Correction to: On solutions to the nonlocal $\overline{\boldsymbol{\partial}}$-problem and (2+1) dimensional completely integrable systems

Patrik V. Nabelek ${ }^{1}$

Published online: 9 April 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Correction to: Letters in Mathematical Physics (2021) $111: 16$ https://doi.org/10.1007/s11005-021-01353-w

The publication of this note unfortunately contained three errors. The author apologizes for any confusions this may have caused.

The first error is that $\eta(x, y, t)$ appears in (50). The solution to the complex KP equation should be $u(x, y, t)$ and not $\eta(x, y, t)$.

The second error is that the definition of the function

$$
\phi(\lambda, x, y, t)=\lambda x+\lambda^{2} y+\lambda^{3} t
$$

on the lines following equations (21) and (49) leads to solutions to the scaling

$$
\left(4 u_{t}+6 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y}=0
$$

of the complex KP equation. To produce solutions to the scaling

$$
\left(4 u_{t}-6 u u_{x}+u_{x x x}\right)_{x}+u_{y y}=0
$$

used in this note a valid definition of ϕ is

$$
\phi(\lambda, x, y, t)=\lambda x+\sqrt{3} \lambda^{2} y-\lambda^{3} t
$$

When this scaling is used $t_{2}=\sqrt{3} y$ and $t_{3}=-t$ in (52).
The third error is that the terms

$$
-\kappa_{n} x+\kappa_{n}^{3} t,-s x+s^{3} t, \text { and } s x-s^{3} t
$$

[^0][^1]appearing in (38), (42), and (43) respectively should be
$$
-2 \kappa_{n} x+2 \kappa_{n}^{3} t,-2 s x+2 s^{3} t, \text { and } 2 s x-2 s^{3} t
$$
respectively to produce solutions to the scaling
$$
4 u_{t}-6 u u_{x}+u_{x x x}=0
$$
of the KdV equation used in this note.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The original article can be found online at https://doi.org/10.1007/s11005-021-01353-w.

[^1]: \boxtimes Patrik V. Nabelek
 nabelekp@oregonstate.edu
 1 Oregon State University, Corvallis, OR, USA

