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Abstract
We compute theN = 2 supersymmetric partition function of a gauge theory on a four-
dimensional compact toric manifold via equivariant localization. The result is given by
a piecewise constant function of the Kähler formwith jumps along the walls where the
gauge symmetry gets enhanced. The partition function on such manifolds is written
as a sum over the residues of a product of partition functions on C

2. The evaluation
of these residues is greatly simplified by using an “abstruse duality” that relates the
residues at the poles of the one-loop and instanton parts of theC2 partition function. As
particular cases, our formulae compute the SU (2) and SU (3) equivariant Donaldson
invariants of P2 and Fn and in the non-equivariant limit reproduce the results obtained
via wall-crossing and blow up methods in the SU (2) case. Finally, we show that the
U (1) self-dual connections induce an anomalous dependence on the gauge coupling,
which turns out to satisfy a N = 2 analog of the N = 4 holomorphic anomaly
equations.
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1 Introduction, summary and open questions

The study of N = 2 supersymmetric Yang-Mills gauge theories in four dimensions
(SYM) led to many interesting and deep results which opened a new perspective in
the understanding of non-perturbative effects in gauge theories [1,2].

Major progresses in this respect have been obtained by making use of equivariant
localization for the gauge theory in the so-called �-background [3]. This allowed for
the exact computation of the supersymmetric path integral and low energy effective
action onR4 [3–5] and its orbifolds by a discrete groupR4/� [6–11]. The first explicit
computation of the gauge theory partition function on a compact manifold, using
equivariant localization, was performed in [12] on the four sphere S4 and extended
to the squashed case in [13]. These results were generalised to some non-orientable
manifolds in [14,15]. The extension of these results to toric compact manifolds was
prompted by [16], and the S2×S2 andP2 cases were considered in [17–19]. The gauge
partition function was formally written as a contour integral picking a specific set of
poles associated to (semi-)stable gauge bundles. For recent results see also [20,21].

In this paper, building on the above-mentioned results, we derive a localization
formula valid for arbitrary compact toric manifolds and arbitrary rank of the gauge
group for the topologically twisted theory. More in detail we tackle some cases which
were left open in previous works: in the SU (2) case our formulae are applied for all
values of the first Chern class to the Fn manifolds where Donaldson invariants are
subject to a non trivial wall crossing. New results are also obtained for the extension
to the SU (3) gauge group for P2. Our work follows a gauge theory approach with the
use of recursion formulae to establish the analytic properties of the partition function,
alternative to wall crossing computations, in which the conditions for bundle stability
come from the consistency of the computation.

The computation of the gauge theory partition function on compact manifolds
presents a main additional difficulty with respect to the non compact case, namely
one has to perform an integration over the Coulomb branch parameters, which are in
this case integrable zero modes of the dynamical fields. After the topological twist,
the N = 2 gauge theory turns into a cohomological field theory [22] and therefore
the correlators of BPS protected observables are expected to be independent both
on the metric and on the gauge coupling. Indeed this is not trivial in cohomology,
because of boundary effects in the field space. As we will show the integration over
the zero modes induces an anomalous dependence in these parameters having two
related important consequences: the first is to produce some constraints on the sum
over the fluxes of the gauge field, which in turn induces a non-trivial wall-crossing
behaviour of the partition function. The second is that the partition function acquires
an anomalous dependence on the gauge coupling which can be characterised in terms
of a holomorphic anomaly equation. Indeed, the Coulomb moduli space over which
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we integrate is non compact and this induces an anomaly arising from the boundary
term. Moreover, in the topologically twisted N = 2 theory the coupling appears in
the gauge fixing term which is metric dependent. This in turn implies an induced
anomalous dependence of the partition function on the metric of the manifold and the
related wall crossing behaviour.

A careful analysis of the zero modes sector gives a prescription for the computation
of the partition function. After gauge fixing the Weyl symmetry, the partition function
is written as a sum over the residues characterised by an ordering of the fluxes of
the gauge field along the Kähler two-form. This ordering is crucial in selecting the
relevant contributions 1. The integral over the zero modes turns out to be ill defined
at the walls of marginal stability where two (or more) fluxes coincide. The resulting
partition function is therefore piece-wise dependent on the choice of Kähler two-form,
with jumps at the walls where two (or more) fluxes of the gauge field curvature along
the Kähler two-form get equal.

On the mathematical side, gauge theory correlators compute the Donaldson invari-
ants of the four manifold [22]. More precisely, the supersymmetric partition function
in the �-background computes equivariant Donaldson invariants [23]. The above-
mentioned jumps of the gauge theory partition function correspond to the well-known
wall-crossing behaviour in Donaldson theory, which in the framework of algebraic
geometric is induced by changes in the stability conditions of the sheaves. The sum
over gauge theory fluxes is shown to properly select the (semi-)stable equivariant
sheaves and to nicely reproduce their topological classification [24,25]. The results
we obtain for the partition function are tested against existing results in the mathe-
matical literature for the SU (2) case, based on wall crossing and blow up formulae.
Some new explicit predictions for the SU (3) case on P2 will also be given.

The anomalous dependence on the gauge coupling discussed above is expected to
be the UV ancestor of the holomorphic anomaly equations in the IR, closely connected
to analogous results first found in string theory models [26] then in the case of the
computation of the partition function of the N = 4 SYM [27] and in the Donaldson
invariants generating functions [28–31]. More recently, the derivation of the holomor-
phic anomaly for the twisted version of theN = 4 SYM and its relation with the mock
modular forms has been discussed in [32]. It would be also interesting to extend our
approach to the topologically twisted theories considered in [33,34] which generically
localize both to point-like instantons and anti-instantons configurations.

In this paper we mainly focus on the holomorphically decoupled sector of the
theory and rely on equivariant localization. The path integral computing the partition
function of a gauge theory on a toric manifold localizes on the fixed points of the torus
action, namely on point like instantons sitting at the origin of each toric patch covering
the manifold. The path integral is computed in terms of the residues of a product of
partition functions, one for each toric patch. The residues are taken at the fixed points
of the torus action and are specified by the fluxes of the gauge field along the Cartan
subalgebra. To compute such residues we use a surprising “duality” relation between
the residues computed at the poles of the one-loop and instanton part of the partition

1 Notice that on non compact manifolds, like ALE spaces, the sum over all fluxes is unconstrained since
the Weyl symmetry is explicitly broken by the choice of the scalar vev at infinity.
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function. This duality is rooted in the so called AGT correspondence [35] which
connects the partition functions of theN = 2 class S theories to the conformal blocks
of a two dimensional conformal field theory (CFT). In the case of SU (2) SYM such
“duality” between the residues is a direct consequence of the Zamolodchikov recursion
relations for the conformal blocks [36]. In this paper wewill present a generalization of
such relation, valid for higher rank unitary gauge groups. Once again the gauge theory
quantities can be put in correspondence with the two-dimensional CFT ones: the poles
of the one-loop and instanton partition functions can, in fact, be put in correspondence
with the conformal dimensions of the null states of the reducible Verma module and
the roots of the associated Kac determinant[37]2.

There are several open questions and aspects to be further analyzed, let us mention
some of them. It would be interesting to extend the present computations to gauge
theories with fundamental and adjoint matter fields and perform a more thorough
analysis of the higher rank cases. The latter point would provide new results for the
Donaldson invariants in the higher rank case for which very few results are known at
the moment, with the notable exception of [39,40]. Moreover, it would be useful for
a large N analysis and for the study of holography for compact manifolds. Also, the
insertion of defect operators would be an interesting aspect to investigate.

The results obtained in this paper are based on equivariant localization on the
microscopic UV Lagrangian in the �-background. It would be very interesting to
study the limit of vanishing �-background in order to establish a connection with
the integration over the u-plane [41] which is based on an IR analysis using the
abelian effective gauge theory. This would possibly allow to makemanifest the duality
properties of the partition function and in particular to connect our results on theN = 2
holomorphic anomaly to the theory of mock modular forms.

Further directions concern the uplift of our results to five and six dimensional
gauge theories. In the case of the product manifolds M × S1 and M × T 2 this would
correspond on the mathematical side to K-theoretic and elliptic Donaldson invariants
respectively. More generally, one could try to extend the gluing techniques exploited
in this paper to toric manifolds in higher dimensions.

Thepaper is organized as follows: inSect. 2,weuse the localizationmethod to derive
a formula for the gauge partition function on a compact manifolds. We describe the
integration over the zero modes and the holomorphic anomaly in the gauge coupling.
In Sect. 3 we discuss the properties of the localized partition function which will be
relevant for the computations of the following sections and in particular we discuss
a remarkable duality between the perturbative and the instanton part of the partition
function which will greatly simplify our computations. In Sect. 4 we specialise the
findings of the previous sections to the case of toric manifolds. In Sects. 5 and 6 we
analyse the cases of SU (2) gauge theory onP2 andFn manifolds. In Sect. 7 we present
some preliminary results for the SU (3) partition function onP2. Finally, several useful
results are collected in the Appendices.

2 This generalization has been obtained in collaboration with R.Poghossian in an unpublished work. Later
it has been applied to the SYM with gauge groups of rank two in [38].
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2 Localization on compact manifolds

It is well known that the N = 2 SYM with gauge group U (N ) can be formulated on
any differentiableRiemaniann four-manifold bymaking use of twisted supersymmetry
[22]. The bosonic content of theN = 2 gauge supermultiplet includes a gauge vector
A, a complex scalar � and a self-dual two-form B+ which is an auxiliary field. The
fermionic components are a one-form �, a scalar η and a self-dual two-form χ+.
Fields are paired by a scalar supersymmetry charge Q.

2.1 Equivariant localization

The supercharge Q can be viewed as an equivariant derivative acting on the super-
manifold with coordinates the fields M = (A, �̄, χ+) and equivariant differentials
dM = (�, η, B+). The supersymmetry action can be further deformed using an
isometry δV of M

Q = Q + i ιV = d + i ι� + i ιV , Q2 = δ� + δV (2.1)

where ιV , ι� is the contraction along the vector field V and �, i.e. i ι�dM = δ�M,
i ιV dM = δVM. The V -deformation represents the �-deformation of the theory. In
the toric case, it is a U (1)2 local Lorentz rotation which, for each toric patch, is the
local �-background on C

2 with the appropriate choice of weights (See Sect. 4 for
details).

The scalar supercharge action is

QA = �, Q� = i ιV F + D�, Q� = i ιV�,

Q�̄ = η, Qη = i ιV D�̄ + [�, �̄],
Qχ+ = B+, QB+ = i LVχ+ + [�,χ+],

(2.2)

withLV = (DιV + ιV D) = −iδV the covariant Lie derivative associated to the action
of the vector field V and D = d + [A, ·] the covariant derivative. Notice that the
consistency of the last line implies that the self-duality of the two forms is preserved
by the V -action, namely LV 
 = 
LV . This is equivalent to the statement that V
generates an isometry of the four manifold.

The N = 2 SYM Lagrangian can be written

L = iτ

8π
Tr (F ∧ F) + QV (2.3)

where τ is the complex coupling, the trace is in the fundamental representation and

V = Tr
[
iχ+ ∧ F+ + g2

4
χ+ ∧ B+ + � ∧ 
(Q�)† + η ∧ 
(Qη)†

]
. (2.4)
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Consistently, the action is gauge and LV invariant. In (2.4), after integrating out the
auxiliary field B+, one gets

L = iτ

8π
Tr
(
F− ∧ F−)+ i τ̄

8π
Tr
(
F+ ∧ F+)+ . . . (2.5)

where τ = θ
2π + i 4π

g2
. In the topological theory τ and τ̄ are independent parameters.

Indeed, at the quantum level, the real part of τ is not a physical parameter, since it can
be absorbed by an anomalous U (1)R transformation.

