
Letters in Mathematical Physics (2021) 111:46
https://doi.org/10.1007/s11005-021-01385-2

Weak coupling limit for Schrödinger-type operators with
degenerate kinetic energy for a large class of potentials

Jean-Claude Cuenin1 · Konstantin Merz2

Received: 1 July 2020 / Revised: 5 March 2021 / Accepted: 11 March 2021 / Published online: 7 April 2021
© The Author(s) 2021

Abstract
We improve results by Frank,Hainzl, Naboko, and Seiringer (JGeomAnal 17(4):559–
567, 2007) and Hainzl and Seiringer (Math Nachr 283(3):489–499, 2010) on the weak
coupling limit of eigenvalues for Schrödinger-type operators whose kinetic energy
vanishes on a codimension one submanifold. Themain technical innovation that allows
us to go beyond the potentials considered in Frank, Hainzl, Naboko, and Seiringer
(2007), Hainzl and Seiringer (2010) is the use of the Tomas–Stein theorem.
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1 Introduction andmain results

There has been recent interest in Schrödinger-type operators of the form

Hλ = T (−i∇) − λV in L2(Rd) , (1.1)

where the kinetic energy T (ξ) vanishes on a submanifold of codimension one, V
is a real-valued potential, and λ > 0 is a coupling constant. We are interested in
the weak coupling limit λ → 0 for potentials that decay slowly in some L p sense
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to be made precise. Operators of this type appear in many areas of mathematical
physics [5,9,10,12,15,18–20,23,31,32,35,37,43]. The goal of [20] was to generalize
the results and techniques of [12] and [19] to a large class of kinetic energies. Our goal,
complementary to [20], is to relax the conditions on the potential. To keep technicalities
to a minimum, we state our result for T (−i∇) = |� + 1|. This was one of the main
motivations to study operators of the form (1.1), due to their role in the BCS theory
of superconductivity [12,18]. As in previous works [12,20] a key role is played by
an operator VS on the unit sphere S ⊂ R

d , whose convolution kernel is given by the
Fourier transform of V . The potentials we consider here need not be in L1(Rd), but
VS may be defined as a norm limit of a regularized version (see Sect. 2.2 for details).

The potential V is assumed to belong to the amalgamated space �
d+1
2 L

d
2 , where the

first space measures global (average) decay and the second measures local regularity

(see (2.1)). We note that L
d+1
2 ∪ L

d
2 ⊆ �

d+1
2 L

d
2 by Jensen’s inequality.

Theorem 1.1 Let d ≥ 3 and Hλ = |� + 1| − λV . If V ∈ �
d+1
2 L

d
2 , then for every

eigenvalue a j
S > 0 of VS in (2.5), counting multiplicity, and every λ > 0, there is an

eigenvalue −e j (λ) < 0 of Hλ with weak coupling limit

e j (λ) = exp

(
− 1

λa j
S

(1 + o(1))

)
as λ → 0. (1.2)

For simplicity we stated the result for d ≥ 3, but it easily transpires from the proof that

it also holds in d = 2 for V ∈ �
d+1
2 L1+ε for arbitrary ε > 0.All other possible negative

eigenvalues (not corresponding to VS) satisfy e j (λ) ≤ exp(−c/λ2). The statement in
[20] about the convergence of eigenfunctions also holds for the potentials considered
here. Since the proofs are completely analogous we will not discuss them.

In previous works [12,20] it was assumed that V ∈ L1(Rd) ∩ L
d
2 (Rd). Our main

contribution is to remove the L1 assumption, allowing for potentials with slower decay.
Themain new idea is to use the Tomas–Stein theorem (see Sect. 2.2 and formulae (2.7)
and (2.8)). In view of its sharpness, our result is optimal in the sense that the exponent
(d+1)/2 in our class of admissible potentials cannot be increased, unless one imposes
further (symmetry) restrictions on V , see also the discussion below. Moreover, the use
of amalgamated spaces allows us to relax the global regularity to the local condition

V ∈ L
d
2
loc(R

d) which just suffices to guarantee that Hλ is self-adjoint.
The idea of applying the Tomas–Stein theorem and related results such as [29] to

problems of mathematical physics is not new, see, e.g., [11,27]. The validity of the
Tomas–Stein theorem crucially depends on the curvature of the underlying manifold.
A slight modification of our proof (see, e.g., [7,8]) shows that the result of Theorem 1.1
continues to hold for general Schrödinger-type operators (with a suitable modification
of the local regularity assumption) of the form (1.1) as long as the Fermi surface
S = {ξ ∈ R

d : T (ξ) = 0} is smooth and has everywhere non-vanishing Gaussian
curvature. For example, if T is elliptic at infinity of order 2d/(d+1) ≤ s < d, then the

assumption on the potential becomes V ∈ �
d+1
2 L

d
s . This is outlined in Theorem 4.2

and improves [20, Theorem 2.1]. The moment-type condition on the potential in that
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theorem is unnecessary, regardless of whether the kinetic energy is radial or not.
A straightforward generalization to the case where S has at least k non-vanishing
principal curvatures can be obtained from the results of [8,17]. In that case the global

decay assumption has to be strengthened to V ∈ �
k+2
2 L

d
s . Sharp restriction theorems

for surfaces with degenerate curvature are available in the three-dimensional case [25].
Based on the results of [4,14,42], if the potential V is radial, one might be able

to relax the assumption in Theorem 1.1 to V ∈ �d L
d
2 . This naive belief is supported

by the discussion in Appendix B, see especially Theorem B.8 where we generalize
Theorem 1.1 to spherically symmetric potentials with almost Ld decay.

For long-range potentials the weak coupling limit (1.2) does not hold in general.
Gontier, Hainzl, and Lewin [15] showed exp(−C1/

√
λ) ≤ e1(λ) ≤ exp(−C2/

√
λ)

for the Coulomb potential V = |x |−1 in d = 3.
The key estimate (3.2) is a consequence of theTomas–Stein theorem. The remainder

of the proof is standard first-order perturbation theory that is done in exactly the same
way as in [12,20]. In a similar manner—again following [19,20]—we will carry out
higher order perturbation theory in Sect. 4.4 and show how onemay in principle obtain
any order in the asymptotic expansion of e j (λ) at the cost of restricting the class of
admissible potentials. For instance, our methods allow us to derive the second order

for V ∈ L
d+1
2 −ε and some ε ∈ (0, 1/2]. For V ∈ L1 ∩ Ld/2 this was first carried

out in [19,20]. Furthermore, we will give an alternative proof for the existence of
eigenvalues of Hλ based on Riesz projections in Sect. 4.2. This approach allows us
to handle complex-valued potentials1 on the same footing as real-valued ones. The
former play a role, e.g., in the theory of resonances, but are also of independent interest.

We use the following notations: For two non-negative numbers a, b the statement
a � b means that a ≤ Cb for some universal constant C . If the estimate depends on
a parameter τ , we indicate this by writing a �τ b. The dependence on the dimension
d is always suppressed. We will assume throughout the article that the (asymptotic)
scales e and λ are positive, sufficiently small, and that λ ln(1/e) remains uniformly
bounded from above and below. The symbol o(1) stands for a constant that tends to
zero as λ (or equivalently e) tends to zero. We set 〈∇〉 = (1 − �)1/2.

2 Preliminaries

2.1 Potential class

Let {Qs}s∈Zd be a collection of axis-parallel unit cubes such that R
d = ⋃

s Qs . We
then define the norm

‖V ‖
�
d+1
2 L

d
2

:=
[∑

s

‖V ‖
d+1
2

L
d
2 (Qs )

] 2
d+1

. (2.1)

1 In this case, a transformation of statements about non-self-adjoint operators into those about a self-adjoint
operator as in the proof of Theorem 1.1 seems impossible.
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The exponent (d + 1)/2 is natural (cf. [30,34]) in view of the Tomas–Stein theorem.
This is the assertion that the Fourier transforms of L p(Rd) functions indeed belong to
L2(S) whenever p ∈ [1, κ] where κ = 2(d + 1)/(d + 3) denotes the “Tomas–Stein
exponent”. We discuss this theorem and a certain extension thereof in more detail in
the next subsection. Observe that 1/κ − 1/κ ′ = 2/(d + 1). The following lemma is a
straightforward generalization of [27, Lemma 6.1].

Lemma 2.1 Let s ≥ 2d/(d + 1) and V ∈ �
d+1
2 L

d
s . Then

‖|V |1/2〈∇〉−
(
s
2− d

d+1

)
ϕ‖L2 � ‖V ‖1/2

�
d+1
2 L

d
s
‖ϕ‖Lκ′ . (2.2)

Proof We abbreviate α = s/2 − d/(d + 1) ≥ 0 and first note that, by duality, the
assertion is equivalent to

‖〈∇〉−α|V |1/2ϕ‖Lκ � ‖V ‖1/2
�
d+1
2 L

d
s
‖ϕ‖L2 .

