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Abstract
We consider the Dubrovin–Frobenius manifold of rank 2 whose genus expansion at a
special point controls the enumeration of a higher genera generalization of the Cata-
lan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs,
Grothendieck’s dessins d’enfants, strictlymonotoneHurwitz numbers, or lattice points
in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full parti-
tion function of this Dubrovin–Frobenius manifold is a tau-function of the extended
nonlinear Schrödinger hierarchy, an extension of a particular rational reduction of the
Kadomtsev–Petviashvili hierarchy.We prove a version of their conjecture specializing
the Givental–Milanov method that allows to construct the Hirota quadratic equations
for the partition function, and then deriving from them the Lax representation.
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Introduction

This paper is devoted to the study of the integrable hierarchy associated with the
Dubrovin–Frobenius manifold of rank 2 given in the flat coordinates t1, t2 by

the metric ηαβ = δα+β,3, (0.1)

the prepotential F(t1, t2) = 1

2
(t1)2t2 + 1

2
(t2)2 log t2, (0.2)

the unit vector field e = ∂t1 , (0.3)

and the Euler vector field E = t1∂t1 + 2t2∂t2 , (0.4)

first introduced in [20, Example 1.1, Equation (1.24b)]. Despite the fact that it is one
of the first non-trivial examples of semi-simple Dubrovin–Frobenius manifolds, it was
until recently not well studied in the literature, since the enumerative meaning of its
genus expansion was unclear.

Digression 1 (on genus expansion) In many examples, a Dubrovin–Frobenius mani-
fold captures the primary genus 0 part of theGromov–Witten partition function of some
target variety, or, more generally, the partition function of some naturally constructed
cohomological field theory. In these cases, the enumerative meaning of the genus
expansion is encoded in the all-genera descendent partition function. For instance, the
rank 2 Dubrovin–Frobenius manifolds given in flat coordinates by the same metric
as above and the prepotentials 1

2 (t
1)2t2 + 1

72 (t
2)4 and 1

2 (t
1)2t2 + et

2
(see again [20,

Example 1.1]) are related to the Witten 3-spin class and the Gromov–Witten theory
of CP

1, respectively, and there is an extensive literature studying these examples.
In general, there is a universal reconstruction procedure for the genus expansion of

a semi-simple Dubrovin–Frobenius manifold. It can be given either by the universal
Givental formula [37], or, alternatively, as the tau-function that linearizes a special
system of symmetries called the Virasoro constraints [25]. Equivalence of these two
approaches is proved in [25]. This tau-function determines the tau-structure of a bi-
Hamiltonian dispersive deformation of an integrable hierarchy of hydrodynamic type
associated with the initial semi-simple Dubrovin–Frobenius manifold.

Note that the construction of this hierarchy given in [25] does not guarantee the
regular (polynomial) dependence of the Poisson brackets and the densities of the
Hamiltonians. The regularity of the first Poisson bracket and the densities of theHamil-
tonians is proved in [9,10], while the polynomiality of the second Poisson bracket is
still an important open problem.

Quite recently, it has been proved in [6,27] that there exist a specialization of
the logarithm of the partition function D = D({t id}i=1,2;d≥0) associated with the
Dubrovin–Frobenius manifold (0.1)–(0.4) (say, consider the partition function given
by the Givental formula) that is the generating function of the generalized Catalan
numbers (see a table of their values in [5, Part III, Section 1.1]) weighted by com-
binatorial factors. Note that since the underlying Dubrovin–Frobenius manifold has
a singularity at t1 = t2 = 0, we have to choose another reference point for the
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formal expansion of D instead of the origin, and our choice throughout the paper is
t1 = 0, t2 = 1.

The generalized Catalan numbers (in some instances, up to some small combi-
natorial rescaling) are also studied under the names of strictly monotone Hurwitz
numbers, enumerations of ribbon graphs, (rooted) maps on surfaces, Grothendieck’s
dessins d’enfants for strict Belyi functions, lattice points in the moduli spaces of
curves, et cetera, see e.g. [26,36,53] for some references to the vast literature on this
subject. This motivates us to have a closer look at this example of Dubrovin–Frobenius
manifold. Note that though it is known that there exists a specialization ofD to a gen-
erating function of generalized Catalan numbers, its explicit form is not available in
the literature, so we give it below, see Theorem 8.

Digression 2 (on generalized Catalan numbers) The generalized Catalan numbers
enumerate graphs with n ≥ 1 ordered vertices, connected by edges, with a fixed
cyclic order of half-edges attached to each vertex, and with one distinguished half-
edge at each vertex. For each such graph, there is a unique, up to a homeomorphism,
surface of genus g ≥ 0, where this graph can be embedded such that its complement
is a union of open disks. We call g the genus of the graph.

By Cg;k1,...,kn , we denote the number of such graphs of genus g with n vertices of
indices k1, . . . , kn . In a dual language, we can say that Cg;k1,...,kn counts the number
of ways (up to orientation preserving homeomorphisms) to glue a genus g surface
out of n ordered polygons with k1, . . . , kn sides, respectively, by identifying the pairs
of sides, where each polygon has one distinguished side (these are the rooted maps).
Obviously, for g = 0 and n = 1 C0,k is not equal to 0 if and only if k = 2m is even,
and in this case, it is equal to the m-th Catalan number.

A closely related concept is Dg;k1,...,kn :=(k1 . . . kn)−1 ·Cg;k1,...,kn . These numbers
can be defined via enumeration of ribbon graphs, where each graph is counted with
the weight equal to the inverse order of its automorphism group, or (not rooted)
maps on surfaces, lattice points in the moduli spaces, and strictly monotone Hurwitz
numbers/Grothendieck’s dessins d’enfants for strict Belyi functions.

Recently, both Cg;k1,...,kn and Dg;k1,...,kn have gotten a lot of attention since their
generating functions serve as the basic examples for the Chekhov–Eynard–Orantin
topological recursion and hypergeometric tau-function of the KP hierarchy. In partic-
ular, their relation to the Dubrovin–Frobenius manifold (0.1)–(0.4) is a by-product of
their study in the context of topological recursion [6,27].

Consider the partition functionD. The goal of this paper is to construct an integrable
hierarchy forwhich this partition functionwould be a tau-function corresponding to the
string solution.Weprove thatD is a tau-function of the extended nonlinear Schrödinger
or AKNS [1] hierarchy defined in [12, Section 5], which can also be considered as
an extension of a particular rationally reduced KP or constrained KP hierarchy, see
[8,17,18,42,45,46,48,54] and references therein.

Digression 3 (on special integrability) It is now well known that the exponential of
the generating function of the numbersCg;k1,...,kn is a tau-function of the KP hierarchy
[36]. It is an example of the so-called hypergeometric tau-function, let us denote it by
Z = Z({td}d≥1) = D|t1d=(d+1)!td+1,t2d=0,d≥0. It is a natural general open question for
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the hypergeometric tau-functions what kind of further reduction of KP or lattice KP
they would still satisfy. To this end, in the case of lattice KP a number of interesting
examples is systematically studied in [57].

From that point of view, we do here one more step. Namely, we first start with Z ,
which has a very clear combinatorial enumerative meaning, and identify the reduction
of KP for Z as a special rational reduction of the KP hierarchy also known as the
nonlinear Schrödinger hierarchy [12] or AKNS hierarchy [1].

It is known from [12] that in addition to the standard set of Hamiltonians generat-
ing the flows of ∂/∂t1d , there is a an additional set of commuting Hamiltonians. The
corresponding flows extend the tau-function Z , and this extension is identified with
D, where ∂/∂t2d are the flows of this additional set of Hamiltonians.

Our construction consists of three big steps loaned from the existing literature and
modified to fit our needs. First, we use the techniques ofGivental,Milanov, Tseng, et al.
[39,40,49,51] to construct the Hirota quadratic equations for the partition function Z .
Our general philosophy is to avoid using the superpotential of theDubrovin–Frobenius
manifold (0.1)–(0.4). The reason to proceed in this way is our intention to use this
example as a departure point for the development of general structures producing
Hirota equations and intrinsically existing for a Dubrovin–Frobenius manifold. Our
construction of the periods relies on the well-known Proposition 16. The asymptotic
expansion at λ ∼ ∞ in Proposition 5.27 is derived as a consequence. A more intrinsic
general approach is given in [50], where such asymptotic expansion, which is actually
convergent, is used to define the periods.

Second, we use the well-known method developed e.g. in [14,49] to pass from the
Hirota equations to the Lax representation. Notice that the Hirota equations coincide
with those of the extended Toda hierarchy, but with the primary times interchanged.
The natural approach would be to follow the usual approach for KP reductions, but it is
not clear how to apply the fundamental lemma in terms of pseudo-differential operators
to obtain the Sato equations for the additional set of times. We therefore first recall (a
particular case) of the computation in [14] obtaining the Lax equations of the extended
Toda hierarchy in the “unnatural” spatial variable. In the third step, we revisit in terms
of the dressing operators the construction of [12] that allows to perform a change of
the time corresponding to the spatial x-variable in order to reorganize the resulting
hierarchy into the extended nonlinear Schrödinger hierarchy. In the last subsection, we
finally propose a direct but somehow not standard derivation of the pseudo-differential
Sato equations from the Hirota quadratic equations.

This result, though quite non-trivial, is verymuch expected. Indeed, on the one hand
it is already mentioned in [12] that on the level of the underlying Dubrovin–Frobenius
manifolds the change of the time shifted by x that turns the extended Toda hierar-
chy into the extended nonlinear Schrödinger hierarchy is reduced to a Legendre-type
transformation that turns the Dubrovin–Frobenius manifold structure of the Gromov–
Witten invariants ofCP

1 into the one given by Eqs. (0.1)–(0.4). On the other hand, this
result can be considered as the very first example that indirectly affirms a much more
general conjecture of Liu, Zhang, and Zhou in [48], which they posed for a different
reason. This paper studies their extended 1-constrained KP case. The n-constrained
case will be addressed in a forthcoming publication.
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Digression 4 (on Liu–Zhang–Zhou conjecture) The way Liu, Zhang, and Zhou arrive
to their conjecture is quite different and very interesting. They study the so-called
central invariants [13,23,47] of the bi-Hamiltonian structures of a special class of
the rationally constrained KP hierarchies and they show that all central invariants are
constants equal to 1/24. This is exactly the property that the bi-Hamiltonian structures
of the Dubrovin–Zhang hierarchies associated with Dubrovin–Frobenius manifolds
must have (as we mentioned above, the existence of the second bracket is an open
conjecture, but for the definition of the central invariants one needs only its existence
up to order 2 in the dispersion parameter ε, which is proved in [24]). There is a direct
relation between the dispersionless limits of this special class of hierarchies and the
principal hierarchies of a particular family of Dubrovin–Frobenius manifolds (one for
each rank r ≥ 2). Based on this relation, Liu, Zhang, and Zhou conjecture that the
Dubrovin–Zhang topological deformation of the corresponding principal hierarchies
gives extensions of the aforementioned special class of the rationally contrained KP
hierarchies.

Note that our result (that concerns the rank 2 case in the setup of Liu–Zhang–Zhou)
does confirm their conjecture but it does not fully resolve it in this case. Indeed, we
construct an integrable hierarchy for the genus expansion of the Dubrovin–Frobenius
manifold (0.1)–(0.4) going through theHirota bilinear equations of Givental–Milanov.
But there is no known identification of this approach and the approach of Dubrovin–
Zhang via the topological deformation of the principle hierarchy (see [15] for some
first steps in that direction). Thus, though we obtain exactly the hierarchy that Liu,
Zhang, and Zhou expect, it is not a proof of their conjecture in this case.

In conclusion, let us mention that we believe that a detailed study of this example
of Dubrovin–Frobenius manifold in the way we performed it is quite helpful in the
view of its possible generalizations (and a revision of similar results available in the
literature). Indeed, we paid a special attention to specifying the convergence issues
and emerging choices (for instance, calibration, choices of roots, etc.), which are quite
often jammed in the literature though their effect on the resulting formulas is quite
essential, as one can see from the detailed analysis in this paper.

Organization of the paper

In Sect. 1, we introduce the Dubrovin–Frobenius manifold that we study in this paper
and recall all essential structures related to it. In Sect. 2, we study the structure of the
principle hierarchy associated with this Dubrovin–Frobenius manifold, with a special
attention to the possible choice of calibration. In Sect. 3, we recall the Givental quan-
tization formalism and define the all-genera partition functions (the ancestor potential
and the descendent potential) associated with our Dubrovin–Frobenius manifold. In
Sect. 4, we study in detail the period vectors of our Dubrovin–Frobenius manifold,
their values at a special point and their asymptotics. In Sect. 5, we introduce the asso-
ciated vertex operators and study their structural properties. In Sect. 6 (in Sect. 7,
respectively), we prove the Hirota quadratic equations for the ancestor (descendent,
respectively) potential of this Dubrovin–Frobenius manifold. We derive in Sect. 8 the
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Lax formulation of the obtained integrable system, which we then identify with the
extended nonlinear Schrödinger hierarchy.

Notation

• i: the imaginary unit.
• h(n) :=∑n

k=1 k
−1 : the n-th harmonic number, h(0) = 0.

• (a)n := 	(a + n)/	(a) : the Pochhammer symbol.
• R+: the nonnegative real axis as a subset of C.
• R−: the non-positive real axis as a subset of C.
• e1, . . . , en : the canonical basis in C

n .

We will often use, for n ≥ 0:

(
1

2

)

n
= 	(1/2 + n)√

π
= (2n − 1)!!

2n
= (2n)!

4n n! , (0.5)

(
1

2

)

−n
= 	(1/2 − n)√

π
= (−2)n

(2n − 1)!! . (0.6)

1 The Dubrovin–Frobenius manifold

1.1 The Dubrovin–Frobenius manifold for Catalan numbers

Let M = C × C
∗ with coordinates (t1, t2). Let us define a charge d = −1 Dubrovin–

Frobenius manifold structure on M with potential

F(t) = 1

2
(t1)2t2 + 1

2
(t2)2 log t2. (1.1)

For a general introduction to the theory of Dubrovin–Frobenius manifolds, refer to
[20–22], or the more recent review in the first part of [19].

The unit and Euler vector fields, the metric, and the product on the tangent space
are given by

e = ∂

∂t1
, E = t1

∂

∂t1
+ 2t2

∂

∂t2
, η =

(
0 1
1 0

)

,
∂

∂t2
• ∂

∂t2
= 1

t2
∂

∂t1
.

(1.2)

The intersection form gi j = Ekci jk , where c
k
i j are the structure constants of the product

and the indexes are raised and lowered by the metric η, is equal to

g =
(
2 t1

t1 2t2

)

. (1.3)

123



63 Page 8 of 67 G. Carlet et al.

The discriminant � ⊂ M is the locus where the intersection form g degenerates, that
is

� = {t ∈ M | 4t2 = (t1)2}. (1.4)

We denote by �λ ⊂ M × C the locus where the pencil g − λη degenerates, which is

�λ = {(t, λ) ∈ M × C | 4t2 = (t1 − λ)2}. (1.5)

We have the following two standard endomorphisms on the tangent space, which in
the flat trivialization read

μ =
(
1/2 0
0 −1/2

)

, U =
(
t1 2
2t2 t1,

)

(1.6)

respectively, defined by μ = (2 − d)/2 − ∇E and U = E•, with
ημη = −μ, ηUη = UT . (1.7)

1.2 The canonical coordinates

Let us define two canonical coordinates charts on M . Let V1 = {(t1, t2) ∈ M |t2 /∈
R−} ⊂ M and U1 = {(u1, u2) ∈ C

2|Re(u1 − u2) > 0}. The map V1 → U1 given by

u1 = t1 + 2
√
t2, u2 = t1 − 2

√
t2 (1.8)

is a diffeomorphism with inverse

t1 = u1 + u2

2
, t2 =

(
u1 − u2

4

)2

, (1.9)

where
√
t2 is the principal branch of the square root on the cut planeC\R−. Let log(t2)

denote the principal branch of the logarithm.We always denote (t2)α = exp(α log t2).
The same formulas give a diffeomorphism V2 → U2, where V2 = {(t1, t2) ∈ M |t2 /∈
R+} andU2 = {(u1, u2) ∈ C

2| Im(u1 − u2) > 0}. To define the roots in this case, we
choose the branch of logarithm on C \ R+ such that log(−1) = π i. Without further
notice, we will systematically work on V1, the extension of our formulas to V2 being
obvious.

The canonical coordinate vectors given by (over both coordinate charts)

∂

∂u1
= 1

2

∂

∂t1
+ 1

2

√
t2

∂

∂t2
,

∂

∂u2
= 1

2

∂

∂t1
− 1

2

√
t2

∂

∂t2
, (1.10)

are idempotents for the multiplication on the tangent spaces, and

e = ∂

∂u1
+ ∂

∂u2
, E = u1

∂

∂u1
+ u2

∂

∂u2
. (1.11)
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1.3 The normalized canonical frame

Let use denote

�−1
i =

(
∂

∂ui
,

∂

∂ui

)

(1.12)

so that �−1
1 = 1

2

√
t2, �−1

2 = − 1
2

√
t2. The normalized canonical frame is defined as

ei = �
1/2
i

∂

∂ui
, (1.13)

where we fix

�
1/2
1 = √

2(t2)−1/4, �
1/2
2 = i

√
2(t2)−1/4, (1.14)

and the transition matrix � from the normalized canonical frame to the flat frame,
defined by

∂

∂tα
=
∑

j

e j� jα, (1.15)

is given by

� = (�−1)T η = 1√
2

(
(t2)1/4 (t2)−1/4

−i(t2)1/4 i(t2)−1/4

)

,

�−1 = 1√
2

(
(t2)−1/4 i(t2)−1/4

(t2)1/4 −i(t2)1/4

)

. (1.16)

In the following, we will represent a tangent vector by the column matrix of its com-
ponents in the relevant frame. The coefficients Vi,can = �iαV α

f lat of a vector in the

normalized canonical frame are obtained from the coefficients V i
f lat in the basis of

flat coordinated by left multiplication by the matrix �. Note that the row index is i in
�iα , and α in (�−1)αi . Remark also that in the above formulas the branch of the roots
depends on the chart used.