2.1.1 SUSY fixed points

The path integral of the deformed gauge theory localizes around the fixed locus of the
supersymmetry. To identify the set of fixed points of the twisted supersymmetry (2.2),
we start by setting as usual all fermions to zero and then we impose the vanishing of
their supersymmetric transformations

i ιV F + D� = 0 , i ιV D�̄ + [�, �̄] = 0 . (2.6)

By applying ιV to the first equation and using ι2V = 0 and the reality condition�† = �̄

one finds
ιV D�̄ = 0 . (2.7)

Using (2.7) into (2.6), we get
[�, �̄] = 0 (2.8)

which projects the field� onto the Cartan subalgebra. Finally actingwith the covariant
derivative on the l.h.s. of (2.6) one finds

LV F = [F,�] = 0 (2.9)

where in the last equation we used the reality of F and (2.8). At the supersymmetric
fixed points one then finds for the equivariant gauge field

F
∣∣
f.p. = (F + �)f.p. = Fαh

α. (2.10)

The hα’s, α = 1, . . . , N − 1 are the generators of the Cartan subgroup of the gauge
group, satisfying

Tr (hαhβ) = Gαβ (2.11)

where Gαβ is the Lie algebra Cartan matrix.
The field components Fu can be further split as

Fα = F
point
α + Fflux

α (2.12)
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where the first term describes the contributions of point-like instantons sitting at the
fixed points of the toric action while the second one specifies the topological contri-
bution of the fluxes which can be expanded as

Fflux
α = 2π

χ∑

�=1

k�
αw� . (2.13)

in a basis {w�}, � = 1, . . . χ of equivariant two-forms H2
V (M;Z), χ being the Euler

characteristic of the manifold M and k�
α a set of integers.

2.1.2 BPS observables

The BPS observables of the topologically twisted gauge theory are built by the equiv-
ariant version of the usual descent equations [18]. The supersymmetry transformations
(2.2) can be succinctly rewritten as the equivariant Bianchi identity [42]

DF ≡ (−Q + D + i ιV ) (F + � + �) = 0 . (2.14)

for the equivariant curvature
F = F + � + � (2.15)

Indeed, (2.2) can be obtained from the above by expanding in the de Rham form
degree.

In these variables the supersymmetric action takes the simple form

Stop = iτ

8π

∫

M
tr F2 (2.16)

More generally, one can consider the intersections of the equivariant forms built out
of F with elements of the equivariant cohomology of the manifold, T ∈ H•

V (M) as

Stop,sources ≡
∫

M
T ∧ P(F). (2.17)

with P a gauge invariant function of F. In the following we will discuss the case in
which P is a quadratic polynomial, while for compact toric manifolds the source T
reads

T = 2π i τ + x�w� + x��′
w� ∧ w�′ + T . (2.18)

Moreover, T is an arbitrary polynomial of order two in the equivariant parameters
and X = {x�, x��′ } are the variables of the Donaldson polynomials. Actually, these
generate the equivariant extension of surface and local observables which are the
relevant ones for the computation of Donaldson polynomials. Let us remark that the set
of equivariant observables is richer than the non-equivariant ones and the equivariant
Donaldson polynomials give a finer characterization of the differentiable manifolds.
From the quantum field theory view point, this is because the �-background probes
the gauge theory revealing a finer BPS structure.
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2.2 Integrating around fixed points

After having written the fields of the theory as the classical solution plus its fluctua-
tions, the computation of the partition function of the supersymmetric gauge theory
with gauge group SU (N ) on C

2 proceeds by integrating out the fluctuations3. The
functional integral then reduces to an integration over the moduli of the classical solu-
tions which can be performed using the localization formulae at the supersymmetric
fixed points (2.12). The final result is given as a series in the supersymmetric gauge
parameter q raised to the power k, the instanton winding number, parametrized in
terms of the vacuum expectation values of the scalar fields, au , u = 1, . . . , N , and of
the deformations, ε1, ε2, introduced to regularize the theory see [3–5] for a complete
explanation. To move to the case of toric manifolds we observe that at the origins of
the toric patches, which are fixed points under the toric action, the supersymmetry
equations become exactly those of point like instantons sitting at the origin of C2

after the replacement a → a�, εa → ε�
a and q → q�. Therefore the contribution of

Fpoint to the gauge theory partition function factorises in a product of local factors,
each of them being given by the partition function ZC2(a�

α, ε�
1, ε

�
2, q

�)with scalar vevs
a�
α , equivariant parameters ε� and gauge couplings q� determined by the non-trivial
gluing of the charts.

The equivariant parameters ε�
a describe the transformation properties of the local

coordinates z�a with respect to theU (1)2 isometry of the manifold. The parameters a�
α

describe the asymptotic values of the scalar field in the chart �. They can be written
in terms of the vev a1α and the integers rsα , s = 1, . . . b2 = χ − 2, b2 being the second
Betti number, codifying the non-trivial gluing of the charts. Finally, the couplings
q� = q e�� , where �� is the zero form part of T evaluated at the fixed point in chart
�, take properly into account the contribution of surface and local observables.

On an open toric variety the final result would then be given just by the sum over all
possibile gluings rsα , as a function of the asymptotic values of the scalar fields a1α at the
space boundary. On a compact manifold one has instead to further proceed to integrate
over a1α , which are in this case normalizable zero modes of the dynamical fields in the
path integral. The integral can be written as an infinite sum over the residues labeled
by a double sequence of integers {k1α, k2α}. One finds

ZM =
∑

rsα

∑

(k1α,k2α)

Res
a1α=a

(k1α,k2α)
α

Zfull(a
1
α, rsα, ε1, ε2, q, X) (2.19)

with Zfull given as a product of the contributions of point like instantons in each chart.
Finally, the sum over rsα and (k1α, k2α) can be combined into a single sum over k�

α

bringing all poles to the origin

ZM =
∑

k�
α

Resaα=0 Zfull(aα, k�
α, ε1, ε2, q, X) (2.20)

3 see [45] for a modern review of this classical result.
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with

Zfull(aα, k�
α, ε1, ε2, q, X) =

χ∏

�=1

ZC2(a�
α, ε�

1, ε
�
2, q

�) (2.21)

and
a�
α = aα + k�

α ε�
1 + k�+1

α ε�
2 (2.22)

as follows from (2.10) and (2.13). It is important to observe that transitions between
the charts, i.e. differences a�

α −a1α will depend only on (χ −2) (rather than χ ) intergers
rsα made out of k�

α , and parametrizing all possibile non-trivial gluings of the charts.
One can therefore view (2.21) as the equivariant version of formula (2.19). Similarly,
the quantities rsα can be viewed as the non-equivariant version of the gauge fluxes k�

α .
The two are related via

rsα = 1

2π

∫

Ds

Fα = 1

2π
k�
α

∫

Ds

w� (2.23)

where Ds are the divisors of M .

2.2.1 Integrating out the zero modes

The partition function of our theory is given by a functional integral. How to go from
the functional integral to the integration over the zero modes takes the name of method
of the collective coordinates in the physics literature. A recent review of this method
for the supersymmetric case is [45]. We now proceed to perform the path integral over
the zero modes of the fields. These zero modes are in the Cartan subalgebra of the
SU (N ) gauge as it follows from (2.8) and (2.2). Since we are considering compact
toric surfaces, which are simply connected, there are no zero modes for the one-form
fields A and �. Moreover after the topological twist the zero modes of B+ and χ+
are (1, 1) forms and can be expressed in terms of the Kahler form ω of the manifold
as

χ+ = χα h
α ω , B+ = bα h

α ω

� = aα h
α , η = ηαh

α (2.24)

The indices are raised and lowered using (2.11). The zero modes are invariant con-
figurations in the field space under the V -isometry action, therefore Q2 = 0 in this
sector and the coefficients in (2.24) are constant.

It is important to notice that the presence of bosonic and fermionic zeromodes leads
to an ambiguity in the definition of the path integral measure. Indeed the fermionic
zero modes χ, η do not appear in the gauge theory action (2.3), moreover Zfull(aα)

is meromorphic in aα and if integrated over the zero modes aα, āα would yield a
divergent result. To cure this ambiguity, we deform the action by adding the Q-exact
term

QV ′ = 2isQTr [Im(�) χ+ ∧ ω] , (2.25)
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where s ∈ R is a real gauge-fixing parameter 4. Collecting the contributions from
(2.4) and (2.25) one finds the zero modes action

Szeromodes = sηαχα + 2is Im(aα)bα + g2

4
bα b

α + 2π i bακα (2.26)

where we normalise the volume as
∫
M ω ∧ ω = 1 and we introduce the notation

κα = 1

2π

∫

M
ω ∧ Fα = β� k

�
α (2.27)

with

β� = 1

2π

∫

M
ω ∧ w�. (2.28)

2.3 The SU(2) case

Let us consider the SU (2) case. The integrals over (η, χ, b) can be easily performed

∫
dχ dη dbe

[
s
2 η χ− g2

8 b2−2π i b κ−is Im(a)b

]

= s
√
2π

g
e
− 2

g2
(sIm(a)+2πκ)2

(2.29)

leading to

ZM = 1

4π2

∑

r

s
√
2π

g

∫

C

da ∧ dā e
− 2

g2
(sIm(a)+2πκ)2

Zfull(a, rs, εa, q, X) (2.30)

To perform the integral over a, we observe that the partition function Zfull(a, rs, εa,
q, X) is ameromorphic function of themoduli with poles at a = a(k1,k2) = k1ε1+k2ε2
labeled by two integers (k1, k2). Therefore, one can write

Zfull(a, rs, εa, q, X) = [regular part]
+
∑

k1,k2

Resa(k1,k2) Zfull(a, rs, εa, q, X)

a − a(k1,k2)
+ [

more singular terms
]

(2.31)

Since the theory is asymptotically free we expect that the regular part in a can be
regularized out of the integral. All the poles are crucially along the real axis. The
contribution of the more singular terms vanishes upon integration over Re(a). The
contribution of the second term leads to

4 We take s to be positive for the sake of simplicity. Actually the result of the zero modes integration does
not depend on s.
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∫

C

da ∧ dā

4π2

e
− 2

g2
(sIm(a)+2πκ)2

a − a(k1,k2)
=
∫

R2

dx dy

2π2i

e
− 2

g2
(sy+2πκ)2

x + iy

= −
∫

R

dy

2π
e
− 2

g2
(sy+2πκ)2

sgn(y)

=
√
2g

2πs

∫ 2
√
2πκ
g

0
e−y′2

dy′ = g

2s
√
2π

Erf

(
2
√
2πκ

g

)

(2.32)

where we wrote a−a(k1,k2) = x+ iy and used
∫
R

dx
x+iy = −(π i)sgn(y) and Erf(x) =

2√
π

∫ x
0 e−u2du. Plugging the result of the integral into (2.30) one finds

ZM = 1
2

∑

rs

∑

(k1,k2)

Erf
(
2
√
2πκ/g

)
Res

a=a(k1,k2) Zfull(a, rs, εa, q) . (2.33)

The sum over (k1, k2) can be grouped together with the sum over rs into a sum over
the equivariant fluxes k�

α bringing the poles to the origin in the a variable

ZM = 1
2

∑

k�

Erf
(
κ
√
2πτ2

)
Resa=0Zfull(a, k

�, εa, q) (2.34)

where, as usual, τ2 is the imaginary part of τ .

2.3.1 Holomorphic decoupling limit

A decoupling limit of the gauge parameter can then be defined by tuning g → 0 keep-
ing τ finite 5. In this limit, the Erf-function reduces to a sign(κ) factor. Alternatively,
the same result is obtained by performing first the limit g → 0 and then the integral
over the zero modes. In this way, the integral (2.29) is replaced by

∫
dχ dη dbe

[ s
2 η χ−2π i bκ−is Im(a)b

]
= π δ

(
Im(a) + 2πκ

s

)
(2.35)

The integral over a reduces then to an integral over Re(a) along the line Im(a) =
−2πκ/s and it can be written as a sum over all the residues weighted by the sign of κ

ZM = 1
2

∑

k�

sign(κ)Resa=0Zfull(a, k
�, εa, q) =

∑

k�,κ>0

Resa=0Zfull(a, k
�, εa, q) .

(2.36)
We notice that the partition function depends on the choice of the Kahler form ω, only
through the restriction κ = β�k� > 0 in the sum over the k’s with β� the equivariant

5 We notice that we can tune the gauge -fixing parameter g to any value independently from τ . Setting
g = 0 corresponds to the δ-gauge.
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volumes defined in (2.28). This implies in particular, that the partition function is
piecewise constant along the space of Kahler forms with jumps across the walls where
a Kahler cone chamber vanishes (see Sects. 4 and 6 for details).