If α = 0, the claim follows from Hölder’s inequality, d/s = (d + 1)/2 in this case,
and �pL p = L p for all p ∈ [1,∞]. On the other hand, if α ≥ d we use the fact
that 〈∇〉−γ is L p bounded for all p ∈ (1,∞) and γ ≥ 0 (by the Hörmander–Mihlin
multiplier theorem, cf. [16, Theorem 6.2.7]). Thus we shall show

‖|V |1/2〈∇〉−αϕ‖L2 � ‖V ‖1/2
�
d+1
2 L

d
s
‖ϕ‖Lκ′

for α = s/2 − d/(d + 1) with s ≥ 2d/(d + 1) such that α ∈ (0, d). Let {Qs}s∈Zd be
the above family of axis-parallel unit cubes tiling R

d , i.e., for s ∈ Z
d let Qs = {x ∈

R
d : max j=1,...,d |x j − s j | ≤ 1/2}. Next, recall that for α ∈ (0, d), we have for any

N ∈ N0

|〈∇〉−αϕ(x)| �α,N |ϕ| ∗ Wα(x)

where

Wα(x) = |x |−(d−α)1{|x |≤1} + |x |−N1{|x |≥1} . (2.3)

(For a proof of these facts, see, e.g., [38, p. 132].) Abbreviating further q0 = d/s, we
obtain

‖|V |1/2〈∇〉−αϕ‖2L2 �α,N

∑
s∈Zd

∫
Qs

|V (x)|[(|ϕ| ∗ Wα)(x)]2 dx

≤
∑
s∈Zd

‖V ‖Lq0 (Qs ) · ‖|ϕ| ∗ Wα‖2
L2q′

0 (Qs )

≤
∑
s∈Zd

‖V ‖Lq0 (Qs )

⎡
⎣ ∑
s′∈Zd

‖(1Qs′ |ϕ|) ∗ Wα‖
L2q′

0 (Qs )

⎤
⎦
2
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�
∑
s∈Zd

‖V ‖Lq0 (Qs )

⎡
⎣ ∑
s′∈Zd

‖ϕ‖Lκ′
(Qs′ )

(1 + |s − s′|)−N

⎤
⎦
2

�N

⎡
⎣∑
s∈Zd

‖V ‖(d+1)/2
Lq0 (Qs )

⎤
⎦
2/(d+1)

‖ϕ‖2
Lκ′

where we used Hölder’s inequality in the second line, the Hardy–Littlewood–Sobolev
inequality in the penultimate line, and Hölder’s and Young’s inequality in the last line.
This concludes the proof. ��

2.2 Definition ofVS

As observed in [31], the weak coupling limit of e j (λ) is determined by the behavior
of the potential on the zero energy surface of the kinetic energy, i.e., on the unit sphere
S. We denote the Lebesgue measure on S by dω. For V ∈ L1(Rd) we consider the
self-adjoint operator VS : L2(S) → L2(S), defined by

(VSu)(ξ) =
∫
S
V̂ (ξ − η)u(η) dω(η), u ∈ L2(S), (2.4)

see, e.g., [12, Formula (2.2)]. Here we have absorbed the prefactors in the definition
of the Fourier transform, i.e., we use the convention

V̂ (ξ) =
∫
Rd

e−2π ix ·ξV (x)dx .

Our definition of VS differs from that of [12,20] by a factor of 2; this is reflected in
the formula (1.2). Since V ∈ L1(Rd), its Fourier transform is a bounded continuous
function by the Riemann–Lebesgue lemma and is therefore defined pointwise. The
Tomas–Stein theorem allows us to extend the definition of VS to a larger potential
class. To this end we observe that the operator in (2.4) can be written as

VS = FSVF∗
S , (2.5)

where FS : S(Rd) → L2(S), ϕ �→ ϕ̂|S is the Fourier restriction operator (here S is
the Schwartz space on R

d ). Its adjoint, the Fourier extension operator F∗
S : L2(S) →

S ′(Rd), is given by

(F∗
Su)(x) =

∫
S
u(ξ)e2π i x ·ξ dω(ξ) . (2.6)

A fundamental question in harmonic analysis is to find optimal sufficient conditions
for κ such that FS is an Lκ → Lq bounded operator. By the Hausdorff–Young
inequality, the case κ = 1 is trivial. On the other hand, the Knapp example (see, e.g.,
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[40, p. 387–388]) and the decay of the Fourier transform of the surface measure [21]
show that κ < 2d/(d + 1) and (d + 1)/κ ′ ≤ (d − 1)/q are necessary conditions. The
content of the Tomas–Stein theorem (unpublished, but see, e.g., Stein [39, Theorem
3] and Tomas [41]) is that, for q = 2, these conditions are indeed also sufficient.
Concretely, the estimate

‖FSϕ‖L2(S) � ‖ϕ‖L p(Rd ) , p ∈ [1, κ] , κ = 2(d + 1)/(d + 3) (2.7)

holds for all d ≥ 2,whenever S is a smooth and compact hypersurfacewith everywhere
nonzero Gaussian curvature. In particular, this estimate is applicable to the Fermi
surfaces that we consider later in Sect. 4.1. Moreover, by Hölder’s inequality it follows
that |V |1/2F∗

S is an L2(S) → L2(Rd) bounded operator, whenever V ∈ Lq(Rd) and
q ∈ [1, (d + 1)/2]. In this case, VS is of course L2(S) bounded as well with

‖VS‖ � ‖V ‖Lq , q ∈ [1, (d + 1)/2] . (2.8)

In the following, we will often refer to this estimate as the Tomas–Stein theorem.
Recently, Frank and Sabin [13, Theorem 2] extended (2.8) and showed

‖W1F∗
SFSW2‖

S
(d−1)q
d−q

�q ‖W1‖L2q‖W2‖L2q , W1,W2∈ L2q(Rd), q∈[1, (d+1)/2]
(2.9)

where Sq(L2) denotes the q-th Schatten space over L2. Observe that the Schatten
exponent is monotonously increasing in q. In particular, taking q = (d + 1)/2, W1 =
|V |1/2, and W2 = V 1/2 where V 1/2 = |V |1/2 sgn(V ) with sgn(V (x)) = 1 whenever
V (x) = 0, shows that VS belongs to Sd+1(L2(S)) with

‖VS‖Sd+1 � ‖V ‖L(d+1)/2 . (2.10)

We will now extend the definition of (2.5) to incorporate potentials in the larger
class �(d+1)/2Ld/2 that appears in our main result.

Proposition 2.2 Let V ∈ �
d+1
2 L

d
2 . Then (2.5) defines a bounded operator on L2(S).

Moreover, if (Vn)n is a sequence of Schwartz functions converging to V in �
d+1
2 L

d
2

and V(n)
S are the corresponding operators in (2.4), then VS is the norm limit of the

V(n)
S .

Proof We first assume that V ∈ L
d+1
2 (Rd). It follows from the above discussion that

VS is the norm limit of the V(n)
S . To extend the definition to all V ∈ �

d+1
2 L

d
2 , we prove

‖FSVF∗
S‖ � ‖V ‖

�
d+1
2 L

d
2
. (2.11)

To this end we use the following observation. For u ∈ L2(S) and ξ ∈ S we write

(V(n)
S u)(ξ) =

∫
S
(V̂nϕ)(ξ − η)u(η) dω(η), (2.12)
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where ϕ is a bump function that equals 1 in B(0, 2). This has the same effect as
replacing Vn by ϕ∨ ∗ Vn . (Here, ϕ∨(x) := ∫

Rd e2π i x ·ξ ϕ(ξ) dξ denotes the inverse
Fourier transform.) Since (2.11) is equivalent to the bound

‖√|V |F∗
SFS

√
V ‖ � ‖V ‖

�
d+1
2 L

d
2
, (2.13)

where V 1/2 = |V |1/2 sgn(V ) and sgn(V ) is a unitary multiplication operator, we may
assume without loss of generality that V ≥ 0. Passing to a subsequence, we may
also assume that (Vn)n converges to V almost everywhere. By Fatou’s lemma, for any
u ∈ L2(S),

〈F∗
Su, VF∗

Su〉 ≤ lim inf
n→∞ 〈F∗

Su, VnF∗
Su〉 ≤ lim inf

n→∞ ‖(ϕ∨ ∗ Vn)(F
∗
S u)‖Lκ ‖u‖2

� ‖V ‖
�
d+1
2 L

d
2
‖u‖22 ,

(2.14)

where the penultimate inequality follows from the Tomas–Stein theorem (2.8) and the
last inequality from the bound