2 The deformed flat connection and the principal hierarchy

2.1 The deformed flat connection

Let Y (t, z) be a two-by-two matrix-valued function on M × C which solves the
deformed flatness equations

− z
∂Y

∂z
=
(

μ + U
z

)

Y , z
∂Y

∂tα
= CαY , (2.1)
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with C1 = 1 and

C2 =
(
0 (t2)−1

1 0

)

. (2.2)

The columns of the fundamental matrix Y are the gradients of a system of deformed
flat coordinates t̃α(t, z):

Y β
α = ηβγ ∂ t̃α

∂tγ
. (2.3)

After fixing a branch of log z, we look for solutions of the form

Y (t, z) = S(t, z)z−μz−R (2.4)

where S = ∑
k≥0 Skz

−k is a matrix-valued power series which converges in a small
neighborhood of z = ∞, with S0 = 1 and

R =
(
0 2
0 0

)

. (2.5)

The matrix S is uniquely fixed by setting (S1)1,2 = ψ + log t2, see Sect. 2.3. Here ψ

is the arbitrary constant that parametrizes the solutions of the resonant system (2.1)
near the Fuchsian singularity z = ∞. The columns of the matrix S are the gradients
of analytic functions θα on M × C such that

(t̃1, t̃2) = (θ1, θ2)z
−μz−R, (2.6)

and the t̃α are said to form a Levelt system of deformed flat coordinates on M .

2.2 The superpotential and the deformed flat coordinates

The Dubrovin–Frobenius manifold structure on M can be given in terms of the fol-
lowing superpotential f : M × C

∗ → C

f (t, ζ ) = ζ + t1 + t2ζ−1, (2.7)

see [20]. Notice that �λ coincides with the set of points (t, λ) ∈ M × C where the
preimage of λ via f (t, ·) degenerates, namely is not given by two distinct points in
C

∗. The superpotential induces the Frobenius manifold product via the identification
of each tangent space with the local algebra C[ζ, ζ−1]/(∂ζ f ).

We define the formal logarithm l̃og f as the formal Laurent series
∑

k∈Z
akζ k , with

coefficients given by

∑

k≥0

akζ
k = 1

2
log( f ζ ), ζ ∼ 0, (2.8)
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∑

k<0

akζ
k = 1

2
log( f /ζ ), ζ ∼ ∞. (2.9)

Proposition 5 The Levelt system t̃α(t, z) of deformed flat coordinates for the Catalan
Dubrovin–Frobenius manifold M is given by

t̃1 = θ1z
− 1

2 , t̃2 = θ2z
1
2 − θ12z

− 1
2 log z, (2.10)

where

θα = Resgα dζ (2.11)

(here Res denotes the formal residue applied to a formal Laurent series) and gα(t, ζ, z)
are defined as

g1 = z
(
e f /z − 1

)
, g2 = 2e f /z

(

l̃og f + ψ

2
− Ein( f /z)

)

. (2.12)

The function Ein(z) is the entire exponential integral defined by

Ein(z) =
∫ z

0
(1 − e−t )

dt

t
. (2.13)

Proof Substituting (2.4) in (2.1), we find the equations for the matrix S

− zSz + [S, μ] = 1

z
(US − SR), zStα = CαS (2.14)

and expressing S in terms of the residue of the derivatives of gα as

Sα
β = ηαγRes

∂gβ

∂tγ
dζ (2.15)

we see that it is sufficient for the following two equations to be satisfied modulo terms
with zero residue in ζ

z
∂2gγ

∂tα∂tβ
= cσ

αβ

∂gγ

∂tσ
, −z

∂2gβ

∂z∂tγ
+ ∂gβ

∂tγ
(μβ + μγ ) − 1

z

(

Uρ
γ

∂gβ

∂tρ
− ∂gρ

∂tγ
Rρ

β

)

= 0.

(2.16)

We define

∂ l̃og f

∂ f
= f̃ −1 := 1

2

(
( f −1)0 + ( f −1)∞

)
(2.17)
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where ( f −1)0 and ( f −1)∞ are the formal expansions of f −1 at ζ = 0 and ζ = ∞,
respectively, so that the chain rule holds

∂ l̃og f

∂tα
= ∂ l̃og f

∂ f

∂ f

∂tα
. (2.18)

It is easy to check that

∂gα

∂ f
= 1

z
gα + 2̃ f −1δ2α,

∂2gα

∂ f 2
= 1

z

∂gα

∂ f
− 2 f̃ −2δ2α, (2.19)

where f̃ −2 is defined as the average of the formal expansions of f −2 at ζ = 0 and

ζ = ∞ as in the case of f̃ −1 above.
To prove the first equation in (2.16), it is sufficient to observe that

z
∂2gγ

∂tα∂tβ
− cσ

αβ

∂gγ

∂tσ
= −2zcσ

αβ

∂ f

∂tσ
f̃ −2δ2γ + z

∂2gγ

∂ f 2
∂ f

∂ζ
Kαβ, (2.20)

and to check that the right-hand side has vanishing residue. Here we have used the
fact that the Frobenius multiplication is induced by the local algebraC[ζ, ζ−1]/(∂ζ f ),
hence

∂ f

∂tα
∂ f

∂tβ
= cγ

αβ

∂ f

∂tγ
+ Kαβ∂ζ f (2.21)

where Kαβ = −(t2)−2δ2αδ2β .
The second equation in (2.16) can be rewritten as

∂

∂tα

(

−z
∂gγ

∂z
+
(
3

2
+ μγ

)

gγ − E(gγ ) + 2

z
g1δ

2
γ

)

= 0. (2.22)

One can directly verify the following quasi-homogeneity property of gγ

(

z
∂

∂z
+ f

∂

∂ f
− μγ − 1

2

)

gγ = 2

(
g1
z

+ 1

)

δ2γ . (2.23)

Using the fact that E( f ) = f − ζ∂ζ f , one has

E(gγ ) = f
∂gγ

∂ f
− ζ

∂gγ

∂ζ
; (2.24)

hence, formula (2.22) is verified up to the tα-derivative of the term

∂(ζ gγ )

∂ζ
− 2δ2γ (2.25)

which has no residue. ��
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2.3 The calibration

The S matrix is uniquely determined by the recursive formula

kSk + Skμ − μSk = USk−1 − Sk−1R, for k ≥ 1 (2.26)

with S0 = 1 and (S1)1,2 = ψ + log t2, and

R =
(
0 2
0 0

)

. (2.27)

The first two terms are

S1 =
(
t1 ψ + log t2

t2 t1

)

, S2 =
( 1

2 (t
1)2 + t2 t1(ψ + log t2)
t1t2 1

2 (t
1)2 + t2(ψ + log t2 − 1)

)

.

(2.28)

We can write the S matrix in terms of the superpotential as follows

Sk = Res

⎛

⎝
f k

k! ζ
−1 2 f k−1

(k−1)!
(
l̃og f + ψ

2 − h(k − 1)
)

ζ−1

f k

k!
2 f k−1

(k−1)!
(
l̃og f + ψ

2 − h(k − 1)
)

⎞

⎠ dζ. (2.29)

This expression can be derived from (2.10) or checked by substitution in the recursive
formula for Sk .

For example, at the point given by t1 = 0 and t2 = 1 (we often consider special-
ization to this point below and call this the special point of M denoted by tsp) we can
explicitly compute the S matrix coefficients, which are given by

S2k =
( 1

(k!)2 0

0 ψ+k−1−2h(k)
k!(k−1)!

)

, S2k+1 =
(

0 ψ−2h(k)
(k!)2

1
(k+1)!k! 0

)

. (2.30)

The first few terms are

S1 =
(
0 ψ

1 0

)

, S2 =
(
1 0
0 ψ − 1

)

, S3 =
(
0 ψ − 2
1
2 0

)

,

S4 =
( 1

4 0
0 ψ

2 − 5
4

)

, S5 =
(
0 ψ

4 − 3
4

1
12 0

)

. (2.31)

2.4 The principal hierarchy

Wecan easily obtain the following explicitHamiltonian formof the principal hierarchy,
with Hamiltonian densities hα,p given by the expansion of the analytic part θα of the
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deformed flat coordinates

θα =
∑

p≥0

hα,p−1z
−p.

For a general discussion of the principal hierarchy associated with a Frobenius mani-
fold, see [25].

Proposition 6 The principal hierarchy of the Catalan Dubrovin–Frobenius manifold
is given in Hamiltonian form by

∂t i

∂tα,p
= {t i (x), Hα,p}1 (2.32)

where the Hamiltonians and their densities are given by

Hα,p =
∫

hα,p dx, hα,p = Resgα,p dζ, (2.33)

the functions gα,p(t, ζ ) are defined as

g1,p = f p+2

(p + 2)! , g2,p = 2 f p+1

(p + 1)!
(

l̃og f − h(p + 1) + ψ

2

)

, (2.34)

and the Poisson structure is

{t i (x), t j (y)}1 = ηi jδ′(x − y). (2.35)

Notice that here the following expansion of the entire exponential integral was used

ezEin(z) =
∑

p≥1

h(p)z p

p! .

2.5 The Rmatrix

Let us represent the fundamental matrix Y in the normalized canonical frame

Ỹ = �Y . (2.36)

The z part of the deformed flatness equations becomes

− z
∂Ỹ

∂z
=
(

V + U

z

)

Ỹ , (2.37)
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where

U := �U�−1 =
(
u1 0
0 u2

)

, V := �μ�−1 =
(

0 i/2
−i/2 0

)

. (2.38)

There exists a unique formal solution of this equation of the form

Ỹ (t, z) = R(t, z)eU/z, (2.39)

where

R =
∑

k≥0

Rkz
k, R0 = 1. (2.40)

Indeed the coefficients Rk are uniquely determined by the recursion relation

[Rk+1,U ] = (V + k)Rk . (2.41)

Explicitly we have

Rk =
( 1
2

)
k−1

( 1
2

)
k

(k)!

(
(−1)k+1

2 ki
(−1)k+1ki − 1

2

)

(u2 − u1)
−k . (2.42)

3 Givental quantization formalism and potentials

In this section, we introduce the quantization formalism of Givental [37,38] (see
also an exposition in [7]) and explain his definitions of the so-called ancestor and
descendent potentials associated with a Dubrovin–Frobenius manifold. We use the
Givental formula for the descendent potential in order to link the Dubrovin–Frobenius
manifold (0.1)–(0.4) to the higher genera Catalan numbers.

3.1 Symplectic loop space and quantization

Let V be a C-vector space with a non-degenerate symmetric bilinear form ( , )V , with
basis {φi } and dual basis {φi }. Let V := V ((z)) be the loop space of formal Laurent
series with values in V , equipped with the symplectic form

�(f, g) = Resz(f(−z), g(z))dz, f, g ∈ V. (3.1)

Remark 7 In the following, V will be identified with the tangent space at a point of
M either via the flat trivialization or via the normalized canonical frame. In the first
case, the basis is that of flat coordinate vector fields ∂

∂t i
and the bilinear form is the

flat metric η at the point; in the second case, the V is identified via the canonical basis
with the Euclidean space together with the standard inner product.
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Darboux coordinates on V can be defined as

qik = �((−z)−k−1φi , ·) , pi,k = �(·, φi z
k) , k ≥ 0 , (3.2)

by which we can express any element f ∈ V as

f =
∑

k≥0

(
qikφi z

k + pi,kφ
i (−z)−k−1

)
. (3.3)

Let V+ := V [[z]] be the space of formal Taylor series with values in V . Then we
have a natural isomorphism V ∼= T ∗V+. Let ε be a formal parameter. Consider the
Fock space of functions on V+ given by formal power series in the variables qik + δi1δ

1
k

with the coefficients in formal Laurent series in ε.
We consider linear and quadratic Hamiltonians on V . The standard (Weyl) quanti-

zation associates with them differential operators of order ≤ 2 on the Fock space by
the following rules:

(qi�)ˆ = 1

ε
qi�, (pi,�)ˆ = ε

∂

∂qi�
, (3.4)

(qikq
j
� )ˆ = 1

ε2
qikq

j
� , (qik p j,�)ˆ = qik

∂

∂q j
�

, (pi,k p j,�)ˆ = ε2
∂2

∂qi�∂q
j
�

. (3.5)

For instance, the linear Hamiltonian hf(·) = �(f, ·) associated with a constant
vector field f =∑l I

l(−z)l ∈ V is given by

hf =
∑

l≥0

[
(−1)l+1(I l , φi )pi,l + (I−(l+1), φi )q

i
l

]
. (3.6)

It is convenient to denote (I k, φi ) (respectively, (I k, φi )) by (I k)i (respectively, (I k)i ).
The quantization of hf reads

f̂:=(hf)ˆ =
∑

l≥0

[

ε(−1)l+1(I l)i
∂

∂qil
+ 1

ε
(I−(l+1))i q

i
l

]

. (3.7)

Note that in particular

[f̂1, f̂2] = �(f1, f2) . (3.8)

We consider two Lie algebras, of purely positive and purely negative series in z, that
is, either m = ∑

�≥1 m�z� or m = ∑
�≤−1 m�z�, m� ∈ End(V ), representing linear

vector fieldsm commuting with z. These vector fields are infinitesimally symplectic if
mi

j (z) + ηikml
k(−z)ηl j = 0. The Hamiltonian of m is defined as hm(f):= 1

2�(mf, f),
and m̂ denotes its quantization,

m̂:=(hm)ˆ. (3.9)
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For the operator M = exp(m), the symbol M̂ denotes the operator exp(m̂).
For instance, the quadratic Hamiltonian associated with s = ∑

�≥1 s�z
−� is given

by

hs(f) = 1

2

∑

a,b≥0

(−1)b+1qiaq
j
b (sa+b+1)

k
i ηk j −

∑

a≥0,�≥1

qia+� p j,a(s�)
j
i , (3.10)

where (sa+b+1)
k
i ηk j = (sa+b+1φi , φ j ) and (sa+b+1)

j
i = (sa+b+1φi , φ

j ). Its quanti-
zation reads

(hs)ˆ = 1

2ε2
∑

a,b≥0

(−1)b+1qiaq
j
b (sa+b+1)

k
i ηk j −

∑

a≥0,�≥1

qia+�

∂

∂q j
a

(s�)
j
i . (3.11)

The quadratic Hamiltonian of the element r :=∑�≥1 r�z
� is given by

hr(f) = 1

2

∑

a,b≥0

(−1)a pi,a p j,b(ra+b+1)
i
kη

k j −
∑

a≥0,�≥1

qia p j,a+�(r�)
j
i , (3.12)

leading to the quantization

(hr)ˆ = ε2

2

∑

a,b≥0

(−1)a
∂

∂qia

∂

∂q j
b

(ra+b+1)
i
kη

k j −
∑

a≥0,�≥1

qia
∂

∂q j
a+�

(r�)
j
i . (3.13)

3.2 Symplectic transformations and potentials

Recall the series S = S(t, z) defined by Eq. (2.4) and discussed in detail in Sect. 2.3.
It is a symplectic operator on V for φi = ∂

∂t i
, ( , )V = η that commutes with multipli-

cation by z, so we can apply the quantization procedure described above and define
Ŝ.

Recall the series R = R(t, z) defined in Sect. 2.5. Consider its action on the same
V in a different basis given by

e j =
∑

α

∂

∂tα
(�−1)αj (3.14)

(note that (ei , ei )V = δi j ). It is a symplectic operator on V commuting with the above
multiplication as well, and the above quantization procedure defines the operator R̂.

Note that since the matrix R is given in a different basis, then in order to apply
Eq. (3.13) one has to consider the operator �−1R�. A better alternative is to use the
basis ei and the more natural variables Qi

a :=
∑

α �iαqα
a .
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We can now define the ancestor potential as

A({q1a , q2a }a≥0) := �̂ R̂
2∏

i=1

τKdV ({Qi
a}a≥0), (3.15)

where τKdV is the Witten–Kontsevich τ -function for the KdV hierarchy in the vari-
ables with the dilaton shift (that is, with respect to the standard descendent variables
ta , a ≥ 0, we have Qi

a = ta − δ1,a), and the operator �̂ recomputes the function
R̂
∏2

i=1 τKdV ({Qi
a}a≥0) in the variables qia .

Finally, the total descendent potential is defined as

D := CŜ−1A, (3.16)

where the extra factor C is set to be (up to a multiplicative constant)

logC(t1, t2):=
∫ (t1,t2)

(R1)
1
1du

1 + (R1)
2
2du

2 = − 1

16
log t2. (3.17)

Note that the factor C and operators Ŝ, �̂, and R̂ do depend on the point (t1, t2) of
the Dubrovin–Frobenius manifold. The coefficients of the ancestor potential A also
depend on the point (t1, t2) of the Dubrovin–Frobenius manifold, and we have to think
of D as a formal power series in t10 − t1, t20 − t2, t1k , t2k , k ≥ 1, where the variables
qia , i = 1, 2, a ≥ 0 of the descendent potential D are related to the variables t ia by the
dilaton shift: qia = t ia − δi,1δa,1. Givental proved in [37] that the total derivatives of
D with respect to t1 and t2 are equal to zero.