It is important to observe that the condition κ > 0 in the sum can be viewed as a
restriction to slope stable gauge bundles. Moreover, we will later show that only stable
and semi-stable sheafs contribute to the sum (2.36), since the contributions coming
from the tuplets {k�} associated to unstable sheafs will always cancel against identical
contributions with opposite signs coming from the tuplets in their Weyl orbit. This
provides as highly non-trivial consistency check of the localization formula (2.36) and
suggests a generalization to higher rank that we will briefly sketch in the next section.

2.4 The higher rank case

A localization formula for the higher rank case can be obtained following mutatis
mutandis the same steps, but now the derivation involve a multiple integration over
the Cartan modes aα , α = 1, . . . N − 1. Again the integration over the real parts of
aα picks the residues at aα = 0 (let us say in the order a1 >> a2) while that over the
imaginary parts will now produce a generalized error function. Again, one expects that
in the limit g → 0, this error function should reduce to a piece-wise constant sign-
function with jumps in the moduli space of Kahler forms along the walls of marginal
instability. A path integral derivation of this formula goes beyond the scope of this
paper, but in analogy with the results for SU (2) we expect again a formula given in
terms of a sum of residues of Zfull over the tuplets {k�

α} associated to slope stable
gauge bundles or equivariantly equivalent stable sheafs.

In this section, we review the concept of slope stability for U (N ) gauge bundles.
We refer the reader to Appendix D for a review on sheaf stability.

A bundle E is said to be (semi) stable if for every proper sub-bundle G ⊂ E the
slope

μ(E) =
∫
M c1(E) ∧ ω

r(E)
(2.37)

of the bundle is greater or equal than the slope μ(G) of the sub-bundle. Here c1(E) =
1
2π trF(E) is the first Chern class and r(E) is the rank. The semi stability of the
bundle is equivalent to the hermitian Yang-Mills equations via the Hitchin-Kobayashi
correspondence [43,44]. Namely, for an holomorphic vector bundle E , we have

ω ∧ FE = 2πμ(E) ω ∧ ω 1E . (2.38)

Actually, if the vector bundle E admits a sub-bundle G, then its gauge connection
splits in blocks as6

AE =
(


 v

v† AG

)
(2.39)

and its curvature as

FE =
(


 



 FG + v ∧ v†

)
. (2.40)

6 Notice that the specific block diagonal decomposition is obtained by fixing the Weyl group symmetry.
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Inserting the last in the hermitian Yang-Mills condition above and projecting on the
sub-bundle G one finds that

ω ∧ [FG + v ∧ v†] = 2πμ(E) ω ∧ ω 1G . (2.41)

Taking the trace, integrating over M , and using that
∫
Tr (v ∧ v†) ∧ ω ≥ 0, we find

the slope semi stability condition

μ(G) ≤ μ(E) (2.42)

Evaluating (2.42) for all possible sub-bundles and using (2.27), we find the N − 1
inequalities

1

n

n−1∑

α=0

κN−α ≤ 1

N

N−1∑

α=1

κα for n = 1, . . . N − 1 (2.43)

In particular for N = 2, 3 one finds

SU (2) : κ ≥ 0

SU (3) : κ1 + κ2 ≥ 0 and 2κ1 ≥ κ2 (2.44)

As anticipated, the restriction κ > 0 in the localization formula sum (2.36), ensures
that only slope semi (stable) bundes contribute to the partition function. Similarly
for SU (3) we expect that the partition function should be given by a sum (with some
signs determined by the path integral) restricted to bundles satisfying the slope stability
condition (2.44).

The equivariant version of slope stability conditions has been worked out in [46].
Equivariant stability is again defined by the requirement that the slope μ(F) of an
equivariant subsheaf F of the sheaf E is smaller than the slope of the sheaf itself
μ(E). For SU(2) and SU(3) on P

2 one finds (see Appendix for details)

SU (2) : km ≤ kn + k p

SU (3) : km1 ≤ 1
3

∑

α,�

k�
α , km2 + kn2 ≤ 1

3

∑

α,�

k�
α

km1 + k12 + k22 + k32 ≤ 2
3

∑

α,�

k�
α , km1 + kn1 + k p2 ≤ 2

3

∑

α,�

k�
α(2.45)

with m �= n �= p is always understood. There are 3 conditions for SU(2) and 12 for
SU(3) where the two lines arise from one and two-dimensional sub-sheafs. The two
notions of stability are equivalent, so one expect that only bundles satisfying these
more restrictive conditions will contribute to the partition function.

In Sect. 7 we will apply these ideas to the SU (3) theory and evaluate the first
instanton corrections to the Donaldson partition function on P2.
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2.5 Holomorphic anomaly equation

The anomalous dependence in the gauge fixing parameter g of the N = 2 partition
function can be physically understood as coming from the contribution of abelian anti-
instantons. These are the fluxes of the gauge field along the Kähler form, contributing
to the zero-mode action as it follows from (2.5). The anomalous dependence can be
obtained by taking the derivative of (2.33) with respect to the coupling g.

By using the fact that

τ
1/2
2

∂

∂τ̄
Erf(κ

√
2πτ2) = i

κ√
2
(qq̄)κ

2/2 (2.46)

one finds

τ
1/2
2

∂

∂τ̄
ZM = π i

2
√
2

∑

k�

κ(qq̄)κ
2/2Resa=0Zfull(a) (2.47)

The q
κ2
2 term cancels against a similar contribution coming from the classical part7.

This provides a generalization of the well-known holomorphic anomaly equation in
the N = 4 SYM discussed in [32].

An alternative derivation of the above equation for SU (2) N = 2 SYM can also be
given by proceeding to the direct evaluation of the derivative of the partition function
with respect to the gauge coupling g. This leads to the calculation of the v.e.v. of a
Q-exact operator which is nonetheless different from zero due to boundary effects.
Indeed, by deriving with respect to g one gets the following integral over the zero-
modes

− 4

g

∂

∂g
ZM =

∫
db

da dā

4π2 dχ dηQ
(

χb e− g2

8 b2−2iπbκ Zfull(a)

)
(2.48)

where Zfull is a meromorphic function of a (we omitted for simplicity its dependence
on the other parameters which does not matter for the present argument). By using the
fact that on the zero modesQ = η ∂

∂ā +χ ∂
∂b , we can absorb the fermionic zero modes

(χ, η) and reduce (2.48) to a boundary term

∫
db

da dā

4π2

∂

∂ ā

(
b e− g2

8 b2−2π ibκ Zfull(a)

)
(2.49)

Now by using the analytic properties of Zfull(a) and ∂
∂ā

1
a = −πδ(2)(a) we get

−4

g

∂

∂g
ZM = i

2

∑

k�

ResZfull

∫
db b e− g2

8 b2−2π ibκ

= √
2τ 3/22

∑

k�

(Resa=0Zfull(a)) κ e−2κ2πτ2 (2.50)

7 Remember that τ̄ ≡ τ − i 8π
g2

123



Gauge theories on compact toric manifolds Page 15 of 46 77

in agreementwith (2.47).Alternatively one could evaluate the boundary termat infinity
leading to the same result. Let us observe that the derivation we outlined here is valid
for general N = 2 gauge theories, the details of the theory depending on the explicit
form of Zfull. The situation is very different from theN = 4 theory because of the non
renormalization of the gauge coupling and the corresponding vanishing of the U (1)R
anomaly. This is due to the appearance of extra zero modes. In this case it is the non-
abelian sector of the R-symmetry group which is anomalous, inducing a non-trivial
bundle structure of the zero-modes over the fixed point locus. The boundary term is
therefore obtained in terms of the non-trivial Chern classes of the R-symmetry bundle.
This more intricate structure has been analysed in detail in [32] from the viewpoint of
the effective abelian theory in the IR.

3 The partition function onC
2

In order to set the notation, let us briefly recollect here the results for the partition func-
tion of the SYM on C2 which are needed in the subsequent sections. For a pureU (N )

SYM on C
2 we have a product of the classical, one loop and instanton contributions

ZC2 = Zclassical,C2 Zone−loop,C2 Z inst,C2 (3.51)

with a parametrizing the expectation value at infinity of the scalar field in the vector
multiplet, εa describing the �-background and q = e2π iτ . The classical part is given
by

Zclass,C2 = q
−
∑

u a2u
2ε1ε2 = q

−
∑

u,v a2uv
4Nε1ε2 , (3.52)

with auv = au−av with u = 1, . . . , N . The results for the SU (N ) theory are recovered
by imposing the traceless condition

∑
u au = 0. The one-loop partition function reads

Z1loop,C2 =
N∏

u �=v=1

1

�2(auv)
(3.53)

with �2(x) the Barnes Gamma function (see Appendix .1 for definitions and details).
Finally the instanton partition function is given by a sum over the array Y = {Yu} of
N Young diagrams

Z inst,C2 =
∑

Y

q |Y | ZY (3.54)

where

ZY =
N∏

u,v=1

∏

(i, j)∈Yu

[
auv + ε1(i − lv j ) − ε2 ( j − 1 − l̃ui )

]−1

×
∏

(i, j)∈Yv

[
auv − ε1(i − 1 − lu j ) + ε2 ( j − l̃vi )

]−1
(3.55)
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{lu j } and {l̃ui } denote the length of the rows and columns respectively of the diagram
Yu , and |Y | counts the total number of boxes in Y . For instance in the case of the
SU (2) theory one finds, setting a = a12

Z inst,C2(a, ε1, ε2, q) = 1 + 2 q

ε1 ε2 ((ε1 + ε2)2 − a2)
(3.56)

+q2
2(4ε21 + 4ε22 − a2) + 17ε1ε2

ε21 ε22 ((ε1 + ε2)2 − a2)((ε1 + 2ε2)2 − a2)((2ε1 + ε2)2 − a2)
+ . . .

More generally, the instanton partition function for SU (2) can be written in the
Zamolodchikov’s form [36]

Z inst,C2(a) = 1 +
∞∑

m,n=1

qmn Rmn Z inst(mε1 − nε2)

(a + mε1 + nε2)(−a + mε1 + nε2)
(3.57)

Rmn = 2
m∏

i=−m+1

n∏

j=−n+1
(i, j) �=(0,0),(mn)

1

iε1 + jε2
(3.58)

The instanton partition function can then be written in general as an infinite sum in qk

with coefficients given by rational functions with poles at au = ±a(m,n)
u where

a(m,n)
uv = muvε1 + nuvε2 (3.59)

withmu, nu some positive integers. On the other hand Zone−loop (see (.3) and (.5)) has
zeros exactly at these locations for ε1ε2 > 0, so the full partition has no poles in this
case.

Remark 1 The partition function ZC2 has poles if and only if ε1ε2 < 0.

3.1 An abstruse duality

In this section we show that the residues of the gauge partition function at the poles
of its one-loop and instanton parts exactly coincide.

