kinds of this notion are considered: plain sufficiency (called simply: sufficiency),
strong sufficiency andUmegaki’s sufficiency. It is shown that for a finite vonNeumann
algebra with a faithful family of normal states the minimal sufficient von Neumann
subalgebra is sufficient in Umegaki’s sense. Moreover, a proper version of the factor-
ization theorem of Jenčová and Petz is obtained. The structure of theminimal sufficient
subalgebra is described in the case of pure states on the full algebra of all bounded
linear operators on a Hilbert space.

Keywords Quantum sufficiency · Von Neumann algebra · Conditional expectation ·
Normal and pure states
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Introduction

Let M be a von Neumann algebra, let N be its von Neumann subalgebra, and let
{ρθ : θ ∈ �}be a family of normal states onM. In [4] the notion of strong sufficiency of
the subalgebraN for the family {ρθ : θ ∈ �} was introduced (and further investigated
in [5]) as a generalisation of sufficiency in Umegaki’s sense considered earlier in
[13,14]. In this operator algebra setup, strong sufficiency ofN means the existence of
a normal two-positive map α : M → N such that

ρθ ◦ α = ρθ , θ ∈ �.
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If the map α is a normal conditional expectation ontoN, then we get sufficiency in
Umegaki’s sense. An obvious and natural generalisation of the notion of strong suffi-
ciency would consist in giving up the, rather technical, requirement of two-positivity
and replacing it by positivity. Some work in this setup was done in [6], and in the
present paper, we continue this line of investigation. As was pointed out in [6], this
approach is additionally motivated by considerations from quantum hypothesis testing
theory, where a different notion of sufficiency is employed, namely, the sufficiency of
N means that we can find there an optimal measurement minimising the Bayes risk
(cf. [7]).

In the first part of the paper, we show that for a σ -finite finite von Neumann algebra
with a faithful family of normal states the minimal sufficient von Neumann subalgebra
is sufficient in Umegaki’s sense, and obtain a proper version of the factorization theo-
rem due to Jenčová and Petz. In the second part, we are dealing with the full algebra
B(H) and a family of pure states. There we give a description of theminimal sufficient
subalgebra together with an explicit form of the conditional expectation defining this
sufficiency.

1 Preliminaries and notation

Let H be a Hilbert space with a scalar product 〈·|·〉 and norm
‖ · ‖, and let M be an arbitrary von Neumann algebra of operators acting on H, with
identity1, and predualM∗.M is said to be σ -finite (or countably decomposable) if any
family of pairwise orthogonal projections in M is countable. In our considerations,
we restrict attention to such algebras.

A state on M is a bounded positive linear functional ρ : M → C of norm one. A
state ρ is said to be normal if it is continuous in the σ -weak topology on M, in other
words, ρ ∈ M∗. For a normal state ρ, its support, denoted by s(ρ), is defined as the
smallest projection e inM such that ρ(e) = ρ(1). In particular, we have

ρ(s(ρ)A) = ρ(A s(ρ)) = ρ(A), A ∈ M,

and if ρ(s(ρ)A s(ρ)) = 0 for s(ρ)A s(ρ) ≥ 0 then s(ρ)A s(ρ) = 0.
A normal state ρ is said to be faithful if for each positive element A ∈ M from the

equality ρ(A) = 0 it follows that A = 0. It is easily seen that the faithfulness of ρ is
equivalent to the relation s(ρ) = 1. The existence of a normal faithful state on M is
equivalent toM being σ -finite.

To each unit vector ψ ∈ H there corresponds a normal state, denoted by the same
symbol and called a vector state, defined as

ψ(A) = 〈ψ |Aψ〉, A ∈ M.

By a slight abuse of language, we shall speak of the vector ψ itself as a pure state. By
P[ψ] shall be denoted the projection onto the space spanned by the vector ψ (in Dirac
notation, P[ψ] = |ψ〉〈ψ |).
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Let {ρθ : θ ∈ �} be a family of normal states on a von Neumann algebra M. This
family is said to be faithful if for each positive element A ∈ M from the equality
ρθ (A) = 0 for all θ ∈ � it follows that A = 0. Similarly to the case of one state, it is
seen that the faithfulness of the family is equivalent to the relation

∨

θ∈�

s(ρθ ) = 1.