3.3 Higher genera Catalan numbers

Recall the definition of the numbers Cg,k1,...,kn given in Digression 2.

Theorem 8 Assumeψ = 0 and fix the point of expansion forD to be (t1, t2) = (0, 1).
We have:

logD
∣
∣

t20=1
t2a=0,a≥1

=
∞∑

g=0

∞∑

n=1

ε2g−2

n!
∑

k1,...,kn≥0

Cg,k1+1,...,kn+1

n∏

i=1

t1ki
(ki + 1)! (3.18)

Proof The first step of the proof is to rewrite the formula for the descendent potential
in terms of the variables {t1a , t2a }a≥0. To this end, we have to shift the variables:

(

e
− ∂

∂q11 CŜ−1e
∂

∂q11

)
∣
∣
∣
qia→t ia

�̂

(

e
−�1

1
∂

∂Q1
1
−�2

1
∂

∂Q2
1 R̂e

∂

∂Q1
1
+ ∂

∂Q2
1

)
∣
∣
∣
Qi
a→T i

a

2∏

i=1

τKdV ({T i
a }a≥0, ε

2), (3.19)
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and in this formula, the Witten–Kontsevich τ -function τKdV are considered in the
standard descendent variables. We can further rewrite this formula as

(

e
− ∂

∂q11 CŜ−1e
∂

∂q11

)
∣
∣
∣
qia→t ia

�̂

(

e
−�1

1
∂

∂Q1
1
−�2

1
∂

∂Q2
1 R̂e

�1
1

∂

∂Q1
1
+�2

1
∂

∂Q2
1

)
∣
∣
∣
Qi
a→T i

a

·e−�1
1

∂

∂T 11
−�2

1
∂

∂T 11
+ ∂

∂T 11
+ ∂

∂T 21

2∏

i=1

τKdV ({T i
a }a≥0, ε

2). (3.20)

Recall that � i
1 = �

−1/2
i , i = 1, 2. The dilaton equation implies that

e
−�

−1/2
i

∂

∂T i1
+ ∂

∂T i1 τKdV ({T i
a }a≥0, ε

2) = τKdV ({�1/2
i T i

a }a≥0,�iε
2), i = 1, 2.

(3.21)

Thus the resulting formula for the descendent potential that is used in applications in
the variables {t ia} is given by

C tŜ−1�̂ tR̂
2∏

i=1

τKdV ({�1/2
i T i

a }a≥0,�iε
2), (3.22)

where

tŜ:=
(

e
− ∂

∂q11 Ŝe
∂

∂q11

)
∣
∣
∣
qia→t ia

; (3.23)

tR̂:=
(

e
−�1

1
∂

∂Q1
1
−�2

1
∂

∂Q2
1 R̂e

�1
1

∂

∂Q1
1
+�2

1
∂

∂Q2
1

)
∣
∣
∣
Qi
a→T i

a

. (3.24)

Equation (3.22) is the standard expression for theGivental formula for the total descen-
dent potential in the coordinates {t ia} used in application, see e.g. [30,31]. Its advantage
is that at all steps of the computation of its coefficients one has to work with the formal
power series.

At the second step, we have to use some results from the theory of the Chekhov–
Eynard–Orantin topological recursion [34]. It is a recursive procedure that produces
symmetric differentials from the small set of input data that consists of a Riemann
surface �, two functions x and y defined on it, and a symmetric bi-differential B
on � × �. (All these pieces of data are subjects to some extra conditions.) These
data are related to a choice of Dubrovin’s superpotential for the Dubrovin–Frobenius
manifolds [27]. We do not use the explicit formulation of the topological recursion
itself, but we have to recall two results for the data given by the Riemann sphere CP1

with a global coordinate z on it, functions x = z + z−1, y = z, and the bi-differential
B(z1, z2) = dz1dz2/(z1 − z2)2 from [26,53] and from [6,27].

It is proved in [26,53] that the topological recursion applied to these input data
returns the symmetric n-differentials ωg,n(z1, . . . , zn), 2g − 2 + n > 0, that expand
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near z1 = · · · = zn = 0 in the variables xi = x(zi ), i = 1, . . . , n, as

ωg,n = (−1)n
∑

k1,...,kn≥0

Cg,k1+1,...,kn+1

n∏

i=1

dxi

xki+2
i

= (−1)n
∑

k1,...,kn≥0

Cg,k1+1,...,kn+1
∏n

i=1(ki + 1)!
n∏

i=1

(ki + 1)!dxi
xki+2
i

. (3.25)

Remark 9 This is one of the most studied cases of topological recursion, in particular,
this equation follows also from the more general cases discussed in [3,6,11,16,27,29,
33,43]. Bear in mind, however, that some of this papers use a different convention for
the topological recursion, which results in an extra overall (−1)n sign in the formulas
for ωg,n in some of these sources.

On the other hand, it is proved in [6,27] that ωn :=∑∞
g=0 ε2g−2ωg,n is given by

ωn =
∑

i1,...,in=1,2
a1,...,an≥0

⎛

⎝
n∏

j=1

∂

∂T
i j
a j

log tR̂
2∏

i=1

τKdV ({�1/2
i T i

a }a≥0,�iε
2)

⎞

⎠
∣
∣
∣
∣
T i
a=0

n∏

j=1

d
(

− d

dx j

)a j
ξ i j (z j ), (3.26)

where

ξ j (z):= dz

d
√
2(x(z) − x(p j ))

∣
∣
∣
∣
z=p j

· 1

p j − z
(3.27)

for j = 1, 2 and p1 = 1, p2 = −1 being the critical points of x , and the whole
expression (3.26) is considered at the special point (t1, t2) = (0, 1) of the underlying
Dubrovin–Frobenius manifold. The choice of the square roots is required to be aligned
with the choices made for �

1/2
1 ,�

1/2
2 . We have:

dz

d
√
2(x(z) − x(p j ))

∣
∣
∣
∣
z=p j

= �
−1/2
j , j = 1, 2. (3.28)

An equivalent form of Eq. (3.26) in the flat frame is

ωn =
∑

α1,...,αn=1,2
a1,...,an≥0

⎛

⎝
n∏

j=1

∂

∂t
α j
a j

log �̂ tR̂
2∏

i=1

τKdV ({�1/2
i T i

a }a≥0,�iε
2)

⎞

⎠
∣
∣
∣
∣
t ia=0

n∏

j=1

d
(

− d

dx j

)a j
ξ̃ α j (z j ), (3.29)
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where ξ̃ α = (�−1)αi ξ i , α = 1, 2.

Remark 10 Note that the Dubrovin–Frobenius manifold that we consider here is in
fact a Hurwitz–Frobenius manifold in the terminology of Dubrovin. This means that
Eq. (3.29) can also be derived from a general statement in [28].

In the third step of the proof, we recall that the action of tŜ−1 for 2g − 2 + n > 0
amounts to the linear change of variables combined with the shift of the point of
expansion given by

⎛

⎝
n∏

j=1

∂

∂t
α j
a j

log tŜ−1�̂ tR̂
2∏

i=1

τKdV ({�1/2
i T i

a }a≥0,�iε
2)

⎞

⎠
∣
∣
∣
t ia=δi,2δa,0

=

=
∑

0≤� j≤a j ,

j=1,...,n

(S�)
β j
α j

⎛

⎝
n∏

j=1

∂

∂t
β j
a j−� j

log �̂ tR̂
2∏

i=1

τKdV ({�1/2
i T i

a }a≥0,�iε
2)

⎞

⎠
∣
∣
∣
t ia=0

.

(3.30)

Note that at the special point (t1, t2) = (0, 1) we have C(t1, t2) = 0. Therefore, the
statement of the theorem is equivalent to the following identity:

Resz=0
xk+1

(k + 1)!d
(

− d

dx

)a
ξ̃ α(z) =

{
0, a > k ≥ −1;
(Sk−a)

α
1 , k ≥ a ≥ 0.

(3.31)

To this end, we just explicitly compute

ξ1(z) = 1√
2

1

1 − z
; ξ2(z) = 1√

2

i
1 + z

; ξ̃1(z) = z

1 − z2
; ξ̃2(z) = 1

1 − z2
;

(3.32)

(recall (1.14) and (1.16)), and then we see that indeed

Resz=0
xk+1

(k + 1)!d
(

− d

dx

)a z

1 − z2
= Resz=0

( d

dx

)a+1 xk+1

(k + 1)!
zd(z + z−1)

z2 − 1

=

⎧
⎪⎨

⎪⎩

0, a > k ≥ −1;
(m!)−2, k ≥ a ≥ 0, k − a = 2m;
0, k ≥ a ≥ 0, k − a = 2m + 1

=
{
0, a > k ≥ −1;
(Sk−a)

1
1, k ≥ a ≥ 0

(3.33)

(cf. Eq. (2.30)), and, analogously,

Resz=0
xk+1

(k + 1)!d
(

− d

dx

)a 1

1 − z2
= Resz=0

( d

dx

)a+1 xk+1

(k + 1)!
d(z + z−1)

z2 − 1
=
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=

⎧
⎪⎨

⎪⎩

0, a > k ≥ −1;
0, k ≥ a ≥ 0, k − a = 2m;
(m!(m + 1)!)−1, k ≥ a ≥ 0, k − a = 2m + 1

=
{
0, a > k ≥ −1;
(Sk−a)

2
1, k ≥ a ≥ 0.

(3.34)

This completes the proof of the theorem for 2g − 2 + n > 0.
In the fourth step of the proof, we have to discuss the unstable cases (g, n) = (0, 1)

and (g, n) = (0, 2). Consider (g, n) = (0, 1). According to [37, Section 3.1], the
coefficient of ε−2t1a in logD|t20=1;t2a=0,a≥1 is given by

[ε−2t1a ] logD| t20=1
t2a=0,a≥1

= η1α(Sa+2)
α
1 . (3.35)

Then, using Eq. (2.30) we see indeed that

η1α(Sa+2)
α
1 =

{
0, a = 2m;

1
(m+1)!(m+2)! , a = 2m + 1

(3.36)

=
{
0, a = 2m;

1
(2m+2)!

(2m+2)!
(m+1)!(m+2)! , a = 2m + 1

(3.37)

= C0,a+1

(a + 1)! . (3.38)

Consider (g, n) = (0, 2). According to [37, Section 3.1], the coefficient of ε−2t1a t
1
b in

logD|t20=1;t2a=0,a≥1 is given by

[ε−2t1a t
1
b ] logD| t20=1

t2a=0,a≥1

= [zawb]−η11 +∑∞
m,n=0(Sm)

μ
1 z

m(Sn)ν1w
nημν

z + w
. (3.39)

Therefore, using explicit formulas (2.30), we have

(z + w)

∞∑

a,b=0

[ε−2t1a t
1
b ] logD| t20=1

t2a=0,a≥1

=
∞∑

p,q=0

(
z2pw2q+1

(p!)2q!(q + 1)! + z2p+1w2q

p!(p + 1)!(q!)2
)

. (3.40)

On the other hand, it is proved in [26] that

∑

k1,k2≥0

C0,k1+1,k2+1

(k1 + 1)!(k2 + 1)!
2∏

i=1

(ki + 1)!dxi
xki+2
i

= d1d2 log

(
z−1
1 − z−1

2

x1 − x2

)

= −d1d2 log(1 − z1z2). (3.41)
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Therefore,

(z + w)
∑

k1,k2≥0

C0,k1+1,k2+1

(k1 + 1)!(k2 + 1)! z
k1wk2

=
∑

k1,k2≥0

(zk1+1wk2 + zk1wk2+1)Resz1=0Resz2=0
xk1+1
1

(k1 + 1)!
xk2+1
2

(k2 + 1)!×

(−d1d2 log(1 − z1z2))

=
∑

k1,k2≥0
k1+k2≥1

zk1wk2Resz1=0Resz2=0
xk11
(k1)!

xk22
(k2)!×

(
dx1d2 log(1 − z1z2) + dx2d1 log(1 − z1z2)

)

=
∑

k1,k2≥0
k1+k2≥1

zk1wk2Resz1=0Resz2=0
xk11
(k1)!

xk22
(k2)!

( 1

z1
+ 1

z2

)
dz1dz2

=
∑

p.q≥0

(

z2pw2q+1 1

(p!)2q!(q + 1)! + z2p+1w2q 1

p!(p + 1)!(q!)2
)

. (3.42)

The latter expression coincides with the right-hand side of Eq. (3.40), which proves
the (g, n) = (0, 2) case of the theorem. ��

Remark 11 Note that the computations done above for 2g − 2+ n > 0 are very close
to the computations performed in [30] (see also [35]) for the Gromow–Witten theory
of CP1 mentioned in Digression 1. This is explained by the following two facts. First,
note that the S-matrix at the special point (t1, t2) = (0, 1) withψ = 0, see Eq. (2.30),
conjugated by η, is equal to the S-matrix of the Dubrovin–Frobenius manifold given
by the prepotential 12 (t

1)2t2+et
2
. Note that the ξ̃ i -functions in the above computation

are obtained from the corresponding ξ̃ i -functions in the computations in [30] by the
interchanging of the superscripts.

3.4 The descendent potential and the KP hierarchy

Consider the generating function Z for the higher genera Catalan numbers

Z:= exp

⎛

⎝
∑

g≥0

ε2g−2
∑

n≥1

1

n!
∑

k1,...,kn≥1

Cg,k1,...,kn

n∏

i=1

ti

⎞

⎠ (3.43)

as a formal power series in the variables t1, t2, . . .. It is proved in [36, Theorem 5.2]
that Z is a tau-function of the KP hierarchy. (More precisely, one should speak of
�-KP hierarchy in the sense of [52,56] for � = ε2, see [2].) In particular, it is proved
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in [36, Theorem 5.2] that Z takes the following form:

Z =
⎛

⎝
∑

λ

sλ({pi }i≥1)sλ({p̃i }i≥1)
∏

(i, j)∈λ

(1 + ε(i − j))

⎞

⎠
∣
∣
∣
∣pi=iti /ε, i≥1
p̃i=δi2/ε, i≥1

. (3.44)

Here, the sum is taken over all Young diagrams λ including the empty one, and sλ
are the Schur functions considered in the two copies of the power sums variables
p1,p2, . . . and p̃1, p̃2, . . .. This equation makes Z a special case of the so-called
hypergeometric family of KP tau-functions introduced and considered in [44,55]. So,
Theorem 8 has the following corollary.

Corollary 12 D|t1d=(d+1)!td+1,t20=1,t2d=0,d≥1 is a KP tau-function.

Ourmain result can be considered as a refinement of this Corollary, cf. Digression 3
in Introduction.Namely, one of theways to interpret the results thatwe prove in Sects. 7
and 8 is thatD|t1d=(d+1)!td+1,t20=1,t2d=0,d≥1 appears to satisfy a particular rational reduc-
tion of the KP hierarchy [8,17,18,42,45,46,48] that possesses extra symmetries, which
once added explicitly form a second series of times in D({t id − δi,2δd,0}i=1,2;d≥0).

Remark 13 Note that though our approach to the construction of the rationally con-
trained KP hierarchy in the Hirota form does not use the results mentioned in this
section, the change of variables t1d = (d + 1)!td+1, d ≥ 0 that we have to apply
to turn the natural variables of the total descendent potential into the standard KP
variables emerges in a natural way. Indeed, in Eq. (7.22), which is the formulation
of the equations that we obtain in the Hirota form, the variables q1d , q̄

1
d are shifted by

∓εd!/λd+1, which matches precisely that in the standard formulation of the Hirota
bilinear equations for KP hierarchy the corresponding shifts for td+1, t̄d+1 would be
∓ε/((d + 1)λd+1).

Remark 14 The step from the standard KP hierarchy for Z to its rational reduction
fits very well into the context of a recent paper of Takasaki [57], where he studies the
possible reductions of the lattice KP hierarchy for several families of hypergeometric
tau-functions.

Remark 15 The function Z in variables pi , i ≥ 1, is expanded as

Z:= exp

⎛

⎝
∑

g≥0

ε2g−2
∑

n≥1

1

n!
∑

k1,...,kn≥1

Dg,k1,...,kn

n∏

i=1

pi

⎞

⎠ (3.45)

(recall the definition of Dg,k1,...,kn in Digression 2 in Introduction). The obvious inter-
pretations of the numbers Dg,k1,...,kn that follow directly from the definition of the
higher genera Catalan numbers are via the (weighted) enumeration of ribbon graphs,
non-rooted maps, or Grothendieck dessins d’enfants for the strict Belyi functions, see
e.g. [36,53]. It is proved in [41] that these numbers have also an interpretation in the
framework of the theory of weighted Hurwitz numbers as the so-called 2-orbifold
strictly monotone Hurwitz numbers (see also [4] for a different proof).
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4 The period vectors

4.1 Definition andmain properties

We denote by I (l)
ei (t, λ) for l ∈ Z and i = 1, 2 the period vector defined by its

asymptotic behavior near λ ∼ ui . Let us fix two cuts Li = ui + eiπ/2
R+ in the λ-

plane, and the roots of λ−ui determined by the principal branch of the logarithm near
each ui in the cut plane C \ ∪i Li . We uniquely define the period vectors as follows.

