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Abstract
For the discrete Laguerre operators we compute explicitly the corresponding heat
kernels by expressing them with the help of Jacobi polynomials. This enables us
to show that the heat semigroup is ultracontractive and to compute the corresponding
norms. On the one hand, this helps us to answer basic questions (recurrence, stochastic
completeness) regarding the associated Markovian semigroup. On the other hand, we
prove the analogs of the Cwiekel–Lieb–Rosenblum and the Bargmann estimates for
perturbations of the Laguerre operators, as well as the optimal Hardy inequality.
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1 Introduction

Our main objects of study are the discrete Laguerre operators

Hα :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + α −√
1 + α 0 · · ·

−√
1 + α 3 + α −√

2(2 + α)
. . .

0 −√
2(2 + α) 5 + α

. . .

0 0 −√
3(3 + α)

. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, α > −1, (1.1)

acting in �2(Z≥0). Explicitly, Hα = (
h(α)
n,m

)
n,m≥0 with h(α)

n,m = 0 if |n − m| > 1 and

h(α)
n,n = 2n + 1 + α, h(α)

n,n+1 = h(α)
n+1,n = −√

(n + 1)(n + 1 + α), n ∈ Z≥0.

It is a special case of a self-adjoint Jacobi operator whose generalized eigenfunctions
are precisely the Laguerre polynomials L(α)

n , explaining the name for (1.1).
The operator Hα features prominently in the study of nonlinear waves in (2 + 1)-

dimensional noncommutative scalar field theory [1,2,12]. The coefficient α in (1.1)
can be seen as a measure of the delocalization of the field configuration and it is
related to the planar angular momentum [2]. In particular, α = 0 corresponds to
spherically symmetric waves and it has attracted further interest in [4,21–23], where
H0 appears as the linear part in the nonlinear Schrödinger equation [21–23]. Thus
dispersive estimates for the unitary evolution play a crucial role in the understanding
of stability of soliton manifolds appearing in these models. It turned out (see [19,20])
that the unitary evolution eit Hα can be expressed by means of Jacobi polynomials (see
Appendix A for definitions and basic facts) and this also connects dispersive estimates
with uniform weighted estimates of Jacobi polynomials on the orthogonality interval
(the so-called Bernstein-type inequalities).

In the present article we focus on the study of the heat semigroup (e−t Hα )t>0.
Usually (sharp) dispersive estimates (for eit Hα these are obtained in [19,20]) do not
imply (sharp) heat kernel estimates as the example of the free Hamiltonian shows.
Namely, let J0 be defined in �2(Z) by

(J0u)n := −un−1 + 2un − un+1, n ∈ Z. (1.2)

J0 is a bounded self-adjoint operator, whose spectrum is purely absolutely continuous
and coincides with the interval [0, 4]. The corresponding heat semigroup and the
unitary evolution are given by

e−t J0(n,m) = e−2t In−m(2t), eit J0(n,m) = e2it In−m(2it), (1.3)
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for all n,m ∈ Z. Here

Ik(z) = i−k Jk(iz) =
∞∑
n=0

1

n!�(n + k + 1)

( z
2

)2n+k
(1.4)

is the modified Bessel function of the first kind [25, (10.25.2)] (we use the convention
1/�(m) = 0 if m ∈ Z≤0). This leads to the following bounds

‖eit J0‖�1→�∞ = sup
n,m∈Z

|eit J0(n,m)| = O(|t |−1/3) (1.5)

as t → ∞, however,

‖e−t J0‖�1→�∞ = O(t−1/2), t → +∞. (1.6)

It is not at all surprising that the heat kernel of e−t Hα is expressed bymeans of Jacobi
polynomials (Theorem 4.1). However, now one is led to the study of Jacobi polyno-
mials outside of the orthogonality interval. Let us next briefly outline the structure of
the paper and the main results.

Section 2 is of preliminary character, where we recall the definition of Hα and its
basic spectral properties.

In Sect. 3 we investigate the quadratic form tα associated with Hα . Using a con-
venient factorization of the matrix (1.1) (which connects Hα with the spectral theory
of Krein strings, see Remark 3.2), we are able to perform a rather detailed study of tα
(Lemma 3.1). Using the Beurling–Deny criteria, this helps us to conclude that the heat
semigroup e−t Hα is positivity preserving. Moreover, it is Markovian if α = 0 (that is,
e−t H0 is also �∞ contractive). The string factorization also shows that a very simple
similarity transformation (3.10) connects Hα with the difference operator H̃α , which
is Markovian, however, acts in a weighted �2 space.