3.1.1 The SU(2) case

We start by considering the SU (2) case. We will show that the following identity
holds

lim
a→0

ZC2(a + a(m,n))

ZC2(a + â(m,n))
= −sign(ε1) (3.60)

with
a(m,n) = mε1 + nε2, â(m,n) = mε1 − nε2 (3.61)
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wherem, n are arbitrary nonzero integers. Similar formulae exists in the case in which
we flip the sign ofm with sign(ε1) replaced by sign(ε2). To prove the duality relations
we first observe that

Zclass,C2(â(m,n)) = Zclass,C2(a(m,n))qmn (3.62)

that follows from (3.52). On the other hand, using (3.57) one finds that for mn > 0

Resa=a(m,n) (Z inst,C2(a)) = −qmn Rmn Z inst,C2(â(m,n))

2(mε1 + nε2)
(3.63)

Finally, let us consider the one-loop partition function. To this aim, it is convenient to
use the representation

∏

i

( xi
�

)
= Exp

(

− d

ds

[
�s

�(s)

∫ ∞

0

dt

t
t s
∑

i

e−xi t

]

s=0

)

(3.64)

to write products/determinants as sums/traces. Using this representation one can write
the one-loop partition function as

Z1loop,C2 = Exp

(
− d

ds

[
�s

�(s)

∫ ∞

0

dt

t
t s χC2(y, t1, t2)

]

s=0

)
(3.65)

in terms of the character χC2

χC2(y, t1, t2) = y + y−1

(1 − t1)(1 − t2)
(3.66)

counting the Lie valued holomorphic functions on C2 and

t1 = e−t ε1 , t2 = e−t ε2 , y = e−t a . (3.67)

The ratio between Zone−loop,C2(a+ amn) and Zone−loop(a+ âmn) can be computed in
terms of the difference of the corresponding characters. For instance, for ε1, ε2 > 0,
the difference of the associated characters in the limit where y = e−ta ≈ 1 reduces to

χ
C2 (y tm1 tn2 , t1, t2) − χ

C2 (y tm1 t−n
2 , t1, t2) =

(
tm1 tn2 y + y−1t−m

1 t−n
2 − ytm1 t−n

2 − y−1t−m
1 tn2

)

(1 − t1)(1 − t2)

≈
m−1∑

i=−m

n−1∑

j=−n
(i, j) �=(0,0)

e−t(iε1+ jε2) + y−1 (3.68)
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One can recognize in the double sum of the right hand side of (3.68) the character
associated to the product (3.58)

Rmn

2(mε1 + nε2)
=

m−1∏

i=−m

n−1∏

j=−n
(i, j) �=(0,0)

1

iε1 + jε2
(3.69)

We conclude then that

Rmn

2(mε1 + nε2)

[
Z1loop,C2

−a

]

a=a+a(m,n)

≈ −Z1loop,C2 |a=â(m,n) (3.70)

Collecting (3.62), (3.63) and (3.70) one finds that the second line of (3.60) is verified.
A similar analysis holds for ε1 < 0 leading again to (3.68) with y−1 replaced by y
contributing an extra minus sign.

3.1.2 The higher rank case

A generalization of the abstruse duality formula (3.60) holds for theories with unitary
gauge groups of arbitrary rank. We have no proof of this duality but we checked its
validity up to four instantons for SU (3) and SU (4) gauge theories. We claim that
the expansions of the gauge partition functions around the poles of its one-loop and
instanton parts are related by

lim
au→0

ZC2(au + a(m,n)
u , εa, q)

ZC2(au + â(m,n)
u , εa, q)

= −sign(ε1) (3.71)

with

a(m,n)
u = muε1 + nuε2 , â(m,n)

u = a(m,n)
u + n1 ε2(δuN − δu1) (3.72)

and (mu, nu) two ordered sequences of positive integers

m1 > m2 > . . .mN = 0 , n1 > n2 > . . . > nN = 0 (3.73)

Explicitly
a(m,n)
1 = m1ε1 + n1ε2

a(m,n)

û = mûε1 + nûε2

a(m,n)
N = 0

â(m,n)
1 = m1ε1

â(m,n)

û = mûε1 + nûε2

â(m,n)
N = n1ε2

(3.74)

with û running from 2 to N − 1.
Similar identities hold for any choice of SU (N ) roots αvv′ = (δuv − δuv′). For the

classical part one finds

Zclass,C2(â(m,n)
u ) = Zclass,C2(a(m,n)

u )qm1n1 (3.75)
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that follows from (3.52). As before, the ratio of one-loop contributions can be extracted
from the difference of the one-loop characters

�χ(t1, t2) = χC2(yu y
(m,n)
u , t1, t2) − χC2(yu ŷ

(m,n)
u , t1, t2) (3.76)

with y(m,n)
u = e−t a(m,n)

u , ŷ(m,n)
u = e−t â(m,n)

u , yu = e−tau .
Plugging these formulae into (3.76) one finds generically for ε1, ε2 > 0 in the limit

yu ≈ 1

�χ(t1, t2) = 1

(1 − t1)(1 − t2)

∑

u,v

yuvt
muv

1 tnuv

2

(
1 − tn1(δuN+δv1−δu1−δvN )

2

)

≈ 1

(1 − t1)(1 − t2)

⎡

⎣(tm1
1 − t−m1

1 )(tn12 − t−n1
2 ) +

N−1∑

û=2

(tmû
1 − t−m1û

1 )(tnû2 − t−n1û
2 )

+
N−1∑

û=2

(tm1û
1 − t−mû

1 )(tn1û2 − t−nû
2 )

⎤

⎦+
N−1∑

u=1

(y−1
uN + y−1

1u − 2) (3.77)

≈
m1−1∑

i=−m1

n1−1∑

j=−n1

t i1 t
j
2 +

N−1∑

û=2

⎡

⎣
mû−1∑

i=−m1û

nû−1∑

j=−n1û

t i1 t
j
2

+
m1û−1∑

i=−mû

n1û−1∑

j=−nû

t i1 t
j
2

⎤

⎦+
N−1∑

u=1

(y−1
uN + y−1

1u − 2)

leading to

Z1loop,C2(au + a(m,n)
u )

Z1loop,C2(au + â(m,n)
u )

≈
au→0

−P(ε1, ε2) a1

N−1∏

û=2

(aûa1û) (3.78)

with

P(ε1, ε2) =
m1−1∏

i=−m1

n1−1∏

j=−n1

(iε1 + jε2)
N−1∏

û=2

⎡

⎣
mû−1∏

i=−m1û

nû−1∏

j=−n1û

(iε1 + jε2)
m1û−1∏

i=−mû

n1û−1∏

j=−nû

(iε1 + jε2)

⎤

⎦

(3.79)

In the case where mu1nu1 = (mu − m1)(nu − n1) = 0 for a given u, the corre-
sponding term a1û in (3.78) is missing. For the ratio of the instanton contributions one
finds

Z inst,C2(au + a(m,n)
u )

Z inst,C2(au + â(m,n)
u )

≈
au→0

qm1n1

P(ε1, ε2) a1
∏N−1

û=2 (aûa1û)
(3.80)
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Collecting (3.75),(3.78) and (3.80) one finds

ZC2(a(m,n)
u , εa, q) ≈ −ZC2(â(m,n)

u , εa, q) (3.81)

as claimed. For ε1 < 0 the same results are found with a flipped overall sign.
For example for SU (3) taking m1 = m2 = n1 = n2 = 1, one finds from (3.78)

Z1loop,C2(au + a(m,n)
u )

Z1loop,C2(au + â(m,n)
u )

≈
au→0

−a1a2ε1ε2(ε1 + ε2)
2 (3.82)

and

Z inst,C2 = 1 + 2q
a21 + a22 − a1 a2 − 3(ε1 + ε2)

2

ε1 ε2 (a21 − (ε1 + ε2)2)(a22 − (ε1 + ε2)2)(a212 − (ε1 + ε2)2)
+ . . .

≈ q Z inst,C2(â(m,n)
u , q)

ε1 ε2 (ε1 + ε2)2a1a2
+ . . . (3.83)

4 The partition function onM

The gauge theory partition function on a compact toric M (2.36) is given as a residue
formula of the exact semiclassical integrand Zfull. This in turn can be written as a
product of a classical, one-loop and instanton contribution

Zfull(au, k
�
u) =

N∏

u �=v

Zclassical(auv, k
�
uv) Zone−loop(auv, k

�
uv) Z inst(auv, k

�
uv) (4.84)

each one given as a product of contributions for each toric patch. In the case of
SU (2), one can simply relabel the variables (a12, k�

12) → (a, k�). The formulae for
Zone−loop(auv, k�

uv), Z inst(auv, k�
uv) SU (N ) follow from those of SU (2) by sending

(a, k�) to (auv, k�
uv) and taking the product over all pairs (u, v) with u �= v. Without

loss of information we can then restrict to the SU (2) case. The classical part is given
explicitly for the SU (N ) case. In the following, after fixing the relevant data of the toric
geometry, we compute the classical, one-loop and instanton contributions separately.

4.1 The toric data

As explained in Sect. 2, the function Zfull(a, ks, εa, q) can be written as a product of
partition functions ZC2(a�, ε�

1, ε
�
2, q

�) accounting for the contributions of instantons
localized at the origins of each chart � = 1, . . . χ covering the manifold M . The equiv-
ariant parameters ε�

a describe the transformation properties of the local coordinates
z�a with respect to the action of the vector field V on the manifold. For a toric man-
ifold, they can be determined recursively (see Appendix 1 for details) starting from
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(ε11 , ε
1
2) = (ε1, ε2) via the relation

(ε�+1
1 , ε�+1

2 ) = (−C�+1,�+1 ε�
1 + ε�

2,−ε�
1) (4.85)

with C��′ = D� · D�′ the intersection matrix between the equivariant divisors D�. We
recall that only b2 = χ − 2 divisors are homotopically independent, so we can take
the subset {Ds}, s = 1, . . . b2 as a basis of homotopically independent cycles.

Similarly, the scalar vevs, which parametrise the solutions of (2.10), can be written
as in (2.22). Finally, as anticipated in Sect.2, the Donaldson observables are charac-
terised by the choice of an equivariant polyform (2.18). We normalise the two forms
{w�} such that

1

(2π)2

∫

M
w� ∧ w′

� = 1

2π

∫

D�

w�′ = C��′ (4.86)

As we said already, in presence of Donaldson observables, the induced gauge coupling
in each chart is given by q� = q e�� with�� given by the zero form part of T evaluated
at the fixed point, z�1 = z�2 = 0, in chart �.

4.1.1 Classical term

The contribution of the classical action to the partition function on M can be written
as

Zclass(a,k, ε1, ε2, q, X) =
χ∏

�=1

Zclass,C2(a�, ε�
1, ε

�
2, q

�) = q�k+c21
N−1
2N e��

(4.87)

with c21 = ∫M c1 ∧ c1 = 1
(2π)2

∫
M trF ∧ trF and

�k = −
∑

u,v

χ∑

�=1

(
auv + k�

uvε
�
1 + k�+1

uv ε�
2

)2

4Nε�
1ε

�
2

= −
∑

u,v

C�mk�
uvk

m
uv

4N

�� = −
∑

u,v

χ∑

�=1

(
auv + k�

uvε
�
1 + k�+1

uv ε�
2

)2
��

4Nε�
1ε

�
2

(4.88)

We notice that the partition function does not depend on an overall U(1) shift of the
fluxes k�

u → k�
u + c�, so we can use this freedom for example to set c21 = 0, 1, ..[N/2]

in the case of SU (N ) theory.
In deriving the right hand side of (4.88) we used the identities

χ∑

�=1

1

ε�
1ε

�
2

=
(

1

ε�+1
2

+ 1

ε�
1

)

= 0

(
ε�
1

ε�
2

+ ε�−1
2

ε�−1
1

)

= C�� (4.89)
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following from (.11). Remarkably, the classical partition function on M without
observables does not depend on the scalar vev a.

4.1.2 One loop term

By making use of (3.53), the one loop partition function on M can be written as the
product

Zone−loop(a,k, ε1, ε2, q, X) =
χ∏

�=1

Zone−loop,C2(a�, ε�
1, ε

�
2, q

�) (4.90)

We will first prove that, although each factor is given by an infinite product, the total
result involves only a finite number of factors. To see this, it is convenient to consider
the character representation of the one-loop contributions, so from (3.66) we get

χM(k|y, t1, t2) =
χ∑

�=1

y
(
t�1
)k� (

t�2
)k�+1 + y−1

(
t�1
)−k� (

t�2
)−k�+1

(1 − t�1 )(1 − t�2 )
=
∑

m,n,p

dkmnp t
m
1 tn2 y p

(4.91)
It is easy to see that χM (k|y, t1, t2) is a finite polynomial given that it is a rational
function and that it has no poles in the limit where one of the t�a goes to one. For
instance, for a given �, in the limit where t�1 ≈ 1, the two terms � and � + 1 in the sum
lead to

χoneloop
∣
∣
t�1≈1 ≈ y

⎡

⎢
⎢
⎣

(
t�1
)k� (

t�2
)k�+1

(1 − t�1 )(1 − t�2 )
+
(
t�+1
1

)k�+1 (
t�+1
2

)k�+2

(1 − t�+1
1 )(1 − t�+1

2 )

⎤

⎥
⎥
⎦+. . . ≈ 0+regular terms (4.92)

where we used that (t�+1
1 , t�+1

2 ) = (t�2 (t
�
1 )

C�� , (t�1 )
−1) as it follows from (4.85).