Proposition 16 For each l ∈ Z and i = 1, 2, there exists a unique multivalued holo-
morphic solution I (l)

ei (t, λ) defined on (M ×C)\�λ with values in C
2 of the equation

(U − λ)
∂ I (l)

∂λ
= (μ + l + 1

2
)I (l) (4.1)

such that

I (l)
ei = (−1)l√

2π
	(l + 1/2)(λ − ui )

−l− 1
2 (�−1ei + O(λ − ui )) (4.2)

for λ ∈ C \ ∪i Li , and such that the analytic continuation of I (l)
ei along a small path

γi surrounding ui is equal to −I (l)
ei .

A general proof of this statement can be easily adapted from the case l = 0 shown in
[22, lemma 5.3].

The period vectors thus defined satisfy also the following equation

∂ I (l)

∂t i
= − ∂

∂t i
• ∂ I (l)

∂λ
, (4.3)

and one can easily check that, in general

I (l+1)
ei = ∂ I (l)

ei

∂λ
, l ∈ Z, (4.4)

I (l−1)
ei (t, λ) =

∫ λ

ui
I (l)
ei (t, ρ) dρ, l ≤ 0. (4.5)

In the following, for a = a1e1 + a2e2 ∈ C
2 we denote I (l)

a = a1 I
(l)
e1 + a2 I

(l)
e2 the

corresponding solution of (4.1).

Remark 17 (To be used in Sect. 6) With this setup, it is straightforward to check
that the vector I (−1)

e1 − I (−1)
e2 is constant on M , with the values of the components

(I (−1)
e1 )1 − (I (−1)

e2 )1 = −π i, (I (−1)
e1 )2 − (I (−1)

e2 )2 = 0.
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4.2 Monodromy

Let π = π1(C \ {u1, u2}) be the fundamental group of the pointed λ-plane with
base point λ0. Denote by γi , i = 1, 2, the generators of π corresponding to the two
small loops around the points ui in counterclockwise direction connected to λ0 by
paths in the cut λ-plane. Moreover, let us denote by γ ∗ I the analytic continuation of
a multivalued analytic function I on the pointed plane C \ {u1, u2} along the loop
γ ∈ π .

Denoting by (, )λ the flat pencil g − λη on the cotangent to M , let us define the
symmetric bilinear form <,> on C

2 by < a, b >:= (η∗ I (0)
a , η∗ I 0)b )λ, which is well

known to be independent of t and λ. Here, η∗ is the isomorphism from the tangent
to the cotangent spaces to M induced by the metric. In our case, we have that the
corresponding matrix Gi j =< ei , e j > is

G = −1

2

(
1 1
1 1

)

. (4.6)

We call reflection along w ∈ C
2 the involution of C

2 given by

v �→ v − 2
< v,w >

< w,w >
w. (4.7)

Let us denote by γi the reflection along ei , and define the group homomorphism
π → GL(C2) by sending the loop γi to the reflection γi . We have that:

Proposition 18 For each γ ∈ π , we have γ ∗ I (l)
a = I (l)

γ a .

This is just a reformulation of a general result, see [22, lemma 5.3].
Explicitly the monodromy action is given by

Proposition 19 The action of the generators of π on the canonical basis ofC2 is given
by

γ1e1 = −e1, γ1e2 = e2 − 2e1, (4.8)

γ2e1 = e1 − 2e2, γ2e2 = −e2. (4.9)

The action of γ1, resp. γ2, corresponds to the horizontal, resp. vertical, reflection
w.r.t. the invariant subspaceV spanned by e1−e2.Note that γ2γ1 sendsa = a1e1+a2e2
to a+2(a1+a2)(e2−e1) and therefore acts on the affine line a1+a2 = b by translation
by −2b along e1 − e2. We also denote πi the projections to the invariant subspace,
π1a = a2(e2 − e1) and π2a = a1(e1 − e2).

We have therefore two types of orbits: The trivial orbits are given by the points
of the invariant subspace and the infinite orbits {a, γ1a} + Z2(a1 + a2)(e1 − e2) for
a = (a1, a2) ∈ C

2 not invariant, i.e., a1 + a2 �= 0.

Remark 20 The representation of π on the space C
2 should not be confused with the

action on the space of solutions of (4.1). Indeed we have that I (0)
e1 = I (0)

e2 and conse-

quently I (l)
e1 = I (l)

e2 for l ≥ 0, so the period vectors span a one-dimensional subspace
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of the solution space. For negative l, the two period vectors differ by polynomials in
λ, so they are indeed a basis of the solution space of (4.1).

4.3 At a special point

In the rest of this section, we work at a special point tsp of M given by t1 = 0 and
t2 = 1. This corresponds to canonical coordinates u1 = −u2 = 2. As can be easily
checked, the two solutions of the system (4.1) at the special point tsp are given by

I (0)
e1 (tsp, λ) = I (0)

e2 (tsp, λ) =
(

1
λ/2

)

(λ2 − 4)−
1
2 . (4.10)

This expression defines a holomorphic C
2-valued function on the cut λ-plane given

by C \ {(2 + iR+) ∪ (−2 + iR+)}, where √
λ2 − 4 = √

λ − 2
√

λ + 2 and
√

λ∓2
denote the principal branches of the square root near ±2.

4.4 Asymptotics of the period vectors for � ∼ ui

By asymptotic series near ui , we mean a formal Laurent series in (λ − ui )1/2. By
asymptotic expansion of a multivalued function g(λ) for λ ∼ ui , we mean an asymp-
totic series near ui which satisfies the asymptotic condition on a cut neighborhood of
ui for a choice of branch of g(λ) and of

√
λ − ui . Of course, according to the theory

of normal formals of solutions near regular singularities, these asymptotic expansions
are actually convergent.

At the special point tsp, we can easily compute the asymptotic expansions of the
period vectors.

Lemma 21 The asymptotic expansions of the period vector I (l)
ei for λ ∼ ui at the

special point tsp are given by

I (l)
e1 (tsp, λ) ∼

∑

k≥0

(−4)−k

k!

( ( 1
2

)
k

( 1
2

)
k−2

2k−1

( 1
2

)
k+1

( 1
2

)
k

)

∂ l−k+1
λ

√
λ − 2, λ ∼ u1 = 2

(4.11)

I (l)
e2 (tsp, λ) ∼ i

∑

k≥0

4−k

k!

( ( 1
2

)
k

( 1
2

)
k

2
2k−1

( 1
2

)
k+1

( 1
2

)
k

)

∂ l−k+1
λ

√
λ + 2, λ ∼ u2 = −2

(4.12)

on the cut λ-planeC\((2 + iR+) ∪ (−2 + iR+))with principal branches of the roots√
λ ± 2.

Proof The formulas for the case l = 0 are obtained by a simple expansion of (4.10).
For other values of l, they follow by integration or derivation. ��
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4.5 Asymptotics of the period vectors for � ∼ ∞

At the special point tsp of M , the period vectors I (0)
e1 = I (0)

e2 have the following
asymptotic expansion1 for |λ| ∼ ∞ and arg λ �= π/2:

I (0)
ei (tsp, λ) ∼ I (0)

asy(λ) (4.13)

where

I (0)
asy := 1

2

∑

s≥0

(2s)!
s!s! λ−2s−1

(
2
λ

)

=
(

1
λ

+ 2
λ3

+ · · ·
1
2 + 1

λ2
+ 3

λ4
+ · · ·

)

. (4.14)

By taking derivatives, we obtain the asymptotic expansions of the period vectors I (l)
ei

with l > 0:

I (l)
ei (tsp, λ) ∼ I (l)

asy := ∂ lλ I
(0)
asy (4.15)

where we have explicitly

I (l)
asy = (−1)l

∑

s≥0

(2s + l)!
s!(s + 1)!

(
s + 1

(2s + l + 1)λ−1

)

λ−2s−l−1. (4.16)

Let us define I (−l)
formal for l > 0 as the iterated formal integration in λ (without

integration constants) of the asymptotic expansion I (0)
asy , i.e.,

I (−l)
formal := ∂−l

λ I (0)
asy, l > 0, (4.17)

where we have set ∂−1
λ λ−1 = log λ, ∂−1

λ (λp log λ) = λp+1

p+1

(
log λ − 1

p+1

)
for p ≥ 0,

and ∂−1
λ λk = λk+1/(k + 1) for k �= −1. Explicitly we have that the two components

of I (−l)
formal are equal to

(I (−l)
formal)1 =

∑

0≤s≤ l−1
2

λl−2s−1(log λ − h(l − 2s − 1))

s!s!(l − 2s − 1)!

+
∑

s≥ l
2

(2s − l)!λl−2s−1

s!s!(−1)l
, (4.18)

1 To see this easily, note that, once having fixed arg λ �= π/2, for |λ| big enough one has

(λ − 2)−1/2(λ + 2)−1/2 = λ−1(1 − 4λ−2)−1/2.

However, for arg λ = π/2 the right-hand side gets a minus signs, so also the above asymptotic expansion.
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(I (−l)
formal)2 = 1

2

λl

l! −
∑

1≤s≤ l
2

λl−2s(log λ − h(l − 2s))

s!(s − 1)!(l − 2s)!

+
∑

s≥ l+1
2

(2s − l − 1)!λl−2s

s!(s − 1)!(−1)l
. (4.19)

In these expressions, log λdenotes the principal branch of the logarithmon the complex
plane C \ iR+ cut along the positive imaginary axis.

Finally we can give the asymptotic expansion of all the period vectors for λ ∼ ∞.

Proposition 22 The period vectors I (l)
ei (tsp, λ), i = 1, 2, at the special point tsp of M

have the following asymptotic expansions for λ ∼ ∞ and arg λ �= π/2:

I (l)
ei (tsp, λ) ∼ I (l)

asy(λ), for l ≥ 0, (4.20)

and

I (l)
ei (tsp, λ) ∼ I (l)

formal(λ) + P(l)
i (λ), for l < 0, (4.21)

where

P(l)
1 (λ) :=

⎛

⎜
⎝

∑
i, j≥0

2i+ j=−l−1

h(i)
i !2

λ j

j !

−∑ i, j≥0
2i+1+ j=−l−1

1
2
h(i)+h(i+1)

i !(i+1)!
λ j

j !

⎞

⎟
⎠ , (4.22)

P(l)
2 (λ) :=

⎛

⎜
⎝

∑
i, j≥0

2i+ j=−l−1

h(i)+π i
i !2

λ j

j !

−∑ i, j≥0
2i+1+ j=−l−1

1
2
h(i)+h(i+1)+2π i

i !(i+1)!
λ j

j !

⎞

⎟
⎠ . (4.23)

Proof Let us first compute the asymptotic expansion of I (−1)
ei at the special point, by

observing that

I (−1)
ei (tsp, λ) =

∫ λ

ui
I (0)
ei (tsp, ρ)dρ (4.24)

=
∫ λ

ui

(
1
ρ
1
2

)

dρ +
∫ ∞

ui

(

I (0)
ei −

(
1
ρ
1
2

))

dρ +
∫ λ

∞

(

I (0)
ei −

(
1
ρ
1
2

))

dρ.

(4.25)

In this expression, the first integral contributes the linear and logarithmic terms appear-
ing in the formal asymptotics plus some constants, while the last integral exactly
reproduces the negative powers of λ. Therefore, I (−1)

ei (tsp, λ) is asymptotic to I (−1)
formal
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plus a constant equal to

(
− log ui

− ui
2

)

+
∫ ∞

ui

(

I (0)
ei −

(
1
ρ
1
2

))

dρ. (4.26)

Evaluating the integral, one obtains exactly the constants given by

P(−1)
1 =

(
0
0

)

, P(−1)
2 =

(
π i
0

)

; (4.27)

hence, formula (4.21) is valid for l = −1.
Let us now show by induction that (4.21) is valid for l ≤ −2. In this case, we have

that μ + l + 1/2 is invertible, so we can use (4.1) to write at the special point tsp that

I (l)
ei =

(

μ + l + 1

2

)−1

(U − λ)I (l+1)
ei , (4.28)

which is asymptotic to

(

μ + l + 1

2

)−1

(U − λ)
(
I (l+1)
formal + P(l+1)

i

)
(4.29)

by inductive assumption. Proving that this asymptotic expansion is equal to I (l)
formal +

P(l)
i is equivalent to prove that

(U − λ)∂λ I
(l)
formal −

(

μ + l + 1

2

)

I (l)
formal + (U − λ)P(l+1)

i −
(

μ + l + 1

2

)

P(l)
i

(4.30)

is zero. Notice that ∂λP
(l)
i = P(l+1)

i , therefore deriving this expression with respect
to λ amounts to send l to l + 1 in which case we know that it is zero by inductive
assumption, by substituting (4.21) in (4.1). We conclude that (4.30) is a constant. By
induction, it is also easy to see that (U−λ)∂λ I

(l)
formal−(μ+l+ 1

2 )I
(l)
formal is a polynomial,

so to evaluate (4.30) it is sufficient to set λ = 0.
Since we have defined I (l)

formal by formal integration without constant coefficient,
we have that

[

(U − λ)∂λ I
(l)
formal −

(

μ + l + 1

2

)

I (l)
formal

]

λ=0
(4.31)

is given by minus the coefficient of λ−1 in I (l+1)
formal which can be read off (4.18)

and (4.19), and which cancels with
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[

U P(l+1)
i −

(

μ + l + 1

2

)

P(l)
i

]

λ=0
=
⎛

⎝
1

( −l−1
2 )!2 (l odd)
−1

(− l
2−1)!(− l

2 )! (l even)

⎞

⎠ . (4.32)

��

5 The vertex operators

In this section, we use the period vectors of Section 4 to define certain vertex operators
and we compute the action by conjugation of the R and S Givental group elements on
them.

5.1 Vertex loop space elements

For a = (a1, a2) ∈ C
2, let us define

fa(t, λ, z) =
∑

l∈Z

I (l)
a (t, λ)(−z)l . (5.1)

The associated vertex operator is defined as the exponential of the quantization of

linear Hamiltonian hfa of fa , i.e., 	
a = ef̂a = e(̂fa)−e(̂fa)+ .

As a consequence of Eqs. (4.1), (4.3) and (4.4), we have that

Corollary 23 The functions fa for a ∈ C
2 satisfy

− z
∂fa

∂λ
= fa, z

∂fa

∂t i
= ∂

∂t i
• fa,

(

z
∂

∂z
+ λ

∂

∂λ
+ E

)

fa =
(

−μ − 1

2

)

fa .

(5.2)

5.2 Asymptotics for � ∼ ui

Let us define the following formal C-valued Laurent series in z with coefficients
which are multivalued functions on C

∗ corresponding to the vertex operator of the
KdV hierarchy

fKdV (λ, z) =
∑

l∈Z

I (l)
KdV (λ)(−z)l , I (l)

KdV (λ) = ∂ lλ(2λ)−1/2, (5.3)

where ∂±
λ is the formal differentiation/integration in λ as above. As above, we consider

the principal branches of the roots on the cut λ-plane C \ iR+.

Proposition 24 For i = 1, 2, we have the equality of asymptotic series at λ ∼ ui

fei (t, λ, z) = �−1(t)R(t, z)fKdV (λ − ui , z)ei . (5.4)
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Proof By substitution, it is easy to check that the formula holds at the special point
tsp. It is then sufficient to observe that the two sides of the equality satisfy the same
equation in ui . ��

5.3 The functionsWa,b(t,�)

Given a, b ∈ C
2, let us define the function

Wa,b(t, λ) = (I (0)
a (t, λ), I (0)

b (t, λ)), (5.5)

which is clearly symmetric and linear in a and b. In our case, we have in particular

Wa,a = (a1 + a2)
2Wei ,ei (5.6)

for a = a1e1 + a2e2 ∈ C
2, and at the special point Wei ,ei (tsp, λ) = λ(λ − 2)−1(λ +

2)−1.
Notice that Wπi a,b is always vanishing, since I (0)

πi a = 0.
The generators of the fundamental group π of the pointed plane act on the integral

of Wa,a as follows.

Lemma 25 For a ∈ C
2, we have that

γ ∗
i

(∫ λ

λ0

Wa,adρ

)

=
∫ λ

λ0

Wγi a,γi adρ + π i(a1 + a2)
2. (5.7)

Proof By deforming the path of integration, we can write

γ ∗
i

∫ λ

λ0

Wa,adρ −
∫ λ

λ0

Wγi a,γi adρ =
∫ ui

λ0

(
Wa,a − Wγi a,γi a

)
dρ

+ lim
r→0+

∫

C(ui ,r)
Wa,adρ (5.8)

whereC(ui , r) is the circle with center at ui and radius r . In our case,Wγi a,γi a = Wa,a

so we just need to evaluate the last integral, which is equal to 2π i times the residue of
(a1 + a2)2Wei ,ei at λ = ui , which equals 1

2 (a1 + a2)2 by the normalization (4.2). ��

5.4 The functions ca(t,�)

Let us consider an orbit of the action of the fundamental groupπ of the pointed λ-plane
on C

2. The elements in such orbit can be parametrized as

(
r

−r

)

+ b

2

(
(−1)k + 2k
(−1)k − 2k

)

, k ∈ Z. (5.9)
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We define

ca(t, λ) = d(a) exp

[

−
∫ λ

λ0

Wa,a(t, ρ)dρ

]

, (5.10)

where d(a) is a function defined on the chosen orbit such that ca is covariant under
the action of π , i.e., γ ca = cγ a for any γ ∈ π . This is equivalent to the following
condition on the function d(a)

d(γi a) = eπ i(a1+a2)2d(a). (5.11)

The function d(a) is therefore fixed, up to multiplication by a constant, to be

d(ak) = ekπ ib
2
, b2 ∈ Z (5.12)

where ak is the element of the orbit parametrized as above.

