
Letters in Mathematical Physics (2021) 111:58
https://doi.org/10.1007/s11005-021-01403-3

Second-order integrable Lagrangians andWDVV equations

E. V. Ferapontov1,2 ·M. V. Pavlov3 · Lingling Xue3

Received: 10 October 2020 / Revised: 29 March 2021 / Accepted: 12 April 2021 /
Published online: 26 April 2021
© The Author(s) 2021

Abstract
We investigate the integrability of Euler–Lagrange equations associated with 2D
second-order Lagrangians of the form

∫
f (uxx , uxy, uyy) dxdy.

By deriving integrability conditions for the Lagrangian density f , examples of inte-
grable Lagrangians expressible via elementary functions, Jacobi theta functions and
dilogarithms are constructed. A link of second-order integrable Lagrangians toWDVV
equations is established. Generalisations to 3D second-order integrable Lagrangians
are also discussed.
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1 Introduction and summary of themain results

We investigate second-order Lagrangians

∫
f (uxx , uxy, uyy) dxdy (1)

such that the corresponding Euler–Lagrange equations,

(
∂ f

∂uxx

)
xx

+
(

∂ f

∂uxy

)
xy

+
(

∂ f

∂uyy

)
yy

= 0, (2)

are integrable (in the sense to be explained below). We work in the context of the
formal calculus of variations and understand (1) as a formal action functional which
generates Eq. (2) via the Euler–Lagrange operator applied to the Lagrangian density
f . Examples of integrable Lagrangians (1) have appeared in the mathematical physics
literature; thus, the Lagrangian density

f = uxy(u
2
xx − u2yy) + α(u2xx − u2yy) + uxy(βuxx + γ uyy) (3)

governs integrable geodesic flows on a 2-torus which possess a fourth-order integral
polynomial in the momenta [3]. Similarly, the density

f = u2yy + u2xxuyy + uxxu
2
xy + 1

4
u4xx (4)
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governs integrable Newtonian equations possessing a fifth-order polynomial integral.
In Sect. 2, we investigate the integrability aspects of 2D Lagrangians (1). Our main
results can be summarised as follows.

• The Euler–Lagrange equation coming from Lagrangian (1) can be represented
as a four-component Hamiltonian system of hydrodynamic type (Sect. 2.1). The
requirement of its hydrodynamic integrability (which is equivalent to the vanishing
of the corresponding Haantjes tensor) leads to an involutive system of third-order
PDEs for the Lagrangian density f (Sect. 2.2). Analysis of the integrability con-
ditions reveals that integrable Lagrangians (1) locally depend on six arbitrary
functions of one variable. Furthermore, the integrability conditions are themselves
integrable—a standard phenomenon in the theory of integrable systems.

• The class of integrable Lagrangians (1) is invariant under the symplectic group
Sp(4,R); under this action, the Lagrangian density f transforms as a genus two
Siegel modular form of weight −1 (Sect. 2.3). In particular, the integrability
conditions can be represented via Sp-invariant operations known as generalised
Rankin–Cohen (Eholzer–Ibukiyama) brackets (Sect. 2.4).

• Potentials U (x, t) of classical Newtonian equations ẍ = −Ux that possess a
fifth-order polynomial integral are governed by a Lagrangian (1) with density (4)
(Sect. 2.5).

• Integrable Lagrangians (1) are related to WDVV prepotentials of the form

F(t1, t2, t3, t4) = 1

2
t21 t4 + t1t2t3 + W (t2, t3, t4);

here,W is a partial Legendre transformof theLagrangiandensity f (Sect. 2.6). This
correspondenceworks bothways: using known solutions ofWDVVequations, one
can construct new integrable Lagrangians (1). Conversely, integrable Lagrangian
densities f give rise to WDVV prepotentials. Examples of this kind are given in
Sects. 2.7.5 and 2.7.6 .

• Further examples of integrable Lagrangians (1) expressible via elementary func-
tions, Jacobi theta functions and dilogaritms are constructed in Sect. 2.7.

In Sect. 3, we investigate 3D second-order Lagrangians of the form

∫
f (uxx , uxy, uxt , uyy, uyt , utt ) dxdydt . (5)

Our results can be summarised as follows:

• Integrable Lagrangians in 3D are governed by a third-order PDE system for the
Lagrangian density f which comes from the requirement that all travelling wave
reductions of a 3DLagrangian to 2Dare integrable in the sense of Sect. 2 (Sect. 3.1).

• The class of integrable Lagrangians (5) is invariant under the symplectic group
Sp(6,R); the Lagrangian density f transforms as a genus three Siegel modular
form of weight −1 (Sect. 3.2).
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58 Page 4 of 33 E. V. Ferapontov et al.

• Examples of integrable Lagrangians (5) are constructed in Sect. 3.3. These include
the densities

f = u2yy − uxxuxt + u2xxuyy + uxxu
2
xy + 1

4
u4xx ,

f = (uxy − utt − uxxuxt + 1

3
u3xx )

3/2,

f = u−2
xt (uxtuyt − uxxu

2
xt )

3/2,

coming from the theory of the dispersionless KP hierarchy (Sect. 3.3).

In Sect. 4, we discuss examples of integrable dispersive deformations of integrable
Lagrangian densities (5). The general problem of constructing such deformations is
largely open.

Our interest in second-order integrable Lagrangians stems from the study of 3D
first-order Lagrangians

∫
f (ux , uy, ut ) dxdydt

initiated in [23]. It was pointed out in [24] that the generic integrable Lagrangian
density f (ux , uy, ut ) is an automorphic function of its arguments. Let us emphasise
an important difference between first-order and second-order Lagrangians in 2D: all
first-order Lagrangian densities f (ux , uy) lead to linearisable Euler–Lagrange equa-
tions which, therefore, are automatically integrable. On the contrary, for second-order
Lagrangian densities f (uxx , uxy, uyy), the integrability conditions of the correspond-
ing Euler–Lagrange equations are already highly non-trivial.

2 Integrable Lagrangians in 2D

In this section, we consider second-order integrable Lagrangians of type (1),

∫
f (uxx , uxy, uyy) dxdy.

2.1 Hydrodynamic form of Euler–Lagrange equations

The Euler–Lagrange equation (2) is a fourth-order PDE for u(x, y). Setting a = uxx ,
b = uxy , c = uyy , we can rewrite (2) in the form

bx = ay, cx = by, ( fa)xx + ( fb)xy + ( fc)yy = 0. (6)

Introducing the auxiliary variable p via the relations

py = − ( fa)x , px = ( fb)x + ( fc)y ,

123
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we can rewrite (6) as a first-order four-component conservative system

ay = bx , by = cx , ( fc)y = (p − fb)x , py = −( fa)x (7)

or, in matrix form,

Rwy = Swx

where w = (a, b, c, p)T and

R =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
fac fbc fcc 0
0 0 0 1

⎞
⎟⎟⎠ , S =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0

− fab − fbb − fbc 1
− faa − fab − fac 0

⎞
⎟⎟⎠ .

Assuming fcc �= 0, we obtain a four-component system of hydrodynamic type,

wy = V(w)wx , V(w) = R−1S. (8)

Note that the restriction fcc �= 0 is only needed for the matrixR to be invertible and is
not really important. One can always make a suitable linear change of the independent
variables x, y to transform the Euler–Lagrange equation into a hydrodynamic form.

Remark 1 System (7) can be put into a Hamiltonian form. For that purpose, we intro-
duce the new dependent variables (A, B,C) which are related to (a, b, c) via partial
Legendre transform,

A = a, B = b, C = fc, h = c fc − f , hA = − fa, hB = − fb, hC = c.