We investigate heat semigroups e−t Hα and e−t H̃α in Sect. 4. First, we compute
explicitly the corresponding heat kernels (Theorem 4.1). On the one hand, the connec-
tionwith Jacobi polynomials enables us to obtain the on-diagonal estimates for the heat
kernels (Theorem 4.6). On the other hand, this allows us to show that the continuous
time randomwalk onZ≥0 generated by H̃α is recurrent exactlywhenα > 0.Moreover,
it is stochastically complete for all α > −1. It is interesting to mention that the latter
is a consequence of the formula for the generating function of Meixner polynomials
(see Remark 4.4 and Lemma 4.8). Let us stress in this connection that orthogonality
relations for Meixner polynomials are equivalent to the unitarity of e−it Hα (see [19,
Remark 3.2]).

In the final Sect. 5 we study the negative spectrum of perturbations Hα,V of Hα .
Rank one perturbations of Hα enjoy a very detailed treatment (Lemma 5.1). This has
several consequences. First of all, for α ∈ (−1, 0] this immediately implies that no
matter how small the attractive perturbation V is, it always produces a non-empty
negative spectrum (i. e., the presence of a zero energy resonance for α ∈ (−1, 0], cf.
(2.18), which can also be seen as another instance of recurrence). For α > 0, we can
show that for sufficiently small attractive perturbations V , the negative spectrum of
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Hα,V remains empty. The qualitative measure of “smallness” is demonstrated by the
optimal Hardy inequality (Theorem 5.8) as well as by two estimates (5.9) and (5.13).
The latter is the analog of the Bargmann bound for 1D Schrödinger operators. The
former is the analog of the Cwikel–Lieb–Rosenblum bound and it actually follows
from the ultracontractivity estimate (4.18) (indeed, by theorem of Varopoulos, (4.18)
is equivalent to the Sobolev-type inequality (5.10), which is known to be further
equivalent to a CLR-type bound, [9,24]). Let us stress that the optimal constant C(α)

in (5.9) remains an open problem. In conclusion let us mention that all the above
results resemble a strong similarity between discrete Laguerre operators and 1D radial
Schrödinger operators (for instance, one may interpret (5.9) as a discrete analog of
the Glaser–Grösse–Martin–Thirring bound [26, Theorem XIII.9(c)]).

Notation

R and C have the usual meaning; R>0 := (0,∞), R≥0 := [0,∞), and Z≥a :=
Z ∩ [a,∞) for any a ∈ R.

By� is denoted the classical gamma function [25, (5.2.1)]. For x ∈ C and n ∈ Z≥0

(x)n := x(x + 1) · · · (x + n − 1) (n > 0),

(x)0 := 1;
(
n + x

n

)
:= (x + 1)n

n! (1.7)

denote thePochhammer symbol [25, (5.2.4)] and the binomial coefficient, respectively.
Notice that for −x /∈ Z≥0

(x)n = �(x + n)

�(x)
,

(
n + x

n

)
= �(x + n + 1)

�(x + 1)�(n + 1)
.

Moreover, the above formulas allow to define the Pochhammer symbol and the
binomial coefficient for noninteger x , n > 0. Finally, for −c /∈ Z≥0 the Gauss hyper-
geometric function [25, (15.2.1)] is defined by

2F1

(
a, b

c
; z

)
:=

∞∑
k=0

(a)k(b)k
(c)kk! zk (|z| < 1 or else − a or − b ∈ Z≥0). (1.8)

For a sequence of positive reals σ = (σn)n≥0 ⊂ R>0 and p ∈ [1,∞), we denote by
�p(σ ) = �p(Z≥0; σ) the usualweightedBanach space of sequences u = (un)n≥0 ⊂ C

such that

‖u‖�p(σ ) =
( ∑
n≥0

|un|pσn
)1/p

< ∞.
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If p = ∞, then the corresponding norm is given by

‖u‖�∞(σ ) = sup
n≥0

|un|σn .

We shall simply write �p = �p(Z≥0) if σ = 1. Finally, δn = (δn,k)k≥0, n ∈ Z≥0, is
the standard orthonormal basis in �2(Z≥0), where δn,k is Kronecker’s delta.