In particular, for a family of pure states {ψθ : θ ∈ �}, its faithfulness amounts to the
equality Lin{ψθ : θ ∈ �} = H.

Let P be a projection in a von Neumann algebra M. A reduced von Neumann
algebra MP is defined as an algebra of operators acting on the Hilbert space P(H)

by the formula

MP = {PA|P(H) : A ∈ M}.

Let {Mi : i ∈ I } be a family of von Neumann algebras acting on Hilbert spaces
Hi . The direct sum von Neumann algebra is defined as

∑

i∈I
⊕Mi =

{
A = (Ai )i∈I : Ai ∈ Mi for all i ∈ I , sup

i∈I
‖Ai‖ < ∞

}
,

where the operators A = (Ai )i∈I act on the Hilbert space

H =
⊕

i∈I
Hi

as

A((ξi )i∈I ) = (Aiξi )i∈I .

Let M and N be von Neumann algebras. A linear map α : M → N is said to be
normal if it is continuous in the σ -weak topologies on M and N, respectively. It is
called unital if α(1) = 1.

The algebra of all bounded linear operators on H will be denoted by B(H). For
arbitrary T ⊂ B(H) by Th will be denoted the set of hermitian elements of T.

The Jordan product of two operators A, B ∈ B(H) will be denoted by the symbol
‘◦’:

A ◦ B = 1

2
(AB + BA),

and by a slight abuse of notation, the same symbol will be used for superpositions of
a functional ϕ on M and a map E on M: ϕ ◦ E, as well as of two maps E,F on M:
E ◦ F.

For arbitrary T ⊂ B(H), by W ∗(T), we shall denote the von Neumann algebra
generated by T, i.e., the smallest von Neumann algebra containing T.
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Let M be a von Neumann algebra, let {ρθ : θ ∈ �} be a family of normal states
on M, and let N be a von Neumann subalgebra of M. N is said to be sufficient for
the family of states {ρθ : θ ∈ �} if there exists a normal positive linear unital map
α : M → N such that

ρθ ◦ α = ρθ , for all θ ∈ �. (1)

If the map α above is two-positive, thenN is said to be strongly sufficient, and if it is a
conditional expectation ontoN, thenN is said to be sufficient inUmegaki’s sense. It can
be shown that for finite-dimensional von Neumann algebras and families of faithful
states sufficiency and strong sufficiency are equivalent. The notion of sufficiency in
Umegaki’s sense appeared in [13,14], while strong sufficiency was introduced in [4].
If the algebra N is sufficient and contained in any other sufficient (sufficient in strong
or Umegaki’s sense) algebra, then N is said to be minimal. It is clear that a minimal
sufficient (in any sense) subalgebra is unique (if it exists). On account of [6, Theorem
1], for a faithful family of normal states on M there exists the minimal sufficient von
Neumann subalgebra Mmin of M.

2 Sufficiency in finite von Neumann algebras

In this section, we show that for a σ -finite finite von Neumann algebraM and a faithful
family of normal states onM the minimal sufficient von Neumann subalgebra ofM is
sufficient in Umegaki’s sense. Moreover, we also obtain a version of the factorization
theorem.

In what follows, we shall need a few basic facts from modular theory of von Neu-
mann algebras; however, this theory will be employed only to a limited extent. For
its full account, the reader is referred to [10]. Let ϕ be a normal faithful state on M.
There exists a group of automorphisms ofM, {σϕ

t : t ∈ R}, called the modular auto-
morphism group, associated with ϕ in a canonical way. The algebra of fixed points of
the modular automorphism group, denoted byMϕ , is called the centralizer of ϕ, and
the following relation holds

Mϕ = {A ∈ M : for each B ∈ M, ϕ(AB) = ϕ(BA)}.

Let N be a von Neumann subalgebra ofM. If σ
ϕ
t (N) = N for all t ∈ R, then there is

a normal faithful conditional expectation F fromM onto N such that

ϕ ◦ F = ϕ.