In the new variables, system (7) takes the form (P = p)

Ay = Bx , By = (hC )x , Cy = (P + hB)x , Py = (hA)x , (9)

which is manifestly Hamiltonian:

⎛
⎜⎜⎝
A
B
C
P

⎞
⎟⎟⎠

y

=

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ d

dx

⎛
⎜⎜⎝
HA

HB

HC

HP

⎞
⎟⎟⎠ ,

with the Hamiltonian density H = h(A, B,C) + BP .
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2.2 Integrability conditions

Since hydrodynamic-type system (7) is conservative, its integrability by the gener-
alised hodograph method [37,38] is equivalent to the diagonalisability of the matrix
V(w) from (8). This is equivalent to the vanishing of the corresponding Haantjes ten-
sor [25]. Recall that the Nijenhuis tensor of the matrix V(w) = (vij (w)) is defined
as

Ni
jk = vsj∂wsvik − vsk∂wsvij − vis(∂w j v

s
k − ∂wkv

s
j )

where we adopt the notation w = (w1, w2, w3, w4)T = (a, b, c, p)T . The Haantjes
tensor is defined as

Hi
jk = Ni

srv
s
jv

r
k + Ns

jkv
i
rv

r
s − Ns

jrv
i
sv

r
k − Ns

rkv
i
sv

r
j .

It is easy to see that both tensors are skew-symmetric in the low indices. The require-
ment of vanishing of the Haantjes tensor leads to a system of PDEs (integrability
conditions) for the Lagrangian density f (a, b, c) which can be represented in a sym-
metric conservative form:

( fab fcc − fac fbc)a = ( fbc faa − fab fac)c,

( faa fcc − f 2ac)a = ( faa fbb − f 2ab)c,

( faa fcc − f 2ac)c = ( fcc fbb − f 2bc)a,

( fbb fcc − f 2bc)b = 2( fab fcc − fac fbc)c,

( fbb faa − f 2ab)b = 2( fbc faa − fac fab)a .

(10)

(Note that the stronger condition of vanishing of theNijenhuis tensor leads to quadratic
densities f with linear Euler–Lagrange equations). Integrability conditions (10) are
invariant under the discrete symmetries a ↔ c and b → −b. Indeed, under the
interchange of a and c Eq. (10)1 stays the same, while (10)2, (10)3 and (10)4, (10)5
get interchanged. Strictly speaking, the vanishing of the Haantjes tensor gives only
the first four of relations (10); however, one can show that the fifth follows from the
first four. We prefer to keep all of them for symmetry reasons.

Theorem 1 The system of integrability conditions (10) is in involution. The general 2D
integrable Lagrangian density f depends on six arbitrary functions of one variable.

Proof Let us introduce the new dependent variables

s = (s1, s2, s3, s4, s5, s6)
T = ( faa, fab, fac, fbb, fbc, fcc)

T ,

123
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which satisfy the obvious consistency conditions such as

(s1)b = (s2)a, (s1)c = (s3)a, (s2)b = (s4)a, (s2)c = (s3)b = (s5)a,

(s3)c = (s6)a, (s4)c = (s5)b, (s5)c = (s6)b.

Taking these consistency conditions along with the integrability conditions (10), also
rewritten in terms of s -variables, we obtain a system of twelve first-order quasilinear
equations for si (a, b, c) which can be represented in the form of two six-component
systems of hydrodynamic type,

sa = P(s)sc, sb = Q(s)sc, (11)

where P,Q are the following 6 × 6 matrices:

P = 1

s6

⎛
⎜⎜⎜⎜⎜⎜⎝

2s3 + s4 −2s2 −s1 s1 0 0
2s5 0 −2s2 0 s1 0
s6 0 0 0 0 0
s6 2s5 −2s3 − s4 0 0 s1
0 s6 0 0 0 0
0 0 s6 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Q = 1

s6

⎛
⎜⎜⎜⎜⎜⎜⎝

2s5 0 −2s2 0 s1 0
s6 2s5 −2s3 − s4 0 0 s1
0 s6 0 0 0 0
0 2s6 −2s5 2s5 −2s3 − s4 2s2
0 0 0 s6 0 0
0 0 0 0 s6 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Equation (11) possess six conserved densities s2, s4, s5, s1s5 − s2s3, s2s6 −
s3s5, s1s6 + s2s5 − s3s4 − s23 which satisfy the equations

(s2)a = (s1)b, (s4)a = (s2)b, (s5)a = (s3)b,

(s2)c = (s3)b, (s4)c = (s5)b, (s5)c = (s6)b,

2(s1s5 − s2s3)a = (s1s4 − s22 )b, 2(s2s6 − s3s5)a = (s1s6 − s23 )b,

2(s1s5 − s2s3)c = (s1s6 − s23 )b, 2(s2s6 − s3s5)c = (s4s6 − s25 )b,

(s1s6 + s2s5 − s3s4 − s23 )a = (s1s5 − s2s3)b,

(s1s6 + s2s5 − s3s4 − s23 )c = (s2s6 − s3s5)b.

(12)

Direct calculation shows that systems (11) commute, that is, sab = sba . Thus, Eq.
(11) are in involution, and their general common solution depends on six arbitrary

123
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functions of one variable, namely the Cauchy data si (0, 0, c). This finishes the proof.
��

Remark 2 Relations (10) and (12) imply that there exists a potential ρ such that

ρaa = faa fbb − f 2ab, ρac = faa fcc − f 2ac, ρcc = fcc fbb − f 2bc,

ρab = 2 ( fbc faa − fac fab) , ρbc = 2 ( fab fcc − fac fbc) ,

ρbb = 2( fab fbc − fac fbb + faa fcc − f 2ac).

(13)

Remark 3 System (10)
possesses a Lax pair

ψa = λKψ, ψb = λLψ, ψc = λMψ,

where λ is a spectral parameter and the 4 × 4 matrices K,L,M are defined as

K =

⎛
⎜⎜⎝

0 fac 0 1
− faa − fab 0 0
− 1

2ρab −ρac − fab fac
−ρaa − 1

2ρab − faa 0

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝

0 fbc 1 0
− fab − fbb 0 1
− 1

2ρbb −ρbc − fbb fbc
−ρab − 1

2ρbb − fab 0

⎞
⎟⎟⎠ ,

M =

⎛
⎜⎜⎝

0 fcc 0 0
− fac − fbc 1 0
− 1

2ρbc −ρcc − fbc fcc
−ρac − 1

2ρbc − fac 0

⎞
⎟⎟⎠ ;

here the potential ρ is defined by relations (13).

Remark 4 We have verified that both commuting six-component systems (11) satisfy
the following properties:

• They are linearly degenerate, that is, Lie derivatives of the eigenvalues of matrices
P,Q along the corresponding eigenvectors are zero, see, for example, [29]. The
condition of linear degeneracy can be efficiently verified using a criterion from
[19].

• They are non-diagonalisable (their Haantjes tensor does not vanish).

This suggests that integrable Lagrangian densities (1) are related to the associativity
(WDVV) equations where analogous systems were obtained in [22], see also [33,34]
for related results. Such a link indeed exists and is discussed in Sect. 2.6.