‖(ϕ∨ ∗ V )(F∗
S u)‖Lκ ≤ ‖ϕ∨ ∗ V ‖

L
d+1
2

‖F∗
S u‖Lκ′ �ϕ ‖V ‖

�
d+1
2 L

d
2
‖u‖L2 (2.15)

whose proof is similar to that of Lemma 2.1 since the convolution kernel of ϕ∨ is a
Schwartz function, i.e., in particular |ϕ∨(x)| �N (1 + |x |)−N for any N ∈ N. More
precisely, for the same family {Qs}s∈Zd of axis-parallel unit cubes tiling R

d that we
used in the proof of Lemma 2.1, we have for any N > 0,

‖ϕ∨ ∗ V ‖
d+1
2

d+1
2

= ‖
∑
s

1Qs (ϕ
∨ ∗ V )‖

d+1
2

d+1
2

=
∑
s

‖ϕ∨ ∗
(∑

s′
V 1Qs′

)
‖

d+1
2

L
d+1
2 (Qs )

≤
∑
s

[∑
s′

‖ϕ∨ ∗ (V 1Qs′ )‖L d+1
2 (Qs )

] d+1
2

�N

∑
s

[∑
s′

(1 + |s − s′|)−N‖V ‖
L

d
2 (Qs′ )

] d+1
2

�N ‖V ‖
d+1
2

�
d+1
2 L

d
2

(2.16)

where we used Young’s inequality in the last two estimates. This concludes the proof.
��

2.3 Compactness ofVS

We show that VS belongs to a certain Schatten spaceSp(L2(S)) and is thus a compact
operator. In particular, the spectrum ofVS is compact and countable with accumulation
point 0. The nonzero elements are eigenvalues of finite multiplicity. That 0 is in the
spectrum follows from the fact that L2(S) is infinite-dimensional.
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Lemma 2.3 Let V ∈ �
d+1
2 L

d
2 . Then VS ∈ Sd+1(L2(S)) and

‖VS‖Sd+1 � ‖V ‖
�
d+1
2 L

d
2
.

Proof We recycle the proof of Proposition 2.2 and suppose V ≥ 0 without loss of
generality again. We apply the Tomas–Stein theorem (2.10) for trace ideals with V
replaced by ϕ∨ ∗ V where ϕ is the same bump function as in that proof. Note that, by
(2.12), this replacement does not affect the value of ‖VS‖Sd+1 since the eigenvalues
remain the same. Thus, by (2.16), ‖VS‖Sd+1 � ‖ϕ∨ ∗ V ‖L(d+1)/2 � ‖V ‖�(d+1)/2Ld/2 . ��

2.4 Birman–Schwinger operator

As in [12,20], our proof is based on the well-known Birman–Schwinger principle.
This is the assertion that, if

BS(e) := √|V |(T + e)−1
√
V (2.17)

with e > 0, then

−e ∈ spec (Hλ) ⇐⇒ 1

λ
∈ spec (BS(e)) . (2.18)

Here
√
V := sgn(V )

√|V | and T = |� + 1|. Thus, (1.2) would follow from

ln(1/e)a j
S(1 + o(1)) ∈ spec(BS(e)) (2.19)

for every eigenvalue a j
S > 0 of VS . We note that since V and the symbol of (T +

e)−1 both vanish at infinity, BS(e) is a compact operator, see, e.g., [36, Chapter 4].
Moreover, we have the following operator norm bound.

Lemma 2.4 Let V ∈ �
d+1
2 L

d
2 . Then

‖BS(e)‖ � ln(1/e)‖V ‖
�
d+1
2 L

d
2

for all e ∈ (0, 1/2).

Proof The proof follows from (3.3) and (3.7) below. ��

3 Proof of Theorem 1.1

3.1 Outline of the proof

We briefly sketch the strategy of the proof of (2.19). We first split the Birman–
Schwinger operator into a sum of high and low energy pieces

BS(e) = BSlow(e) + BShigh(e).
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More precisely, we fix χ ∈ C∞
c (Rd) such that 0 ≤ χ ≤ 1 and χ ≡ 1 on the unit ball.

We also fix 0 < τ < 1 and set

BSlow(e) = √|V |χ(T /τ)(T + e)−1
√
V .

As we will see in (3.3), the high energy piece is harmless. The low energy piece is
split further into a singular and a regular part,

BSlow(e) = BSlowsing(e) + BSlowreg (e),

where the singular part is defined as

BSlowsing(e) = ln (1 + τ/e)
√|V |F∗

SFS
√
V . (3.1)

Note that
√|V |F∗

SFS
√
V is isospectral toVS . As alreadymentioned in the introduction

and the previous section, Theorem 1.1 would follow from standard perturbation theory
if we could show the key bound

λ‖BSlowreg (e)‖ = o(1) (3.2)

for V ∈ �
d+1
2 L

d
2 , as long as λ ln(1/e) remains uniformly bounded from above and

below.

3.2 Bound for BShigh(e)

Here we prove that

‖BShigh(e)‖ �τ ‖V ‖
�
d+1
2 L

d
2

(3.3)

Proof By a trivial L2-bound we have

‖BShigh(e)‖ �τ ‖|V |1/2〈∇〉−1‖2 . (3.4)

The T T ∗ version of Lemma 2.1 for s = 2,

‖〈∇〉− 1
d+1 V 〈∇〉− 1

d+1 ϕ‖Lκ � ‖V ‖
�
d+1
2 L

d
2
‖ϕ‖Lκ′ ,

together with Sobolev embedding H
d

d+1 (Rd) ⊂ Lκ ′
(Rd) yields

‖〈∇〉−1V 〈∇〉−1ϕ‖L2 � ‖V ‖
�
d+1
2 L

d
2
‖ϕ‖L2 .

Combining the last inequality with (3.4) yields the claim. ��
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3.3 Bound for BSlow(e)

The Fermi surface of T at energy t ∈ (0, τ ] consists of two connected components
S±
t = (1 ± t)1/2S. The spectral measure ET of T is given by

dET (t) =
∑
±

F∗
S±
t
FS±

t

dt

2
√
1 ± t

. (3.5)

in the sense of Schwartz kernels, see, e.g., [24, Chapter XIV]. By the spectral theorem,
(3.5) implies that

BSlow(e) =
∑
±

∫ τ

0

√|V |F∗
S±
t
FS±

t

√
V

t + e

dt

2
√
1 ± t

. (3.6)

Together with the proof of Lemma 2.3 this yields

‖BSlow(e)‖Sd+1 �τ ln(1/e)‖V ‖
�
d+1
2 L

d
2
. (3.7)

3.4 Proof of the key bound (3.2)

From (3.6) and the definition of BSlowsing(e) (see (3.1)) we infer that

BSlowreg (e) =
∑
±

∫ τ

0

√|V |(F∗
S±
t
FS±

t
− √

1 ± t F∗
SFS)

√
V

t + e

dt

2
√
1 ± t

. (3.8)

If V were a strictly positive Schwartz function, then by the Sobolev trace theorem,
the map t �→ √

VF∗
S±
t
FS±

t

√
V would be Lipschitz continuous in operator norm, see,

e.g., [44, Chapter 1, Proposition 6.1], [33, Theorem IX.40]. Hence, we would obtain
a stronger bound than (3.2) in this case. Using (3.5) and observing that

F∗
μSFμS(x, y) = μd−1

∫
S
e2π iμ(x−y)·ξdω(ξ)

for μ > 0, it is not hard to see that Lipschitz continuity even holds in the Hilbert–
Schmidt norm. Since S2 ⊆ Sd+1 we conclude that, if V were Schwartz, we would
get

λ‖BSlowreg (e)‖Sd+1 = o(1). (3.9)

We now prove that (3.9) (and hence also (3.2)) holds for the potentials considered in
Theorem 1.1.

Lemma 3.1 If V ∈ �
d+1
2 L

d
2 , then (3.9)holds asλ → 0 andλ ln(1/e) remains bounded.
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Proof Without loss of generality we may again assume V ≥ 0. Let V 1/2
n be strictly

positive Schwartz functions converging to V 1/2 in �d+1Ld . We use that the bound
(2.13) is locally uniform in t and can be upgraded to a Schatten bound as in Lemma 2.3.
That is, for fixed τ , we have the bound

sup
t∈[0,τ ]

‖√VF∗
StFSt

√
V ‖Sd+1 �τ ‖V ‖

�
d+1
2 L

d
2
. (3.10)

Since we have already proved (3.9) for such Vn , we may thus estimate

λ‖BSlowreg (e)‖Sd+1 �τ λ ln(1/e)‖√V − √
Vn‖�d+1Ld‖√V ‖�d+1Ld + o(1) .