2 The discrete Laguerre operator

We start with a precise definition of the operator Hα . For a sequence u = (un)n≥0 we
define the difference expression τα : u �→ ταu by setting

(ταu)n := −√
n(n + α) un−1 + (2n + 1 + α)un − √

(n + 1)(n + 1 + α) un+1,

(2.1)

for all n ∈ Z≥0, where u−1 := 0 for notational simplicity. Then the operator Hα

associated with the Jacobi matrix (1.1) is defined by

Hα : Dmax → �2(Z≥0)

u �→ ταu ,
(2.2)

where

Dmax = {u ∈ �2(Z≥0) | ταu ∈ �2(Z≥0)}. (2.3)

Notice thatDmax does not depend on α, however, seems, a closed description ofDmax
is a rather complicated task.

Spectral properties of Hα are well known. Let us briefly describe them. First of all,
the Carleman test (see, e.g., [3, p. 24]) implies that Hα is self-adjoint. Moreover, the
polynomials of the first kind for (2.1) are given by (see [29, (5.1.10)])

Pα,n(z) := 1

σα(n)
L(α)
n (z), n≥ 0, (2.4)

where

σα(n) :=
√
L(α)
n (0) =

(
n + α

n

)1/2

, n≥ 0, α > −1, (2.5)

and L(α)
n are the Laguerre polynomials [29, Section 5.1]:

L(α)
n (z) = ez z−α

n!
dn

dzn
e−z zn+α =

(
n + α

n

) n∑
k=0

(−n)k

(α + 1)k k! z
k, n≥ 0. (2.6)
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Orthogonality relations for Pα,n are given by (see [29, (5.1.1)])

1

�(α + 1)

∫ ∞

0
Pα,n(λ)Pα,k(λ)e−λλα dλ = δn,k, n, k ∈ Z≥0. (2.7)

Therefore, the probability measure

ρα(dλ) = 1

�(α + 1)
1R>0(λ)e−λλαdλ (2.8)

is the spectral measure of Hα , that is, Hα is unitarily equivalent to a multiplication
operator in L2(R>0; ρα). Indeed, the map Fα : �2(Z≥0) → L2(R>0; ρα) defined by

(Fα f )(λ) :=
∑
n≥0

fn Pα,n(λ), λ > 0, (2.9)

for all f ∈ �2c(Z≥0), extends to an isometric isomorphism. Its inverse is given by

(F−1
α F)n = 1

�(α + 1)

∫ ∞

0
F(λ)Pα,n(λ)e−λλα dλ, n≥ 0,

for every F ∈ L2
c(R>0; ρα). Then

Hα = F−1
α MαFα, (2.10)

where Mα is the multiplication operator

Mα : F(λ) �→ λF(λ).

acting in the Hilbert space L2(R>0; ρα). This in particular implies that Hα is a positive
operator and its spectrum σ(Hα) coincides with [0,∞). Moreover, σ(Hα) is purely
absolutely continuous of multiplicity 1.

The Stieltjes transform of ρα , which is usually called the Weyl function (or m-
function) of Hα , is given by

mα(z) = 1

�(α + 1)

∫ +∞

0

e−λλα

λ − z
dλ = e−z E1+α(−z), z ∈ C \ R≥0, (2.11)

where

Ep(z) := z p−1
∫ ∞

z
e−t t−pdt = z p−1�(1 − p, z) (2.12)

123



Heat kernels of the discrete Laguerre operators Page 7 of 29    32 

denotes the principal value of the generalized exponential integral [25, (8.19.2)] and
�(s, z) is the incomplete Gamma function [25, (8.2.2)]. Note that

mα(−0) := lim
x↓0mα(−x) =

{
1/α, α > 0,

+∞, α ∈ (−1, 0]. (2.13)

Next, let us define the polynomials of the second kind (see [3]):

Qα,n(z) := 1

�(α + 1)

∫ ∞

0

Pα,n(z) − Pα,n(λ)

z − λ
e−λλαdλ, n ≥ 0, (2.14)

where Qα,0(z) ≡ 0 and Qα,1(z) ≡ 1√
α+1

. Then u := (Qα,n(z))n≥0 satisfies (ταu)n =
zun for all n ≥ 1. Notice that for all z ∈ C \ R≥0 the linear combination