LetA be a subspace ofM containing the identity operator 1.A is said to be a JW*-
subalgebra of M if it is σ -weakly closed and closed with respect to the operation of
taking adjoints and the Jordan product. Then the self-adjoint part ofA is a JW-algebra,
in particular, it is generated by projections (cf. [3]). LetE be a normal positive faithful
unital projection from the JW-algebra Mh onto a JW-algebra A. On account of [3,
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Lemma 4.4.13], we have

E(A ◦ B) = A ◦ E(B) (2)

for all A ∈ Ah , B ∈ Mh . Let now E be a normal positive faithful unital projection
fromM onto a JW*-algebraA. ThenE|Mh is as above , and hence it satisfies Eq. (2).
Decomposing arbitrary A ∈ A and B ∈ M as A = A1 + i A2, B = B1 + i B2 where
A1, A2 ∈ Ah , B1, B2 ∈ Mh , we obtain the equality

E(A ◦ B) = A ◦ E(B) (3)

for all A ∈ A, B ∈ M. Using the formula

ABA = 2A ◦ (A ◦ B) − A2 ◦ B, A ∈ A, B ∈ M,

we get

E(SBS) = SE(B)S (4)

for each B ∈ M and each symmetry S ∈ Ah (symmetry means that S2 = 1).
The lemma below is a JW*-version of a known result on uniqueness of conditional

expectation for von Neumann algebras.

Lemma 1 Let ϕ be a normal faithful state on M, let A be a JW*-subalgebra of M,
and letEi : M → A, i = 1, 2, be normal positive unital projections ontoA such that

ϕ ◦ E1 = ϕ ◦ E2.

Then E1 = E2.

Proof Observe first that the family {ϕH : H ∈ A} of normal linear functionals on M

defined as

ϕH (B) = ϕ(H ◦ B), B ∈ M,

separates the points of A. Indeed, if we have ϕH (A) = 0 for some A ∈ A and all
H ∈ A, then taking H = A∗ we get

0 = ϕA∗(A) = 1

2
ϕ(A∗A + AA∗),

and the faithfulness of ϕ yields A∗A = 0, i.e., A = 0. Now for arbitrary B ∈ M, we
have by virtue of the equality (3)

ϕH (E1(B)) = ϕ(H ◦ E1(B)) = ϕ(E1(H ◦ B)) = ϕ(H ◦ B) = ϕH (B),
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and analogously

ϕH (E2(B)) = ϕH (B),

showing that ϕH (E1(B)) = ϕH (E2(B)), hence E1(B) = E2(B). 
�
Now we are ready to prove that for a faithful family of normal states the minimal
sufficient subalgebra is also sufficient in Umegaki’s sense.

Theorem 2 Let {ρθ : θ ∈ �} be a faithful family of normal states on a σ -finite finite
von Neumann algebraM with a normal faithful tracial state τ . The minimal sufficient
von Neumann subalgebra Mmin of M is sufficient in Umegaki’s sense.

Proof As in the proof of Theorem 1 in [6], we let S be the family of all normal
positive linear unital maps on M such that the states ρθ are invariant with respect to
the maps from S. It is seen that S is a non-empty (because it contains the identity
map) semigroup. Let A be the set of fixed points of the maps from S, i.e.,

A = {A ∈ M : α(A) = A for all α ∈ S}. (5)

Then A is a JW*-algebra, and on account of [6, Theorem 1] we have

Mmin = W ∗(A) = W ∗(Ah),

moreover, there is a normal positive faithful unital projection E fromM onto A such
that for all θ ∈ �

ρθ ◦ E = ρθ .

Put

ϕ = τ ◦ E.

Then ϕ is a normal state on M such that

ϕ ◦ E = ϕ.