Consequently, the one-loop partition function can be written as the finite product

Zoneloop(a,k, ε1, ε2) =
∏

m,n,p

(p a + mε1 + nε2)
−dkmnp (4.93)

with p = ± and where dkmnp are the expansion coefficients of the one-loop character.

4.1.3 Instanton term

The instanton contribution is

Z inst(a,k, ε1, ε2, q, X) =
χ∏

�=1

Z inst,C2(a�, ε�
1, ε

�
2, q

�) (4.94)

with Z inst,C2 given as a sum over Young diagrams contributions (3.54).
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4.2 The residue sum

In this section we study the residues of Zfull in the SU (2) case. We start by focusing
on the contribution of a single chart ZC2(a�, ε�

a, q
�). Near a ≈ 0 this function can

have a zero or a pole depending on the relative signs of the ε�’s and whether or not
the k�,k�+1s are zero. The different cases are listed in the following:

• when k�, k�+1 �= 0, the function ZC2(a�, ε�
a, q

�) has a pole if ε�
1ε

�
2 < 0 and is

regular otherwise
• when k� = 0, the result is the same if ε�

2 < 0 and gets suppressed by an extra
factor of a if ε�

2 > 0. Similar suppression factors are obtained for k�+1 = 0 in the
case of ε�

1 < 0 and ε�
1 > 0 respectively.

Using the fact that in a compact toric manifold there are two and only two patches
with ε�

1ε
�
2 > 0 (see Remark 3 in Appendix), we conclude that

Remark 2 The pole of Zfull associated to a tuplet of non-vanishing integers {k�} is
always of order χ − 2. On the other hand, since ε�

1ε
�+1
2 is always negative, every

vanishing k� in the tuplet reduces the order of the pole by one.

Now let us consider the sum over the residues of Zfull. It is convenient to introduce
the following operator

P�(k
�′
) = (−1)δ��′ k�′

(4.95)

that flips the sign of the �th component of the vector k.
Then we state the following property

Resa=0

m+χ−2∏

�=m

(1 + P�) Zfull(a,k, εa, q) = 0 ∀m ∈ {1, . . . , χ} (4.96)

To prove this, we recall that for any k, the full partition function has at most χ − 2
poles. Let us consider first the χ = 3 case. In this case one has a single pole so each
term in the product contributes with its residue. According to the abstruse duality
(3.60), under a flip of the sign k�, this term picks up the sign ε�

1ε
�+1
2 = −1, so the two

contributions cancel against each other. Similarly for χ = 4 one can achieve a similar
cancellation after flipping two signs in (4.95). A detailed derivation of the general case
is presented in Appendix .2.

An important consequence of (4.96) is that the sum over all tuplets {k�} of the
residues of Zfull cancels, so that a non-trivial result is found for the sum (2.36)weighted
by sign(κ).

It is important to observe that the residue of Zfull for a given k gives in general a
result involvingnegative powers ofq anddivergent contributions in the non-equivariant
limit εa → 0, while the partial sum

Zorbit(k, εa, q) = 1

2ζk
Resa=0

[
χ∏

�=1

(1 + P�)sign(κ)Zfull(a,k, εa, q)

]

(4.97)
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involving the residue of Zfull and all its sign flips does not include the terms with
negative powers of q, although it still can be divergent in the non-equivariant limit.
Here ζk is the number of zero entries in {k�}. This allows us to write the partition
function as a sum over orbits labeled by tuplets {k�} of non-negative integers

ZM (εa, q) =
∑

k≥0

Zorbit(k, εa, q) (4.98)

Moreover, the orbits of the vector {k�} with positive components only can be clas-
sified into three groups

Stable ∀ ki 2βi k
i <

χ∑

�=1

β� k
� (4.99)

Semi stable ∃ ki 2βi k
i =

χ∑

�=1

β� k
� (4.100)

Unstable ∃ ki 2βi k
i >

χ∑

�=1

β� k
� (4.101)

It is easy to see that the contributions from unstable orbits exactly cancel. In this case
one can write

Zunst orbit(k, εa, q) = 1

2ζk
Resa=0

⎡

⎣(1 + Pi )

χ∏

��=i

(1 + P�)sign(κ)Zfull(a,k, εa, q)

⎤

⎦

= 1

2ζk
Resa=0

⎡

⎣(1 + Pi )sign(κ)

χ∏

��=i

(1 + P�)Zfull(a,k, εa, q)

⎤

⎦ = 0

(4.102)

where in the last line we used the fact that if k belongs to an unstable orbit all the flips
in signs of the k� �=i do not change the sign of κ . The last equation follows then from
(4.96).

Finally in the case of semi-stable orbits, some contributions aremissing since κ = 0
for specific choices of signs. The contribution of the tuplet {k�} from a semi stable
orbit is two times less than that of the same tuplet for a stable orbit.

One can see a correspondence between the classification of tuplets of fluxes {k�}
(4.99-4.101) and Klyachko’s classification of sheaves on a manifold (and therefore
between the poles of the partition function and the sheaves on a manifold)[24,46].
According to Klyachko every sheaf is characterized by χ filtrations of vector spaces.
If we identify the fluxes {k�} with the positions of the jumps in the filtrations, we will
see that (4.101) corresponds to the filtrations defining only unstable sheaves, while
(4.99) is the necessary condition to have a stable sheaf among all the sheaves described
by corresponding filtrations. The intermediate condition (4.100) guarantees that there
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is a semistable sheaf among all of the sheaves described by the correspondingfiltrations
(see Appendix .3 for the details). The fact that the contribution of the unstable orbits
vanish is in agreement with the known fact that unstable sheaves do not contribute
to the Donaldson invariants. The correspondence between the poles of the partition
function and the sheaves on a toric manifold was first noted in [18].

An interesting observation is that the contribution of an orbit Zorbit(k, εa, q)

changes exactly when some of the sheaves defined by the corresponding filtrations
change their stability type.

4.3 Comparison against wall-crossing formulae

In this section we check that the localization formula for the Donaldson partition
function agrees with the results obtained via wall-crossing. We focus on SU (2) SYM
on a compact toric manifold with χ > 3. Let us consider the difference between
the partition functions for two different choices of the Kahler form, ω and ω′. The
localization formula for the difference can be written in the form

Zω
M − Zω′

M = 2
∑

r∈2Z(χ−2)+c1
κκ ′<0

Resa=∞Zfull(a, r, ε1, ε2, q, X) (4.103)

The sum with κκ ′ < 0 can be alternatively written as twice the sum over those rs

satisfying κ > 0 and κ ′ < 0. This sum can be interpreted as the contribution of the
jumps made by the partition function when crossing the walls κ = 0 in the space of
Kähler forms.

We denote by r̂ = k�ω�|2−form = [F] ∈ H2(M) the non-equivariant class of the
gauge field strength F . The two-form r̂ is determined by the coefficients rs . We notice
that the condition κκ ′ ∼ (

∫
ω ∧ r̂)(

∫
r̂ ∧ ω′) < 0 requires that r̂ is a space-like form∫

r̂ ∧ r̂ < 0 since ω, ω′ are time-like forms
∫

ω ∧ ω > 0,
∫

ω′ ∧ ω′ > 08 and belong
to the Kähler cone. Consequently

�k = −1

8

∫
r̂ ∧ r̂ > 0 (4.104)

and therefore the difference (4.103) has a well defined weak coupling expansion given
by truncating the sum over the rs to a given value of �k. On the other hand for
manifolds with χ = 3, namely P

2, κκ ′ = r2 > 0 so the difference vanishes and no
walls are found as expected.

In the mathematical language, following [23], a wall is defined as follows.

Definition For every class ξ ∈ H2(M,Z) \ {0} such that 〈ξ · ξ 〉 < 0 there is a wall
W ξ := {L ∈ H2(M,R) | 〈L · ξ 〉 = 0} of type c1, c29 if
1. W ξ �= ∅;
8 We remind that since b+

2 = 1 the space H2(M) with scalar product
∫
a ∧ b has a Minkowski-like

signature
9 c2 is the second Chern class.
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v2

v1

v3

σ1

σ2

σ3

v∗
2−v∗

2

−v∗
1

v∗
1 −v∗

3

v∗
3

σ∗
1

σ∗
2

σ∗
3

Fig. 1 Toric fan of P2

2. ξ + c1 is divisible by 2 in H2(M,Z);
3. c21 − 4c2 ≤ 〈ξ · ξ 〉.

As it is shown in [23] the difference between the equivariant Donaldson invariants �̃

in a chamber containing a polarization ω and a chamber containing a polarization ω′
can be found as

�̃ω
c1 − �̃ω′

c1 =
∑

ξ

δ̃ξ (4.105)

where the sum goes over all classes ξ defining the walls of given c1 and arbitrary c2
such that

∫
ω′ · ξ < 0 <

∫
ω · ξ and the contribution from a class ξ is given by

δ̃ξ = Resa=∞
∏

l

ZC2(ε
(l)
1 , ε

(l)
2 , a − i∗Pl ξ̃ , q e

i∗Pl �) (4.106)

with � being a form defining the observable and ξ̃ being any equivariant extension of
the class ξ . We identify the class ξ with the non-equivariant two-form r̂ . Then taking
into account that a� − a�−1 = i∗P�−1

ξ̃ − i∗P�
ξ̃ (see the localization theorem in [47]) we

see that formulae (4.103) and (4.105) match up to an overall numerical coefficient in
the definition of the Donaldson invariants.

5 Donaldson invariants for P2

In this section we consider SU (2) SYM on P
2. The results on P

2 are well known for
any choice of c1, so one can use them to test our approach in Fig. 1.

5.1 Geometric data

The fan of P2 is specified by the vectors (see Appendix 1 for a brief introduction
on toric geometry):

(v1, v2, v3) = (e1, e2,−e1 − e2) (v∗
1 , v

∗
2 , v

∗
3) = (−e∗

2, e
∗
1, e

∗
2 − e∗

1) (5.107)
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Table 1 Observables on P2

� (z�1, z
�
2) (ε�

1, ε
�
2) a� ��

1
(
y1
y3

,
y2
y3

)
(ε1, ε2) a + k1ε1 + k2ε2 x1ε1 + x2ε2 + x12 ε1 ε2 + T

2
(
y2
y1

,
y3
y1

)
(ε2 − ε1,−ε1) a + k2(ε2 − ε1) − k3ε1 x2(ε2 − ε1) − x3ε1 + x23 (ε21 − ε1 ε2) + T

3
(
y3
y2

,
y1
y2

)
(−ε2, ε1 − ε2) a − k3ε2 + k1(ε1 − ε2) x1(ε1 − ε2) − x3ε2 + x13 (ε22 − ε1 ε2) + T

The three vectors satisfy

v1 + v2 + v3 = v∗
1 + v∗

2 + v∗
3 = 0 (5.108)

Comparing with the general toric formula

v�−1 + v�+1 − h� v� = 0 (5.109)

we conclude that h� = −C�� = −1. The non-trivial intersection numbers are

D� · D� = D� · D�+1 = 1 (5.110)

In addition, the relation (5.108) determines the weights of the homogeneous coor-
dinates in the description of the toric manifold as the quotient of C3 \ {0} by the
equivalence relation

(y1, y2, y3) ∼ (λ y1, λ y2, λ y3) (5.111)

In table 1wedisplay the local coordinates (z�1, z
�
2) in each chart � and the corresponding

equivariant parameters (ε�
1, ε

�
2).

To each chart we associate an equivariant two form w�. The zero form part of w�

at the origin z�
′
1 = z�

′
2 = 0 of the chart �′ is given by

[w�]�′ =
⎛

⎝
ε1 0 ε1 − ε2
ε2 ε2 − ε1 0
0 −ε1 −ε2

⎞

⎠ (5.112)

We collect the geometric data in Table 1. Finally the Kähler form on P
2 is w =

α(w1 + w2 + w3) with α a real positive number giving the volume of the manifold
which was normalized to 1 in Sect. 2.2.