α,n(z) := Qα,n(z) + mα(z)Pα,n(z), n≥ 0, (2.15)

also known as the Weyl solution in the Jacobi operators context, satisfies

(
α,n(z))n≥0 ∈ �2(Z≥0) (2.16)

for all z ∈ C \ R≥0. In particular, this provides us with the explicit expression of the
resolvent of Hα (actually, with its Green’s function)

Gα(z; n,m) := 〈
(Hα − z)−1δn, δm

〉
�2

=
{
Pα,n(z)
α,m(z), n ≤ m,

Pα,m(z)
α,n(z), n ≥ m.
(2.17)

Lemma 2.1 For n,m ∈ Z≥0,

Gα(−0; n,m) := lim
x↑−0

Gα(x; n,m) =
{

1
α

σα(min(n,m))
σα(max(n,m))

, α > 0,

+∞, α ∈ (−1, 0]. (2.18)

Proof Since Hα is self-adjoint,Gα(x; n,m) = Gα(x;m, n) for any x < 0, so suppose
n ≤ m. By (2.17),

Gα(−0; n,m) = σα(n)
(
Qα,m(0) + σα(m)mα(−0)

)
, (2.19)
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and hence (2.13) implies (2.18) for α ∈ (−1, 0]. If α > 0, we get by using (2.14),

Qα,m(0) = 1

�(α + 1)σα(m)

∫ ∞

0

L(α)
m (λ) − L(α)

m (0)

λ
e−λλαdλ

= 1

�(α + 1)σα(m)

∫ ∞

0

( m∑
k=0

L(α−1)
k (λ) − L(α)

m (0)
)
e−λλα−1dλ

= 1

�(α + 1)σα(m)

∫ ∞

0

(
L(α−1)
0 (λ) − L(α)

m (0)
)
e−λλα−1dλ

= 1

�(α + 1)σα(m)
�(α)(1 − σα(m)2)

= 1 − σα(m)2

ασα(m)
.

Here in the second linewe used [25, (18.18.37)] and then orthogonality of the Laguerre
polynomials (2.7). It remains to plug the last expression into (2.19). ��

3 The quadratic form

Let us consider the quadratic form corresponding to the operator Hα:

t0α[u] := 〈Hαu, u〉�2 , u ∈ dom(t0α) := dom(Hα). (3.1)

This form is positive since so is Hα . Since Hα is self-adjoint, t0α is closable and its
closure tα is explicitly given by

tα[u] = ‖√Hαu‖2
�2

, u ∈ dom(tα) = dom(
√
Hα), (3.2)

where
√
Hα denotes the positive self-adjoint square root of Hα .

Lemma 3.1 The domain dom(tα) of tα does not depend on α and consists of those
u ∈ �2(Z≥0) for which the series

∑
n≥0

(n + 1)
∣∣un − un+1

∣∣2 (3.3)

is finite. Moreover, for every u ∈ dom(tα) the form tα admits the representation

tα[u] =
∑
n≥0

∣∣√n + α + 1un − √
n + 1un+1

∣∣2. (3.4)
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Proof Observe that the matrix (1.1) admits “the string factorization” (see, e.g., [3,
Appendix], [14, § 13], [6, §3]):

h(α)
n,n = 1

lα(n)

(
1

ωα(n − 1)
+ 1

ωα(n)

)
, h(α)

n,n+1 = −1

ωα(n)
√
lα(n)lα(n + 1)

, (3.5)

where 1
ωα(−1) := 0 and

lα(n) = |Pα,n(0)|2 = σα(n)2 = (α + 1)n
n! , (3.6)

ωα(n) = − 1

h(α)
n,n+1

√
lα(n)lα(n + 1)

= n!
(α + 1)n+1

, n ≥ 0. (3.7)

Therefore, the Jacobi matrix (1.1) can be (at least formally) written as

Hα = L−1
α (I − S)W−1

α (I − S∗)L−1
α , (3.8)

where Wα and Lα are the multiplication operators

Lα : (un)n≥0 �→ (σα(n)un)n≥0, Wα : (un)n≥0 �→ (ωα(n)un)n≥0, (3.9)

S is the shift operator S : (un)n≥0 �→ (un−1)n≥0 with the standard convention u−1 :=
0, and S∗ is the backward shift, S∗ : (un)n≥0 �→ (un+1)n≥0. The representation (3.8)
immediately implies

t0α[u] = 〈Hαu, u〉�2 = ‖W−1/2
α (I − S∗)L−1

α u‖2
�2

=
∑
n≥0

1

ωα(n)