Let S be an arbitrary symmetry in Ah . Taking BS instead of B in the formula (4), we
get

E(SB) = SE(BS)S,

hence

ϕ(SB) = τ(E(SB)) = τ(SE(BS)S) = τ(E(BS)) = ϕ(BS).
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An arbitrary projection P in Ah has the form P = 1
2 (S + 1) where S = 2P − 1 is a

symmetry, thus

ϕ(PB) = ϕ(BP)

for every such projection. Since Ah is a JW-algebra, linear combinations of its pro-
jections are σ -weakly dense in Ah (cf. [3]) and the σ -weak continuity of ϕ yields

ϕ(AB) = ϕ(BA)

for each A ∈ Ah . Since B ∈ M was arbitrary, this means that A ∈ Mϕ , thus

Ah ⊂ Mϕ.

Since Mϕ is a von Neumann algebra, this yields

Mmin = W ∗(Ah) ⊂ Mϕ.

(The reasoning above follows the proof of Haagerup and Størmer [2, Lemma 2.2].)
Since for the modular automorphism group we have

σ
ϕ
t (A) = A for all A ∈ Mϕ,

we get σ
ϕ
t (Mmin) = Mmin for all t ∈ R, thus there is a normal faithful conditional

expectation F fromM onto Mmin such that

ϕ ◦ F = ϕ.

We have

(E ◦ F)2 = E ◦ (F ◦ E) ◦ F = E ◦ E ◦ F = E ◦ F

showing that E ◦ F is a normal positive unital projection onto A. Moreover,

ϕ ◦ (E ◦ F) = (τ ◦ E) ◦ (E ◦ F) = (τ ◦ E) ◦ F = ϕ ◦ F = ϕ = ϕ ◦ E,

and Lemma 1 yields

E ◦ F = E.

Thus for each θ ∈ �, we have

ρθ ◦ F = (ρθ ◦ E) ◦ F = ρθ ◦ (E ◦ F) = ρθ ◦ E = ρθ ,

which means that Mmin is sufficient in Umegaki’s sense. 
�
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An important factorization theorem was formulated in [4, Theorem 4] in the case
when the algebra M is a countable direct sum of type I factors. However, as it was
shown in [6, Examples 2 and 3], its setup needs substantial corrections, and we shall
see that this theorem holds in full generality in finite von Neumann algebras. For this
purpose, let us introduce some necessary notions. Since the proof of this theorem is in
its main part a repetition of the proof in [4, Section 4] with some additional reasoning,
we shall follow closely the notation employed there. However, we shall use some parts
of the theory of measurable operators and noncommutative L p-spaces (actually only
L1-space) for a brief account of which we refer the reader to the “Appendix”.

For a linear operator A on a Hilbert space H, by D(A), we denote the domain of
A, and by Ā—the closure of A.

Let M be a finite von Neumann algebra with a normal faithful finite trace
τ , let M0 be a von Neumann subalgebra of M, and let M1 = M′

0 ∩ M

be the relative commutant of M0. By M̃ we denote the algebra of measurable oper-
ators, and by L1(M, τ ), L1(M0, τ ), L1(M1, τ ) the corresponding L1-spaces. (Here
we make use of the assumption that M is finite, otherwise there is no guarantee that
τ |M0 or τ |M1 is semifinite.) Let {ρθ : θ ∈ �} be a faithful family of normal states on
M, and let, as before, for some convex combination

ω =
∞∑

k=1

λkρθk ,

ω be a faithful state on M. Denote

ω0 = ω|M0, ω1 = ω|M1, τ0 = τ |M0, τ1 = τ |M1,

and let Dω ∈ L1(M, τ ), Dω0 ∈ L1(M0, τ0), Dω1 ∈ L1(M1, τ1) be the densities of
ω, ω0 and ω1, respectively. Now the reasoning of [4, p. 269] can be repeated word for
word upon observing that the modular automorphism groups {σω

t }, {σω0
t } and {σω1

t }
have the same form as in [4], i.e., for instance

σω
t (A) = Dit

ω AD−i t
ω , A ∈ M,

and similarly for the remaining two (cf. [10, Proposition 4.7]). This leads to the equality

Dit
ω = Dit

ω0
Dit

ω1
zit , t ∈ R, (6)

for some positive self-adjoint z with trivial null-space, affiliated with the centre ofM1.
Denote by Dθ , Dθ,0 the densities of the states ρθ and ρθ |M0, respectively. Now

the factorization theorem reads

Theorem 3 The subalgebra M0 is sufficient for a faithful family of normal states
{ρθ : θ ∈ �} if and only if

Dθ = Dθ,0Dω1 z, (7)

123



Quantum sufficiency... Page 9 of 18 95

where z is a positive self-adjoint operator with trivial null-space, affiliated with the
centre of M1.