2.3 Equivalence group in 2D

Let U be the 2 × 2 Hessian matrix of the function u(x, y). Integrable Lagrangians of
type (1) are invariant under Sp(4,R)-symmetry

U → (AU + B)(CU + D)−1, f → f

det(CU + D)
, (14)

123
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where the matrix

(
A B
C D

)

belongs to the symplectic group Sp(4,R) (hereA,B,C,D are 2×2matrices). Symme-
try (14)1 originates from linear symplectic transformations of the four-dimensional
space with coordinates ux , uy, x, y, which all come from contact (Legendre-type)
transformations of the first-order jet space J 1(x, y, u, ux , uy), see, for example, [21]
where analogous transformations of the Hessian matrix U appeared in the context of
integrable Hirota-type equations. Writing the corresponding linear symplectic trans-
formation explicitly in the form

(
ũx
ũ y

)
= A

(
ux
uy

)
+ B

(
x
y

)
,

(
x̃
ỹ

)
= C

(
ux
uy

)
+ D

(
x
y

)
,

and differentiating the second set of equations, we obtain dx̃∧d ỹ = det(CU + D)dx∧
dy. Thus,

f̃ dx̃ ∧ d ỹ = f̃ det(CU + D)dx ∧ dy = f dx ∧ dy,

which explains the transformation law (14)2: f̃ = f / det(CU + D). Similar equiva-
lence transformations appeared in the context of first-order Lagrangians discussed in
[23,24]. Symmetry (14) suggests a relation to Siegel modular forms (the density f
transforms as a genus two Siegel modular form of weight −1).

Furthermore, integrable Lagrangians (1) are invariant under rescalings of f , as well
as under the addition of a ‘null Lagrangian’, namely transformations of the form

f → λ0 f + λ1(uxxuyy − u2xy) + λ2uxx + λ3uxy + λ4uyy + λ5, (15)

which do not affect the Euler–Lagrange equations (here λi are arbitrary constants).
Transformations (14) and (15) generate a group of dimension 10 + 6 = 16 which
preserves the class of integrable Lagrangians (1); this group act as a point symmetry
group of integrability conditions (10). Equivalence transformations will be utilised
to simplify the classification results in Sect. 2.7, for instance, modulo equivalence
transformations, the Lagrangian density (3) is related to f = uxy(u2xx − u2yy).

2.4 Integrability conditions via generalised Rankin–Cohen brackets

Integrability conditions (10) possess a compact formulation via higher genus Rankin–
Cohen (Eholzer–Ibukiyama) brackets for Siegel modular forms [17]. This does not
come as something unexpected; indeed, the integrability conditions possess Sp(4)-
invariance (14) and, therefore, should be expressible via Sp(4)-invariant operations.
Here, we mainly follow [26,30], which specialised the general results of [17] to the

123
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genus two case. Let us introduce two matrix differential operators

R =
(

∂a
1
2∂b

1
2∂b ∂c

)
, S =

(
∂ã

1
2∂b̃

1
2∂b̃ ∂c̃

)
,

(here a, b, c and their tilded versions ã, b̃, c̃ are the six independent variables), and
define the operators P0, P1, P2 via the expansion

det(R + λS) = P0 + λP1 + λ2P2.

Explicitly, we have

P0 = ∂a∂c − 1

4
∂2b , P1 = ∂a∂c̃ + ∂c∂ã − 1

2
∂b∂b̃, P2 = ∂ã∂c̃ − 1

4
∂2
b̃
.

Let us also define two operators Y1, Y2 depending on the auxiliary parameters ξ =
(ξ1, ξ2) by the formulae

Y1 = ξ Rξ T = ξ21 ∂a + ξ1ξ2∂b + ξ22 ∂c, Y2 = ξ Sξ T = ξ21 ∂ã + ξ1ξ2∂b̃ + ξ22 ∂c̃.

Finally, we introduce the ξ -dependent operator

v = (∂a∂b̃ − ∂b∂ã)ξ
2
1 + 2(∂a∂c̃ − ∂c∂ã)ξ1ξ2 + (∂b∂c̃ − ∂c∂b̃)ξ

2
2 .

Then integrability conditions (10) can be represented in the Hirota-type bilinear form

(P1Y1v − 2P0Y2v)[ f (a, b, c) · f (ã, b̃, c̃)]
∣∣∣∣
ã=a, b̃=b, c̃=c

= 0. (16)

Here, the left-hand side is a homogeneous quartic in ξ1, ξ2, with five non-trivial com-
ponents. Equating them to zero, we obtain all of the five integrability conditions (10).

Remark 5 It follows from [30], Proposition 2.3, that if f transforms as in (14), that
is, as a weight −1 Siegel modular form, then the left-hand side of (16) transforms as
a vector-valued Siegel modular form with values in the representation Sym4 ⊗ det of
GL(2,C).

Remark 6 The principal symbol of the Euler–Lagrange Eq. (2) is given by a compact
formula in terms of the operator Y1:

Y 2
1 [ f ] = faaξ

4
1 + 2 fabξ

3
1 ξ2 + (2 fac + fbb)ξ

2
1 ξ22 + 2 fbcξ1ξ

3
2 + fccξ

4
2 .

This expression transforms as a vector-valued Siegel modular form with values in the
representation Sym4 ⊗ det−1.

123
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2.5 Integrable Lagrangians and classical Newtonian equations

Here, we sketch a derivation of the Lagrangian density (4). Consider a classical New-
tonian equation

ẍ = −Ux

where U (x, t) is the potential function, x = x(t), and dot denotes differentiation by
t . This equation can be written in the canonical Hamiltonian form

ẋ = p, ṗ = −Ux .

To be Liouville integrable, this Hamiltonian system should be equipped with a first
integral F(t, x, p) such that

dF

dt
≡ ∂F

∂t
+ ∂F

∂x
ẋ + ∂F

∂ p
ṗ = Ft + pFx −Ux Fp = 0. (17)

First integrals F polynomial in the momentum p were investigated in [10] and later
in [28,32]. In particular, the following cases have been studied:

F = p3

3
+Up + V , F = p4

4
+Up2 + V p + W , F = p5

5
+Up3 + V p2 + Wp + Q.

In the last (fifth-order) case, Eq. (17) implies the following quasilinear system for the
coefficients:

Ut + Vx = 0, Vt + Wx = 3UUx , Wt + Qx = 2VUx , Qt = WUx .

Let us introduce a potential u such that U = uxx , V = −uxt , W = 3
2u

2
xx + utt . Then

the first two equations will be satisfied identically, while the last two imply

Qx = −2uxtuxxx − 3uxxuxxt − uttt , Qt = 3

2
u2xxuxxx + utt uxxx .

The compatibility condition of these equations for Q leads to a fourth-order PDE for
u,

utttt + 3

2
u2xx uxxxx + 3uxxu

2
xxx + utt uxxxx + 2uxt uxxxt + 3uxxuxxtt + 3uxtt uxxx + 3u2xxt = 0,

which is nothing but the Euler–Lagrange equation for the second-order Lagrangian

S =
∫ [

u2t t + u2xxutt + uxxu
2
xt + 1

4
u4xx

]
dxdt,

whose density is identical to (4) up to relabelling t ↔ y.
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2.6 Integrable Lagrangians andWDVV equations

Let F(t1, . . . , tn) be a function of n independent variables such that the symmetric
matrix

ηi j = ∂1∂i∂ j F

is constant and non-degenerate (thus, t1 is a marked variable), and the coefficients

cijk = ηis∂s∂ j∂k F

satisfy the associativity condition csi j c
r
sk = csk j c

r
si ; here, i, j, k ∈ {1, . . . , n}. These

requirements impose a nonlinear systemof third-order PDEs for the prepotential F , the
so-called associativity (WDVV) equations which were discovered in the beginning of
1990s by Witten, Dijkgraaf, Verlinde and Verlinde in the context of two-dimensional
topological field theory [9,39]. Geometry and integrability of WDVV equations
has been thoroughly studied by Dubrovin, culminating in the remarkable theory of
Frobenius manifolds [13]. An important ingredient of this theory is an integrable
hydrodynamic hierarchy whose ‘primary’ part is defined by n commuting Hamilto-
nian flows

∂Tα ti = ciαk∂X tk = ∂X (ηis∂s∂αF) (18)

where Tα are the higher ‘times’; note that T1 = X so that T1-flow is trivial:
(ti )X = (ti )X . The flows (18) are manifestly Hamiltonian with the Hamiltonian oper-
ator ηis d

dX and the Hamiltonian density ∂αF . The WDVV equations are equivalent to
the requirement of commutativity of these flows.