∣∣∣ un
σα(n)

− un+1

σα(n + 1)

∣∣∣2

=
∑
n≥0

∣∣√n + α + 1un − √
n + 1un+1

∣∣2,

for every u ∈ �2c(Z≥0).
Consider now the maximally defined form tα , i.e., tα is defined by the RHS in (3.4)

on sequences u ∈ �2(Z≥0) for which the RHS in (3.4) is finite. It is standard to show
that this form is positive and closed in �2(Z≥0). However, tα is clearly an extension of
the pre-minimal form t0α . However, the maximally defined operator Hα is self-adjoint

and hence t0α admits a unique closed extension. Thus tα = t0α .
Finally, to show that dom(tα) = dom(t0) for all α > −1 it suffices to notice that

∣∣√n + α + 1 − √
n + 1

∣∣ = |α|√
n + α + 1 + √

n + 1
≤ |α|√

n + 1

for all n ≥ 0 and α > −1. ��
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Remark 3.2 It was observed by Mark Krein [14, §13] that spectral theory of Jacobi
matrices admitting factorization (3.5) can be included into the spectral theory of Krein
strings. Indeed, setting

x−1 := 0, xn = xα(n) :=
n∑

k=0

lα(k) =
n∑

k=0

(α + 1)k
k! , n ≥ 0,

and introducing a measure ωα on [0,∞) by

ω([0, x)) =
∑
xn<x

ωα(n) =
∑
xn<x

n!
(α + 1)n+1

, x ≥ 0,

the difference equation ταu = zu describes small oscillations of a string of infinite
length which carries only point massesωα(n) at xn . Moreover, ταu = zu can be turned
into the string spectral problem (the so-called Krein–Stieltjes string)

−y′′ = zωα y on [0,∞).

Corollary 3.3 The operator Hα generates a positivity preserving semigroup e−t Hα ,
t > 0. Moreover, for α = 0, the corresponding semigroup is Markovian.

Proof By the first Beurling–Deny criterion (see [26, Theorem XIII.50]), it suffices to
notice that

〈Hα|u|, |u|〉�2 ≤ 〈Hαu, u〉�2

in view of (3.4). Here |u| := (|un|)n≥0.
If α = 0, then by Lemma 3.1

t0[u] =
∑
n≥0

(n + 1)
∣∣un − un+1

∣∣2

for all u ∈ dom(t0). Suppose additionally that u ≥ 0, that is, un ≥ 0 for all n ≥ 0. It
is straightforward to check that min(u,1) also belongs to dom(t0) and, moreover,

t0[min(u,1)] ≤ t0[u].

By the second Beurling–Deny criterion (see [26, Theorem XIII.51]), e−t H0 , t > 0
extends to a contraction on �p for each p ∈ [1,∞]. This implies that it is Markovian
and the corresponding quadratic form t0 is a Dirichlet form [10, §1.4]. ��
Remark 3.4 For α �= 0 the form tα is not a Dirichlet form. Indeed, by Lemma 3.1,
for each 0 ≤ u ∈ dom(tα) = dom(t0), we get min(u,1) ∈ dom(t0) = dom(tα).
However, one can construct a positive u ∈ dom(tα) such that tα[min(u,1)] > tα[u].
Therefore, the semigroup e−t Hα , t > 0 is not Markovian if α �= 0.
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In fact, the form tα is closely connected with the Dirichlet form and this form
would be important in our analysis. Consider the weighted space �2(Z≥0; σ 2

α ). The
multiplication operator Lα given by (3.9) defines an isometric isomorphism from
�2(Z≥0; σ 2

α ) onto �2(Z≥0). Consider the operator H̃α defined on �2(Z≥0; σ 2
α ) by

H̃α = L−1
α HαLα. (3.10)

The corresponding difference expression is given by

(̃ταu)n = −n un−1 + (2n + 1 + α)un − (n + 1 + α) un+1

= 1

σα(n)2

∑
k≥0 : |k−n|=1

un − uk
ωα(min(n, k))

, n ≥ 0. (3.11)

Then it is easy to check that the quadratic form t̃α is simply given by

t̃α[u] = 〈H̃αu, u〉�2(σ 2
α ) = ‖W−1/2

α (I − S∗)u‖2
�2

=
∑
n≥0

1

ωα(n)
|un − un+1|2

=
∑
n≥0

(α + 1)n+1

n! |un − un+1|2
(3.12)

for every u ∈ �2c . The closure of this form is a regular Dirichlet form in �2(Z≥0; σ 2
α ).