Since λ ln(1/e) is bounded, (3.9) follows upon letting n → ∞. ��

4 Further results

The purpose of this subsection is fourfold. First we outline how our main result,
Theorem 1.1, can be generalized to treat operators whose kinetic energy vanishes
on other smooth, curved surfaces. Second, we provide an alternative proof (to that
of [12,20]), based on Riesz projections, that weakly coupled bound states of Hλ =
|� + 1| − λV actually exist, provided VS has at least one positive eigenvalue. This
follows from standard perturbation theory [28, Sections IV.3.4-5], but the argument
is robust enough to handle complex-valued potentials. In fact, we do not know how
the arguments in [12,20] could be adapted to treat such potentials as the Birman–
Schwinger operator cannot be transformed to a self-adjoint operator anymore. Third,
we give two examples of (real-valued) potential classes for which the operator VS

does have at least one positive eigenvalue. In both examples the potentials are neither
assumed to be integrable, nor positive. Fourth, we derive the second order in the

asymptotic expansion of e j (λ) in Theorem 4.4 for V ∈ L
d+1
2 −ε and ε ∈ (0, 1/2].

4.1 Generalization to other kinetic energies

As the Tomas–Stein theorem holds for arbitrary compact, smooth, curved surfaces (cf.
[39, Theorem 3] and [13, Theorem 2]) it is not surprising that Theorem 1.1 continues
to hold for more general symbols T (ξ). In what follows, we assume that T (ξ) satisfies
the geometric and analytic assumptions stated in [20]—that we recall in a moment—
and a certain curvature assumption. First, we assume that T (ξ) attains its minimum,
which we set to zero for convenience, on a manifold

S = {ξ ∈ R
d : T (ξ) = 0} (4.1)

of codimension one. Next, we assume that S consists of finitely many connected and
compact components and that there exists a δ > 0 and a compact neighborhood
� ⊆ R

d of S containing S with the property that the distance of any point in S to the
complement of � is at least δ.
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We now make some analytic assumptions on the symbol T (ξ). We assume that

1. there exists a measurable, locally bounded function P ∈ C∞(�) such that T (ξ) =
|P(ξ)|,

2. |∇P(ξ)| > 0 for all ξ ∈ �, and
3. there exist constants C1,C2 > 0 and s ∈ [2d/(d + 1), d) such that T (ξ) ≥

C1|ξ |s + C2 for ξ ∈ R
d \ �.

Since S is the zero set of the function P ∈ C∞(�) and ∇P �= 0, it is a compact
C∞ submanifold of codimension one. Finally, we also assume that S has everywhere
nonzero Gaussian curvature2. Note that this assumption was not needed in [20].

Next, we redefine the singular part of the Birman–Schwinger operator (2.4), namely

(VSu)(ξ) =
∫
S
V̂ (ξ − η)u(η) dσS(η) , u ∈ L2(S, dσS) . (4.2)

Here, dσS(ξ) := |∇P(ξ)|−1dω(ξ)wheredω denotes the euclidean (Lebesgue) surface
measure on S. In particular, the elementary volume dξ in R

d satisfies dξ = dr dσS(ξ)

where dr is the Lebesgue measure on R. In what follows, we abbreviate the notation
and write L2(S) instead of L2(S, dσS).

The new definition (4.2) of VS now does not differ anymore from that of [12,20]
by a factor of 2. Similarly as before, (4.2) can be written as

VS = FSVF∗
S , (4.3)

where FS : S(Rd) → L2(S), ϕ �→ ϕ̂|S is the Fourier restriction operator and its
adjoint, the Fourier extension operator F∗

S : L2(S) → S ′(Rd), is now given by

(F∗
Su)(x) =

∫
S
u(ξ)e2π i x ·ξ dσS(ξ) . (4.4)

Recall that the Tomas–Stein theorem asserts that FS is a L p(Rd) → L2(S) bounded
operator for all p ∈ [1, κ]. In particular, the extension to trace ideals [13, Theorem 2]
continues to hold, i.e., ‖VS‖Sd+1 � ‖V ‖L(d+1)/2 . By Sobolev embedding and s < d,
the operator T (−i∇) − λV can be meaningfully defined if V ∈ Ld/s(Rd). By the
assumption s ≥ 2d/(d + 1), we have (d + 1)/2 ≥ d/s.

We will now outline the necessary changes in the proof of Theorem 1.1 for T

as above and V ∈ �
d+1
2 L

d
s . First, the corresponding analogs of Proposition 2.2 and

Lemma 2.3 follow immediately from the Tomas–Stein theorem that we just discussed,
and the analog of (2.16) (using (d + 1)/2 ≥ d/s).

Next, the splitting of BS(e) is the same as in Sect. 3. There we have the analogous
bound (3.3), i.e., ‖BShigh(e)‖ �τ ‖V ‖�(d+1)/2Ld/s by the same arguments of that proof
(cf. Lemma 2.1). Next the Fermi surface of T at energy t ∈ (0, τ ] again consists of

2 The precise definition of Gaussian curvature can be found, e.g., in [39, p. 321-322].
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two connected components S±
t . Using the above definition of FS±

t
, we observe that

the spectral measure ET of T is now given by

dET (t) =
∑
±

F∗
S±
t
FS±

t
dt .

Thus, by the spectral theorem,

BSlow(e) =
∑
±

∫ τ

0

√|V |F∗
S±
t
FS±

t

√
V

t + e
dt

and by the proof of the analog of Lemma 2.3 (i.e., the Tomas–Stein theorem and the
analog of (2.16)), we again obtain ‖BSlow(e)‖Sd+1 �τ ln(1/e)‖V ‖�(d+1)/2Ld/s . Thus,
we are left to prove the analog of the key bound (3.2). But this just follows from the
proof of Lemma 3.1 and the fact that the Tomas–Stein estimate (3.10) is valid locally
uniform in t for surfaces St that we discuss here. In turn, by [2, Theorem 1.1], this is
a consequence of the following assertion.

Proposition 4.1 Assume T (ξ) satisfies the assumptions stated at the beginning of this

section. Then for fixed τ > 0, one has supt∈[0,τ ] |(dσS±
t
)∨(x)| �τ (1 + |x |)− d−1

2 .

Proof For t = 0 this estimate is well known, see, e.g., [39, Theorem 1]. Now let
t ∈ (0, τ ]. First note that St = S+

t ∪ S−
t where S+

t , S−
t lie outside, respectively, inside

S. In the following we treat S+
t and abuse notation by writing St ≡ S+

t . The arguments
for S−

t are completely analogous. We will now express dσSt in terms of dσS . To that
end we follow [44, Chapter 2, Section 1]. Let ψ(t) : S → St be the diffeomorphism3

defined by the formula

ψ(t)ζ = ξ(t) , ζ ∈ S

where ξ(t) solves the differential equation

{
dξ(t)
dt = j(ξ(t))

ξ(0) = ζ ∈ S

with

j(ξ) := ∇P(ξ)

|∇P(ξ)|2 ∈ C∞(P−1[0, t]) ,

i.e., j(ξ(t)) is the vector field generating the flow ξ(t) along the normals of St . Next,

τ(t, ξ) = dσSt (ψ(t)ξ)

dσS(ξ)
, ξ ∈ S

3 Its construction is carried out in [44, p. 112-113] and requires actually only P ∈ C2. However, we need
the smoothness of P to obtain the claimed decay of (dσSt )

∨ by means of a stationary phase argument.
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is the Radon–Nikodým derivative of the preimage of the measure dσSt under the
mapping ψ(t) with respect to the measure dσS . By [44, Chapter 2, Lemma 1.9] it is
given by

τ(t, ξ) = exp

(∫ t

0
(div j)(ψ(μ)ξ) dμ

)
, ξ ∈ S .

Thus, we have

(dσSt )
∨(x) =

∫
S
dσS(ξ) e2π i x ·ψ(t)ξ exp

(∫ t

0
div j(ψ(μ)ξ) dμ

)

≡
∫
S
dσS(ξ) e2π i x ·ξ Ft,x (ξ)

(4.5)

with

Ft,x (ξ) := e2π i x ·(ψ(t)ξ−ξ) exp

(∫ t

0
div j(ψ(μ)ξ) dμ

)

which depends smoothly on ξ . Thus, we are left to show that the absolute value of the
right side of (4.5) is bounded by Cτ (1+ |x |)−(d−1)/2 for all t ∈ (0, τ ]. Decomposing
Ft,x (ξ) on S smoothly into (sufficiently small) compactly supported functions, say
{Ft,x (ξ)χκ(ξ)}Kκ=1 for a finite, smooth partition of unity {χκ}Kκ=1 subordinate to S,
shows that there is for every x ∈ R

d \ {0}, at most one point ξ(x) ∈ S with a normal
pointing in the direction of x . Then, by the stationary phase method, Hlawka [22]
and Herz [21] (see also Stein [40, p. 360]) already showed that the leading order in
the asymptotic expansion (as |x | → ∞) of (4.5) with the cut off amplitude Ft,xχκ is
given by

|x |−(d−1)/2Ft,x (ξ(x))χκ(ξ(x))|K (ξ(x))|−1/2eiπn/4+2π i x ·ξ(x) .