5.5 Splitting

Proposition 26 Let a = (a1,−a1) ∈ C
2, then for λ ∼ ui we have the equality of

asymptotic series in
√

λ − ui

	a+cei = 	a	cei (5.13)

Proof Simply observe that (fa)+ = 0, so

	a+cei = e(fa)−e(fcei )−e(fcei )+ = 	a	cei . (5.14)

��

5.6 Conjugation by R

Let us now consider the conjugation of the vertex operator by the R action of the
Givental group.

Proposition 27 For λ ∼ ui , we have

R̂−1e�̂fcei R̂ = e
c2
2

∫ λ

ui

(
Wei ,ei − 1

2
1

ρ−ui

)
dρ

e
̂cfKdV (λ−ui ,z)ei (5.15)

Proof We follow the proof given in [51]. Let us first recall the following consequence
of BCH formula: For f = ∑

l I
(l)(−z)l ∈ V and R(z) = ∑

k≥0 Rkzk in the twisted
loop group, one has

R̂−1êf R̂ = e
1
2 V f2− ̂eR−1f, (5.16)
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where the phase factor is given by

1

2
V f2− = 1

2

∑

k,l≥0

(Vk,l I
(−l−1), I (−k−1)) (5.17)

where the matrices Vk,l ∈ End(V ) are defined by

∑

k,l≥0

Vk,lw
k zl = 1 − R(w)R∗(z)

w + z
. (5.18)

It follows that

Vk−1,l + Vk,l−1 = −Rk R
∗
l + δk,0δl,0, (5.19)

assuming that V−1,l = Vk,−1 = 0.
We need to compute the asymptotic expansion for λ ∼ ui of the phase factor that

in our case is given by

V (�fcei )
2− = c2

∑

k,l≥0

(Vk,l� I (−l−1)
ei , � I (−k−1)

ei ). (5.20)

Recall that each entry in � I (l)
ei is asymptotic to a formal Laurent series in

√
λ − ui

for λ ∼ ui , with leading term of degree (at worst) −2l − 1. This implies that the
right-hand side of (5.20) converges to a formal series in

√
λ − ui , which in particular

vanishes at ui .
Deriving (5.20) by λ and changing the indexes in the sums, we obtain

c2
∑

k,l≥0

(
(Vk−1,l + Vk,l−1)� I (−l)

ei , � I (−k)
ei

)
, (5.21)

which, by substituting (5.19), equals c2 times

(� I (0)
ei , � I (0)

ei ) −
⎛

⎝
∑

l≥0

R∗
l � I (−l)

ei ,
∑

k≥0

R∗
k� I (−k)

ei

⎞

⎠ . (5.22)

Note that (5.4) gives

∑

l≥0

R∗
l � I (−l)

ei = I (0)
KdV (λ − ui )ei , (5.23)
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so the second term in (5.22) is equal to −(2(λ − ui ))−1. By integration, we obtain

1

2
V (�fcei )

2− = c2

2

∫ λ

ui

[

Wei ,ei (t, ρ) − 1

2

1

ρ − ui

]

dρ. (5.24)

��

5.7 Asymptotics at � ∼ ∞

Let us define the following formal Laurent series in z with coefficients which are
C
2-valued functions over C \ iR+:

fe1,∞(λ, z) :=
∑

l∈Z

∂ lλ

(
∂λ(log λ + ψ

2 )
1
2

)

(−z)l , (5.25)

fe2,∞(λ, z) := fe1,∞(λ, z) +
∑

l∈Z

∂ l+1
λ

(
π i
0

)

(−z)l , (5.26)

and for a = (a1, a2) ∈ C
2 let fa,∞ = a1fe1,∞ + a2fe2,∞. As above, log λ denotes the

principal branch of the logarithmoverC\iR+, ∂±1
λ is formal differentiation/integration

in λ, and ψ is the constant parametrizing the calibration, defined in Sect. 2.1.

Proposition 28 For any a ∈ C
2, the asymptotic behavior of fa for |λ| ∼ ∞, arg λ �=

π/2 is given by

fa(t, λ, z) ∼ S(t, z) fa,∞(λ, z). (5.27)

Proof We need to prove that

I (l)
ei (t, λ) ∼

∞∑

k=0

(−1)k Sk I
(l+k)
ei ,∞ (5.28)

where fei ,∞ =∑l I
(l)
ei ,∞(−z)l . It is easy to check that this equality of asymptotic series

holds at tsp. The case i = 1 follows by direct substitution, while in the case i = 2 one
can observe that the difference between the asymptotic expansions of the two period
vectors is a polynomial in λ which is exactly given by shifting log λ by π i as in the
second term on the right-hand side of (5.26).

Because of (2.1), both sides of (5.28) satisfy the same equation in t i ; therefore, the
must coincide on the whole M . ��

5.8 Conjugation by S

Let us now consider the conjugation of the vertex operator by the S action of the
Givental group.We defineW∞

a,b = ((I (0)
a,∞(t, λ), I (0)

b,∞(t, λ)). Notice thatW∞
ei ,ei = λ−1

for i = 1, 2.
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Proposition 29 For a ∈ C
2, we have

Ŝ	a∞ Ŝ−1 = e
c(t)
2 + 1

2

∫∞
λ

(Wa,a−W∞
a,a
)
dρ	a, (5.29)

with

c(t) = (a1 + a2)2

4
(log t2 + ψ). (5.30)

Proof It follows from the Baker–Campbell–Hausdorff formula that, for f = ∑
l fl z

l

in the loop space V and S(z) in the twisted loop group, we have

Ŝêf Ŝ−1 = e
1
2W (f+,f+)êSf, (5.31)

where

W (f+, f+) =
∑

k,l≥0

(Wk,l fl , fk), (5.32)

and the coefficients Wk,l ∈ End(V ) are defined by the generating formula

∑

k,l≥0

Wk,lw
−k z−l = S∗(w)S(z) − 1

w−1 + z−1 . (5.33)

We need therefore to evaluate the phase factor W ((fa,∞)+, (fa,∞)+). We follow
here the argument of [51, §6.2]. By definition, for a, b ∈ C

2

W ((fa,∞)+, (fb,∞)+) =
∑

k,l≥0

(−1)k+l(Wk,l I
(l)
a,∞, I (k)

b,∞), (5.34)

therefore

d

dλ
W ((fa,∞)+, (fb,∞)+) = −

∑

k,l≥0

(−1)k+l((Wk−1,l + Wk,l−1)I
(l)
a,∞, I (k)

b,∞),

(5.35)

wherewe assumed thatW−1,l = Wk,−1 = 0 andwe used the fact that ∂λ I
(l)
a,∞ = I (l+1)

a,∞ .
From (5.33), we get

Wk−1,l + Wk,l−1 = S∗
k Sl − δk,0δl,0, (5.36)

so (5.35) equals

−
⎛

⎝
∑

l≥0

Sl(−1)l I (l)
a,∞,

∑

k≥0

Sk(−1)k I (k)
b,∞

⎞

⎠+ (I (0)
a,∞, I (0)

b,∞). (5.37)
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By (5.27), we have

d

dλ
W ((fa,∞)+, (fb,∞)+) = −Wa,b + W∞

a,b. (5.38)

From (5.28), it follows that the right-hand side has leading term of order λ−2. There-
fore, we can formally integrate the asymptotic series and the integration constant is
given by the leading term (a1+a2)(b1+b2)

4 (S1)1,2 in the expansion of (5.34). We have
shown that for a, b ∈ C

2 we have the equality of asymptotic series for λ ∼ ∞

W ((fa,∞)+, (fb,∞)+) = (a1 + a2)(b1 + b2)

4
(log t2 + ψ)

+
∫ ∞

λ

[
Wa,b(t, ρ) − W∞

a,b(t, ρ)
]
dρ. (5.39)

The proposition is proved. ��

6 The Hirota quadratic equations for the ancestor potential

In this section, we define the ancestor Hirota quadratic equations and prove that the
ancestor potential A satisfies them.

6.1 Definition of Hirota quadratic equations for the ancestor potential

Recall that the total ancestor potential A can be considered as a formal power series
in the variables qi� + δi1δ

1
� for i = 1, 2 and � ≥ 0 whose coefficients are Laurent series

in ε, and it analytically depends on the point of M .
Recall the discussion of the action of the monodromy group on C

2 in Sect. 4.2,
in particular Proposition 19. We choose a finite subset A in an infinite orbit of the
monodromy group defined as A = {a+, a−}, where a+ = a1e1 + a2e2 and a− =
(−a1 − 2a2)e1 + a2e2. Note that

γ1a
± = a∓; (6.1)

γ2a
± = a∓ ± 2(a1 + a2)(e1 − e2). (6.2)

In terms of the parametrization of the full orbit generated by A given in Sect. 5.4, we
have b = a1 + a2 and r = (a1 − a2)/2. Recall that we associate in Sect. 5.4 with each
element a of this full orbit a function ca(t, λ) given on a±, up to a multiplication by
a nonzero constant, by

ca+ = exp

[

−
∫ λ

λ0

Wa+,a+(t, ρ)dρ

]

; (6.3)

ca− = exp

[

−π i(a1 + a2)
2 −

∫ λ

λ0

Wa−,a−(t, ρ)dρ

]

. (6.4)

Recall also that to each point a ∈ C
2 we associate in Sect. 5.1 a vertex operator 	a .

123



63 Page 38 of 67 G. Carlet et al.

Let o = e1 − e2. Recall that (I (−1)
o )1 = 0, (I (−1)

o )2 = −π i (see Remark 17, we
use the scalar product to lower the indices). Let us define

N = exp

⎛

⎝−
∑

( j,�) �=(2,0)

(I (−�−1)
o ) j q

j
�

(I (−1)
o )2

∂

∂q20

⎞

⎠

= exp

⎛

⎝
∑

�≥1, j=1,2

(I (−�−1)
o ) j q

j
�

π i
∂

∂q20

⎞

⎠ . (6.5)

Lemma 30 If b2 ∈ Z and b
ε
(q20 − q̄20 ) ∈ Z, the following expression is a single-valued

function of λ:

N ⊗ N
(
ca+	a+ ⊗ 	−a+ + ca−	a− ⊗ 	−a−)

(A ⊗ A) dλ. (6.6)

Here, the two copies of A depend on the variables qi� and q̄
i
�, respectively.

Proof We need to prove that it is invariant under the action of the two generators γ1,
γ2 of the fundamental group of the pointed complex plane. Note that the coefficients
of N are single-valued functions in λ. Indeed, since I (0)

o = 0, all I (−�−1)
o , � ≥ 0, are

polynomials in λ. Recall also the action of the fundamental group of the 	a-operators
(Proposition 18) and the coefficients ca (Sect. 5.4).

For γ1, we have:

γ ∗
1 N ⊗ N

(
ca+	a+ ⊗ 	−a+ + ca−	a− ⊗ 	−a−)

(A ⊗ A) dλ

= N ⊗ N
(
ca−	a− ⊗ 	−a− + ca+	a+ ⊗ 	−a+)

(A ⊗ A) dλ, (6.7)

so this expression is invariant under the action of γ1.
For γ2, we first observe that the action of γ2 on the vertex operator is given by

γ ∗
2 	a± = 	a∓±2bo = e±2bf̂o	a∓

, (6.8)

where we use the Baker–Campbell–Hausdorff formula and the fact that (fo)+ = 0 for
the second equality (see Proposition 26). Note also (cf. Sect. 5.4) that

γ ∗
2 ca± = cγ2a± = e±2π ib2ca∓ = ca∓ (6.9)

(here we use the condition b2 ∈ Z for the last equation). Therefore, the action of γ2
on (6.6) is

γ ∗
2 N ⊗ N

(
ca+	a+ ⊗ 	−a+ + ca−	a− ⊗ 	−a−)

(A ⊗ A) dλ

= N ⊗ N
(
e2bf̂o ⊗ e−2bf̂oca−	a− ⊗ 	−a−+
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+ e−2bf̂o ⊗ e2bf̂oca+	a+ ⊗ 	−a+)
(A ⊗ A) dλ. (6.10)

Now note that f̂o = ε−1∑
�≥0(I

(−�−1)
o )i qi� (cf. Eq. (3.7)), and, therefore,N e±2bf̂o =

e±2bε−1(I (−1)
o )2q20N . Therefore, (6.10) is equal to

(
e
2b
ε

(I (−1)
o )2(q20−q̄20 )N ⊗ N ca−	a− ⊗ 	−a− +

+ e− 2b
ε

(I (−1)
o )2(q20−q̄20 )N ⊗ N ca+	a+ ⊗ 	−a+)

(A ⊗ A) dλ. (6.11)

Under the condition that 2b
ε

(I (−1)
o )2(q20 − q̄20 ) ∈ 2π iZ (which can be simplified using

(I−1
o )2 = −π i to b

ε
(q20 − q̄20 ) ∈ Z), this expression is equal to (6.6), which proves the

invariance under the action of γ2. ��
Lemma 30 implies that under the condition b2 ∈ Z expression (6.6) can be consid-

ered as a formal power series in the variables qi� + δi1δ
1
� and q̄i� + δi1δ

1
� for i = 1, 2 and

� ≥ 0 and a Laurent series in ε, the coefficients of whose restriction to b
ε
(q20 − q̄20 ) ∈ Z

are rational functions of λ with possible poles at the points λ = u1, u2,∞.

Definition 31 We say that the ancestor potential A satisfies the ancestor Hirota
quadratic equations for the set A = {a+, a−} if the aforementioned dependence
on λ is polynomial, that is, if there are no poles at λ = u1, u2.

6.2 Proof of the ancestor HQE

Theorem 32 Let b2 = 1. Then the ancestor potential A satisfies the ancestor Hirota
quadratic equation.

Proof Let us prove that (6.6) is regular at λ = u1 (the case of λ = u2 is completely
analogous). Note that a± = −a2o±be1. According to Proposition 26, expression (6.6)
is equal to

(N ⊗ N )
(
	−a2o ⊗ 	a2o

) (
ca+	be1 ⊗ 	−be1 + ca−	−be1 ⊗ 	be1

)
(A ⊗ A) dλ.

(6.12)

Here the first two factors do not change the regularity in λ at λ = u1 (recall that
I (0)
o = 0), so we have to show that

(
ca+	be1 ⊗ 	−be1 + ca−	−be1 ⊗ 	be1

)
(A ⊗ A) dλ (6.13)

is regular in λ at λ = u1.
Recall that A = �̂ R̂ τKdV1τKdV2 , where the KdV tau-functions τKdVi depend on

the coordinates that correspond to the normalized canonical frame. In particular, the
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KdV hierarchy for these KdV tau-functions can be written as the regularity at λ = ui ,
i = 1, 2, of the expression

(λ − ui )−
1
2

(

e
̂fKdV (λ−ui ,z)ei ⊗ e− ̂fKdV (λ−ui ,z)ei −

− e− ̂fKdV (λ−ui ,z)ei ⊗ e
̂fKdV (λ−ui ,z)ei

)

τKdVi ⊗ τKdVi dλ. (6.14)

Proposition 27 implies that expression (6.13) is equal to �̂ R̂ ⊗ �̂ R̂ applied to

(

ca+e
2b2

∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

e
̂b fKdV (λ−u1,z)e1 ⊗ e− ̂b fKdV (λ−u1,z)e1 +

+ ca−e
2b2

∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

e
̂−b fKdV (λ−u1,z)e1 ⊗ e

̂b fKdV (λ−u1,z)e1

)

·
· (τKdV1τKdV2 ⊗ τKdV1τKdV2

)
dλ. (6.15)

Let us compute the coefficients. We have:

ca+e
b2
∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ = e

−b2
∫ λ
λ0

We1,e1dρ+b2
∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

= e
b2
2 log(λ0−u1)+b2

∫ λ0
u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

(λ − u1)−
b2
2 ;

(6.16)

ca−e
b2
∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ = e

−π ib2−b2
∫ λ
λ0

We1,e1dρ+b2
∫ λ

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

= e
b2
2 log(λ0−u1)+b2

∫ λ0
u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ×

× e−π ib2(λ − u1)−
b2
2 . (6.17)

Under the assumption b2 = 1, the coefficients, up to a common invertible factor that

does not depend on λ, are equal to ±(λ − u1)− 1
2 .

Thus, under the assumption b2 = 1 expression (6.15) is equal up to an invertible
factor

e
1
2 log(λ0−u1)+∫ λ0

u1

(
We1,e1− 1

2
1

ρ−u1

)
dρ

τKdV2 ⊗ τKdV2 (6.18)

that does not depend on λ to the expression (6.14) with i = 1, whose regularity in λ at
λ = u1 is part of the definition ofA. This implies the regularity at λ = u1 of (6.12). ��
Remark 33 The condition b2 = 1 implies that b = 1 or b = −1. Since a± =
−a2o ± be1, the set A does not depend on this choice, and in the construction of the
ancestor Hirota quadratic this choice only affects a common nonvanishing coefficient
that we can ignore, cf. Eq. (6.3).

Remark 34 With b = 1, the restriction b
ε
(q20 − q̄20 ) ∈ Z reduces to (q20 − q̄20 ) ∈ εZ.
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7 The Hirota quadratic equations for the descendent potential

In this section, we define the descendent Hirota quadratic equations and prove that the
descendent potential D satisfies them. Note that we assume from now on that b = 1.