Corollary 3.5 Let α > −1 and H̃α be the operator (3.10) acting in �2(Z≥0; σ 2
α ). Then

H̃α is Markovian, that is, the corresponding semigroup

e−t H̃α = L−1
α e−t HαLα, t > 0, (3.13)

is positivity preserving and �∞ contractive.

Remark 3.6 The first line in (3.11) shows that H̃α generates a birth-and-death pro-
cess on Z≥0 (see [8, Chapter 17.5]), however, the second line connects H̃α with a
continuous-time random walk (a simple Markov chain) on Z≥0 (see [10,16]). The
latter is not at all surprising since their connections with the Stieltjes moment problem
and Krein–Stieltjes strings is widely known (see, e.g., [13]).

As a by-product of the factorization (3.5) we arrive at the following continued
fraction representation of the exponential integral (2.12) and the incomplete gamma
function �(s, z). We do not need this formula for our future purposes, however, it is
so beautiful that we decided to include it together with a short proof.
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Corollary 3.7 Let α > −1. Then

E1+α(z) = zα�(−α, z) = e−z

z + α + 1

1 + 1

z + α + 2

1 + 2

z + α + 3

1 + 3

. . .

, (3.14)

which converges for all z ∈ C \ (−∞, 0].

Proof The string factorization (3.5) implies the following Stieltjes continued fraction
representation of the Weyl function mα (see, e.g., [14, §13], [28], [6, § 3]):

mα(z) = 1

−z lα(0) + 1

ωα(0) + 1

−z lα(1) + 1

ωα(1) + 1

. . .

, (3.15)

which converges locally uniformly in C \R≥0 (this follows from the self-adjointness
of Hα , see, e.g., [3], [6, §3]). Taking into account (3.6) and (3.7) and noting that

(α + n)
σα(n − 1)2

σα(n)2
= (α + n)

(α + 1)n−1

(n − 1)!
n!

(α + 1)n
= n

for all n > 0, we arrive at (3.14). ��

Remark 3.8 The continued fraction expansion (3.14) of the exponential integral is by
no means new and the case α = 0 can already be found in the work of Stieltjes [28,
Chapter IX] (see also [25, (8.9.2)], [25, (8.19.17)], [11, §6.7.1] and [5, (14.1.6)]).

4 The heat semigroup

In this section we look at the one-dimensional discrete heat equation

ψ̇(t, n) = −Hαψ(t, n), (t, x) ∈ R>0 × Z≥0, (4.1)
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associatedwith the Laguerre operator Hα , aswell as at the closely related heat equation

ψ̇(t, n) = −H̃αψ(t, n), (t, x) ∈ R>0 × Z≥0, (4.2)

associated with the operator H̃α defined in the previous section. We set

e−t Hα (n,m) := 〈e−t Hα δn, δm〉�2 , (n,m) ∈ Z≥0 × Z≥0, (4.3)

and

e−t H̃α (n,m) := 〈e−t H̃α δn, δm〉�2(σ 2
α ), (n,m) ∈ Z≥0 × Z≥0. (4.4)

Notice that (4.4) does not coincide with the matrix representation of e−t H̃α in an
orthonormal basis (if α �= 0) and we defined it this way in order to write the heat
kernel of H̃α in the form familiar in the continuous context, that is, in the form

(e−t H̃αu)n =
∑
m≥0

e−t H̃α (n,m)umσα(m)2. (4.5)

4.1 Connection with Jacobi polynomials

We begin by establishing a connection between the discrete Laguerre operators and
Jacobi polynomials,which follows from the fact that theLaplace transformof a product
of two Laguerre polynomials is expressed by means of a terminating hypergeometric
series.

Theorem 4.1 Let α > −1. The kernel of the heat semigroup e−t Hα is given by

e−t Hα (n,m) = e−t Hα (m, n) = 1

(1 + t)1+α

(
t − 1

t + 1

)n (
t

t + 1

)m−n σα(m)

σα(n)
P(α,m−n)
n

(
t2 + 1

t2 − 1

)

(4.6)

for all n, m ∈ Z≥0.