5.2 Donaldson invariants

To compare with the existing literature we set the Donaldson variables to

x3 = z , x13 = x23 = −x12 = x , T = xε1ε2 , x1 = x2 = 0 (5.113)
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Fig. 2 Poles of Zfull (with r = k1 + k2 + k3 = 6) in the U(2) theory on P2

or equivalently

�� =
(
0,−zε1 + x(ε1)

2,−zε2 + x(ε2)
2
)

(5.114)

The classical contribution to the partition function becomes

Zclass = q�k+ c21
4 e��

(5.115)

where

�k = −r2

4
, r = k1 + k2 + k3 , c21 = r mod 2 (5.116)

As we discussed before, for P2 there are only poles of order one. Let us consider the
contribution of an orbit defined by the triplets {k1, k2, k3} of positive integers10. Such
orbit contains 4 terms with κ ≥ 0. The types of orbits can be grouped as follows:

• Unstable orbits: they are generated from a triplet (k1, k2, k3) violating one of
the triangle inequalities, let us say k1 + k2 < k3. There are four contributions
(±k1,±k2, k3) which cancel against each other in pairs.

• Stable orbits: they are generated from a triplet, satisfying the triangle inequalities
ki + k j > kk , and its flips. They contribute with a factor 2 − 6 = −4.

• Semistable orbits: they are generated from a triplet (k1, k2, k3) saturating one of
the triangle inequalities, let us say k1 + k2 = k3. A contribution is missing, so that
their contribution is weighted by a factor 2 − 4 = −2.

If one of the ki ’s is zero, the number of flips is two times less, but it is compensated
with the additional factor 1/2ζ from (4.97).

10 Triplets involving a vanishing k� lead to a regular Zfull with vanishing residue.
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In Fig. 2, we display the poles in the a-plane for r = 6. Stable points are points
inside the triangle, while semi-stable ones lie at the boundary of the triangle. The
partition function can then be written as

ZM (εa, q) = −4
∑

k≥0

Zstable point(k, εa, q) − 2
∑

k≥0

Zsemi stable point(k, εa, q)

(5.117)

The contributions of each orbit can be computed by using the abstruse duality (3.60).
Indeed, since Zfull has at most a single pole, its residue can be written as

Resa=0Zfull(a,k, εa, q) = Resâ=0Zfull(â,k, εa, q)

= q�̂k+ c21
4 e�̂� Ẑ1loop(k, ε1, ε2)

∏

�

Z inst,C2(â�, ε�
1, ε

�
2, q

�)

(5.118)

with

�̂k = 1
4

(
2k1k2 + 2k2k3 + 2k3k1 − (k1)2 − (k2)2 − (k3)2

)

Ẑ1loop(k, ε1, ε2) =
∏

m,n,p

(mε1 + nε2)
−dkmn (5.119)

with dkmnp the expansion coefficients of the one-loop dual character

χ̂M(k|t1, t2) =
χ∑

�=1

(
t�1
)k� (

t�2
)−k�+1 + (t�1

)−k� (
t�2
)k�+1

(1 − t�1 )(1 − t�2 )
− 1 =

∑

m,n

dkmn t
m
1 tn2

(5.120)

where the −1 removes the zero eigenvalue associated to the residue. It is interesting
to observe that the stable orbits are characterised by polynomials with expansion
coefficients dkmn all positive, while semi-stable ones correspond to characters with all
positive coefficients except one. The same pattern is observed for higher rank theories.
We stress the fact that, although the two sides of equation (5.118) lead to the same
results, the right hand side of (5.118) is easier to evaluate since �̂k is always positive
and the instanton part is regular at â(mn).

In order to compute the Donaldson invariants up to order q2, for instance, it is
enough to take the sum over k with k� ≤ 3. The non-trivial contributions come from
the orbits

c1 = 1 k = {(1, 1, 1), (1, 2, 2), . . . .} + permutations

c1 = 0 k = {(1, 1, 2), (1, 2, 3), . . . .} + permutations (5.121)
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where the terms “+permutations” in the above formula are referred to the permutations
of k. Setting

Zc21
(P2, q) = −1

4
ZM
∣∣
c21=k1+k2+k3 mod 2 (5.122)

one finds

Zc21=1(P
2, q, ε1, ε2) = q e

1
4 (xε1ε2−z(ε1+ε2)) + q2

( e
1
4 (xε1(ε2−ε1)−z(3ε1+ε2))

ε21 (ε1 − ε2)ε2
+

+ (ε21 + ε22 )e
1
4 (xε1ε2−z(ε1+ε2))

2ε21 (ε1 − ε2)2ε
2
2

+ e
1
4 (xε1(4ε1+ε2)−z(5ε1+ε2))

2ε21 (ε1 − ε2)2
+

+ e
1
4 (xε2(ε1+4ε2)−z(ε1+5ε2))

2(ε1 − ε2)2ε
2
2

+ e
1
4 (x(ε1−ε2)ε2−z(ε1+3ε2))

ε1(ε2 − ε1)ε
2
2

−

− e
1
4 (xε1ε2−z(ε1+ε2))

ε1(ε1 − ε2)2ε2
− e− 3

4 z(ε1+ε2)− 1
4 x(ε

2
1−7ε1ε2+ε22 )

ε1(ε1 − ε2)2ε2

)+ . . . (5.123)

Zc21=0(P
2, q, ε1, ε2) = q

( e− 1
4 xε1(ε1−4ε2)−zε2 (ε1 − 2ε2)

2(ε1 − ε2)ε2
+ e−zε1+xε1ε2− xε22

4 (2ε1 − ε2)

2ε1(ε1 − ε2)
−

− e− 1
4 x(ε1+ε2)

2
(ε1 + ε2)

2ε1ε2

)+ . . .

(5.124)

In the limit of ε1, ε2 → 0 one recovers the standard non-equivariant Donaldson
invariants

Zc21=1(P
2, q) = q + q2

16

(
19

x2

2! + 5
xz2

2! + 3
z4

4!
)

+ . . . (5.125)

Zc21=0(P
2, q) = −3qz

2
+ q2

(

−13

8

x2z

2! − xz3

3! + z5

5!

)

+ . . . (5.126)

6 Gauge theories on Fn

In this section we consider SU (2) gauge theories on Fn depicted in Fig. 3.

6.1 Geometric data

The four vectors of the toric fan of Fn satisfy the relations

v1 + v3 + nv4 = v2 + v4 = 0 (6.127)

leading to the identification

(y1, y2, y3, y4) ∼ (λ y1, λ
′ y2, λ y3, λ

′λn y4) (6.128)
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Fig. 3 The toric fan of Fn . σ� labels the cone of dimension two relative to the �-th C
2 coordinates patch

The non-trivial intersection numbers following from (6.127) are

C44 = −C22 = n , C�,�±1 = 1 (6.129)

To each chart we associate an equivariant two form w�. The zero form part of w�′ at
the origin of chart � can be found to be

[w�′ ]� =

⎛

⎜⎜
⎝

ε1 0 0 ε1
ε2 ε2 + nε1 0 0
0 −ε1 −ε1 0
0 0 −ε2 − nε1 −ε2

⎞

⎟⎟
⎠ (6.130)

The coefficients of the non-equivariant curvature are

r = k1 + k3 − n k2

r ′ = k2 + k4 (6.131)

We collect the geometric data in Table 2.

6.2 The Donaldson invariants

We take theKähler form to beω = αw1+βw2 withα−nβ > 0, and set the parameters
of the observables as

x1 = x2 = 0, x3 = z1, x
4 = z2

x12 = x23 = x14 = 0, x34 = x

Or equivalently

�� =
(
0,−z1ε1,−z1ε1 − z2(ε2 + nε1) + x(ε1ε2 + nε21),−z2ε2

)
(6.132)

The maximal order of a pole is χ − 2 = 2 and any k� becoming zero decreases its
order by one, see Fig 4 for an example.
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Fig. 4 Poles of Zfull in the U(2) theory on F0 for (r , r ′): a) (-4,3), b) (4,3)

The classical contribution to the partition function is

Zclass = q�k+ c21
4 e��

(6.133)

where we choose the first Chern class to be c1 = (r mod 2)w3+ (r ′ mod 2)w4, so that

�k = 1

4
(2 r r ′ + n r ′2)

c21 = 2(r mod 2)(r ′ mod 2) + n(r ′ mod 2)2 (6.134)

In the following, we label the first Chern class c1 = p3 w3 + p4 w4 by the pair of
integers (p3, p4) defined mod N .

Hirzebruch surface F0

In order to compute the Donaldson invariants up to q2 it is enough to take values up
to ki = 2. To be more precise, the non-trivial contributions come from the orbits

c1 = (0, 0) k = {(0, 1, 2, 1), (1, 0, 1, 2), (1, 2, 1, 0), (2, 1, 0, 1), (1, 1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}
c1 = (0, 1) k = {(1, 0, 1, 1), (1, 1, 1, 0), (1, 1, 1, 2), (1, 2, 1, 1), (2, 0, 2, 1), (2, 1, 2, 0)}
c1 = (1, 1) k = {(0, 1, 1, 2), (0, 2, 1, 1), (1, 0, 2, 1), (1, 1, 0, 2), (1, 1, 2, 0), (1, 2, 0, 1)

, (2, 0, 1, 1), (2, 1, 1, 0)} (6.135)

For the equivariant Donaldson invariants one gets

Zc1=(0,0)(F0, q, ε1, ε2) = q
( (ε1 − ε2)e

− 1
4 x(ε1−ε2)

2−z2ε2

2ε1ε2
− (ε1 − ε2)e

− 1
4 x(ε1−ε2)

2−z1ε1

2ε1ε2
+

+ (ε1 + ε2)e
− 1

4 x(ε1−ε2)
2−z1ε1−z2ε2

2ε1ε2
− (ε1 + ε2)e

− 1
4 x(ε1−ε2)

2

2ε1ε2

)+ . . . (6.136)

Zc1=(1,0)(F0, q, ε1, ε2) = q
(− e−

1
4 (x(ε1−ε2)

2+4z2ε2+z1(2ε1−ε2))

ε2
+ e−

xε21
4 − 1

4 z1(2ε1+ε2)

ε2

)+ . . .

(6.137)
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Zc1=(1,1)(F0, q, ε1, ε2) = q2
( e−

1
4 (xε21+2z1ε1+3z2ε1+z1ε2)

2ε1ε2(ε1 − ε2)

+ e
1
4 (−x(ε1−2ε2)

2+3z1(−2ε1+ε2)+z2(ε1−4ε2))

2ε1ε2(ε1 − ε2)
−

− e
1
4 (−x(ε2−2ε1)

2+z1(ε2−4ε1)+3z2(ε1−2ε2))

2ε1ε2(ε1 − ε2)
− e−

1
4 (xε22+3z1ε2+z2(ε1+2ε2))

2ε1ε2(ε1 − ε2)
−

− e
1
4 (−x(ε1−ε2)

2−3z1(2ε1+ε2)+z2(ε1−2ε2))

2ε1ε2(ε1 + ε2)
+ e

1
4 (−4xε21−z1(4ε1+ε2)+3z2ε1)

2ε1ε2(ε1 + ε2)
− (6.138)

− e
1
4 (−x(ε1−ε2)

2+z1(−2ε1+ε2)−3z2(ε1+2ε2))

2ε1ε2(ε1 + ε2)
+ e

1
4 (−4xε22+3z1ε2−z2(ε1+4ε2))

2ε1ε2(ε1 + ε2)

)+ . . .

In the non equivariant limit ε1, ε2 → 0 one finds

Zc1=(0,0)(F0, q) = q (−z1 − z2) − 1

960
q2 (z1 + z2)

(
525x2 + 20x

(
z21 + 8z2z1 + z22

)

−4
(
z41 − 6z2z

3
1 + 16z22z

2
1 − 6z32z1 + z42

))+ . . .

Zc1=(1,0)(F0, q) = q2
(
2160x2z2 − 20z31

(
7x − 8z22

)− 240xz2z21 − 60xz1
(
17x − 16z22

)+ 31z51 − 140z2z41
)

3840

+q
(
z2 − z1

2

)
+ . . .