7.1 The Hirota equation

Recall the definitions of fei ,∞ =∑l I
(l)
ei ,∞(−z)l , i = 1, 2, given in Sect. 5.7, as well as

more general fa,∞ and I (l)
a,∞ defined for any a ∈ C

2. Recall also that for any a, b ∈ C
2

we defined in Sect. 5.8 the function W∞
a,b(λ) = (I (0)

a,∞(λ), I (0)
b,∞(λ)).

Recall that o = e1 − e2. Let us also define

N∞ = exp

⎛

⎝−
∑

( j,�) �=(2,0)

(I (−�−1)
o,∞ ) j q

j
�

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎠ = exp

⎛

⎝−
∑

�≥1

λ�

�! q
2
�

∂

∂q20

⎞

⎠ . (7.1)

(The second equality here follows from Eqs. (5.25)–(5.26).)
Let A = {a+, a−} be the same set of points in C

2 as in Sect. 6, a± = −a2o ± e1
(that is, for a+ = a1e1 + a2e2 we assume a1 + a2 = 1). Let

c∞
a+ = exp

[

−
∫ λ

λ0

W∞
a+,a+(ρ)dρ

]

; (7.2)

c∞
a− = exp

[

−π i −
∫ λ

λ0

W∞
a−,a−(ρ)dρ

]

(7.3)

(cf. the analogous definitions in Sects. 5.4 and 6.1). Since I (0)
e1,∞ = I (0)

e2,∞ = ( 1
λ
, 1
2 )

t ,
we have W∞

a+,a+ = W∞
a−,a− = λ−1 and, therefore, c∞

a± = ±λ0
λ
.

Consider the following expression:

N∞ ⊗ N∞
(
c∞
a+	a+

∞ ⊗ 	−a+
∞ + c∞

a−	a−
∞ ⊗ 	−a−

∞
)

(D ⊗ D) dλ , (7.4)

where the two copies of D depend on two different sets of variables, qi� and q̄i�,
respectively.

Lemma 35 For (q20 − q̄20 ) ∈ εZ, expression (7.4) is a single-valued function of λ.

Proof Since the whole expression is only defined as an asymptotic series for |λ| ∼ ∞,
we have to check that the action of the monodromy γ∞ along the big circle is trivial.

Note thatN∞ and c∞
a± are single-valued inλ. For	±a±

∞ , the actionof themonodromy
γ∞ changes the branch of the logarithm in the definition of fei ,∞. We have:

γ∞fei ,∞ = fei ,∞ + f∞ , (7.5)
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where

f∞(λ, z) = 2π i
∑

l∈Z

∂ l+1
λ

(
1
0

)

(−z)l = 2π i
(
1
0

)∑

l≥0

λl

l! (−z)−l−1 . (7.6)

Thus γ∞	
ei∞ = e ˆf∞	

ei∞, and, therefore, for any constant c

γ∞	ca±
∞ = e±(c ˆf∞)	ca±

∞ , (7.7)

where

f̂∞ = 2π i
ε

∑

k≥0

(∂−k
λ 1)q2k = 2π i

ε

∑

k≥0

λk

k! q
2
k . (7.8)

Using this computation, we apply γ∞ to expression (7.4), and we obtain:

N∞ ⊗ N∞
(
e

ˆf∞ ⊗ e− ˆf∞c∞
a+	a+

∞ ⊗ 	−a+
∞

+ e− ˆf∞ ⊗ e
ˆf∞c∞

a−	a−
∞ ⊗ 	−a−

∞
)

(D ⊗ D) dλ. (7.9)

Note that N∞e± ˆf∞ = e± 2π i
ε
q20N∞. Therefore, (7.9) is equal to

(
e
2π i
ε

(q20−q̄20 )N∞ ⊗ N∞ c∞
a+	a+

∞ ⊗ 	−a+
∞ +

+ e− 2π i
ε

(q20−q̄20 )N∞ ⊗ N∞ c∞
a−	a−

∞ ⊗ 	−a−
∞

)
(D ⊗ D) dλ , (7.10)

which coincides with (7.4) in the case (q20 − q̄20 ) ∈ εZ. ��
Definition 36 We say that the descendent potential D satisfies the descendent Hirota
quadratic equation if the coefficients of expression (7.4) (expanded in qi� + δi1δ

1
� ,

q̄i� + δi1δ
1
� , and ε) are polynomial in λ.

7.2 Hirota equations for the descendent potential

Theorem 37 The descendent potential D satisfies the descendent Hirota quadratic
equation.

Proof Recall that D = CŜ−1A, where all three factors on the right-hand side depend
on the point of M , but their product is independent. Note that the factor C does not
depend on λ and is constant in qi�, q̄

i
�. (In particular, it commutes with all operators

involved in expression (7.4).) For the operator Ŝ−1, we use the following two lemmata:

Lemma 38 We have the equality of the asymptotic series for λ ∼ ∞

c∞
a±(Ŝ ⊗ Ŝ)(	a±

∞ ⊗ 	−a±
∞ )(Ŝ−1 ⊗ Ŝ−1) = F · ca±(	a± ⊗ 	−a±

), (7.11)
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where F = exp
(
1
4 (log t

2 + ψ) + ∫∞
λ0

(
Wa±,a± − W∞

a±,a±
)
dρ
)
.

Proof Recall Proposition 29. Since the sum of coordinates of a± is equal to ±1, it
implies that

c∞
a±(Ŝ ⊗ Ŝ)(	a±

∞ ⊗ 	−a±
∞ )(Ŝ−1 ⊗ Ŝ−1)

= c∞
a±e

1
4 (log t2+ψ)+∫∞

λ

(
Wa±,a±−W∞

a±,a±
)
dρ

(	a± ⊗ 	−a±
) . (7.12)

Now observe that

c∞
a±e

1
4 (log t2+ψ)+∫∞

λ

(
Wa±,a±−W∞

a±,a±
)
dρ =

= ±e
1
4 (log t2+ψ)+∫∞

λ

(
Wa±,a±−W∞

a±,a±
)
dρ−∫ λ

λ0
W∞

a±,a± (ρ)dρ

= ±e
1
4 (log t2+ψ)+∫∞

λ0

(
Wa±,a±−W∞

a±,a±
)
dρ−∫ λ

λ0
Wa±,a± (ρ)dρ = F · ca± (7.13)

(for the last equality here recall the definition of ca± given in Eqs. (6.3)–(6.4)). ��
Note that the factor F does not depend on λ and is constant in qi�, q̄

i
�. (In particular,

it commutes with N∞.) Note also that the factor F does not depend on the choice of
the sign ± in a± since W∞

a+,a+ = W∞
a−,a− and Wa+,a+ = Wa−,a− .

Lemma 39 We have the equality of the asymptotic series for λ ∼ ∞

N∞ Ŝ−1 = QON , (7.14)

where Q is an exponential of a linear combinationof terms ε−2qi�q
j
m,whose coefficients

are polynomial in λ and depend on the point of M, and O is the exponential of a linear
vector field in qi� that does not contain differentiation ∂/∂q20 and whose coefficients
depend on the point of M.

Proof Typically, we commute the operators using the quantization rules. However,N
andN∞ are not obtained by quantization, so we have to go into a detailed analysis of
the commutation of these operators with Ŝ.

Recall the structure of log Ŝ (see Eq. (3.11)). It can be split into two summands, a lin-
ear combination of all terms of the type ε−2qikq

j
� and a linear combination of the terms

qik∂/∂q j
� , with the coefficients depending on the point of M . ConsiderN∞ Ŝ−1. Using

the Baker–Campbell–Hausdorff formula, we extract all quadratic terms ε−2qikq
j
� in

Ŝ−1 to a separate exponential and commute it through N∞ to the left. This gives the
coefficient Q.

Now we have to compute

N∞ exp

⎛

⎜
⎜
⎝

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠ =
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exp

⎛

⎜
⎜
⎝−

∑

( j,�)
�=(2,0)

(I (−�−1)
o,∞ ) j q

j
�

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎟
⎟
⎠ exp

⎛

⎜
⎜
⎝

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠ . (7.15)

To this end, note that (cf. Eq. (5.31))

exp

⎛

⎜
⎜
⎝−

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠ exp

⎛

⎜
⎜
⎝−

∑

( j,�)
�=(2,0)

(I (−�−1)
o,∞ ) j q

j
�

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎟
⎟
⎠

exp

⎛

⎜
⎜
⎝

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠

= exp

⎛

⎝−
∑

(k,�) �=(2,0)

∑

p≥0

(I (−�−1)
o,∞ )k(S−1

p )kj q
j
�+p

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎠

= exp

⎛

⎝−
∑

(k,�)

∑

p≥0

(I (−�−1)
o,∞ )k(S−1

p )kj q
j
�+p

(I (−1)
o,∞ )2

∂

∂q20
+
∑

p≥0

(I (−1)
o,∞ )2(S−1

p )2j q
j
p

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎠

= exp

⎛

⎝−
∑

( j,�)

∑
p≥0(−1)p(Sp I

(−(�+p)−1+p)
o,∞ ) j q

j
�+p

(I (−1)
o,∞ )2

∂

∂q20

+
∑

p≥0

(I (−1)
o,∞ )2(S−1

p )2j q
j
p

(I (−1)
o,∞ )2

∂

∂q20

⎞

⎠ . (7.16)

Using Eq. (5.28) and the observations that I (�)
o,∞ = 0 and I (�)

o = 0 for � ≥ 0, we
can rewrite this expression as

exp

⎛

⎝
∑

p≥1

(S−1
p )2j q

j
p

∂

∂q20

⎞

⎠N . (7.17)

Now note that the BCH formula implies

exp

⎛

⎜
⎜
⎝

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠ = exp

⎛

⎜
⎜
⎝

∑

�≥1, a≥0
( j,a) �=(2,0)

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠
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exp

⎛

⎝−
∑

p≥1

(S−1
p )2j q

j
p

∂

∂q20

⎞

⎠ . (7.18)

Let O denote the first factor on the right-hand side of Eq. (7.18). Then Eqs. (7.15),
(7.16), (7.17), and (7.18), collected together, imply that

N∞ exp

⎛

⎜
⎜
⎝

∑

�≥1
a≥0

qia+�

∂

∂q j
a

(s�)
j
i

⎞

⎟
⎟
⎠ = ON . (7.19)

��
Using these two lemmata, we can rewrite Eq. (7.4) as the asymptotic series expansion
for λ ∼ ∞ of the following expression:

C2F · (Q ⊗ Q)(O ⊗ O)(N ⊗ N )
(
ca+	a+ ⊗ 	−a+

+ ca−	a− ⊗ 	−a−)
(A ⊗ A) dλ . (7.20)

Note that the operator C2F · (Q ⊗ Q)(O ⊗ O) does not contain derivatives with
respect to q20 and q̄20 . Therefore, the restriction (q20 − q̄20 ) ∈ εZ can be applied to this
operator and to rest of the formula simultaneously. Note also that it is an invertible
operator that preserves the polynomiality property in λ, that is, the coefficients of this
expression restricted to (q20 − q̄20 ) ∈ εZ (and expanded in qi� + δi1δ

1
� , q̄

i
� + δi1δ

1
� , and ε)

are polynomial in λ if and only if the same property holds for the asymptotic expansion
of

(N ⊗ N )
(
ca+	a+ ⊗ 	−a+ + ca−	a− ⊗ 	−a−)

(A ⊗ A) dλ , (7.21)

which is indeed the case by Theorem 32. ��

7.3 Explicit form of the Hirota equations

The goal of this section is towork out an explicit form of theHirota quadratic equations
for the descendent potential (which is the equations of the polynomiality of the 1-form
given by Eq. (7.4) at q20 − q̄20 = εk, k ∈ Z).

Proposition 40 For any value of the calibration parameterψ , the descendent potential
D satisfies the following equations:

0 = Res
λ=∞ λn−1dλ

[

λk exp

(
kψ

2

)

exp
(1

ε

∑

�≥0

1

2

λ�+1

(� + 1)! (q
1
� − q̄1� )
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− 1

ε

∑

�≥1

λ�

�! h(�)(q
2
� − q̄2� )

)×

D
({

q1� − ε
�!

λ�+1

}

�≥0
, q20 − ε

2
−
∑

�≥1

λ�

�! q
2
� ,
{
q2�
}
�≥1

)

×

D
({

q̄1� + ε
�!

λ�+1

}

�≥0
, q̄20 + ε

2
−
∑

�≥1

λ�

�! q̄
2
� ,
{
q̄2�
}
�≥1

)

− λ−k exp

(

−kψ

2

)

exp

(

− 1

ε

∑

�≥0

1

2

λ�+1

(� + 1)! (q
1
� − q̄1� )

+ 1

ε

∑

�≥1

λ�

�! h(�)(q
2
� − q̄2� )

)

×

D
({

q1� + ε
�!

λ�+1

}

�≥0
, q20 + ε

2
−
∑

�≥1

λ�

�! q
2
� ,
{
q2�
}
�≥1

)

×

D
({

q̄1� − ε
�!

λ�+1

}

�≥0
, q̄20 − ε

2
−
∑

�≥1

λ�

�! q̄
2
� ,
{
q̄2�
}
�≥1

)]∣
∣
∣
∣
q20−q̄20=kε

, (7.22)

for any k ∈ Z and for any n≥ 0.

Proof Recall Eqs. (5.25) and (5.26). For a± = ±e1 − a2o, they imply that

fa±,∞ = ±
∑

�∈Z

∂�
λ

(
∂λ(log λ + ψ

2 )
1
2

)

(−z)� + a2
∑

�∈Z

∂�+1
λ

(
π i
0

)

(−z)�

=
∑

�≥0

(−z)−1−�

⎛

⎝
λ�

�!
(
a2π i ± (log λ − h(�) + ψ

2 )
)

± 1
2

λ�+1

(�+1)!

⎞

⎠

±
∑

�≥0

(−z)�
(−1)��!
λ�+1

(
1
0

)

± (−z)0
1

2

(
0
1

)

. (7.23)

Therefore,

f̂a±,∞ = ±1

ε

∑

�≥0

1

2

λ�+1

(� + 1)!q
1
� ± 1

ε

∑

�≥0

λ�

�!
(
log λ − h(�) + ψ

2

)
q2�

+ 1

ε
a2π i

∑

�≥0

λ�

�! q
2
� ∓ε

∑

�≥0

�!
λ�+1

∂

∂q1�
∓ε

2

∂

∂q20
. (7.24)

Recall also Eq. (7.1):

N∞ = exp

⎛

⎝−
∑

�≥1

λ�

�! q
2
�

∂

∂q20

⎞

⎠ . (7.25)
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We have:

N∞ f̂a±,∞ =
[

± 1

ε

∑

�≥0

1

2

λ�+1

(� + 1)!q
1
�∓1

ε

∑

�≥1

λ�

�! h(�)q
2
�

± 1

ε

(
log λ + ψ

2

)
q20 + 1

ε
a2π iq20

∓ ε
∑

�≥0

�!
λ�+1

∂

∂q1�
∓ε

2

∂

∂q20

]

N∞. (7.26)

Note that for q20 − q̄20 = εk, k ∈ Z, we have:

exp
(

± 1

ε

(
log λ + ψ

2

)
(q20 − q̄20 ) + 1

ε
a2π i(q20 − q̄20 )

)

= exp(kπ ia2) exp
(

± kψ

2

)
λ±k . (7.27)

Since that the factor exp(kπ ia2) does not depend on the choice of the point a± and
does not depend on λ, it does not affect the polynomiality in λ and can be omitted. For
the same reason, we can replace in (7.4) the coefficients c∞

a± by ±λ−1. Modulo these
not important factors, the full expression (7.4) can be rewritten as

dλ

λ

[
λk exp(

kψ

2
) exp

(1

ε

∑

�≥0

1

2

λ�+1

(� + 1)! (q
1
� − q̄1� ) − 1

ε

∑

�≥1

λ�

�! h(�)(q
2
� − q̄2� )

)×

D
({
q1� − ε

�!
λ�+1

}
�≥0, q20 − ε

2
−
∑

�≥1

λ�

�! q
2
� ,
{
q2�
}
�≥1

)×

D
({
q̄1� + ε

�!
λ�+1

}
�≥0, q̄20 + ε

2
−
∑

�≥1

λ�

�! q̄
2
� ,
{
q̄2�
}
�≥1

)

−λ−k exp(−kψ

2
) exp

(− 1

ε

∑

�≥0

1

2

λ�+1

(� + 1)! (q
1
� − q̄1� ) + 1

ε

∑

�≥1

λ�

�! h(�)(q
2
� − q̄2� )

)×

D
({
q1� + ε

�!
λ�+1

}
�≥0, q20 + ε

2
−
∑

�≥1

λ�

�! q
2
� ,
{
q2�
}
�≥1

)×

D
({
q̄1� − ε

�!
λ�+1

}
�≥0, q̄20 − ε

2
−
∑

�≥1

λ�

�! q̄
2
� ,
{
q̄2�
}
�≥1

)]∣∣
∣
q20−q̄20=kε

.