Here, |K (ξ)| is the absolute value of the Gaussian curvature of S at ξ ∈ S which
is, by assumption, strictly bigger than zero, and n is the excess of the number of
positive curvatures over the number of negative curvatures in the direction x . But
since |Ft,x (ξ)| �τ 1 for all t ∈ (0, τ ], x ∈ R

d , and ξ ∈ S, this concludes the proof. ��
We summarize the findings of this subsection as follows.

Theorem 4.2 Let d ≥ 3, s ∈ [2d/(d + 1), d), and assume T (ξ) satisfies the assump-

tions stated at the beginning of this subsection. If V ∈ �
d+1
2 L

d
s , then for every

eigenvalue a j
S > 0 of VS in (4.3), counting multiplicity, and every λ > 0, there is

an eigenvalue −e j (λ) of T (−i∇) − λV with weak coupling limit

e j (λ) = exp

(
− 1

2λa j
S

(1 + o(1))

)
as λ → 0 .
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4.2 Alternative proof and complex-valued potentials

We first consider the case where V is real-valued and then indicate how to modify the
proof in the complex-valued case. For simplicity, we even assume V ≥ 0 so that the
Birman–Schwinger operator is automatically self-adjoint. The case where V does not
have a sign could also be treated by the methods of [12], but here it follows from the
general case considered later.

For V ≥ 0 we have, by self-adjointness,

‖(BSlowsing(e) − z)−1‖ ≤ 1/min
j

|z − z j (e)|, (4.6)

where z j (e) = ln (1 + τ/e) a j
S are the eigenvalues of BSlowsing(e). Fixing an integer i

and a range for e such that λ ln(1/e) is bounded by an absolute constant from above
and below, it follows that if γ is a circle of radius c ln(1/e) around the eigenvalue
zi (e), with c a sufficiently small positive number, then there are no other eigenvalues
in the interior of γ , and

max
z∈γ

‖(BSlowsing(ei (λ)) − z)−1‖ ≤ 1/(c ln(1/e)).

Hence, by (3.3) and (3.2), if we set C(z) = (BSlowsing(e) − z)−1(BS(e) − BSlowsing(e)),
then

r−1 := max
z∈γ

‖C(z)‖ ≤ c−1o(1), (4.7)

and this is< 1 for λ small enough. It follows from aNeumann series argument that γ is
contained in the resolvent set of the family T (κ) = BSlowsing(e)+κ(BS(e)− BSlowsing(e))

for |κ| < r and that (T (κ) − z)−1 is continuous in |κ| < r , z ∈ γ . This implies that
the Riesz projection

P(κ) = − 1

2π i

∮
γ

(T (κ) − z)−1dz

has constant rank for |κ| < r . In particular, rank P(0) = rank P(1), which means that
BSlowsing(e) and BS(e) have the same number of eigenvalues in the interior of γ . Hence
BS(e) has exactly one (real) eigenvalue wi (e) at a distance ≤ c ln(1/e) from zi (e).
Since c can be chosen arbitrarily small, it follows that wi (e) = zi (e)(1 + o(1)). By
the Birman–Schwinger principle this implies (1.2).

We now drop the assumption that V is real-valued. By inspection of the proof, it
is evident that Lemma 2.4 and (3.9) continue to hold for complex-valued V and e if
ln(1/e) is replaced by its absolute value. We assume here that e ∈ C \ (−∞, 0] and
take the branch of the logarithm that agrees with the real logarithm on the positive
real line. We also replace our standing assumption by requiring that |e|, λ > 0 are
sufficiently small and λ| ln(e)| remains uniformly bounded from above and below.
The additional difficulty in the present case is that the bound for the inverse (4.6) fails
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in general. We use the following replacement, which is a consequence of [3, Theorem
4.1],

‖(BSlowsing(e) − z)−1‖ ≤ 1

d(e; z) exp
(
a

‖BSlowsing(e)‖d+1
Sd+1

d(e; z)d+1 + b

)
,

where d(e; z) = dist(z, spec(BSlowsing(e))) and a, b > 0. Note that ‖BSlowsing(e)‖Sd+1 �
| ln(1/e)|‖V ‖

�
d+1
2 L

d
2
by Lemma 2.3. Thus, for a similar circle γ of radius c| ln(1/e)|

around zi (e), we find that (4.7) holds with an additional factor of exp(a/cd+1 + b) on
the right, and hence we conclude rank P(0) = rank P(1) as before.

4.3 Existence of positive eigenvalues ofVS

It is well known that operators of the form (1.1) have at least one negative eigenvalue
if either V ∈ L1(Rd) and

∫
V > 0 or if V ≥ 0 and not almost everywhere vanishing

[12,20,23,31]. In the latter case there are even infinitelymany negative eigenvalues [20,
Corollary 2.2]. By Theorem 1.1, Hλ has at least as many negative eigenvalues as−VS .
We will therefore restrict our attention to this operator. By a slight modification of the
following two examples (where the trial state is an approximation of the identity in
Fourier space to a thickened sphere), this result may also be obtainedwithout reference
to Theorem 1.1.

Since F∗
Sϕ = (ϕdω)∨ it follows from (2.5) that

〈ϕ,VSϕ〉 =
∫
Rd

V (x)|(ϕdω)∨(x)|2dx, ϕ ∈ L2(S). (4.8)

If ϕ is a radial function, then so is (ϕdω)∨. In particular, for ϕ ≡ 1 we get

〈ϕ,VSϕ〉 =
∫ ∞

0
dr rd−1|(dω)∨(r)|2

(∫
S
V (rω)dω

)
.

Standard stationary phase computations show that (dω)∨(r) = O((1 + r)−(d−1)/2)

and that it oscillates on the unit scale; in fact, it is proportional to the Bessel function
Jd−2

2
, see, e.g., [16, Appendix B.5]. The integral is convergent if the spherical average

of V is in L1(R+,min{rd−1, 1}dr). This condition is satisfied, e.g., if V is short range,
|V (x)| � (1+|x |)−1−ε for some ε > 0. If the integral is positive, thenVS has a positive
eigenvalue.

For the second example we take ϕ as a normalized bump function adapted to a
spherical cap of diameter R−1/2 with R > 1; this is called a Knapp example in
the context of Fourier restriction theory. Then (ϕdω)∨ will be a Schwartz function
concentrated on a tube T = TR of length R and radius R1/2, centered at the origin.
More precisely, let

ϕ(ξ) = R
d−1
4 χ̂ (R(ξ1 − 1), R1/2ξ ′) (4.9)
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where ξ1 = √
1 − |ξ ′|2 and χ̂ is a bump function. We write ξ = (ξ1, ξ

′) ∈ R × R
d−1

and similarly for x here. We may choose χ ≥ 0 and such that χ ≥ 1B(0,1). Indeed,
if g is an even bump function, then we can take χ̂(ξ) = Ad B(g ∗ g)(Aξ) for some
A > 1, B > 0. Then the L2(S)-norm of ϕ is bounded from above and below uniformly
in R and

(ϕdω)∨(x) = R− d−1
4 e2π i x1χT (x),

where χT is a Schwartz function concentrated on

T = {x ∈ R
d : |x1| ≤ R, |x ′| ≤ R1/2}, (4.10)

i.e., a tube pointing in the x1 direction. We can also take linear combinations of the
wave packets (4.9) to obtain real-valued trial functions. Indeed, choosing χ symmetric
and setting ψ(ξ) = [ϕ(ξ1, ξ

′) + ϕ(−ξ1, ξ
′)]/2, we get

(ψdω)∨(x) = R− d−1
4 cos(2πx1)χT (x),

with a slightly different χT . Without loss of generality we may assume that χT (x) ≥ 1
for x ∈ T . By (4.8), if V ∈ L1

loc(R
d) and of tempered growth, then

〈ψ,VSψ〉 = R− d−1
2

∫
Rd

V (x) cos2(2πx1)|χT (x)|2dx .

In particular, this holds for V ∈ �
d+1
2 L

d
2 , which we assume from now on. By Hölder

and the rapid decay of χT away from T , we have that, for any M, N > 1,

|
∫
Rd\MT

V (x)|χT (x)|2dx | ≤ ‖1Rd\MTχ2
T ‖

�
d+1
d−1 L

d
d−2

‖V ‖
�
d+1
2 L

d
2

�N M−N R
d−1
2 ‖V ‖

�
d+1
2 L

d
2
.

It follows that for V ∈ �
d+1
2 L

d
2 ,

〈ψ,VSψ〉 ≥ R− d−1
2

∫
MT

V (x) cos2(2πx1)|χT (x)|2dx − CNM
−N‖V ‖

�
d+1
2 L

d
2
.

