CORRECTION

Correction: Correction to: A third representation of Feynman–Kac–Itô formula with singular magnetic vector potential

Taro Murayama¹

Published online: 17 April 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Correction to: Letters in Mathematical Physics (2021) 111:33 https://doi.org/10.1007/s11005-021-01376-3

The publication of this article unfortunately contained a mistake. In the last sentence before the Acknowledgements, R^d must be changed into R. Please see below the corrected sentence:

Since $(0 \le) \sup_{t \le t'} (\psi_{c,m}(T)(t) - \psi_{c,0}(T)(t)) \to 0$ as $m \downarrow 0 \quad v^{\Psi_{c,0}}$ -a.s. for any $t' \in [0, \infty)$ [14, Proposition 4.2], the following convergence can be shown without div $A \in L^1_{loc}(\mathbf{R}^d; \mathbf{R})$ by the Lebesgue dominated convergence theorem and the estimate (3.1) in Proposition 3.1:

[Theorem II] If $A \in L^2_{\text{loc}}(\mathbb{R}^d; \mathbb{R}^d)$, then for a fixed c > 0, $e^{-t\Psi_{c,m}(H_A)}$ converges to $e^{-t\Psi_{c,0}(H_A)}$ in $L^2(\mathbb{R}^d)$ as $m \downarrow 0$, uniformly on every finite bounded interval in $t \ge 0$.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1007/s11005-021-01376-3.

Taro Murayama murayama@ishikawa-nct.ac.jp

¹ Department of General Education, National Institute of Technology (KOSEN), Ishikawa College, Kitachujo, Tsubata, Ishikawa 929-0392, Japan