We will need a particular case of the general construction when n = 4 and the
matrix η is anti-diagonal, which corresponds to prepotentials

F(t1, t2, t3, t4) = 1

2
t21 t4 + t1t2t3 + W (t2, t3, t4). (19)

The corresponding primary flows (18) take the form

∂T2 t1 = ∂X (∂4∂2F), ∂T2 t2 = ∂X (∂3∂2F), ∂T2 t3 = ∂X (∂2∂2F), ∂T2 t4 = ∂X (∂1∂2F),

∂T3 t1 = ∂X (∂4∂3F), ∂T3 t2 = ∂X (∂3∂3F), ∂T3 t3 = ∂X (∂2∂3F), ∂T3 t4 = ∂X (∂1∂3F),

∂T4 t1 = ∂X (∂4∂4F), ∂T4 t2 = ∂X (∂3∂4F), ∂T4 t3 = ∂X (∂2∂4F), ∂T4 t4 = ∂X (∂1∂4F),

(20)

which are Hamiltonian systems with the Hamiltonian densities

∂2F = t1t3 + ∂2W , ∂3F = t1t2 + ∂3W , ∂4F = 1

2
t21 + ∂4W ,
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respectively. In compact form, Eq. (20) can be represented as

∂Tα ti = ∂X (∂5−i∂αF), i = 1, 2, 3, 4, α = 2, 3, 4.

Setting (t1, t2, t3, t4) = (P, B,C, A), we obtain

F = 1

2
P2A + PBC + W (B,C, A).

In this case, WDVV equations reduce to the following system of four PDEs for W :

WAAA = W 2
ABC + WABBWACC − WAABWBCC − WAACWBBC ,

WAAB = WBBBWACC − WABBWBCC ,

WAAC = WABBWCCC − WACCWBBC ,

2WABC = WBBBWCCC − WBBCWBCC .

(21)

The corresponding primary flows (20) take the form

AT2 = CX , BT2 = (P + WBC )X , CT2 = (WBB)X , PT2 = (WAB)X ,

AT3 = BX , BT3 = (WCC )X , CT3 = (P + WBC )X , PT3 = (WAC )X ,

AT4 = PX , BT4 = (WAC )X , CT4 = (WAB)X , PT4 = (WAA)X .

(22)

Note that system (22)2 coincides with (9) under the identification h = WC , thus
establishing a link between WDVV equations and integrable Lagrangians. This link
can be summarised as follows:

• Take prepotential of type (19), set (t2, t3, t4) = (B,C, A) and define h(A, B,C) =
WC .

• Reconstruct Lagrangian density f (a, b, c) by applying partial Legendre transform
to h(A, B,C):

a = A, b = B, c = hC , f = ChC − h, fa = −hA, fb = −hB, fc = C .

Examples of calculations of this kind will be given in Sect. 2.7.5.

Remark 7 Conversely, given a Lagrangian density f (a, b, c), the corresponding pre-
potential W (A, B,C) can be reconstructed in quadratures via the formulae

WAA = −ρa, WAB = −1

2
ρb, WAC = − fa,

WBB = −ρc, WBC = − fb, WCC = c.

A = a, B = b, C = fc,

where ρ is defined by formulae (13), see Sect. 2.7.6.
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2.7 Examples of integrable Lagrangians in 2D

In this section, we present explicit examples of integrable Lagrangian densities f
obtained by assuming a suitable ansatz for f and computing the corresponding inte-
grability conditions (10). This gives a whole range of integrable densities expressible
via polynomials, elementary functions, Jacobi theta functions and dilogarithms.

2.7.1 Integrable Lagrangian densities of the form f = g(uxx, uyy)

In this case, the integrability conditions lead to the only constraint gaagcc − g2ac = k
where k = const . Its solutions can be represented parametrically; thus, for k = 0
(parabolic case) and k = −1 (hyperbolic case) we obtain the general solution in
parametric form:

a = p′(w)v + q ′(w), c = v, f = w[p′(w)v + q ′(w)] − [p(w)v + q(w)],
and

a = p′(w + v) + q ′(w − v), c = v,

f = w[p′(w + v) + q ′(w − v)] − [p(w + v) + q(w − v)],
respectively; here, p and q are arbitrary functions, and prime denotes differentiation.

2.7.2 Lagrangian densities for linearisable Euler–Lagrange equations

Applying transformations from the equivalence group to quadratic densities f (which
generate linear Euler–Lagrange equations), we obtain Lagrangian densities whose
Euler–Lagrange equations are linearisable. To state their explicit form, we introduce
the variables (r0, r1, r2, r3, r4) = (1, a, b, c, ac−b2), the minors of the Hessian
matrix U. These variables satisfy the quadratic relation

r0r4 − r1r3 + (r2)2 = 0

which defines the Plücker image of the Lagrangian Grassmannian �. Let Pi j be the
5 × 5 symmetric matrix of this quadratic form, and let Pi j be its inverse:

Pi j =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1
2

0 0 0 − 1
2 0

0 0 1 0 0
0 − 1

2 0 0 0
1
2 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , Pi j =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 2
0 0 0 −2 0
0 0 1 0 0
0 −2 0 0 0
2 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Lagrangian densities with linearisable Euler–Lagrange equations are given by the
formula

f = Qi jr i r j

Skrk
(23)
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where the quadratic form Q and the covector S satisfy the following conditions:

• Covector S is null with respect to the quadratic form P , that is, Pi j Si S j = 0.
Explicitly, 4S0S4 − 4S1S3 + S22 = 0. (Equivalently, S belongs to the dual variety
�∗.)

• The dual vector Si = Pi j S j lies in the kernel of the quadratic form Q, that is,
Qi j S j = 0. Equivalently, the space dual to TS�∗ (tangent space to �∗ at S) lies
in the kernel of Q.

Note that there also exist integrable densities of type (23) which do not satisfy the
above conditions.

2.7.3 Integrable Lagrangian densities of the form f = euxx g(uxy, uyy)

We will show that the generic integrable density of this form corresponds to

g(b, c) = [�(ic/π)]−1/8θ1(b, ic/π)

where � is the modular discriminant and θ1 is the Jacobi theta function. The details
are as follows. Substituting f = eag(b, c) into the integrability conditions (10), one
obtains

ggbcc = 3gccgb − 2gbcgc, (24)

ggbbb = gbgbb + 4gbcg − 4gbgc, (25)

ggccc = gcgcc + 2gccgbb − 2(gbc)
2, (26)

ggbbc = 2gbgbc − gcgbb + 2ggcc − 2(gc)
2. (27)

This over-determined system for g is in involution and can be solved as follows. First
of all, equation (25) implies

(
gbb
g

)
b

=
(
4gc
g

)
b
,

so that one can set

gc = 1

4
(gbb − hg) (28)

where h is a function of c only. Using (28), both (24) and (27) reduce to

gbbbbg − 4gbgbbb + 3g2bb = 4h(ggbb − g2b) − 4h′g2; (29)

here, prime denotes differentiation by c. Modulo (28) and (29), equation (26) implies

g2bbbg
2 + gbbb(4g

3
b − 6ggbgbb) − 3g2bg

2
bb + 4gg3bb

= 4h(g2b − ggbb)
2 + 8h′g2(g2b − ggbb) + 8

3
h′′g4. (30)
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Note that (30) can be obtained from (29) by differentiating it with respect to c and
using (28), (29). Similarly, differentiating (30) with respect to c we obtain the Chazy
equation [6] for h:

h′′′ = 2hh′′ − 3h′2. (31)

Equations (29) and (30) can be simplified by the substitution v = −(ln g)bb, which
implies

vbb = 6v2 + 4hv + 4h′ (32)

and

v2b = 4v3 + 4hv2 + 8h′v + 8

3
h′′, (33)

respectively. Since (32) follows from (33) via differentiating with respect to b, we end
up with the following compact form of integrability conditions (24)–(27):

gc = 1

4
(gbb − hg), v = −(ln g)bb, v2b = 4v3 + 4hv2 + 8h′v + 8

3
h′′; (34)

here h solves the Chazy equation (31). We recall that modulo the natural SL(2,R)-
symmetry [7], the Chazy equation possesses three non-equivalent solutions: h =
0, h = 1 and h = 1

2
�′
�

where � is the modular discriminant. These three solutions
(which correspond to rational, trigonometric and elliptic cases of the Weierstrass ℘-
function equation in (34)) are considered separately below. Note that both the rational
and trigonometric cases lead to degenerate Lagrangians, so only the elliptic case is of
interest.