Zc1=(1,1)(F0, q) = 1

48
q2 (z1 + z2)

(−6x + 13z21 − 22z2z1 + 13z22
)+ . . . (6.139)

The results for c1 = (0, 1) and c1 = (1, 1) perfectly match those obtained using
the wall crossing formulae. Indeed, in these two cases, an empty room exists and the
contribution of every orbit is equal to a contribution of its flip with rr ′ ≤ 0 with
an additional factor (−4) for the stable points and (−2) for the semistable ones in
agreement with the wall crossing results. On the other hand, in the case c1 = (0, 0)
there is no empty room, and the contribution of the orbits k = (1, 1, 1, 1) is not
proportional to a contribution of any of its flips satisfying the condition rr ′ ≤ 0.

Hirzebruch surface F1

Again, in order to compute the Donaldson invariants up to q2 it is enough to take
values of the gauge fluxes up to ki = 2. The non-trivial contributions come from the
orbits

c1 = (0, 0) k = {(1, 0, 1, 2), (1, 1, 2, 1), (2, 1, 1, 1)}
c1 = (0, 1) k = {(1, 0, 1, 1), (1, 1, 2, 2), (1, 2, 1, 1), (2, 0, 2, 1), (2, 1, 1, 2)}
c1 = (1, 0) k = {(1, 1, 1, 1)}
c1 = (1, 1) k = {(1, 0, 2, 1), (1, 1, 1, 2), (1, 2, 2, 1), (2, 0, 1, 1), (2, 2, 1, 1)}
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For the equivariant Donaldson invariants one gets

Zc1=(0,0)(F1, q, ε1, ε2) = q

2
(
e− 1

4 x(ε1−ε2)
2−z2ε2 (ε1 − ε2)

ε1ε2
+ e−z1ε1−z2(ε1+ε2)− xε22

4 (2ε1 + ε2)

ε1(ε1 + ε2)
−

− ez1ε2− 1
4 x(ε1+2ε2)2 (ε1 + 2ε2)

ε2(ε1 + ε2)

)+ . . . (6.140)

Zc1=(0,1)(F1, q, ε1, ε2) = q e
1
4 (−(z1+z2)ε1+(z1−2z2)ε2−xε22 ) + . . . (6.141)

Zc1=(1,0)(F1, q, ε1, ε2) = q
ez1ε1 − 1

ε1
e−z1ε1− xε22

4 − 1
4 z2(ε1+2ε2) + . . . (6.142)

Zc1=(1,1)(F1, q, ε1, ε2) = q2
(− e− xε22

4 −z2(ε1+ε2)− 3
4 z1(3ε1+ε2)

2ε1(ε1 + ε2)
+ e

1
4 (−xε22+z1(ε2−ε1)−4z2(ε1+ε2))

2ε1(ε1 + ε2)

− e
1
4 (−x(ε1−ε2)

2−4z2ε2+z1(ε2−3ε1))

2ε1ε2
+ e

1
4 (z1(ε1−3ε2)−x(ε1−ε2)

2−4z2ε2)

2ε1ε2
−

− e
1
4 (−x(ε1+2ε2)2)+z1(ε1+3ε2)(ε1 + 2ε2)

2ε1ε2(ε1 + ε2)
+ e− 1

4 x(ε1+2ε2)2− 3
4 z1(ε1−ε2)(ε1 + 2ε2)

2ε1ε2(ε1 + ε2)

)+ . . .

(6.143)

In the non-equivariant limit ε1, ε2 → 0 one finds

c1 = (0, 0)(F1, q) = − 3
2q (z1 + z2)

Zc1=(0,1)(F1, q) = q + q2

384(
228x2 + 60x (z1 + z2)

2 − 29z41 + 12z2z
3
1 + 18z22z

2
1 + 12z32z1 + 3z42

)

Zc1=(1,0)(F1, q) = qz1

Zc1=(1,1)(F1, q) = −3

2
q2z1(z1 + z2) (6.144)

7 SU(3) gauge theory on P
2

In this section we compute the first instanton corrections to the Donaldson partition
function for a theory with gauge group SU(3) living on P

2. The sum over the gauge
fluxes is spanned now by two triplets of integers (k�

1|k�
2) with � = 1, 2, 3. Using the

Weyl symmetry in each chart one can order the tuplet such that k�
1 > k�

2 > 0. A scan
over all tuplets with k�

α ≤ 2 shows that the leading contributions arise at order q2,
from the three tuplets

(k�
1|k�

2) = (1, 2, 2|1, 1, 1), (2, 2, 1|1, 1, 1), (2, 1, 2|1, 1, 1). (7.145)

The three terms contribute at order q2, with a q�k+ 1
3 = q−6 coming from the classical

part and a factor qk
�
1k

�
1 = q2+2+4 coming from the instanton partition function in the
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three charts covering P
2. An explicit evaluation of the residues leads to

Resaα=0 Z(1,2,2|1,1,1) = −q2e

(
− z(ε1+2ε2)

3 + 1
3 x(ε1ε2−ε22 )

)

ε1 (ε1 − ε2)
+ . . .

Resaα=0 Z(2,1,2|1,1,1) = q2e

(
− z(2ε1+ε2)

3 + 1
3 x(ε1ε2−ε21 )

)

(ε1 − ε2) ε2
+ . . .

Resaα=0 Z(2,2,1|1,1,1) = −q2e

(
− 2z(ε1+ε2)

3 + 1
3 x(5ε1ε2−ε21−ε22 )

)

ε1ε2
+ . . .

(7.146)

where the dots stands for higher instanton corrections.
The results (7.146) can be alternatively found by exploiting the abstruse duality.

Indeed, since Zfull(aα, q) has a single pole in a1 = a2 = 0, the residue receives
contribution only from the leading term near the pole in each chart. Consequently,
these contributions can be related using the abstruse duality (3.71) in each chart to the
residue of the partition function at âα = 0. More precisely, one finds

Resaα=0Zfull(aα, k�
α, εa, q) = −Resâα=0Zfull(âα, k�

α, εa, q) (7.147)

Notice that this relation holds for any tuplet such that the partition function exhibit
a single pole at the origin. Remarkably, the right hand side of (7.147) can be easily
evaluated to all orders in q. The crucial simplification follows from the fact that for
k�
1 > k�

2 > 0, the instanton partition function in the right hand side of (7.147) is regular
at aα = 0, so one has to deal with a residue of the much simpler one-loop part. The
result can be written as

Resâα=0Zfull(âα, k�
α, εa, q) = Zclass(âkα, k�

α, εa, q)Z inst(âkα, k�
α, εa, q)

∏
m,n(mε1 + nε2)

dkmn
(7.148)

where dkmn follows from the dual one-loop character evaluated at aα = 0 (the residue
of the one-loop partition function)

χ̂M(k|t1, t2) =
χ∑

�=1

3∑

u �=v=1

yk,�
u (yk,�

v )−1

(1 − t�1 )(1 − t�2 )
= 2 +

∑

m,n

dkmn t
m
1 tn2 (7.149)

with the 2 taking care of the residue and

yk,�
1 = t

k�
1

1 yk,�
2 = t

k�
2

1 t
k�+1
2

2 yk,�
3 = t

k�+1
1

2 (7.150)

One finds:

χ̂M ((1, 2, 2|1, 1, 1)|t1, t2) = 1

t1
+ t2

t1
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χ̂M ((2, 1, 2|1, 1, 1)|t1, t2) = 1

t2
+ t1

t2
χ̂M ((2, 2, 1|1, 1, 1)|t1, t2) = t1 + t2 (7.151)

Reading dkmn from (7.151) and plugging them into (7.148) one reproduces the denom-
inators of (7.146) while the numerators come from the classical part of the partition
function. The instanton contributes as 1 at this order, but an exact formula follows
from (7.148) if all instanton terms are kept.

Putting together all pieces, we find that that each contribution in (7.146) is divergent
in the limit εa → 0 but their sum is finite. Indeed, the sum of the three terms leads to

ZM (X , q) ∼ −q2

18
(30x + z2) + . . . (7.152)

with dots denotinghigher ε’s and instanton contributions.Other contributions of tuplets
in the Weyl orbits of these three terms will lead to the same results up to signs, so the
total contribution of the three orbits will be again proportional to (7.152).

Finally we notice that the tuplets (7.145) with (κ1, κ2) = (5, 3) satisfy the slope
stable conditions (2.44) and (1, 2, 2|1, 1, 1), (2, 1, 2|1, 1, 1), (2, 2, 1|1, 1, 1) satisfy
(2.45) as expected for a contributing term.
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Appendix

Toric geometry

In this appendix we give a brief review of toric geometry. A toric varietyM of complex
dimension two is specified by a set of vectors {v�} ∈ Z

2. Each cone σ� generated by
(v�, v�+1) is isomorphic to a copy ofC2, and the set of cones, the so called fan, defines
a covering of M . The variety M defined by the fan {σ�} is compact if the fan covers
the whole R

2, and the index � is understood mod χ , i.e vχ+1 = v1. The variety is
smooth if any point in σ� ∪ Z

2 can be written as a linear combination of v� and v�+1
with positive integer coefficients. We restrict ourselves to compact smooth varieties.
The manifold can be equipped with χ global coordinates (y1, . . . , yχ ).

The vectors v� ∈ R
2 satisfy the relations

v�−1 + v�+1 − h� v� = 0 � = 1, . . . χ (.1)

We notice that only χ − 2 of these relations are independent. To each ray v� we
associate a divisor D� ∼ P

1 defined as y� = 0
The integers h� specify the self-intersection numbers of the divisors in the toric

geometry. More precisely, the intersection pairing D� · Dm = C�m is given by

C�� = −h� , C�,�+1 = C�+1,� = 1 (.2)

Given a cone σ�, we define the dual cone σ ∗
� as a set of vectors v∗ ∈ R

2 such that
v∗ · w > 0 ∀w ∈ σ�. Equivalently, the generators (v∗

�+1,−v∗
� ) of the dual cone σ ∗

� are
defined by the conditions

v∗
� · v� = 0 , v∗1

� v2� − v1�v
∗2
� > 0 (.3)

For a vector v� = (v1� , v
2
� )

T one finds the dual vector v∗
� = (v2� ,−v1� )

T . (.1) leads to
the χ − 2 equivalences

∀λ ∈ C
∗ (y1, . . . , yχ ) ∼ (λCs1 y1, . . . , λ

Csχ yχ ), s = 1, . . . χ − 2 (.4)

To each dual cone σ ∗
� one can associate a chartU� isomorphic toC2. Local coordinates

in these charts can be taken to be

z�1 =
χ∏

�′=1

y
v∗
�+1·v�′

�′ , z�2 =
χ∏

�′=1

y
−v∗

� ·v�′
�′ (.5)

Using (.1) it is easy to see that z�a are invariant under the action (.4).
We introduce a (C∗)2 action acting on the homogenous coordinates y� as

y1 → eε1 y1 , y2 → eε2 y2 , y�>2 → y� . (.6)
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The action on the local coordinates can then be written as

z�a → eε�
a z�a (.7)

with

(ε�
1, ε

�
2) = (v∗ a

�+1 εa , −v∗ a
� εa) = (v2�+1ε1 − v1�+1ε2,−v2� ε1 + v1�ε2) (.8)

The origin of a patch U� (z�1, z
�
2) = 0 is invariant under the toric action. We denote

this fixed point as P� and in terms of the global coordinates it can be written as
(y�, y�+1) = 0. Note that every divisor D� contains two fixed points, namely P�−1
and P�.

Taking

v1 = (01) v2 = (10)

v∗
1 = (1, 0) − v∗

2 = (0, 1) (.9)

one finds
(ε11 , ε

1
2) = (ε1, ε2) (.10)

The remaining ε�
a can be found from the recursive relations

(ε�+1
1 , ε�+1

2 ) = (h�+1 ε�
1 + ε�

2,−ε�
1) (.11)

following from (.1).

Remark 3 An important remark is that for any compact toric variety there are two and
only two patches with ε�

1ε
�
2 > 0.

Indeed, as it follows from (.8) the signs of ε�
1, ε

�
2 depend only on which side of the line

v2ε1 − v1ε2 the vectors v�+1, v� lie. Since the cones are convex they cover the whole
R
2 and ε�

1, ε
�
2 cannot be zero, the above statement follows.