(7.28)

This expression is polynomial in λ if and only if the residues of its products with λn ,
n ≥ 0, at λ = ∞ are equal to zero, which completes the proof of the proposition. ��
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8 The Lax formulation of the Catalan hierarchy

In this section, we would like to find a Lax representation for the integrable hierarchy
associated with the descendent HQE. Such hierarchy has as natural spatial variable
the time X = q10 . Proceeding directly as in the rational reduction of KP is quite
straightforward as long as we do not consider the equations for the “logarithmic”
times q2� . Noticing that the descendent HQEs are identical to those of the extended
Toda hierarchy [12,14] under exchange of the two sets of times, we first proceed
in deriving the Lax form of the equations as in [14] using as space variable the time
q20 = x , and then obtain indirectly a Lax representation in terms of pseudo-differential
operators in the proper space variable X = q10 using the approach in section 5 of [12].
Finally we reconsider the Hirota equations and directly derive the Lax equations in
pseudo-differential operator form.

8.1 Lax representation with difference operators

Here we quickly repeat with slight modifications the derivation of the Lax represen-
tation of the extended Toda hierarchy following [14] in the case N = M = 1.

Let us consider the multivalued one form on the λ plane

ω∞ :=
(
c∞
a+	a+

∞ ⊗ 	−a+
∞ + c∞

a−	a−
∞ ⊗ 	−a−

∞
)

(D ⊗ D) dλ . (8.1)

The Hirota equation (7.4) can be equivalently formulated by saying that

(N∞ ⊗ N∞)ω∞

is regular atλ ∼ ∞. To obtain theLax representationwehave to switch to an equivalent
HQE which is ∂x -operator valued, as in [49]. We therefore introduce the operators

	δ#∞ = e
x ∂

∂q20 e
∑

l>0
λl
l! q

2
l ∂x , 	δ∞ = e−∑l>0

λl
l! q

2
l ∂x e

x ∂

∂q20 . (8.2)

Since we have that

	δ#∞ = e
∑

l>0
λl
l! q

2
l ∂x e

x ∂

∂q20 N∞, 	δ∞ = e
x ∂

∂q20 e−∑l>0
λl
l! q

2
l ∂xN∞, (8.3)

it follows that

(N∞ ⊗ N∞)ω∞ regular ⇐⇒ (	δ#∞ ⊗ 	δ∞)ω∞ regular . (8.4)

Along the lines of [14] by carefully commuting the operators we can prove that

	δ#∞	a±
∞ D = D′W±λ± q20+x

ε e(± ψ
2ε −(a1−1) π i

ε
)(q20+x) (8.5)
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and

	δ∞	−a±
∞ D = λ∓ q20+x

ε e(∓ ψ
2ε +(a1−1) π i

ε
)(q20+x)W∗±D′, (8.6)

where we define

W± = P± exp

⎛

⎝± 1

2ε

∑

l≥0

λl+1

(l + 1)!q
1
l +

∑

l>0

λl

l! (∂x∓hl

ε
)q2l

⎞

⎠ (8.7)

W∗± = exp

⎛

⎝∓ 1

2ε

∑

l≥0

λl+1

(l + 1)!q
1
l −

∑

l>0

λl

l! (∂x∓hl

ε
)q2l

⎞

⎠P∗± (8.8)

and

P± = e
̂
(fa

±
∞ )+D′

D′(x − ε
2 )

, P∗± = e
̂

(f−a±
∞ )+D′

D′(x + ε
2 )

. (8.9)

Here D′(q, x) = D(q)|q20→q20+x .
Substituting, we find that the HQE are equivalent to the regularity of

[
W+(q)W∗+(q̄)λkeψk/2 − W−(q)W∗−(q̄)λ−ke−ψk/2]dλ

λ
(8.10)

where (q − q̄)20 = kε. In residue form, we have

Resλ
[
W+(q)W∗+(q̄)λkeψk/2 − W−(q)W∗−(q̄)λ−ke−ψk/2]λn−1dλ = 0, n ≥ 0.

(8.11)

We now convert this expression in a bilinear equation for difference operators.
A difference operator is defined as a Laurent series in the formal variable �. Mul-
tiplication of such operators, when defined, is given by �s f (x) = f (x + sε)�s .
Given a difference operator A =∑s as�

s =∑s �s ãs the left and right symbols are,
respectively, defined as σl(A) =∑s asλ

s and σr (A) =∑s ãsλ
s . Recall that

Resλσl(A)σr (B)
dλ

λ
= Res�AB,

where Res�A := a0, for a proof see §3.2 in [14].
Let us define operators W± and W ∗± by

σl(W
+) = W+, σr (W

∗+) = W∗+, (8.12)

σl(W
−) = W−|λ→λ−1e−ψ , σr (W

∗−) = W∗−|λ→λ−1e−ψ (8.13)
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which implies

W+ = P+ exp

⎛

⎝ 1

2ε

∑

l≥0

�l+1

(l + 1)!q
1
l +

∑

l>0

�l

l! (∂x − hl

ε
)q2l

⎞

⎠ , (8.14)

W ∗+ = exp

⎛

⎝− 1

2ε

∑

l≥0

�l+1

(l + 1)!q
1
l −

∑

l>0

�l

l! (∂x − hl

ε
)q2l

⎞

⎠ P∗+, (8.15)

W− = P− exp

⎛

⎝− 1

2ε

∑

l≥0

�−l−1e−(l+1)ψ

(l + 1)! q1l

+
∑

l>0

�−l e−lψ

l! (∂x + hl

ε
)q2l

)

, (8.16)

W ∗− = exp

⎛

⎝+ 1

2ε

∑

l≥0

�−l−1e−(l+1)ψ

(l + 1)! q1l

−
∑

l>0

�−l e−lψ

l! (∂x + hl

ε
)q2l

)

P∗−. (8.17)

Here the operators P± and P∗± have been defined by

σl(P
+) = P+, σr (P

∗+) = P∗+ (8.18)

σl(P
−) = P−|λ→λ−1e−ψ , σr (P

∗−) = P∗−|λ→λ−1e−ψ . (8.19)

Note that P+ and P∗+ are power series in negative powers of � with leading term
equal to 1, while P− and P∗− are power series in positive powers of �. We have that

Res�[W+(q)�nW ∗+(q̄)�−k] = Res�[W−(q)�−ne−nψW ∗−(q̄)�−k]. (8.20)

Notice that here q20 = q̄20 . Since this holds for k ∈ Z and there is no k dependence in
the square brackets, we finally find

W+(q)�nW ∗+(q̄) = W−(q)�−ne−nψW ∗−(q̄). (8.21)

For q = q̄ , we get

P+�n P∗+ = P−�−ne−nψ P∗−, (8.22)

which implies for n = 0 that P∗± = (P±)−1, consequently for n = 1 we obtain the
constraint

P+�(P+)−1 = P−�−1e−ψ(P−)−1 =: L (8.23)
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where L is a difference operator of the form L = � + v + eu�−1.
We can easily express the coefficients in the Lax operator in terms of the total

descendent potential as

v = (�1/2 − �−1/2)ε
∂ logD′

∂q10
, (8.24)

u = �−1/2(� + �−1 − 2) logD′ − ψ. (8.25)

Let us nowobtain the Sato equations by differentiatingwith respect to qil the bilinear
equation (8.21) and setting q̄ = q. We obtain

ε
∂P±

∂qil
= ∓(Ai

l )∓P± (8.26)

where

A1
l = Ll+1

(l + 1)! , A2
l = 2

Ll

l! (log L − h(l)) . (8.27)

The logarithm of L is defined, following [12], as

log L =
∑

k∈Z

wk�
k = ε

2

(
P−
x (P−)−1 − P+

x (P+)−1
)

. (8.28)

Remark 41 The dressing (8.23) of L by P+ defines an injective map

C[v, eu][vk, uk; k ≥ 0][[ε]]0 → C[pi ; i ≥ 1][pi,k; i, k ≥ 1][[ε]]0 (8.29)

by the substitutions v �→ p1 − p1(x + ε) and eu �→ p2 − p2(x + ε) − p1(p1 −
p1(x + ε)), where pi are the coefficients in P+. The subscript denotes the degree zero
homogeneous part of the formal power series ring, where the degree is k for uk , vk and
pi,k , is−1 for ε and zero for the remaining generators. It is clear that the coefficients in
L p = P+�p(P+)−1 are elements of C[v, eu][vk, uk; k ≥ 0][[ε]]0, or equivalently in
its image via the above injection. It was proved in [12] that the coefficients wk defined
by

P+ε∂x (P
+)−1 = ε∂x − εP+

x (P+)−1 = ε∂x + 2
∑

k≤−1

wk�
k (8.30)

are also in the image of such injection, so they define unique elements wk in
C[v, eu][vk, uk; k ≥ 0][[ε]]0. One can prove that the coefficientswk for k ≥ 0 defined
by

− P−ε∂x (P
−)−1 = −ε∂x + εP−

x (P−)−1 = −ε∂x + 2
∑

k≥0

wk�
k (8.31)
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as elements of C[q0, q−1
0 , qi ; i ≥ 1][qi,k; i ≥ 0, k ≥ 1][[ε]]0 are given by

w0 = ψ

2
+ ε

2
�(� − 1)−1 ∂u

∂x
= ψ

2
+ u

2
+ · · · ,

wk = e−u(x+ε) · · · e−u(x+εk)w−k(x + εk) (8.32)

for k ≥ 1. We have therefore that the coefficients wk of log L are uniquely differential
polynomials in

A := C[u, v, e±u][vk, uk; k ≥ 0][[ε]]0. (8.33)

Remark 42 To prove (8.32), we define, as in [49], a linear anti-involution σ on the
space of difference operators by

σ(a(x)�k) = Q(eψ�)−ka(x)Q−1, where Q = D′(x + ε
2 )

D′(x − ε
2 )

, (8.34)

is the coefficient of �0 in P−. We extend this anti-involution on the space of formal
operators in both � and ε∂x , by

σ(ε∂x ) = Q(−ε∂x − ψ)Q−1 = −ε∂x − ψ + εQ−1 ∂Q

∂x
. (8.35)

Note that from (8.9) it follows that

P− = QP∗+, P+ = QP∗−, (8.36)

from which it is easy to derive that

σ(P±) = Q(P∓)−1, σ (L) = L (8.37)

and

σ(P±ε∂x (P
±)−1) = −P∓ε∂x (P

∓)−1 − ψ. (8.38)

Thus, σ(log L) = log L , and therefore,

w−k = e−kψ Q(x)wk(x − εk)

Q(x − εk)
. (8.39)

From the relations,

w0 = ε

2
Q−1 ∂Q

∂x
, eu+ψ = Q

Q(x − ε)
, (8.40)
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the Eq. (8.32) easily follow. For example, we have

w−1 = ε

2

(

(� − 1)−1 ∂v

∂x

)

, w1 = ε

2

(

�e−u(� − 1)−1 ∂v

∂x

)

. (8.41)

Finally, it follows from Sato equations and from the commutativity of L and Ai
l

that L satisfies the Lax equations:

ε
∂L

∂qil
= [(Ai

l )+, L]. (8.42)

They define commuting derivations of A.

8.2 Lax representation via change of variable

Let us introduce a variable X by the shift q10 �→ q10 + X . The Lax equations for the
time q10 read:

εvX = (� − 1)eu, εuX = (1 − �−1)v. (8.43)

Denoting φ = v(x − ε) and ρ = eu , notice that we can express the x derivatives of
u and v as X differential polynomials in u, v or equivalently in ρ, φ. By substitution
in the evolutionary equations implied by (8.42), we obtain the desired hierarchy of
equations having X as space variable. A Lax representation for this hierarchy, called
extended NLS, was outlined in [12]. Here we give an equivalent presentation using
dressing operators.

Denote by P̃ the pseudo-differential operator in the variable X obtained by substi-
tuting � by ε∂X in the dressing operator P+ in the previous section, namely

P+ =
0∑

k=−∞
pk�

k, P̃ =
0∑

k=−∞
pk(ε∂X )k . (8.44)

Let

L = P̃ε∂X P̃
−1, S = P̃ε∂X�−1 P̃−1, T = P̃(ε∂X )2�−1 P̃−1 (8.45)

where it should be noted that the above last two operators are both pseudo-differential
in the variable X and difference in the variable x .

We define logL as in [12] by

logL =
∑

k∈Z

w̃k�
k((ε∂X − φ)�−1)k (8.46)

where w̃k are differential polynomials in the variables ρ, φ and their X derivatives
obtained from wk via the substitutions mentioned above. Of course also the x deriva-

123



63 Page 54 of 67 G. Carlet et al.

tives of φ appearing as a result of the shifts have to be expressed in terms of X
derivatives of the variables ρ and φ.

Remark 43 In the formula for logL notice, we have

�k((ε∂X − φ)�−1)k = (ε∂X − φ(x + εk))

· · · (ε∂X − φ(x + ε)), k ≥ 0, (8.47)

�−k((ε∂X − φ)�−1)−k = (ε∂X − φ(x + ε(−k + 1)))−1

· · · (ε∂X − φ(x))−1, k ≥ 1, (8.48)

where all x derivatives have to be expressed as differential polynomials in the X -
derivatives by the above substitutions. The operator (ε∂X − φ)−1 is the inverse of
ε∂X − φ in the algebra of usual pseudo-differential operators, explicitly

(ε∂X − φ)−1 =
∑

l≥0

(ε∂X )−1(φ(ε∂X )−1)l . (8.49)

Notice, however, that the infinite sum of positive powers of k in (8.46) leads to non-
convergent infinite sums in front of every positive power of ε∂X .

To give a well-defined meaning to the formal operator (8.46) we consider it as
a pseudo-differential operator in ε∂X − φ. Notice that the product rule for pseudo-
differential operators gives the formally equivalent rule

(ε∂X − φ)k f =
∑

l≥0

(
k

l

)

f (l)(ε∂X − φ)k−l . (8.50)

Because when written in terms of ε∂X −φ the substitutions (8.47) now involve in each
factor corrections of strictly positive degree in ε, it follows that logL is a well-defined
operator of the form

logL =
∑

k∈Z

ak(ε∂X − φ)k (8.51)

where ak are differential polynomials in ρ, φ and their X -derivatives. Moreover, the
multiplication of such operator, which involves both infinite positive and negative
powers of ε∂X − φ, by an operator with only finite number of arbitrary powers of
ε∂X − φ (see the form of L below) is also well defined. We conclude that the Lax
equations below provide derivations in the ring of differential polynomials in ρ, φ and
their X -derivatives.

Proposition 44 The operator P̃ satisfies the following Sato equations

ε
∂ P̃

∂qil
= −( Ãi

l )− P̃ (8.52)
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where

Ã1
� = L�+1

(� + 1)! , Ã2
� = 2

�! (logL − h(�))L�. (8.53)

Moreover, the operators S and T are given by

S = (ε∂X − φ)�−1, T = ((ε∂X )2 − ε∂Xφ + ρ)�−1 (8.54)

so, in particular they do not contain negative powers of ε∂X , and the Lax operator is
equal to their ratio

L = T S−1 = ε∂X + ρ(ε∂X − φ)−1. (8.55)

Proof The Sato equation (8.26) for q10 and the dressing (8.23) of � can be written,
respectively, as

ε
∂P+

∂X
= −L−P+ = (−eu�−1)P+, (� + v + eu�−1)P+ = P+�. (8.56)

Moving all shifts � on the right the first equation becomes

ε
∂P+

∂X
= −eu P+(x − ε)�−1. (8.57)

Notice that in this expression all power of � appear on the right of the remaining
coefficients, therefore we can replace them with powers of ε∂X , obtaining

ε
∂ P̃

∂X
= −eu P̃(x − ε)(ε∂X )−1. (8.58)

Similarly we can rewrite the above second equation in terms of pseudo-differential
operators as

P̃(x + ε)ε∂X + v P̃ + eu P̃(x − ε)(ε∂)−1 = P̃ε∂X . (8.59)

Substituting (8.58) in (8.59), we get

P̃ε∂X�−1 P̃−1 = �−1(ε∂X − v) = (ε∂X − φ)�−1, (8.60)

and similarly from (8.59), we find

P̃(ε∂X )2�−1 P̃−1 = (eu + ε∂X (ε∂X − φ))�−1, (8.61)

thus proving (8.54). A similar computation shows that Sato equations (8.26) can be
rewritten in terms of pseudo-differential operators as (8.52) where the operators Ãi

�
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are obtained by substituting �k with �kSk as follows

Ai
� =

∑

k

ai�,k�
k �→ Ãi

� =
∑

k

ai�,k�
kSk . (8.62)

This follows from the observation that Sato equations are written as

ε
∂P+

∂qi�
= −

∑

k<0

ai�,k�
k P+ = −

∑

k<0

ai�,k P
+(x + εk)�k (8.63)

so imply

ε
∂ P̃

∂qi�
= −

∑

k<0

ai�,k�
k P̃(x − εk)(ε∂X )k

= −
∑

k<0

ai�,k�
k P̃�−k(ε∂X )k . (8.64)

Multiplication on the right by P̃−1 gives

ε
∂ P̃

∂qi�
P̃−1 = −

∑

k<0

ai�,k�
k P̃�−k(ε∂X )k P̃−1 = −

∑

k<0

ai�,k�
kSk, (8.65)

which proves our assertion. Notice moreover that the projection (·)− commutes with
the substitution �k �→ �kSk .