Rational case h = 0. In this case, Eq. (34) simplify to

gc = 1

4
gbb, v = −(ln g)bb, v2b = 4v3,

which are straightforward to solve. Modulo unessential constants the generic solution
of these equations is g = e2μb+μ2c(b + μc) where μ = const . The corresponding
Lagrangian density f takes the form

f = euxx+2μuxy+μ2uyy (uxy + μuyy).

Note that the change of independent variables x = x̃, y = ỹ + μx̃ brings this
Lagrangian to the degenerate form f̃ = eux̃ x̃ ux̃ ỹ . (The order of the corresponding
Euler–Lagrange equation can be reduced by two by setting v = ux̃ .)

Trigonometric case h = 1. In this case, Eq. (34) simplify to

gc = 1

4
(gbb − g), v = −(ln g)bb, v2b = 4v3 + 4v2,
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which are also straightforward to solve. Modulo unessential constants the generic
solution of these equations is g = e2μb+μ2c sinh(b + μc) where μ = const . The
corresponding Lagrangian density f takes the form

f = euxx+2μuxy+μ2uyy sinh(uxy + μuyy).

Note that the same change of variables as in the rational case brings this Lagrangian
to the degenerate form f̃ = eux̃ x̃ sinh ux̃ ỹ .

Elliptic case h = 1
2

�′
�
, see, for example, [36]. Here the modular discriminant � is

given by the formula

�(c) = (2π)12q
∞∏
1

(1 − qn)24, q = e2π ic,

recall that h has the q-expansion

h(c) = π i E2 = π i

(
1 − 24

∞∑
n=1

σ1(n)qn
)

where E2 is the Eisenstein series. (Here, σ1(n) is the divisor function.) Setting
g(b, c) = [�(c)]−1/8w(b, c), we see that the first Eq. (34) becomes the heat equation
for w:

wc = 1

4
wbb, v = −(lnw)bb, v2b = 4v3 + 4hv2 + 8h′v + 8

3
h′′. (35)

The general solution of system (35) was constructed in [5]:

w(b, c) = �1/8σ(b, g2, g3)e
b2h/6

where σ is the Weierstrass sigma function with the invariants g2 = 4
3h

2 − 8h′, g3 =
− 8

27h
3 + 8

3hh
′ − 8

3h
′′. Note that � = π6(g32 − 27g23). Thus,

g(b, c) = σ(b, g2, g3)e
b2h/6.

Remark 8 An alternative (real-valued) representation of the general solution of system
(35) in terms of the Jacobi theta function θ1 is as follows:

w(b, c) = θ1(b, ic/π) = 2
∞∑
n=0

(−1)ne−(n+1/2)2c sin[(2n + 1)b];
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here for h in the last Eq. (35) one has to use

i

π
h(ic/π) = −1 + 24

∞∑
n=1

σ1(n)e−2nc = −1 + 24(e−2c + 3e−4c + 4e−6c + 7e−8c + . . . ),

which is another (real-valued) solution of the Chazy equation (the Chazy equation is
invariant under the scaling symmetry h(c) → λh(λc). Thus,

g(b, c) = [�(ic/π)]−1/8θ1(b, ic/π).

Note that the function �−1/8(τ )θ1(z, τ ) appears in the theory of weak Jacobi forms.
(It is a holomorphic weak Jacobi form of weight −1 and index 1/2.) We refer to [18]
for the theory of (weak) Jacobi forms.

2.7.4 Integrable Lagrangian densities polynomial in euxx and euyy

Here, we describe integrable Lagrangian densities f that are linear/quadratic in euxx

and euyy , the coefficients being functions of uxy only.

Linear case:

f = p0 + p1e
a + p2e

c.

Substituting this ansatz into the integrability conditions (and assuming p1, p2 to be
nonzero), we obtain a system of ODEs for the coefficients pi (b)which, modulo equiv-
alence transformations, can be simplified to

p1 = p2 = p, p′′ = p, p′′
0 = α/p;

here α = const (which can be set equal to 1 if nonzero) and prime denotes dif-
ferentiation by b. Modulo equivalence transformations, these equations possess two
essentially different solutions:

f = αe−b + (ea + ec)eb and f = αq(b) + (ea + ec) sinh b,

where the function q(b) satisfies q ′′ = 1
sinh b . This implies q ′ = ln 1−eb

1+eb
, and another

integration gives

q(b) = Li2(−eb) − Li2(e
b)

where Li2 is the dilogarithm function: (Li2(x))′ = − ln(1−x)
x .

Quadratic case:

f = p0 + p1e
a + p2e

c + p3e
2a + p4e

a+c + p5e
2c.
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Substituting this ansatz into the integrability conditions we obtain a large system of
ODEs for the coefficients pi (b) which, modulo equivalence transformations, leads to
the following integrable densities (here we only present those examples that are not
reducible to the linear case by a change of variables):

f = ekb+a+c, f = e
4√
3
b+a+c + e

2√
3
b+2c

,

f = αe
− 1√

2
b + αe

1√
2
b+a + e

1√
2
b+c + e

3√
2
b+a+c

,

f = pe2a + 2p2ea+c + pe2c, p = cosh

(
2√
3
b

)
.

2.7.5 Integrable Lagrangian densities fromWDVV prepotentials

In this section, we discuss polynomial prepotentials F of type (19) associated with
finite Coxeter groups W as given in [14], p. 107. Applying the procedure outlined at
the end of Sect. 2.6, we compute the corresponding integrable Lagrangian densities
f which, in general, will be algebraic functions of a, b, c (presented below up to
appropriate scaling factors).

Group W (A4):

F = 1

2
t21 t4 + t1 t2 t3 + 1

2
t32 + 1

3
t43 + 6t2t

2
3 t4 + 9t22 t

2
4 + 24t23 t

3
4 + 216

5
t64 ;

f =
(
c − 48 a3 − 12 ab

)3/2
.

Swapping t2 and t3 (which is an obvious symmetry ofWDVVequations) and following
the same procedure gives a polynomial density f :

F = 1

2
t21 t4 + t1 t2 t3 + 1

2
t33 + 1

3
t42 + 6t3t

2
2 t4 + 9t23 t

2
4 + 24t22 t

3
4 + 216

5
t64 ;

f = 54 a4 − 6 a2c + 1

6
c2 − 6 b2a.

Group W (B4):

F = 1

2
t21 t4 + t1 t2 t3 + t2

3 + t2 t33

3
+ 3 t2

2 t3 t4 + t34 t4
4

+ 3 t2 t3
2 t4

2 + 6 t2
2 t4

3

+t3
3 t4

3 + 18 t32 t45

5
+ 18 t49

7
;

f = 2 aC3 +
(
3 a3 + b

)
C2 − 3 ab2,
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whereC is defined by the quadratic equation 3aC2+(6a3+2b)C+ 6
5a

2(6a3+5b) = c.
Swapping t2 and t3 gives a polynomial density f :

F = 1

2
t21 t4 + t1 t2 t3 + t33 + t32 t3

3
+ 3 t2 t

2
3 t4 + t42 t4

4
+ 3 t22 t3 t

2
4 + 6 t23 t

3
4 + t32 t

3
4

+18 t22 t
5
4

5
+ 18 t94

7
;

f = 12 a6 + 12 a4b − 2 a3c − bac + 1

12
c2 − 1

3
b3.