Proof Taking into account (2.10), (2.9) and then (2.4), we get

〈e−t Hα δn, δm〉�2 = 〈F−1
α e−tMαFαδn, δm〉�2

= 〈e−tMαFαδn,Fαδm〉L2(ρα)

= 1

σα(n)σα(m)�(α + 1)

∫ ∞

0
e−(1+t)λL(α)

n (λ)L(α)
m (λ)λαdλ,

for n,m ∈ Z≥0. Thus, every element of the kernel of the operator e−t Hα is the
Laplace transform of a product of two Laguerre polynomials and hence we get (see
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[7, (4.11.35)] and [25, (15.8.7)]):

e−t Hα (n,m)

σα(n)σα(m)
= tn+m

(1 + t)n+m+α+1 2F1

(−n,−m

α + 1
; 1

t2

)
, (4.7)

By Euler’s transformation [25, (15.8.1)],

2F1

(−n,−m

α + 1
; 1

t2

)
=

(
t2 − 1

t2

)n

2F1

(−n, α + m + 1

α + 1
; 1

1 − t2

)
.

Hence by (A.1) and (A.2), (4.7) implies (4.6) ��
Remark 4.2 Formula (4.6) can be derived from [19, Theorem 3.1] by analytic contin-
uation. Namely, in [19], it was shown that the kernel of the unitary evolution e−it Hα

is given by

e−it Hα (n,m) = e−it Hα (m, n) = 1

(1 + it)1+α

(
t + i

t − i

)n (
t

t − i

)m−n σα(m)

σα(n)
P(α,m−n)
n

(
t2 − 1

t2 + 1

)

(4.8)

for all n, m ∈ Z≥0. Replacing it by t in (4.8), we end up with (4.6).

We collect some special cases explicitly for later use.

Corollary 4.3 (i) In the case n = 0 we have

e−t Hα (0,m) = σα(m)

(1 + t)1+α

(
t

t + 1

)m

, m ∈ Z≥0. (4.9)

(ii) In the case n = 1 we have for m ∈ Z≥1

e−t Hα (1,m) = 1

(1 + t)1+α

(
t

t + 1

)m−1
(1 + α)t2 + m

(t + 1)2
σα(m)

σα(1)
. (4.10)

(iii) In the case n = m we have

e−t Hα (m,m) = 1

(1 + t)1+α

(
t − 1

t + 1

)m

P(α,0)
m

(
t2 + 1

t2 − 1

)
, m ∈ Z≥0. (4.11)

Proof Just observe that

P(α,m)
0 (z) = 1, P(α,m−1)

1 (z) = −m + (m + 1 + α)
z + 1

2
.

��
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Taking into account (3.13), one also easily derives the explicit expression for the
heat kernel of (4.2). Since Hα and H̃α are unitarily equivalent, thematrix of e−t H̃α in the
orthonormal basis (L−1

α δn)n≥0 coincides with that of e−t Hα . However, our definition
of (4.4) is slightly different and in fact (4.3)–(4.4) gives

e−t H̃α (n,m) = e−t Hα (n,m)

σα(n)σα(m)
, (n,m) ∈ Z≥0 × Z≥0. (4.12)

Remark 4.4 The heat kernel can be expressed in terms of Meixner polynomials [25,
(18.20.7)]:

Mn(x;β, c) := 2F1

(−n,−x

β
; 1 − 1

c

)
. (4.13)

Thus (4.7) reads

e−t H̃α (n,m) = e−t Hα (n,m)

σα(n)σα(m)
= 1

(1 + t)α+1

( t

t + 1

)n+m
Mn

(
m; 1 + α,

t2

t2 − 1

)
.

(4.14)

4.2 Heat semigroup estimates

Our next aim is to obtain uniform estimates on the elements of the heat kernel. First
observe the following simple bounds.

Lemma 4.5 Let α > −1 and n,m ≥ 0. Then

(1 + t)1+αe−t Hα (n,m) = σα(n)σα(m) + O(t−1) (4.15)

as t → ∞, and

e−t Hα (n,m) =
(
max(n,m)

min(n,m)

)
σα(max(n,m))

σα(min(n,m))
t |n−m|(1 + O(t)) (4.16)

as t → +0.