Proof Fix θ , and let

Dθ,0 =
∫ ∞

0
λ E0(dλ),

Dω1 =
∫ ∞

0
λ E1(dλ),

z =
∫ ∞

0
λ Ez(dλ),

be the spectral decompositions of Dθ,0, Dω1 and z. Since Dθ,0 is affiliated with M0,
Dω1 is affiliated withM1, and z is affiliated with the centre ofM1, it follows that the
spectral measures E0, E1 and Ez take values inM0, M1 and the centre ofM1, respec-
tively, thus they mutually commute. Consequently, there exists a spectral measure E
inM, and nonnegative Borel functions g0, g1 and h such that

Dθ,0 =
∫ ∞

−∞
g0(λ) E(dλ),

Dω1 =
∫ ∞

−∞
g1(λ) E(dλ),

z =
∫ ∞

−∞
h(λ) E(dλ).

From these equalities, we obtain

Dθ,0Dω1 z ⊂
∫ ∞

−∞
g0(λ)g1(λ)h(λ) E(dλ) := B.

Operator B on the right hand side of the above relation is a self-adjoint operator
affiliated with M, i.e., it belongs to the algebra M̃ of measurable operators, while on
the left hand side we have a product of operators from M̃. From the properties of M̃,
it follows that

Dθ,0Dω1 z = B. (8)

Moreover, we have

Bit =
[ ∫ ∞

−∞
g0(λ)g1(λ)h(λ) E(dλ)

]i t

=
∫ ∞

−∞
g0(λ)i t g1(λ)i t h(λ)i t E(dλ) = Dit

θ,0D
it
ω1
zit .
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Now the proof follows the lines of the proof of Theorem 4 in [4]. The crucial
observation is that also in the case of, in general unbounded, operators Dθ , Dω, Dθ,0
and Dω0 the following equalities for the Connes cocycles hold true

[Dρθ : Dω]t = [Dρθ : Dτ ]t [Dτ : Dω]t
= [Dρθ : Dτ ]t [Dω : Dτ ]−1

t = Dit
θ D−i t

ω ,
(9)

(cf. Araki and Masuda [1, Theorem C.1] for the chain rule in the first equality above,
Strătilă [10, Corollary 3.4] for the second equality, and Strătilă [10, Corollary 4.8] for
the third). Similarly,

[Dρθ,0 : Dω0]t = Dit
θ,0D

−i t
ω0

. (10)

Assume thatM0 is sufficient. Then on account of [4, Theorem 1], we have [Dρθ :
Dω]t = [Dρθ,0 : Dω0 ]t , thus from (9), (10) and the fact that Dit

ω are unitary, we get

Dit
θ = Dit

θ,0D
−i t
ω0

Dit
ω .

Using (6) together with the fact that Dit
ω0

are also unitary, we obtain

Dit
θ = Dit

θ,0D
−i t
ω0

Dit
ω0
Dit

ω1
zit = Dit

θ,0D
it
ω1
zit = Bit . (11)

From this easily follows that Dθ = B. Indeed, denoting by N (T ) the null-space of
the operator T , we have from the spectral theorem

N (Dit
θ ) = N (Dθ ) and N (Bit ) = N (B),

so

N (Dθ ) = N (Dit
θ ) = N (Bit ) = N (B).