To complete the proof, we need to show that the operators Ãi
� defined by the

substitution (8.62) coincide with those give by formulas (8.53). Let us first consider
the case i = 1. From the dressing, we know

L�P+ = P+��. (8.66)

Denoting

L� =
∑

k

b�
k�

k, (8.67)

we have

∑

k

b�
k�

k P+ = P+��, (8.68)

which, by the above same argument, gives

∑

k

b�
k�

k P̃�−k(ε∂X )k = P̃(ε∂X )� (8.69)
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and finally

∑

k

b�
k�

kSk = L�. (8.70)

For the case i = 2, we have to use a slightly different argument because we do
not have a definition of logL in terms of dressing operators in the pseudo-differential
operator case. The definition (8.46) of logL amounts to substituting �k with �kSk

in log L for ETH as given in (8.28). We have that the product log L · L� after such
substitution is equal to

∑

j

w j�
j
∑

k

b�
k�

kSk+ j =
∑

j

w j�
j

(
∑

k

b�
k�

kSk

)

S j

=
∑

j

w j�
jL�S j . (8.71)

Because S and L commute, this expression equals logL · L� which completes the
proof. ��
Corollary 45 The Lax operator L satisfies the following equations

ε
∂L
∂qi�

= [−( Ãi
�)−,L] (8.72)

for i = 1, 2, � ≥ 0.

Remark 46 Clearly the operators S and T satisfy the same Lax equations as L.

8.3 Lax representation from the Hirota equations

In this section, we want to approach the problem of deriving the Lax equations from
the HQE directly, namely using a fundamental lemma to convert it into equations for
pseudo-differential operators, like in the usual derivation of rational reductions of KP.
Obtaining the Sato equations for the new times q2� is not straightforward.

8.3.1 Preliminaries

Let us define

P(X , x, q, λ) := P+∣
∣
∣
x→x+ ε

2
q10→q10+X

, P̃(X , x, q, λ) := P∗+∣
∣
∣
x→x− ε

2
q10→q10+X

, (8.73)

or, more explicitly

P(X , x, q, λ) = e
−ε
∑

�≥0
�!

λ�+1
∂

∂q1
� D′′

D′′ ,
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P̃(X , x, q, λ) = e
ε
∑

�≥0
�!

λ�+1
∂

∂q1
� D′′

D′′ (8.74)

where D′′ equals the total descendent potential D with dependences on X and x
introduced via the shifts q10 �→ q10 + X , q20 �→ q20 + x . Notice that for consistency
with the usual KP reductions here the symbols P(λ) resp. P̃(λ) are shifted by ±ε/2
w.r.t P+ resp. P∗+. Let us also define

Q(X , x, q) = D′′|x→x+ε

D′′ , R(X , x, q) = Q(X , x − ε, q)−1, (8.75)

φ(X , x, q) = −εR(X , x, q)−1 ∂R(X , x, q)

∂X
, (8.76)

ρ(X , x, q) = e−ψ Q(X , x, q)R(X , x, q). (8.77)

We now rewrite the HQE (7.28) in an equivalent form which is more convenient
for the use of the fundamental lemma for pseudo-differential operators.

Lemma 47 The HQE (7.28) is equivalent to

[
exp
(1

ε

∑

�≥0

λ�+1

(� + 1)! (q
1
� − q̄1� ) − 2

ε

∑

�≥1

λ�

�! h(�)(q
2
� − q̄2� )

)
×

×P(X , q, λ) exp
(∑

�≥1

λ�

�! (q2� − q̄2� )∂x

)

e−(k−1)ε∂xλk P̃(X̄ , q̄, λ)e−ε∂x e
λ
ε
(X−X̄)

]

≤0
=

= e−kψ
[
Q(X , q)eε∂x P̃(X , q, λ) exp

(∑

�≥1

λ�

�! (q2� − q̄2� )∂x

)
×

×e−(k+1)ε∂xλ−k P̃(X̄ , q̄, λ)Q−1(X̄ , q̄)
]

≤0
. (8.78)

Remark 48 Note that in this formula: (a) we have q20 = q̄20 and P , P̃ and Q depend
on x via the shift x → x + ε in (8.74) and (8.75); (b) the projections refer to the
powers of λ, so we have the equality of the coefficients of λn in the right-hand side
and left-hand side for n ≤ 0; (c) the expression has values in power series in ∂x ;
however, the dependence on ∂x can be removed by right multiplication by

exp
(

−
∑

�≥1

λ�

�! (q2� − q̄2� )∂x

)
ekε∂x (8.79)

which depends only on nonnegative powers of λ so preserves the equality.
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Proof Starting from (7.28), notice that we can multiply it by

exp

(−kψ

2

)

exp

⎛

⎝1

ε

∑

�≥0

1

2

λ�+1

(� + 1)!
(
q1� − q̄1�

)
− 1

ε

∑

�≥1

λ�

�! h (�)
(
q2� − q̄2�

)
⎞

⎠

(8.80)

since it contains only nonnegative powers of λ. We can then introduce the dependence
on X , x by the shifts q10 → q10 + X , q̄10 → q̄10 + X̄ , q20 → q20 + x . Rewriting the shifts
of the variables appearing in D as shift operators gives the above desired formula. ��

8.3.2 The Fundamental Lemma

In the following, let P(X , ε∂X ), Q(X , ε∂X ) be pseudo-differential operators and
P(X , λ), Q(X , λ) the corresponding symbols, e.g.,

P(X , ε∂X ) =
∑

k

pk(X)(ε∂X )k, P(X , λ) =
∑

k

pk(X)λk . (8.81)

Recall that the residue Res∂X of a pseudo-differential operator coincides with the
residue Resλ=∞dλ of its symbol and the adjoint is defined by

P(X , ε∂X )∗ =
∑

k

(−ε∂X )k pk(X). (8.82)

Lemma 49 The equality holds:

Resλ=∞P(X , λ)Q(X̄ ,−λ)e(X−X̄) λ
ε dλ

= εRes∂X P(X , ε∂X )Q∗(X , ε∂X )eu∂X
∣
∣
u=X−X̄ . (8.83)

Proof It suffices to show that (8.83) holds for P(X , ε∂X ) = (ε∂X )k and Q(X , ε∂X ) =
B(X)(−ε∂X )� for k + � < 0. In that case, we use Taylor’s formula for the left-hand
side, which is equal to

Res
λ=∞ dλ&λk+�

∞∑

m=0

(X̄ − X)m

m!
∂mB(X)

∂Xm
e(X−X̄) λ

ε

= εk+�+1
∞∑

m=0

(−1)m

m!(−k − � − 1)!
∂mB(X)

∂Xm
(X − X̄)−k−�+m−1
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and the right-hand side is equal to

εk+�+1Res∂X ∂k+�
X B(X)

∞∑

n=0

(u∂X )n

n!
∣
∣
u=X−X̄ =

= εk+�+1
∞∑

m0

(
k + �

m

)
1

(−k − � + m − 1)!
∂mX B(X)

∂X Xm
(X − X̄)−k−�+m−1.

Since

(−1)m

m!(−k − � − 1)! =
(
k + �

m

)
1

(−k − � + m − 1)! ,

we obtain the desired result. ��
Lemma 50 If the following equality holds:

Res
λ=∞ dλ P(X , λ)Q(X̄ ,−λ)e(X−X̄) λ

ε =
∑

j

R j (X)S j (X̄), (8.84)

then

(
P(X , ε∂X )Q∗(X , ε∂X )

)
− =

∑

j

R j (X)(ε∂X )−1S j (X). (8.85)

Proof We use Taylor’s formula again and the above lemma:

∑

j

R j (X)S j (X̄) =
∑

j

R j (X)

∞∑

k=0

(−1)k
∂k S j (X)

∂Xk

(X − X̄)k

k! =

= ε Res
∂

∑

j

R j (X)(ε∂)−1S j (X)eu∂X
∣
∣
u=X−X̄ . (8.86)

Thus formula (8.85) holds. ��
Corollary 51 The equality

[
P(X , λ)Q(X̄ ,−λ)e(X−X̄) λ

ε

]

≤0
=
[
P̃(X , λ)Q̃(X̄ , λ)

]

≤0
(8.87)

implies the following identity of pseudo-differential operators

[
P(X , ε∂X )(ε∂X )n−1Q∗(X , ε∂X )

]

−
= Resλ P̃(X , λ)λn−1(ε∂X )−1 Q̃(X , λ) dλ, n ≥ 0. (8.88)
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8.3.3 The Hirota equation in pseudo-differential operator form

Using the previous corollary, we find here a version of the HQE in terms of ∂x -valued
pseudo-differential operators in the variable X .

Proposition 52 The HQE (7.28) is equivalent to

[
P(q, ε∂X ) exp

(1

ε

∑

�≥0

(ε∂X )�+1

(� + 1)! (q1� − q̄1� ) − 2

ε

∑

�≥1

(ε∂X )�

�! h(�)(q2� − q̄2� )
)

×

× exp
(∑

�≥1

(ε∂X )�

�! (q2� − q̄2� )∂x

)
e−(k−1)ε∂x (ε∂X )n+k−1 P̃(q̄,−ε∂X )∗

]

− =

= e−kψResλ
[
Q(q)eε∂x P̃(q, λ) exp

(∑

�≥1

λ�

�! (q2� − q̄2� )∂x

)
e−(k+1)ε∂xλn−k−1 ×

×(ε∂X )−1P(q̄, λ)Q−1(q̄)eε∂x
]
dλ (8.89)

for n ≥ 0 and k ∈ Z.

Remark 53 Note that here P , P̃ , Q depend on x and X = X̄ , whichwe have suppressed
for simplicity. Moreover, recall that the variables q20 and q̄20 are identified.

8.3.4 First consequences

For q = q̄ , the HQE becomes

[
P(ε∂X )e−(k−1)ε∂x (ε∂X )n+k−1 P̃(−ε∂X )∗

]

− =
= e−kψResλ

[
λn−k−1Q P̃(x + ε, λ)e−(k−1)ε∂x (ε∂X )−1

Q−1(x − ε)P(x − ε, λ)
]
dλ. (8.90)

For notational simplicity in this equation, we have suppressed the dependence on q
variables and we explicitly indicated the dependence on x only when this variable is
shifted.

Let us consider some consequences of this equation for small values of k and n.
Notice that the right-hand side vanishes for k > n.
n = 0, k = 1: we have

[
P(ε∂X )P̃(−ε∂X )∗

]

− = 0; (8.91)

hence, P̃(−ε∂X )∗ = P(ε∂X )−1.
n = k ≥ 0: Equation (8.90) becomes

[
P(ε∂X )e−(k−1)ε∂x (ε∂X )2k−1P(ε∂X )−1

]

−
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= e−kψ Q e−(k−1)ε∂x (ε∂X )−1Q−1(x − ε). (8.92)

n = 0, k = 0: let us define S(ε∂X , ε∂x ) := P(ε∂X )eε∂x (ε∂X )−1P(ε∂X )−1. The pre-
vious equation for k = 0 gives

S(ε∂X , ε∂x )
−1 = Q eε∂x (ε∂X )−1Q−1(x − ε); (8.93)

hence, we have that

S(ε∂X , ε∂x ) = R−1ε∂X Re
−ε∂x . (8.94)

Notice that S(ε∂X , ε∂x ) = S̃(ε∂X )e−ε∂x , where

S̃(ε∂X ) = R−1ε∂X R = ε∂X − φ. (8.95)

n = 1, k = 1: definingL(ε∂X ) = P(ε∂X )ε∂X P(ε∂X )−1, we get from Eq. (8.92) that

[
L(ε∂X )

]

− = e−ψ Q (ε∂X )−1Q−1(x − ε), (8.96)

therefore

L(ε∂X ) = ε∂X + Q(eψε∂X )−1R (8.97)

= ε∂X + ρ(ε∂X − φ)−1 (8.98)

= R−1(ε∂X + φ + ρ(ε∂X )−1)R. (8.99)

n = 1, k = 2: Let us define T (ε∂X , ε∂x ) := P(ε∂X )e−ε∂x (ε∂X )2P(ε∂X )−1. Equa-
tion (8.90) for n = 1, k = 2 gives T (ε∂X , ε∂x )− = 0. We have that T (ε∂X , ε∂x ) =
T̃ (ε∂X )e−ε∂x , where T̃ (ε∂X ) is a differential operator in the variable X . By definition,
we have

L(ε∂X ) = T (ε∂X , ε∂x )S(ε∂X , ε∂x )
−1 = S(ε∂X , ε∂x )

−1T (ε∂X , ε∂x ) (8.100)

= T̃ (ε∂X )S̃(ε∂X )−1 = S̃(x + ε, ε∂X )−1T̃ (x + ε, ε∂X ). (8.101)

Notice that S(ε∂X , ε∂x ) and T (ε∂X , ε∂x ) commute, therefore commute with L, while
S̃(ε∂X ) and T̃ (ε∂X ) do not. In particular, we have

T̃ (ε∂X ) = R−1((ε∂X )2 + φε∂X + ρ
)
R (8.102)

= (ε∂X − φ)2 + φ(ε∂X − φ) + ρ. (8.103)

n ≥ 1, k = 1: from (8.90) we deduce that

[
L(ε∂X )n

]

− = e−ψResλ
[
λnQ P̃(x + ε, λ)(ε∂X )−1Q−1(x − ε)P(x − ε, λ)

]
dλ.

(8.104)
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Remark 54 Notice that all remaining constraints from (8.90) for k > n are automati-
cally satisfied since the left-hand side of that equations is equal to [T nSk−n−1]− which
vanishes since T and S are differential in X .

8.3.5 Sato equations

Differentiating (8.89) with respect to q1� for � ≥ 0 and setting q = q̄ and k = 1, n = 0,
we get the Sato equations for the q1� flows

ε
∂P(ε∂X )

∂q1�
= −

(L(ε∂X )�+1

(� + 1)!
)

−
P(ε∂X ). (8.105)

Differentiating (8.89) with respect to q2� for � > 0 and setting q = q̄ and k = 1,
n = 0, we get

ε
∂P(ε∂X )

∂q2�
P(ε∂X )−1 =

(L(ε∂X )�

�!
(

ε
∂P(ε∂)

∂x
P(ε∂)−1 + 2h(�)

))

−
+

+ e−ψResλ
[λ�−2

�! QP̃(x + ε, λ)(ε∂X )−1ε
∂Q(x − ε)−1P(x − ε, λ)

∂x

]
dλ .

(8.106)

Notice that two terms proportional to ∂x canceled in this expression thanks to (8.90).
Let us define an operator log+ L by dressing ε∂x

log+ L(ε∂X ) := P(ε∂X )ε∂x P(ε∂X )−1 = ε∂x − ε
∂P(ε∂X )

∂x
P(ε∂X )−1. (8.107)

Notice that log+ L is given by the sum of ε∂x and a pseudo-differential operator

− ε
∂P(ε∂X )

∂x
P(ε∂X )−1 =

∑

k≤−1

2ŵk(ε∂X )k =
∑

k≤−1

2wke
kε∂x S(ε∂X )k (8.108)

Notice that in this case we do not have a second dressing operator so we cannot
directly define a second logarithm of L(ε∂X ). To avoid this problem, we proceed
to define logL(ε∂X ) directly from the coefficients of log+ L(ε∂X ). We define the
coefficients wk for k ≥ 0 as follows (cf. (8.39), (8.40))

w0 = ε

2
Q−1 ∂Q

∂x
, w−k = e−kψ Qe−kε∂xwk Q

−1ekε∂x , (8.109)

and define

logL(ε∂X ) :=
∑

k≤−1

wke
kε∂x S(ε∂X )k +

∑

k≥0

S(ε∂X )kwk(x − ε)ekε∂x . (8.110)
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Remark 55 Note that the first part of logL(ε∂X ) coincides log+ L − ε∂x and in par-
ticular with the first part of the operator logL defined in the previous section. The
second part is reminiscent of the second part of (8.46), but the explicit equivalence of
the two expressions could not be proved.

Proposition 56 The operator P satisfies the Sato equations

ε
∂P(ε∂X )

∂qi�
= −(Ai

�)−P(ε∂X ) (8.111)

A1
� = L(ε∂X )�+1

(� + 1)! , A2
� = 2

�!L(ε∂X )�(logL(ε∂X ) − h(�)). (8.112)

Proof We just need to consider the case i = 2. For � = 0, it simply follows
from (8.108). For � > 0, we need to manipulate the right-hand side of (8.106). Notice
that

ε
∂Q−1P(ε∂X )

∂x
= ε

∂Q−1

∂x
P(ε∂X ) − 2

∑

k≤−1

Q−1wke
kε∂x S(ε∂X )k P(ε∂X ),

(8.113)

therefore

ε
∂Q−1P(ε∂X )

∂x
= −2

∑

k≥0

e−kψe−kε∂x Q−1wk S(ε∂X )−k P(ε∂X ) (8.114)

= −2
∑

k≥0

e−kψe−kε∂x Q−1wk P(ε∂X )ekε∂x (ε∂X )−k, (8.115)

which implies

ε
∂Q−1P(λ)

∂x
= −2

∑

k≥0

e−kψe−kε∂x Q−1wk P(λ)ekε∂xλ−k . (8.116)

Substituting this in equality (8.106), we get that the second term on the right-hand
side is equal to

− 2

�!
∑

k≥0

e−(k+1)ψResλ
[
λ�−k−2QP̃(x + ε, λ)(ε∂X )−1e−kε∂x ·

·Q(x − ε)−1P(x − ε, λ)
]
dλ wk(x − ε)ekε∂x , (8.117)
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which can be written using pseudo-differential operators, using the Hirota equation in
the form (8.90), obtaining

− 2
[L�

�!
∑

k≥0

S(ε∂X )kwk(x − ε)ekε∂x
]
−. (8.118)

The result is proved. ��
The Lax equations follow as usual.
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