Remark 4 sign(ε�
1ε

�+1
2 ) = sign(−(ε�

1)
2) = −1.

An equivariant two form w on M is defined as a form satisfying

Qξ w = dw + iξw = 0 (.12)

with iξdza = εaza the contraction with respect to the action of the V vector field. To
each divisor D� one can associate a Poincaré dual equivariant form w� such that

1

2π

∫

D�

w�′ = C��′ (.13)

The zero form part of w� evaluated at the origin of a patch Uk , which we denote
as [w�]k , is the equivariant pullback ι∗

Pk ↪→M
ω� of the form ω� via the embedding
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Pk ↪→ M . The precise form of [w�]k can be computed using localization. Let α be
an equivariant form. Then, with the help of the localization theorem one can write

∫

M
α ∧ w� = (2π)2

∑

Pk∈M

ι∗Pk ↪→M (α ∧ w�)

ε
(k)
1 ε

(k)
2

= (2π)2
χ∑

k=1

[α]k [w�]k
ε
(k)
1 ε

(k)
2

(.14)

The same integral can be computed as an integral over the dual divisor D� of the
equivariant pullback ι∗

Dl ↪→M
α via the embedding Dl ↪→ M . The integral localizes

around the fixed points P�−1 and P� intersecting the divisor

∫

M
α ∧ w� = 2π

∫

D�

α = (2π)2

(
[α]�−1

ε
(�−1)
1

+ [α]�
ε
(�)
2

)

(.15)

Comparing ( .14) and ( .15) one finds

[w�]k = ι∗Pk ↪→Mw� = δk,� ε
(�)
1 + δk,�−1 ε

(�−1)
2 (.16)

Consistently, one can also check that the intersection matrix computed with the local-
ization theorem gives the expected result

Clm = 1

(2π)2

∫
w� ∧ wm =

∑

k

[w�]k[wm]k
ε
(k)
1 ε

(k)
2

(.17)

.1 The Barnes double gamma function

The Barnes double gamma function is defined via analytic continuation to the whole
complex plane of the integral

log�2(x |ε1, ε2) = d

ds

[
�s

�(s)

∫ ∞

0

dt

t

t s e−xt

(1 − e−ε1t )(1 − e−ε2t )

]

s=0
(.1)

in the region x > 0 where the integral converges. Using the representation of the
logarithm

log

(
�

x

)
= d

ds

(
�s

�(s)

∫ ∞

0

dt

t
t s e−xt

)

s=0
(.2)

the double gamma function can be written as an infinite product of zeros or poles
according to the domain of definition. For example for ε1, ε2 > 0 writing

log�2(x |ε1, ε2) =
∞∑

i, j=0

d

ds

[
�s

�(s)

∫ ∞

0

dt

t
t s e−t(x+iε1+ jε2)

]

s=0

=
∞∑

i, j=0

log

(
�

x + iε1 + jε2

)
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one can represent the �2(x) function as the infinite product of poles

�2(x |ε1, ε2) =
∞∏

i, j=0

(
�

x + iε1 + jε2

)
x, ε1, ε2 > 0 (.3)

Similarly in the region ε1 > 0 > ε2 one writes

e−xt

(1 − e−ε1t )(1 − e−ε2t )
= e−xt+ε2t

(1 − e−ε1t )(1 − eε2t )
= −

∑

i, j=1

e−(x+(i−1)ε1− jε2)t (.4)

and the �2(x) admits a representation as the infinite product of zeros

�2(x |ε1, ε2) =
∞∏

i, j=1

(
x + (i − 1)ε1 − jε2

�

)
x, ε1 > 0 > ε2 (.5)

.2 Proof of (4.96)

Let us consider first a varietywithχ = 3 (for instance,P2). Every point {k�} contributes
at most with a simple pole, so in order to compute the residue at the point a = 0, we
have to take only the leading term in the Laurent expansion of the partition function
in each chart. The abstruse duality relates the leading term in each chart to the one
obtained from it by flipping the sign of a k�. Since every k� appears twice in the product∏3

�=1 Z
�, once in the �-th patch and once in the (� − 1)-th patch, according to (3.60)

one finds

P�Resa=0Z
χ=3
full (k) = sign[ε(�−1)

1 ε�
2]Resa=0Z

χ=3
full (k) = −Resa=0Z

χ=3
full (k) (.1)

where the last identity follows from (.11). So we conclude that

Resa=0

[
(1 + P�)Z

χ=3
full (a,k, εa, q)

]
= 0 (.2)

and so the residue is also zero. Now let us consider a variety with χ = 4 (Fn , for
example). We would like to prove that

Resa=0

[
(1 + P�)(1 + P�+1)Z

χ=4
full (a,k, εa, q)

]
= 0 (.3)

If the tuplet{k�} contributes as a simple pole, the previous argument is applicable and
(.3) follows. If the tuplet contributes a double pole, the residue results from taking the
leading terms in the Laurent expansion of three of the charts and one subleading term.
If the subleading term is taken from a chart different from �, it is unaffected by the
sign flips P� or P�+1 and the identity (.3) follows.

Finally, let us consider the term where the subleading contribution comes from the
�-th patch. The flipping of k� and k�+1 affects the subleading contribution. Let us note
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that if ε�
1ε

�
2 > 0, the �-th patch contributes as a regular point (a�)0 and hence the

subleading term is an odd function of a�. If ε�
1ε

�
2 < 0 the patch contributes as a simple

pole and so the subleading term is an even function of a�. All together, one can say
that

P�P�+1Sublead Z�
C2 = −sign(ε�

1ε
�
2)Sublead Z�

C2 (.4)

Therefore one finds

(1 + P�P�+1)Z
χ=4
full =

[
1 − sign(ε�−1

1 ε�
1ε

�
2ε

�+1
2 )

]
Zχ=4
full = 0, (.5)

(P� + P�+1)Z
χ=4
full = P�

[
1 + P�P�+1

]
Zχ=4
full = 0. (.6)

Similar manipulations hold for χ > 4, with χ − 2 sign flips.

.3 Klyachko’s classification of sheaves

Here we follow the identification between the fluxes and the positions of the jumps in
Klyachko’s filtrations first suggested in [18] (see their Appendix A).

According to [24,46] an equivariant reflexive sheaf on a smooth toric variety M can
be defined by a tuple of χ non increasing filtrations of vector spaces E (�)

i , � ∈ {1 . . . χ}

C
N = E�−∞ . . . ⊇ E (�)

i ⊇ E (�)
i+1 ⊇ . . . E�∞ = 0 (.1)

A sheaf is stable if and only if for any proper subspace F ⊂ E = C
N the following

inequality holds [48]

1

dim F

∑

i∈Z

χ∑

�=1

i dim

⎛

⎝
F ∩ E(�)

i

F ∩ E(�)
i+1

⎞

⎠
∫

M
w� ∧ω <

1

dim E

∑

i∈Z

χ∑

�=1

i dim

⎛

⎝
E(�)
i

E(�)
i+1

⎞

⎠
∫

M
w� ∧ω,

(.2)
wherew� is a form dual to the divisor D� andω is the Kahler form. A semistable sheaf
is defined by the non strict inequality (.2). A strictly semistable sheaf is semistable
but not stable. Indeed, a gauge bundle E associated to the spaces E (�)

i is stable if for

any equivariant sub-bundle F associated to the induced spaces F ∩ E (�)
i (.2) holds, or

equivalently if the slope of the equivariant sub-bundle is smaller than that of the slope
of the bundle itself

μ(F) < μ(E). (.3)

To understand the content of the stability conditions (.2) it is convenient to introduce
the tuplets of integers {k(�)

α } describing the positions along the i-line in the �th-sequence
of the jumps from C

α to C
α−1. Here for simplicity we use the shift symmetry to set

the location of the first jump in each sequence at the origin, i.e. k(�)
N = 0.

.3.1 SU(2) case

In this simple case there are at most two jumps in a filtration with one one-dimensional
intermediate space, which we will denote as P(�). The only non trivial choice for F
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is F = P(�′) for some �′. Let us first take the sheaves characterised by a tuplet of
filtrations with two jumps and P(�) �= P(�′) for all � �= �′. Then (.2) reduces to

∀ �′ β�′ k�′ ≤ 1
2

χ∑

�=1

β� k
� (.4)

with

β� = 1

2π

∫

M
w ∧ w� (.5)

If the inequalities (.4) are strictly true for any �′, then (.2) holds for any F and the
sheaf is stable.

We notice that if the choice of the subspaces P(�) is more degenerated, then (.4)
is not a sufficient condition for a sheaf to be stable. For example, if P(�) = P(�′) for
any �, �′ ∈ {1, . . . , χ}, then (.2) is always false for F = P(�), even if (.4) is still true.
It means that the corresponding sheaf is unstable. Therefore we see that (.4) is only a
necessary (but not sufficient) condition for a sheaf defined by the tuplet of filtrations
with the positions of the jumps {k�} to be stable.

In the same way one can see that (4.100) guarantees that there are some strictly
semistable sheaves among all of the sheaves corresponding to a tuplet of filtrations
with the jumps at {k�}. If both (4.99) and (4.100) are not satisfied then the non strict
version of (.2) cannot be satisfied and so (4.101) is a sufficient condition for all the
corresponding sheaves to be unstable. Taking into account also the filtrations with one
jump from C

2 directly to 0 one will end up with the same inequalities (4.99 - 4.101)
with the corresponding k(�) = 0.

.3.2 SU(3) case

Now let us consider the SU(3) gauge theory. The information about the subspaces of
the filtrations relevant for the stability conditions in this case can be represented by
points and lines in the projective plane. Indeed, two-dimensional subspaces of C3 can
either coincide or intersect at a one-dimensional space; a one-dimensional space either
lies in a two-dimensional space or has no non-trivial intersection with it; for any two
non-coinciding one-dimensional spaces there exist one and only one two-dimensional
subspace, which include them both (which is their direct sum). Lines and dots on
the projective plane have similar properties. The projective plane is required to avoid
the existence of parallel lines. The choices for F in this case are given by one and
two-dimensional subspaces of C3, represented by points and lines respectively.

To each divisor D� in the toric manifold one can associated a line L(�). We denote
by P(�) ∈ L(�) a generic point in this line and by V��′ a vertex at the intersection of
the lines. For P2 the most non-degenerated choice of the subspaces corresponds to the
diagram drawn in the following picture
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L(1)

L(2)

L(3)

P(1)

P(2)

P(3)

There are now four relevant choices for F :

• F = P(m): A point intersects itself and the line that it contains it, so F ∩ L(m) =
F ∩ P(m) = F leading to

∀m k(m)
1 ≤ 1

3

3∑

�=1

(k(�)
1 + k(�)

2 ) (.6)

• F = L(m) ∩ L(n) = Vmn : A vertex intersects two lines F = F ∩ L(m) = F ∩ L(n)

leading to

∀m �= n k(m)
2 + k(n)

2 ≤ 1

3

3∑

�=1

(k(�)
1 + k(�)

2 ) (.7)

• F = L(m): A line intersects itself on a line, a point contained in it on a point, and
any other line on a vertex, so: F ∩ L(m) = F , F ∩ P(m) = P(m), F ∩ L(n) = Vmn ,
leading to

∀m 1
2 (k

(m)
1 + k(1)

2 + k(2)
2 + k(3)

2 ) ≤ 1

3

3∑

�=1

(k(�)
1 + k(�)

2 ) (.8)

• F = P(m) ⊕ P(n): A line connecting two points intersects the two points and all
the lines contained on a point, so F ∩ L(m) = F ∩ P(m) = P(m), F ∩ L(n) =
F ∩ P(n) = P(n), F ∩ L(3) = P̃(p), leading to

∀m �= n �= p 1
2 (k

(m)
1 + k(n)

1 + k(p)
2 ) ≤ 1

3

3∑

�=1

(k(�)
1 + k(�)

2 ) (.9)

Like in the SU(2) case, the resulting 12 conditions are necessary but not sufficient
conditions for stability, because they are given by the most non-degesnerated choice
of the subspaces of the filtrations.
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