Denote by P the projection onto the common null-space above, and let

Dθ =
∫ ∞

0
λ E ′(dλ)

be the spectral decomposition of Dθ . Then

P + Dθ =
∫ ∞

0
[χ{0}(λ) + λ] E ′(dλ),
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where χ{0} denotes the indicator function of the set {0}. Hence

(P + Dθ )
i t =

∫ ∞

0
[χ{0}(λ) + λ]i t E ′(dλ) =

∫ ∞

0
[χ{0}(λ) + λi t ] E ′(dλ)

= P +
∫ ∞

0
λi t E ′(dλ) = P + Dit

θ ,

and similarly

(P + B)i t = P + Bit ,

which on account of the equality (11) yields

(P + Dθ )
i t = (P + B)i t .

But the operators P + Dθ and P + B have trivial null-spaces, which means that the
equality above is the identity of two unitary groups. It follows that their generators
must be the same, so

P + Dθ = P + B,

i.e.,

Dθ = B,

and the equality (8) proves the claim.
Assume now that the equality (7) holds. In terms of the algebra M̃, it can be rewritten

as

Dθ = Dθ,0 · Dω1 · z.

(where the central dot stands for the strong multiplication—see the “Appendix”).
Denote

ωn =
n∑

k=1

λkρθk .

Then by virtue of the isomorphism between M∗ and L1(M, τ ), we have

Dωn = s −
n∑

k=1

λk Dθk ,
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where s − ∑
denotes the strong sum. The same holds of course for ωn,0 = ωn|M0,

i.e.,

Dωn,0 = s −
n∑

k=1

λk Dθk,0 ,

so from the formula (7) and the fact that M̃ is an algebra, we obtain

Dωn = s −
n∑

k=1

λk Dθk = s −
n∑

k=1

λk Dθk,0 · Dω1 · z

= Dωn,0 · Dω1 · z.
(12)

Since ωn → ω in norm in M∗, we infer that Dωn → Dω in the norm ‖ · ‖1, and by
the same token Dωn,0 → Dω0 . According to Lemma 5 (see the Appendix), we have
Dωn → Dω and Dωn,0 → Dω0 in measure. Since M̃ is a topological ∗-algebra with
respect to the measure topology, the formula (12) yields

Dω = Dω0 · Dω1 · z,

in other words

Dω = Dω0Dω1 z. (13)

Now we proceed as in the first part of the proof. Since the operators Dω0 , Dω1 and z
commute, from the equalities (7) and (13), we obtain

Dit
θ = Dit

θ,0D
it
ω1
zit , Dit

ω = Dit
ω0
Dit

ω1
zit .

Thus on account of commutation properties and the fact that {Dit
ω1

} and {zit } are unitary
groups, we get

[Dρθ : Dω]t = Dit
θ D−i t

ω = Dit
θ,0D

it
ω1
zit D−i t

ω0
D−i t

ω1
z−i t

= Dit
θ,0D

−i t
ω0

= [Dρθ,0 : Dω0]t ,

which by virtue of [4, Theorem 1] yields the sufficiency of M0. 
�

3 Sufficiency for pure states onB(H)

In this section, we shall be dealing with the full algebra M = B(H) and pure (≡
vector) states. Let {ψθ : θ ∈ �} be a faithful family of pure states. According to [6,
Theorem 1], there exists the minimal sufficient for this family subalgebra ofB(H). It
turns out that this algebra admits a straightforward description.
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Theorem 4 Let {ψθ : θ ∈ �} be a faithful family of pure states onB(H), and letMmin
be the minimal sufficient for this family subalgebra of B(H). Then

(i) Mmin is generated by P[ψθ ], i.e., Mmin = W ∗({P[ψθ ] : θ ∈ �}).
(ii) There exists a decomposition

H =
⊕

i

Hi

such that

Mmin =
∑

i

⊕B(Hi ). (14)

Proof First observe that s(ψθ ) = P[ψθ ]. As in Theorem 2, denote by S the family
of all normal positive unital maps on M such that the states ψθ are invariant with
respect to the maps from S. On account of [12, Theorem 4], for every θ ∈ �, we
have α(P[ψθ ]) = P[ψθ ] for each α ∈ S, which by virtue of [6, Theorem 1] yields the
relation P[ψθ ] ∈ Mmin.