Group W (D4):

F = 1

2
t21 t4 + t1 t2 t3 + t32 t4 + t33 t4 + 6t2t3t

3
4 + 54

35
t74 ;

f = c2

12a
− 6 ba3.

Group W (F4):

F = 1

2
t21 t4 + t1 t2 t3 + t32 t4

18
+ 3 t43 t4

4
+ t2 t23 t

3
4

2
+ t22 t

5
4

60
+ t23 t

7
4

28
+ t134

24 · 32 · 11 · 13 ;

f = 1√
a

(
a7 + 14 ba3 − 14 c

)3/2
.

Swapping t2 and t3 gives a rational density f :

F = 1

2
t21 t4 + t1 t2 t3 + t33 t4

18
+ 3 t42 t4

4
+ t22 t3 t

3
4

2
+ t23 t

5
4

60
+ t22 t

7
4

28
+ t134

24 · 32 · 11 · 13 ;

f = a9

600
− 1

10
ca4 − 1

2
b2a3 + 3 c2

2 a
.

Group W (H4):

F = 1

2
t21 t4 + t1 t2 t3 + 2 t23 t4

3
+ t35 t4

240
+ t2 t33 t43

18
+ t22 t3 t45

15
+ t34 t47

23 · 33 · 5
+ t2 t32 t49

2 · 34 · 5 + 8 t22 t411

34 · 52 · 11 + t33 t413

22 · 36 · 52 + 2 t32 t419

38 · 53 · 19 + 32 t431

313 · 56 · 29 · 31 ;

f = a

16
C4 + a7

135
C3 + a3b

6
C2 + a13

22 · 35 · 52C
2 − a5b2

15
,

where C is defined by the cubic equation a
12C

3 + a7
90C

2 + a3b
3 C + a13

2·35·52C + a9b
34·5 +

4 a19

38·53·19 = c. Swapping t2 and t3 gives a rational density f :

F = 1

2
t21 t4 + t1 t2 t3 + 2 t33 t4

3
+ t52 t4

240
+ t32 t3 t

3
4

18
+ t2 t23 t

5
4

15
+ t42 t

7
4

23 · 33 · 5
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+ t22 t3 t
9
4

2 · 34 · 5 + 8 t23 t
11
4

34 · 52 · 11 + t32 t
13
4

22 · 36 · 52 + 2 t22 t
19
4

38 · 53 · 19 + 32 t314
313 · 56 · 29 · 31 ;

f = 32 a21

38 · 54 · 112 + 8 ba15

35 · 53 · 11 − 4 ca10

52 · 34 · 11 + 2 b2a9

34 · 52 − 1

30
bca4 − 1

18
b3a3 + c2

8 a
.

Non-polynomial prepotentials (19) associated with extended affineWeyl groups can
be found in [11]:

F = 1

2
t21 t4 + t1t2t3 − 1

12
t22 t

2
3 + 1

720
t2t

5
3 − 1

36288
t83 + 2t2t3e

t4 + 1

6
t43 e

t4 + 1

2
e2t4 + 1

6

t32
t3

;

f = − C7

756
+ 1

48
bC4 + 4

3
eaC3 − 2 bea + b3

2C2 ,

where − C6

648 + 1
36 bC

3 + 2C2ea − 1
6 b

2 + b3

3C3 = c. Swapping t2 and t3 gives:

F = 1

2
t21 t4 + t1t2t3 − 1

12
t22 t

2
3 + 1

720
t52 t3 − 1

36288
t82 + 2t2t3e

t4 + 1

6
t42 e

t4 + 1

2
e2t4 + 1

6

t33
t2

;

f = b5

80
+ 1

6
cb3 + 1

2
c2b − 2 eab.

Modular prepotentials [2,31] give rise to modular Lagrangian densities (as an exam-
ple we took prepotential 4.2.2. from [31]):

F = 1

2
t21 t4 + t1t2t3 − 1

4
t22 t

2
3γ (t4) + t62 g4(t4) + t42 t3g3(t4) + t33 g1(t4);

f = 1

12g1(a)

[
c + 1

2
b2γ (a)

]2
− g3(a)b4.

Swapping t2 and t3 gives:

F = 1

2
t21 t4 + t1t2t3 − 1

4
t22 t

2
3γ (t4) + t63 g4(t4) + t43 t2g3(t4) + t32 g1(t4);

f = 24C5g4(a) + 8bC3g3(a),

where C is defined by the algebraic equation

30C4g4 + 12bC2g3 − 1

2
b2γ = c.

Here g3 = Kg31, g4 = Kg1
30 (g′

1− 1
2g1γ )where the functions of γ (a) and g1(a) satisfy

the ODEs

γ ′ = 1

2
γ 2 − 72Kg41, g′′

1 = 2γ g′
1 − g1γ

′,
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K = const . The above ODE system falls within Bureau’s class and its solutions are
given in terms of the Schwarzian triangle functions [31].

2.7.6 WDVV prepotentials from integrable Lagrangian densities

In view of the correspondence between integrable Lagrangians and WDVV prepoten-
tials

F(t1, t2, t3, t4) = 1

2
t21 t4 + t1t2t3 + W (t2, t3, t4)

described in Sect. 2.6, integrable Lagrangian densities f (a, b, c) constructed in this
paper give rise to prepotentials some of which are apparently new. Here we list some
examples (omitting details of calculations; we will only present the corresponding
function W ).

Example 1 The polynomial Lagrangian density from Sect. 2,

f = b(a2 − c2),

gives rise to the prepotential

W = 1

15
t54 − t24 t2t3 + 1

3
t4t

4
2 − t33

12t2
.

Example 2 Lagrangian densities from Sect. 2.7.4 (linear case): the density

f = αe−b + (ea + ec)eb

gives rise to the prepotential

W = −αet4 − αe−t2 t3 − et4et2 t3 − 1

2
t2t

2
3 + t23

2
ln t3;

the density

f = αq(b) + (ea + ec) sinh b

gives rise to the prepotential

W = 1

8
e2t4 − et4 t3 sinh t2 − αet4 − αq(t2)t3 + 1

2
t23 ln

t3
sinh t2

− 3

4
t23 .

Here

q(t2) = Li2(−et2) − Li2(e
t2)

where Li2 is the dilogarithm function.
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Example 3 Lagrangian densities from Sect. 2.7.4 (quadratic case): the density

f = ekb+a+c

gives rise to the prepotential

W = −1

2
t4t

2
3 − k

2
t2t

2
3 + t23

2
ln t3;

the density

f = e
4√
3
b+a+c + e

2√
3
b+2c

gives rise to the prepotential

W = t23
2
ln t3 − 1

2
t4t

2
3 − 2√

3
t2t

2
3 − γ e

2√
3
t2+2t4 t3;

the density

f = αe
− 1√

2
b + αe

1√
2
b+a + e

1√
2
b+c + e

3√
2
b+a+c

gives rise to the prepotential

W = t23
2
ln

t3

e
1√
2
t2 + e

t4+ 3√
2
t2

− α2

2
et4 − αt3

1 + 2et4+
√
2t2 + e2t4+2

√
2t2

e
1√
2
t2 + e

t4+ 3√
2
t2

.