(4.11)

If the first term on the right is positive and bounded from below by, say, a fixed power
of M−1, then this expression is positive for large R. As a concrete example, consider
the potential

V (x) = cos(4πx1)

(1 + |x1| + |x ′|2)1+ε
,
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with ε > 0 (see also [6,14,26] for related examples). A straightforward calculation

shows that V ∈ �
d+1
2 L

d
2 . Since the average of cos2(2πx1) cos(4πx1) over a full period

of cos(4πx1) is always� 1 and |χT |2 is approximately constant on the unit scale, with
≥ 1 on T , a computation shows that the first term on the right side of (4.11) is bounded
from below by MR−ε. Taking M = Rε yields positivity of the whole expression for
sufficiently large R. Therefore, −VS , and hence Hλ, has a negative eigenvalue. This
example has a straightforward generalization tomore than one eigenvalue. Let (κ j )

K
j=1

be mutually disjoint spherical caps of diameter R−1/2 and let ϕ j be normalized bump

functions adapted to κ j , similar to (4.9). Note that K � R− d−1
2 since the caps are

disjoint. If the condition following (4.11) is satisfied for all tubes Tj corresponding to
the caps κ j (these are dual to the caps and centered at the origin), then the expression
(4.11) is positive (for large R) for everyϕ j . Since theϕ j are orthogonal (by Plancherel),
it follows that VS has at least K positive eigenvalues.

4.4 Higher orders in the eigenvalue asymptotics

Hainzl and Seiringer carried out the higher order asymptotic expansion of the eigen-
values e j (λ) in [19, Formula (16)] and [20, Theorem 2.7] under the assumption that
V has an L1 tail. Similarly as in Theorems 1.1 and 4.2, the purpose of this section is to
show that their findings in fact hold for potentials decaying substantially slower. For
the sake of simplicity and concreteness, we again only consider T = |� + 1| here.

Let BSreg(e) = BS(e) − BSlowsing(e) and recall that if 1 + λBSreg(e) is invertible,
then the Birman–Schwinger principle (2.18) asserts that Hλ has a negative eigenvalue
−e if and only if the operator

λ

1 + λBSreg(e)
BSlowsing(e) (4.12)

has an eigenvalue −1. The following is a simple but useful observation which follows
from a Neumann series argument and the fact that (4.12) is isospectral to

ln(1 + τ/e)FSV
1/2 λ

1 + λBSreg(e)
|V |1/2F∗

S .

Lemma 4.3 Let e, λ > 0 and suppose V is real-valued and such that

λ‖BSreg(e)‖ < 1 . (4.13)

Then Hλ has an eigenvalue −e if and only if

λ ln(1 + τ/e)FSV
1/2

⎛
⎝∑

n≥0

(−1)n(λBSreg(e))
n

⎞
⎠ |V |1/2F∗

S (4.14)

has an eigenvalue −1.
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Recall that assumption (4.13) is satisfied forV ∈ �
d+1
2 L

d
2 (cf. (3.3) andLemma3.1),

i.e., in particular for V ∈ L
d+1
2 −ε with ε ∈ (0, 1/2]. In fact, combining Lemma 3.1

for BSlowreg (e) and the Seiler–Simon inequality (cf. [36, Theorem 4.1]) for BShigh(e)

shows4

‖BSreg(e)‖
S

(d−1)((d+1)/2−ε)
(d−1)/2+ε

≤ ‖BSlowreg (e)‖
S

(d−1)((d+1)/2−ε)
(d−1)/2+ε

+‖BShigh(e)‖
S

(d−1)((d+1)/2−ε)
(d−1)/2+ε

= oV (ln(1/e)) , V ∈ L
d+1
2 −ε , ε ∈ (0, 1/2) .

(4.15)

We will now use (4.14) to compute the eigenvalue asymptotics of e j (λ) to second
order. To that end, we define

WS(e) : = FSV
1/2BSreg(e)|V |1/2F∗

S (4.16)

which is, modulo the −λ2 ln(1 + τ/e) prefactor, just the second summand in (4.14).
Note that due to the additional operatorsFSV 1/2 on the left and |V |1/2F∗

S on the right
of BSreg(e), estimate (2.9), and λ‖BSreg(e)‖ = oV (1), we infer

‖WS(e)‖
S

(d−1)((d+1)/2−ε)
(d−1)/2+ε

= oV (ln(1/e)) , V ∈ L
d+1
2 −ε , ε ∈ (0, 1/2] . (4.17)

We will momentarily show the existence of WS(0) and the limit lime↘0 WS(e) =
WS(0) in operator norm for V ∈ L

d+1
2 −ε. Let b j

S(λ) < 0 denote the negative eigen-
values of

BS(λ) := VS − λWS(0) on L2(S) (4.18)

and recall that VS ∈ S
(d−1)((d+1)/2−ε)
d−(d+1)/2+ε if V ∈ L

d+1
2 −ε by (2.9). This and (4.17) show

that BS(λ) is a compact operator as well. Note that, by the definition of BSreg(e), the
operator BS(λ) has at least one negative eigenvalue if VS has a zero-eigenvalue. The
asymptotic expansion of e j (λ) to second order then reads as follows.

Theorem 4.4 Let d ≥ 3 and V ∈ L
d+1
2 −ε for some ε ∈ (0, 1/2]. If limλ↘0 b

j
S(λ) < 0

then Hλ has, for small λ, a corresponding negative eigenvalue −e j (λ) < 0 that
satisfies

lim
λ→0

(
ln(1 + 1/e j (λ)) + 1

λb j
S(λ)

)
= 0 . (4.19)

4 Using Cwikel’s inequality [36, Theorem 4.2], one obtains ‖BSreg(e)‖
S

(d−1)((d+1)/2−ε)
(d−1)/2+ε

,∞ =
oV (ln(1/e)) for ε = 1/2.
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Theproof ofTheorem4.4 relies on the fact that |V |1/2(F∗
S±
t
FS±

t
−√

1 ± tF∗
SFS)V 1/2

is Hölder continuous in B(L2(Rd), L2(Rd)) for t ≤ τ ∈ (0, 1). We already saw
in Sect. 3.4 that this is true for V ∈ S(Rd) (or more generally V satisfying
|V (x)| � (1 + |x |)−1−ε) because of Hölder continuity of the Sobolev trace theorem.
The following proposition, whose proof is deferred to Appendix A, yields Hölder
continuity of the (non-endpoint) Tomas–Stein theorem.

Proposition 4.5 Let 0 < τ < 1, 1 ≤ p < κ , 1/q = 1/p − 1/p′, i.e., 1 ≤ q <

(d + 1)/2, and 0 < α < min{(d + 1)/2 − q, q}. Then

sup
t∈(0,τ )

‖F∗
S±
t
FS±

t
− √

1 ± tF∗
SFS‖L p→L p′ �α,q,τ tα/q . (4.20)

Proof of Theorem 4.4 Recall that V ∈ L
d+1
2 −ε satisfies the assumption of Lemma 4.3.

Thus, Hλ has an eigenvalue −e j (λ) < 0 if and only if

λ ln(1 + τ/e j (λ))

[
BS(λ) + λ(WS(0) − WS(e j (λ)))

+ FSV
1/2

⎛
⎝∑

n≥2

(−1)n(λBSreg(e j (λ)))n

⎞
⎠ |V |1/2F∗

S

] (4.21)

has an eigenvalue −1. Thus, our claim is established, once we show lime→0 WS(e) =
WS(0) in operator norm topology. In turn, by the definition ofWS(e), this follows once
we show the existence of lime→0 BSreg(e) = BSreg(0) since |V |1/2F∗

S andFSV 1/2 are
bounded by the Tomas–Stein theorem (2.8). We decompose BSreg(e) = BShigh(e) +
BSlowreg (e) and observe that BShigh(e) → BShigh(0) (e.g., by Plancherel and dominated
convergence). On the other hand, Proposition 4.5 shows that the difference

BSlowreg (e) − BSlowreg (0)

=
∑
±

∫ τ

0

(√|V |(F∗
S±
t
FS±

t
− √

1 ± t F∗
SFS)

√
V

) (
1

t + e
− 1

t

)
dt

2
√
1 ± t

vanishes in operator norm as e → 0. This concludes the proof. ��
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Appendix A. Hölder continuity of the Tomas–Stein theorem

In this section we prove Proposition 4.5 on the Hölder continuity of the Tomas–
Stein theorem for the sphere. The arguments can be generalized to treat arbitrary
smooth, curved, and compact hypersurfaces by refining the analysis in the proof of
Proposition 4.1. However, for the sake of simplicity, we restrict ourselves to the unit
sphere S = S

d−1.