For the sake of brevity, set R = {ψθ : θ ∈ �}, and define on R an equivalence
relation as follows: ψθ ′ ≡ ψθ ′′ if there exists a finite string ψθ1 , . . . , ψθm such that
ψθ1 = ψθ ′ , ψθm = ψθ ′′ and

〈ψθ j |ψθ j+1〉 �= 0 for j = 1, . . . ,m − 1.

Let

R =
⋃

i

Ri

be the partition of R determined by the relation ≡. Denote Ri = {ψθ : θ ∈ �i }. It is
obvious that for all i ′, i ′′ such that i ′ �= i ′′, we have Ri ′ ⊥ Ri ′′ . Put

Pi =
∨

θ∈�i

P[ψθ ].

It follows that Pi are pairwise orthogonal, and the faithfulness of {ψθ : θ ∈ �} yields
∑

i

Pi = 1.

Denote Hi = Pi (H). Then

H =
⊕

i

Hi .

Fix arbitrary i and consider the family of pure states Ri = {ψθ : θ ∈ �i } on the
Hilbert spaceHi . Take arbitraryψθ ′ , ψθ ′′ ∈ Ri , and letψθ1 , . . . , ψθm , withψθ1 = ψθ ′
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and ψθm = ψθ ′′ be the string as in the definition of the equivalence relation ≡. From
this definition, it follows that ψθ j ≡ ψθk for all j, k = 1, . . . ,m, thus ψθ j ∈ Ri for all
j = 1, . . . ,m. Consequently, P[ψθ j ] ≤ Pi , so we can consider the projections P[ψθ j ]
on the Hilbert space Hi . We have

P[ψθ1 ] . . . P[ψθm ] = aEψθ1 ,ψθm
= aEψθ ′ ,ψθ ′′ , (15)

where

a = 〈ψθ1 |ψθ2〉 · · · 〈ψθm−1 |ψθm 〉 �= 0,

and for ξ, η ∈ H the operator Eξ,η is defined as

Eξ,ηζ = 〈η|ζ 〉ξ, ζ ∈ H. (16)

(The formula (15) is obvious when using Dirac notation since then on the left hand
side we have simply

|ψθ1〉〈ψθ1 |ψθ2〉 · · · 〈ψθm−1 |ψθm 〉〈ψθm | = 〈ψθ1 |ψθ2〉 · · · 〈ψθm−1 |ψθm 〉|ψθ1〉〈ψθm |,

which is just the right-hand side. In this notation, we have
Eξ,η = |ξ 〉〈η|.)

Denote N = W ∗({P[ψθ ] : θ ∈ �}). On account of the above considerations, we
infer that Eψθ ′ ,ψθ ′′ ∈ N for all ψθ ′ , ψθ ′′ ∈ Ri .

Let

0 �= ξ =
m∑

j=1

a jψθ j , ψθ j ∈ Ri ,

be an arbitrary finite linear combination of vectors fromRi . We have

P[ξ ] = 1

‖ξ‖2
m∑

j,k=1

a j āk Eψθ j ,ψθk
.

(This is again most easily seen by using Dirac notation since then

|ξ 〉〈ξ | =
∣∣∣∣∣∣

m∑

j=1

a jψθ j

〉〈 m∑

k=1

akψθk

∣∣∣∣∣∣
=

m∑

j,k=1

a j āk |ψθ j 〉〈ψθk |.)

It follows that P[ξ ] ∈ N. Vectors ξ as above lie densely in Hi , so arbitrary η ∈ Hi is
a limit of some ξn , consequently,

P[ξn ] → P[η] weakly,
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hence P[η] ∈ N for each η ∈ Hi . Linear combinations of these projections restricted
to the subspace Hi lie densely in B(Hi ), so for the reduced von Neumann algebra
NPi , we get the inclusion

B(Hi ) ⊂ NPi ,

and thus

B(Hi ) = NPi . (17)

From the definition of Pi , it follows that Pi commutes with all P[ψθ ], θ ∈ �, because

Pi P[ψθ ] =
{
P[ψθ ], if θ ∈ �i

0, otherwise.