Example 4 The Lagrangian density f = ecg(b, a) from Sect. 2.7.3 gives rise to the
prepotential (recall that system (10) is invariant under the interchange a ↔ c; for our
convenience, we choose f = ecg(b, a) instead of f = eag(b, c)):

W = t23
2
ln

t3
g(t2, t4)

.

Here

g(t2, t4) = [�(i t4/π)]−1/8θ1(t2, i t4/π)

where � is the modular discriminant and θ1 is the Jacobi theta function. Note the
formula�1/8(i t4/π) = √

2π3 θ ′
1(0, i t4/π)where prime denotes derivative by t2. The

corresponding solution ofWDVVequations is related toWhitham averaged one-phase
solutions of NLS/Toda equations [15], see also [1,8].
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Example 5 The Lagrangian density f = √
b(αa + βb)(αb + βc) from Sect. 3.4 gives

rise to the prepotential

W = −β

4
t2(αt4 + βt2) ln t3 − α

2β
t2t

2
3 + β2t22

8
ln t2 + 1

8
(αt4 + βt2)

2 ln(αt4 + βt2).

3 Integrable Lagrangians in 3D

In this section, we consider second-order integrable Lagrangians of the form (5),

∫
f (u11, u12, u22, u13, u23, u33) dx1dx2dx3,

here ui j = uxi x j .

3.1 Integrability conditions

Let us require that all travelling wave reductions of a 3D Lagrangian density to two
dimensions are integrable in the sense of Sects. 2.2 and 2.4 . This gives the necessary
conditions for integrability which, in our particular case, prove to be also sufficient.
The computational details are as follows. Consider a travelling wave reduction of a 3D
Lagrangian density f (u11, u12, u22, u13, u23, u33) obtained by setting u(x1, x2, x3) =
v(x, y)+Q where x = s1x1+s3x3, y = s2x2+s3x3, si = const , and Q is an arbitrary
homogeneous quadratic form in x1, x2, x3. We have

u11 = s21vxx + ζ1, u12 = s1s2vxy + ζ2, u22 = s22vyy + ζ3,

u13 = s1s3(vxx + vxy) + ζ4, u23 = s2s3(vxy + vyy) + ζ5, u33 = s23 (vxx + 2vxy + vyy) + ζ6,

where ζi are the coefficients of the quadratic form Q. Setting vxx = a, vxy = b, vyy =
c, we obtain the reduced 2D Lagrangian density f in the form

f (a, b, c) = f (u11, u12, u22, u13, u23, u33)

= f (s21a + ζ1, s1s2b + ζ2, s22c + ζ3, s1s3(a + b) + ζ4, s2s3(b + c)
+ζ5, s23 (a + 2b + c) + ζ6).

We have the following differentiation rules:

∂a = s21∂u11 + s1s3∂u13 + s23∂u33 ,

∂b = s1s2∂u12 + s1s3∂u13 + s2s3∂u23 + 2s23∂u33 ,

∂c = s22∂u22 + s2s3∂u23 + s23∂u33 ,

(36)
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etc. Substituting partial derivatives of the reduced density f (a, b, c) into the 2D
integrability conditions (10), we obtain homogeneous polynomials of degree ten in
s1, s2, s3 whose coefficients are expressed in terms of partial derivatives of the original
3D density f (ui j ). Equating to zero the coefficients of these polynomials, we obtain
3D integrability conditions for f . (Note that due to the presence of arbitrary constants
ζi the arguments of f can be viewed as independent of s1, s2, s3.) The integrability
conditions can be represented in compact Hirota-type form analogous to (16):

(P1Y1v − 2P0Y2v)[ f (ui j ) · f (ũi j )]
∣∣∣∣
ũi j=ui j

= 0. (37)

Here the operators on the left-hand side of (37) are identical to that from Sect. 2.4,
with the only difference that we substitute expressions (36) (and their tilded versions)
for ∂a, ∂b, ∂c and ∂ã, ∂b̃, ∂c̃. Thus,

∂a = s21∂u11 + s1s3∂u13 + s23∂u33 ,

∂ã = s21∂ũ11 + s1s3∂ũ13 + s23∂ũ33 ,

etc. The left-hand side of (37) is an Sp(6)-invariant operation which transforms a
function f defined on the space of 3× 3 symmetric matrices ui j into a homogeneous
form of degree four in ξ1, ξ2 and degree ten in s1, s2, s3.

3.2 Equivalence group in 3D

LetU be the 3×3Hessianmatrix of the function u(x1, x2, x3). Integrable Lagrangians
of type (5) are invariant under Sp(6)-symmetry

U → (AU + B)(CU + D)−1, f → f

det(CU + D)
, (38)

where the matrix
(
A B
C D

)

belongs to the symplectic groupSp(6,R) (hereA,B,C,D are 3×3matrices).Note that
symmetry (38) suggests a relation to genus three Siegel modular forms. Furthermore,
integrable Lagrangians (1) are invariant under rescalings of f , as well as under the
addition of a ‘null Lagrangian’, namely transformations of the form

f → λ0 f +
∑

λσUσ , (39)

where Uσ denote all possible minors of the Hessian matrix U. Transformations (38)
and (39) generate a group of dimension 21 + 15 = 36 which preserves the class of
integrable Lagrangians (5).
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3.3 Integrable Lagrangians associated with the dKP hierarchy

Here we construct three explicit second-order integrable Lagrangian densities arising
in the context of the dKP hierarchy:

f = u2yy − uxxuxt + u2xxuyy + uxxu
2
xy + 1

4
u4xx , (40)

f = (uxy − utt − uxxuxt + 1

3
u3xx )

3/2, (41)

f = u−2
xt

(
uxtuyt − uxxu

2
xt

)3/2
. (42)

These examples come from the following dKP flows.

Case 1. The fifth-order flow of the dKP hierarchy comes from the dispersionless Lax
representation

py =
(
p2

2
+ w

)
x
, pt =

(
p5

5
+ wp3 + vp2 + bp + c

)

x

,

which gives rise to the equations

wy = vx , bx = vy + 3wwx ,

cx = by + 2vwx , wt = bwx + cy .

Setting w = uxx , v = uxy and b = uyy + 3
2u

2
xx , we obtain two equations for c,

cx = uyyy + 3uxxuxxy + 2uxyuxxx , cy = uxxt − uyyuxxx − 3

2
u2xxuxxx ,

whose compatibility condition results in the following fourth-order PDE for u:

uyyyy − uxxxt + 3uxxuxxyy + 2uxyuxxxy + 3u2xxy + 3uxxxuxyy + uyyuxxxx

+3

2
u2xxuxxxx + 3uxxu

2
xxx = 0.

This is the Euler–Lagrange equation corresponding to the polynomial Lagrangian
density (40).

Case 2. Another flow of the dKP hierarchy is associated with the Lax representation

pt =
(
p3

3
+ wp + v

)
x
, py =

(
p5

5
+ wp3 + vp2 + bp + c

)

x

,

which gives rise to the equations

bt = −bwx + wbx − 2vvx + wy, ct = wcx − bvx + vy,
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wt = −2wwx + bx , vt = −2vwx − 2wvx + cx .

Setting w = uxx , b = uxt + u2xx and v2 = uxy − utt − uxxuxt + 1
3u

3
xx , we obtain two

equations for c,

ct = vy + uxxvt + 2vuxxuxxx + (u2xx − uxt )vx , cx = vt + 2vuxxx + 2uxxvx ,

whose compatibility condition yields

vt t + (vuxx )xt = vxy + (v(u2xx − uxt ))xx .

This PDE is the Euler–Lagrange equation corresponding to the density (41).

Case 3. This example comes from the dispersionless Lax pair

pt =
(

r

p − q

)
x
, py =

(
p3

3
+ wp + v

)
x
,

which gives rise to the equations

qy = q2qx + qwx + wqx + vx , ry = q2rx + 2qrqx + rwx + wrx , wt = −rx , vt = −qrx − rqx .