Lemma A.1 Let τ ∈ (0, 1), 0 < β ≤ (d − 1)/2, p◦ = 2(1+β)/(2+β) ∈ (1, 2), and
1 ≤ p < p◦, and denote 1/q := 1/p − 1/p′ and d̂ω± := d̂ωS±

t
− d̂ωS. If there is

α ∈ (0,min{β + 1 − q, q}) such that

|d̂ω±(x)| ≤ cτ t
α(1 + |x |)α−β (A.1)

holds for some cτ > 0 and all t ∈ (0, τ ), then

sup
t∈(0,τ )

‖F∗
S±
t
FS±

t
− √

1 ± tF∗
SFS‖L p→L p′ �α,q,τ tα/q . (A.2)

Proof In the following, we consider only S+
t and write St ≡ S+

t and dω ≡ dω+. As
in Tomas’ proof, we decompose

(F∗
StFSt − √

1 + tF∗
SFS) f = [(F∗

StFSt − F∗
SFS) − (

√
1 + t − 1)F∗

SFS] f
= d̂ω ∗ f − (

√
1 + t − 1)F∗

SFS f

=
∞∑
k=0

(d̂ωψk) ∗ f − (
√
1 + t − 1)F∗

SFS f

=:
∞∑
k=0

Tk f − (
√
1 + t − 1)F∗

SFS f ,

(A.4)

where (ψk)k is a standard dyadic partition of unity such that ψ0 is adapted to the
unit ball and ψk is adapted to the annulus 2k−1 ≤ |x | ≤ 2k+1. By the Tomas–Stein
theorem, the operator norm of the second term on the right side of (A.4) is bounded
by a constant times

|√1 + t − 1|‖F∗
SFS‖L p→L p′ � t .

We now focus on the first term on the right side of (A.4). By the triangle inequality,
Plancherel, the rapid decay of ψ̂k , and the fact that dωSt is a (d − 1)-dimensional
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measure, we estimate

‖Tk‖2→2 � 2k , (A.5)

whereas we use (A.1) to bound

‖Tk‖1→∞ � tα 2−k(β−α) . (A.6)

Interpolating between those two bounds yields

‖Tk‖p→p′ � 2k(1−θ) · tαθ 2−k(β−α)θ ,

where 1 − θ = 2/p′, i.e., θ = 1/q = 1/p − 1/p′. Thus,

‖Tk‖p→p′ � tα/q 2
k
(
1− β+1−α

q

)
.

Since the exponent of 2k is negative for α < β + 1 − q, we obtain

‖
∑
k≥0

Tk‖p→p′ � tα/q
∞∑
k=0

2
k
(
1− β+1−α

q

)
� tα/q ,

which concludes the proof of (A.2). ��
Proof of Proposition 4.5 For T (ξ) = |ξ2 − 1| we have

S0 = S
d−1 := S , St = √

1 − t S ∪ √
1 + t S , 0 < t ≤ τ < 1 .

Setting ρ = √
1 ± t ∈ [√1 − τ ,

√
1 + τ ], Lemma A.1 with β = (d − 1)/2, i.e.,

p◦ = κ shows that (4.20) would follow from

|d̂ωρS(x) − d̂ωS(x)| � |ρ − 1|α(1 + |x |)α− d−1
2 (A.6)

for some α ∈ (0,min{(d − 1)/2 + 1 − q, q}). We have

d̂ωρS(x) =
∫

ρS
e2π i x ·ξdωρS(ξ) = ρd−1d̂ωS(ρx) , x ∈ R

d . (A.7)

The classic stationary phase argument (see, e.g., Stein [39, Theorem 1]) yields

|̂dωS(x)| � (1 + |x |)− d−1
2 ,

with the same bound for |∇d̂ωS(x)|. Combining this with (A.7) yields (A.6) for α = 0
and α = 1 and hence for any α ∈ [0, 1], thereby concluding the proof. ��
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Appendix B. Further L2 based restriction estimates

Throughout this appendix we take T (ξ) = |ξ2 − 1|. Our main results crucially relied
on the fact thatF∗

St
FSt belongs toB(L p → L p′

) orB(L2((1+|x |)1+ε dx) → L2((1+
|x |)−1−ε dx) uniformly for t ∈ [0, τ ] and some fixed τ > 0. Besides the Tomas–Stein
estimate or the trace lemma, there exist various other L2-based restriction estimates. In
this appendix we present two such estimates and apply them to obtain corresponding
upper bounds on the Birman–Schwinger operator, whenever the potential belongs to
the suitable dual space. It turns out that this space contains spherically symmetric
V with almost Ld decay, but see Propositions B.2 and B.7 below for the precise
assumptions. By the uniformity of these restriction theorems on small compact sets
around S

d−1 (see (B.1) and (B.5)) and following the arguments in Sects. 2 and 3 , one
obtains the analog of Theorem 1.1 for potentials living in the spaces mentioned below.
This is the content of Theorem B.8.

B.1 Estimates for potentials in mixed norm spaces

Vega [42] observed that the Tomas–Stein estimate can be enhanced for S
d−1 if one

replaces the L p spaces by suitable mixed norm spaces. For k > 0 recall the extension
operator

(F∗
kSd−1g)(x) =

∫
kSd−1

g(ξ)e2π i x ·ξ dωkSd−1(ξ) = kd−1
∫
Sd−1

g(kξ)e2π ikx ·ξ dω(ξ)

where dω and dωkSd−1 denote the euclidean surface measures on S
d−1 and kS

d−1,
respectively.

Theorem B.1 (Vega [42, Theorem 2]) Let d ∈ N \ {1} and

1 ≤ p <
2d

d + 1
and

1

2
≥ 1

σ ′ ≥ max

{
1

p′ ,
1

p′
2d

d − 2
− 1

2

}
.

Then the restriction estimate

k− d−1
2 ‖ f̂ ‖L2(kSd−1) = ‖ f̂ (k·)‖L2(Sd−1) �

[∫ ∞

0

(∫
Sd−1

|k−d f (rω/k)|σ dω

) p
σ

rd−1 dr

] 1
p

= k−d/p′ ‖ f ‖L p(R+,rd−1 dr :Lσ (Sd−1)) ,

(B.1)

the extension estimate

‖F∗
kSd−1g‖L p′ (R+,rd−1 dr :Lσ ′

(Sd−1))
� k

d−1
2 − d

p′ ‖g‖L2(kSd−1) ,
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and the combined estimate

‖F∗
kSd−1FkSd−1ψ‖L p′ (R+,rd−1 dr :Lσ ′

(Sd−1))
� k

d−1− 2d
p′ ‖ψ‖L p(R+,rd−1 dr :Lσ (Sd−1))

(B.2)

hold for all k > 0 and are equivalent to each other.

Recall that the exponent 2d/(d + 1) is sharp, i.e., Theorem B.1 cannot hold for
p ≥ 2d/(d + 1). Moreover, observe that the estimates are uniform in the radius k as
long as k ∈ [1 − δ, 1 + δ] for some 0 < δ < 1. Theorem B.1 allows us to prove the
following bound on the Birman–Schwinger operator.

Proposition B.2 Let d ≥ 3,1 ≤ p < 2d/(d+1),1/2 ≥ 1/σ ′ ≥ max{1/p′, 2d/(p′(d−
2))−1/2}, e > 0, and assume T (ξ) = |ξ2−1|. Suppose V ∈ L p/(2−p)(R+, rd−1 dr :
Lσ/(2−σ)(Sd−1)) and, if p ≤ 2d/(d + 2), suppose additionally V ∈ Ld/2(Rd). Then

‖(T + e)−1/2|V |1/2‖2 � g(e)

[∫ ∞

0
‖V (r ·)‖p/(2−p)

Lσ/(2−σ)(Sd−1)
rd−1 dr

](2−p)/p

+ ‖V ‖d/2θ(2d/(d + 2) − p)

where

g(e) =
∫ 3/2

1/2

k
d
(
1
p − 1

p′
)
−1

T (k) + e
dk � max{ln(1/e), 1} . (B.3)

Here, θ denotes the Heaviside function with the convention θ(0) = 1. Taking, e.g.,
σ = 2 and p → 2d/(d + 1) shows that spherically symmetric Ld(Rd) potentials are
almost admissible.

Proof Let f = |V |1/2ϕ and ϕ ∈ L2(Rd). By Hölder’s inequality, we have

‖ f ‖L p(R+,rd−1 dr :Lσ (Sd−1)) ≤
⎡
⎣∫ ∞

0

(∫
Sd−1

|V (rω)| σ
2−σ dω

) p(2−σ)
σ(2−p)

rd−1 dr

⎤
⎦

2−p
2p

‖ϕ‖2 .