Since the algebraN is generated by the projections P[ψθ ], we obtain that Pi ∈ N′. For
each A ∈ N, we have

A =
∑

i

APi =
∑

i

Pi A,

showing that

N =
∑

i

⊕NPi ,

and the formula (17) gives the representation

N =
∑

i

⊕B(Hi ). (18)

In the first part of the proof, we obtained the relation P[ψθ ] ∈ Mmin for all θ ∈ �

which yields the inclusion

N ⊂ Mmin.

Consider a map E : B(H) → N defined as

E(A) =
∑

i

Pi APi .

It is easily seen that E is a normal conditional expectation such that the states ψθ are
E-invariant, thusN is sufficient in Umegaki’s sense. SinceMmin is minimal sufficient,
we obtain

Mmin ⊂ N,

123



95 Page 16 of 18 A. Łuczak

showing that Mmin = N, and the formula (18) together with the definition of N as
W ∗({P[ψθ ] : θ ∈ �}) finish the proof. 
�
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Appendix

In this section, we collect some facts from the theory of measurable operators and
noncommutative L1-space over a von Neumann algebra with a normal faithful finite
trace. A fuller account of this theory, also for a more general case of a semifinite trace
and spaces L p, can be found, e.g., in [8,9,11,15].

Thus letM be a von Neumann algebra with a normal faithful finite trace τ acting on
a Hilbert spaceH . The algebra ofmeasurable operators M̃ is defined as a topological
∗-algebra of densely defined closed operators on H affiliated with M with strong
addition � and strong multiplication ·, i.e.,

A � B = A + B, A · B = AB, A, B ∈ M̃,

and the translation-invariant measure topology defined by a fundamental system of
neighbourhoods of 0, {N (ε, δ) : ε, δ > 0}, given by

N (ε, δ) = {A ∈ M̃ : there exists a projection P inM such that

AP ∈ M, ‖AP‖ ≤ ε and τ(1 − P) ≤ δ}.

Thus for operators An, A in M̃, the sequence (An) converges to A in measure if for
any ε, δ > 0 there exists n0 such that for each n ≥ n0 there exists a projection P ∈ M

such that

τ(1 − P) ≤ δ, (An − A)P ∈ M, and ‖(An − A)P‖ ≤ ε.
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The following ‘technical’ form of convergence in measure proved in [15, Proposition
2.7] is useful. Let

|An − A| =
∫ ∞

0
λ En(dλ)

be the spectral decomposition of |An − A| with spectral measures En taking values in
M since An − A, and thus |An − A|, are affiliated withM. Then An → A in measure
if and only if for each ε > 0

τ(En([ε,∞])) → 0.

Introduce on M the norm ‖ · ‖1 as follows

‖A‖1 = τ(|A|).

The space L1(M, τ ) is defined as the completion of M with respect to this norm. It
turns out that L1(M, τ ) consists of measurable operators, τ can be extended to a linear
bounded positive functional on L1(M, τ ) such that ‖A‖1 = τ(|A|) for A ∈ L1(M, τ ),
and L1(M, τ ) is isometrically isomorphic to M∗ with the isomorphism given by the
formula

ϕ(A) = τ(DA), ϕ ∈ M∗, D ∈ L1(M, τ ).

The operator D is called the density of ϕ. Moreover, if ϕ is hermitian then D = D∗,
and ϕ ≥ 0 if and only if D ≥ 0.

For an arbitrary A ∈ L1(M, τ ) we have the spectral decomposition

|A| =
∫ ∞

0
λ E(dλ).

Thus for any ε > 0, we get

|A| ≥
∫ ∞

ε

λ E(dλ) ≥
∫ ∞

ε

ε E(dλ) = εE([ε,∞]).

Consequently, we obtain the Chebyschev inequality

τ(E([ε,∞])) ≤ τ(|A|)
ε

= ‖A‖1
ε

.

Taking into account the above-mentioned ‘technical’ form of convergence in measure,
we have

Lemma 5 If a sequence (An) of operators in L1(M, τ ) converges in ‖ · ‖1-norm, then
it converges in measure.
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