Setting w = uxx , r = −uxt , q2 = uyt
uxt

− uxx , the second and the third equations will
be satisfied identically, while the first and the fourth imply

vx = qy −
(
1

3
q3 + quxx

)
x
, vt = (uxtq)x .

Their consistency condition gives

qyt −
[
1

3
q

(
uyt

uxt
+ 2uxx

)]
xt

= (uxtq)xx .

This is the Euler–Lagrange equation corresponding to the density (42).

3.4 2D densities as travelling wave reductions of 3D densities

Given a 3D integrable Lagrangian density f (uxx , uxy, uyy, uxt , uyt , utt ), one can
apply a travelling wave ansatz, u(x, y, t) = u(ξ, η) where ξ = a1x + a2y+ a3t, η =
b1x + b2y + b3t , to obtain an integrable 2D Lagrangian density of the form
f (uξξ , uξη, uηη). In fact, modulo linear transformations of ξ and η it is sufficient
to assume ξ = x + αt, η = y + βt . For instance, the two-dimensional density (4) is
the stationary (t-independent) reduction in the three-dimensional density (40). Simi-
larly, applying travellingwave reduction to the 3D integrable density f = √

uxyuxtuyt
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one obtains 2D integrable densities of the form

f = √
uξη(αuξξ + βuξη)(αuξη + βuηη).

4 Dispersive deformations of integrable Lagrangian densities

Some integrable Lagrangian densities f possess integrable dispersive deformations
fε of the form

fε = f + ε f1 + ε2 f2 + . . . ,

where f is a second-order integrable density, ε is a deformation parameter and fi are
higher-order differential expressions in u of total degree i (we say that second-order
derivatives of u have degree zero, third-order derivatives of u have degree 1, etc). We
require that the Euler–Lagrange equation of the deformed density fε is integrable (in
the usual solitonic sense), so that f can be seen as a dispersionless limit of fε when
ε → 0. Dispersive deformations regularise the gradient catastrophe that typically
occurs for dispersionless equations, and have been extensively studied by Dubrovin
and his School in 1 + 1 dimensions, see, for example, [12] and references therein.

A complete classification of integrable dispersive deformations of second-order
Lagrangians is a challenging open problem. The three examples below come from
higher-order flows of the KP hierarchy (and provide compact Lagrangian representa-
tions thereof). The corresponding dispersive deformations are therefore exact.

Example 1 The Lagrangian density (40),

f = u2yy − uxxuxt + u2xxuyy + uxxu
2
xy + 1

4
u4xx ,

(Section 3.3, case 1) possesses integrable dispersive deformation

fε = u2yy − uxxuxt + u2xxuyy + uxxu
2
xy + 1

4
u4xx + ε2

8
u2xxuxxxx − ε2

2
u2xxy + ε4

80
u2xxxx .

The corresponding (dispersive) Euler–Lagrange equation has the Lax pair

εψy = ε2

2
ψxx + aψ, εψt = ε5

5
ψxxxxx + ε3aψxxx + ε2bψxx + εcψx + wψ,

(first and third Lax equations of the KP hierarchy) where a = uxx , b = uxy +
3ε
2 uxxx , c = uyy + 3

2u
2
xx + εuxxy + 5ε2

4 uxxxx , and the variable w is defined by the
equations

wx = uyyy + 3uxxuxxy + 2uxyuxxx + 3ε

2
u2xxx
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+3ε

2
uxxuxxxx + ε

2
uxxyy + 3ε2

4
uxxxxy + 3ε3

8
uxxxxxx ,

wy = uxxt − uyyuxxx − 3

2
u2xxuxxx + 3ε

2

(
uxxuxxy

)
x + ε

2
uxyyy + ε2

4
uxxxyy

−ε2

4
uxxuxxxxx − ε2

2
uxxxuxxxx + 3ε3

8
uxxxxxy − ε4

80
uxxxxxxx .

The stationary reduction of this example provides dispersive deformation of the two-
dimensional density (4).

Example 2 The Lagrangian density (41),

f =
(
uxy − utt − uxxuxt + 1

3
u3xx

)3/2

,

(Sect. 3.3, case 2) possesses integrable dispersive deformation

fε =
(
uxy − utt − uxxuxt + 1

3
u3xx + ε2

12
(4uxxuxxxx + 3u2xxx − 4uxxxt ) + ε4

45
uxxxxxx

)3/2

.

The corresponding dispersive Euler–Lagrange equation has the Lax pair

εψt = ε3

3
ψxxx + εwψx + vψ, εψy = ε5

5
ψxxxxx

+ε3wψxxx + ε2(v + εwx )ψxx + εbψx + cψ,

where

w = uxx , v = f 1/3ε + ε

2
uxxx , b = uxt + u2xx + 2ε2

3
uxxxx + εvx ,

and the function c is determined by the equations

cx = vt + 2(uxxv)x + 2

3
ε2vxxx ,

ct = vy + (uxxv)t +
(

vu2xx − vuxt − εvvx − ε2

3
uxxvxx − 2ε2

3
vx uxxx + ε2

3
cxx − ε4

5
vxxxx

)
x
.

Example 3 The Lagrangian density (42),

f = u−2
xt

(
uxtuyt − uxxu

2
xt

)3/2
,

(Sect. 3.3, case 3) possesses integrable dispersive deformation

fε = u−2
xt

(
uxtuyt − uxxu

2
xt + ε2

4
u2xxt − ε2

3
uxtuxxxt

)3/2

,
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The corresponding dispersive Euler–Lagrange equation comes from the Lax pair

εψy = ε3

3
ψxxx + εwψx + vψ, ε2ψxt = εqψt + rψ,

where

w = uxx , r = −uxt , q =
(

fε
uxt

)1/3

+ ε

2

uxxt
uxt

,

and the variable v is defined by the equations

vt = (uxtq)x , vx = qy −
(
uxxq + 1

3
q3 + εqqx + ε2

3
qxx

)
x
.

5 Concluding remarks

Here we list some problems for further study.

• Multi-dimensional Lagrangians. It would be of interest to describe multi-
dimensional versions of second-order integrable Lagrangians. Thus, anti-self-dual
four-manifolds with a parallel real spinor are described by the integrable 4DDuna-
jski system [16]

axt + ayz + uxxayy + uyyaxx − 2uxyaxy = 0,

uxt + uyz + uyyuxx − u2xy = a,

which can be written as a single fourth-order PDE for the function u. This PDE
comes from the second-order Lagrangian

∫
(uxt + uyz + uyyuxx − u2xy)

2 dxdydzdt .

Similarly, anti-self-dual scalar-flat four-manifolds (Flaherty–Park spaces, see [35]
and references therein) are governed by the equations

uxz(ln�)yt − uxy(ln�)zt − uzt (ln�)xy + uyt (ln�)xz = 0,

uxzuyt − uxyuzt = �,

which are equivalent to a single fourth-order PDE for u. The corresponding
Lagrangian is

S =
∫

� ln� dxdydzdt,

where one has to substitute � = uxzuyt − uxyuzt .
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• Multi-component Lagrangians. Our approach can be generalised in a straight-
forward way to describe 2-field integrable Lagrangians of the form

∫
f (ux , uy, vx , vy) dxdy,

as well as their 3D analogues,

∫
f (ux , uy, ut , vx , vy, vt ) dxdydt .

• Higher-orderquasilinearPDEs.Similarly, one can classify third-order integrable
PDEs of the form

a1uxxx + a2uxxy + a3uxyy + a4uyyy = 0

where the coefficientsai are functions of the second-order derivativesuxx , uxy, uyy

only. This problem also has a natural 3D analogue.
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