As in Sect. 3, we consider small and large momenta separately and start with the latter.
So let χ ∈ C∞

c (Rd : [0, 1]) be a radial bump function centered at |ξ | = 1 with

suppχ ⊆ {ξ ∈ R
d : 1/2 ≤ |ξ | ≤ 3/2}. If p ≤ 2d/(d + 2), the L

2d
d+2 → L2

boundedness of (T + e)−1/2(1 − χ(−i∇)) follows from (T (ξ) + e)−1/2(1 − χ) �
(1 + ξ2)−1/2 and Sobolev embedding. Else, if p > 2d/(d + 2), the L p → L2

boundedness follows from Sobolev embedding, interpolation, and the fact that

‖ f ‖p � ‖ f ‖L p(R+,rd−1 dr :Lσ (Sd−1))

by Hölder’s inequality, since σ ≥ p.
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Thus, we are left to estimate ‖χ(T + e)−1/2|V |1/2‖2→2 with p ∈ [1, 2d/(d + 1)).
By Plancherel, using spherical coordinates, and Vega’s estimate (B.1), we obtain

‖χ (T + e)−1/2|V |1/2ϕ‖22 =
∫ ∞

0
dk

χ(k)2kd−1

T (k) + e

∫
Sd−1

| f̂ (kω)|2 dω

� ‖ f ‖2L p(R+,rd−1 dr :Lσ (Sd−1))

∫ 3/2

1/2
dk

kd−1−2d/p′

T (k) + e

≤ g(e)‖V ‖
L

p
2−p (R+,rd−1 dr :Lσ/(2−σ)(Sd−1))

‖ϕ‖22 ,

which concludes the proof. ��

B.2 Estimates for potentials satisfying theMT condition

We finally discuss potentials V satisfying the “radial Mizohata–Takeuchi” condition.

Definition B.3 Let V be a measurable, non-negative function on R
d and H(r) :=

supω∈Sd−1 V (rω). Then V is said to satisfy the radial Mizohata–Takeuchi (MT) con-
dition if

‖V ‖MT := sup
μ≥0

∫ ∞

μ

H(r)r

(r2 − μ2)1/2
dr < ∞ . (B.4)

Observe that ‖V (·/k)‖MT = k‖V ‖MT for all k > 0. We mention some examples
of V satisfying this condition.

Example B.4 1. Frank and Simon [14, (4.2)] showed ‖V ‖MT �
‖V ‖Ld,1(R+,rd−1 dr : L∞(Sd−1)), where

‖V ‖Ld,1(R+,rd−1 dr : L∞(Sd−1)) :=
∫ ∞

0
|{r >0 : ess − supω∈Sd−1 |V (rω)|>α}|1/dd dα

and | · |d denotes the measure |Sd−1|rd−1 dr .
2. Barcelo, Ruiz, andVega [4, Proposition 1] showed that for radial V (x) = V (|x |) ≡

V (r), one has ‖V ‖MT � ‖V ‖Dp for p > 2, where

‖V ‖Dp :=
∞∑

j=−∞

(∫ 2 j+1

2 j
|V (r)|pr p−1 dr

)1/p

.

In particular, the functions r−a1(0,1)(r) + r−b1[1,∞)(r) and r−1(1 + | log r |)−b

for a < 1 and b > 1 have finite ‖ · ‖Dp norm.

Barcelo, Ruiz, and Vega [4] proved the following weighted analog of the classical
trace lemma.

123



46 Page 26 of 29 J.-C. Cuenin et al.

Theorem B.5 ([4, Theorem 3]) Let d ∈ N \ {1} and V be a radial, non-negative
function satisfying ‖V ‖MT < ∞. Then the weighted restriction theorem

k− d−1
2 ‖ f̂ ‖L2(kSd−1) = ‖ f̂ (k·)‖L2(Sd−1) � k− d−1

2 ‖V ‖1/2MT‖ f ‖L2(Rd :V−1(x) dx) , (B.5)

the weighted extension estimate

‖F∗
kSd−1g‖L2(V ) � ‖V ‖1/2MT‖g‖L2(kSd−1) ,

and the combined estimate

‖F∗
kSd−1FkSd−1ψ‖L2(V ) � ‖V ‖MT‖ψ‖L2(V−1) (B.6)

hold for all k > 0 and are equivalent to each other. Conversely, if one of the above
estimates holds, and V is radial and non-negative, then ‖V ‖MT < ∞.

Remark B.6 Using a result of Agmon and Hörmander [1, Theorem 3.1], Barcelo, Ruiz,
and Vega [4, p. 360-361] observed that V ∈ C0(R

d) (vanishing at infinity, but not
necessarily radial) has a uniformly bounded X-ray transform, i.e.,

sup

{∫
R

V (y + tω) dt : ω ∈ S
d−1 , y ∈ R

d
}

< ∞ , (B.7)

whenever the restriction estimate (B.5) holds for such V . By adapting their argu-
ments to radial potentials V , they further remark that in this case (B.7) reduces to the
MT condition (B.4). We shall, however, not make use of this remarkable fact in the
following.

Theorem B.7 enables us to prove the following Birman–Schwinger bound.

Proposition B.7 Assume d ∈ N \ {1}, e > 0, T (ξ) = |ξ2 − 1|, and V is a radial,
non-negative function that satisfies the MT condition (B.4). Then

‖(T + e)−1/2V 1/2‖2 � (1 + gMT(e))‖V ‖MT ,

where

gMT(e) =
∫ 3/2

1/2

1

T (k) + e
dk � max{ln(1/e), 1} . (B.8)

Proof Let f = V 1/2ϕ and ϕ ∈ L2(Rd), i.e., ‖ f ‖L2(V−1) = ‖ϕ‖2 and χ be the same
radial bump function in Fourier space as in the proof of Proposition B.2. First observe
that large momenta are controlled by

‖(1−χ)2(T+e)−s/2 f ‖L2(V ) �‖(1 − �)−s/2 f ‖L2(V ) ≤ ‖V ‖MT‖ f ‖L2(V−1) , s ≥ 1
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where the second estimate is the content of [4, Lemma 4]. Taking s = 2 and plugging
in f = V 1/2ϕ shows

‖(1 − χ)(T+e)−1/2V 1/2‖2L2→L2 =‖V 1/2(1 − χ)2(T + e)−1V 1/2‖L2→L2 �‖V ‖MT

as desired.
For momenta close to S

d−1, we use the restriction estimate (B.5) to obtain

‖χ (T + e)−1/2 f ‖22 =
∫ ∞

0
dk

χ(k)2kd−1

T (k) + e

∫
Sd−1

| f̂ (kω)|2 dω

� ‖V ‖MT‖ f ‖2L2(V−1)

∫ 3/2

1/2
dk

1

T (k) + e

= gMT(e)‖V ‖MT‖ϕ‖22 .

This concludes the proof. ��

B.3Weak coupling asymptotics for potentials in mixed norm spaces or satisfying
theMT condition

We are now in position to combine the above results in the following theorem.

Theorem B.8 Let T (ξ) = |ξ2 − 1|, and suppose d and V satisfy the assumptions in
Proposition B.2 or B.7. Then for every eigenvalue a j

S > 0 of VS in (2.5), counting
multiplicity, and every λ > 0, there is an eigenvalue −e j (λ) of T (−i∇) − λV with
weak coupling limit

e j (λ) = exp

(
− 1

λa j
S

(1 + o(1))

)
as λ → 0 .

The notation X �V 1 in the proof below conceals the more precise estimate X �
min{‖V ‖MT, ‖V ‖L p/(2−p)(R+,rd−1dr :Lσ/(2−σ)(Sd−1)) + ‖V ‖d/2θ(2d/(d + 2) − p)} for p
and σ as in Proposition B.2.

Proof We follow the proof of Theorem 1.1. First, the corresponding analog of Propo-
sition 2.2, i.e., L2 boundedness of VS , follows immediately from the restriction
theorems B.1 and B.5 above. Next, the splitting of BS(e) is the same as in Sect. 3. For
concreteness, suppose that the frequency cutoff is at some τ < 1/2. Aswe have seen in
the proofs of Propositions B.2 and B.7 , the high frequencies are harmless, i.e., in both
cases we have ‖BShigh(e)‖ �τ,V 1, whereas the low frequencies are responsible for
‖BSlow(e)‖ �τ,V ln(1/e) for e ∈ (0, 1). Thus, we are left to prove the analog of the
key bound (3.2). Recall that the Fermi surface of T at energy t ∈ (0, τ ] consists of the
two connected components S±

t = √
1 ± tSd−1. As explained below (3.8) and in the

proof of Lemma 3.1, this merely relies on the validity of ‖|V |1/2F∗
St
FSt V

1/2‖ �τ,V 1
for all t ∈ [0, τ ]. But this is just reflected in (B.2) and (B.6) for 1/2 < k < 3/2. This
concludes the proof. ��
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