Proof Immediately follows from (A.1) and (A.6) (see also (4.7)). ��
The latter indicates that one can hope for the following uniform estimate

sup
n,m∈Z≥0

|e−t Hα (n,m)|
σα(n)σα(m)

≤ C

(1 + t)1+α
(4.17)

for all positive t > 0, where C = C(α) > 0 may depend on α. The next statement
confirms the desired bound for α ≥ 0.
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Theorem 4.6 If α ≥ 0, then

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
= 1

(1 + t)1+α
, t > 0. (4.18)

If α ∈ (−1, 0), then

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
≥ 1

(1 + t)1+α
, t > 0. (4.19)

Proof By definition, for t > 0 we get

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
= sup

n,m∈Z≥0

|e−t Hα (n,m)|
σα(n)σα(m)

= ‖e−t H̃α‖�1(σ 2
α )→�∞ .

Using (4.9), we get

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
≥ e−t Hα (0, 0) = 1

(1 + t)1+α

for all α > −1 and t > 0. Thus, it remains to show that

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
≤ 1

(1 + t)1+α
, t > 0,

when α ≥ 0. By Corollary 3.5, e−t H̃α is positivity preserving and �∞ contractive and
hence

0 < e−t H̃α (n, n) ≤ 1

for all n ≥ 0 and t > 0. Therefore,

|e−t H̃α (n,m)|2 ≤ e−t H̃α (n, n) · e−t H̃α (m,m) ≤ max
(
e−t H̃α (n, n), e−t H̃α (m,m)

)
,

which immediately implies

‖e−t Hα‖
�1(σα)→�∞(σ−1

α )
= sup

n≥0

e−t Hα (n, n)

σα(n)2
= sup

n≥0
e−t H̃α (n, n).

Thus, (4.11) implies that it suffices to prove the inequality

(
t − 1

t + 1

)n

P(α,0)
n

(
t2 + 1

t2 − 1

)
≤

(
n + α

n

)
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for all n ≥ 0 and t > 0. First, using the Rodrigues formula (A.3), we get

(
t−1

t+1

)n

P(α,0)
n

(
t2 + 1

t2 − 1

)
=

(
t − 1

t + 1

)n n∑
k=0

(
n+α

n−k

)(
n

k

) (
1

t2 − 1

)k (
t2

t2 − 1

)n−k

= 1

(t + 1)2n

n∑
k=0

(
n + α

n − k

)(
n

k

)
t2(n−k)

= 1

(t + 1)2n

n∑
k=0

(
n + α

k

)(
n

k

)
t2k .

Since

(t + 1)2n =
2n∑
k=0

(
2n

k

)
tk >

n∑
k=0

(
2n

2k

)
t2k

for all t > 0 and n ∈ Z≥1, it suffices to show that

(
n + α

k

)(
n

k

)
≤

(
n + α

n

)(
2n

2k

)
(4.20)

for all n, k ∈ Z≥0 with k < n. Using (1.7), it is easy to observe that (4.20) is equivalent
to the following inequality

k−1∏
j=0

n + α − j

k − j
≤

n−1∏
j=0

n + α − j

n − j

k−1∏
j=0

2n − 2 j − 1

2k − 2 j − 1
.

However, the latter holds exactly when

k−1∏
j=0

2k − 2 j − 1

k − j
≤

k−1∏
j=0

2n − 2 j − 1

n − j

n−1∏
j=k

n + α − j

n − j
.

Since k < n and α ≥ 0, this inequality clearly holds and hence we arrive at the desired
inequality, which finishes the proof of (4.18). ��

Let us also state explicitly the following result.

Corollary 4.7 If α ≥ 0, then

‖e−t H̃α‖�1(σ 2
α )→�∞ = 1

(1 + t)1+α
, t > 0. (4.21)

If α ∈ (−1, 0), then

‖e−t Hα‖�1(σ 2
α )→�∞ ≥ 1

(1 + t)1+α
, t > 0. (4.22)
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4.3 Transience and stochastic completeness

The operator H̃α generates a random walk on Z≥0 (see Remark 3.6). Explicit form of
the heat kernel enables us to characterize basic properties of the corresponding random
walk.

Lemma 4.8 The Markovian semigroup (e−t H̃α )t>0 is transient if and only if α > 0.
Moreover, it is stochastically complete (conservative) for all α > −1.

Proof The first claim can be deduced either from Lemma 2.1 or Lemma 4.5 (see [10,
Lemma 1.5.1]).

Recall that (e−t H̃α )t>0 is called stochastically complete (conservative) if

e−t H̃α1 = 1 (4.23)

for some (and hence for all) t > 0. Taking into account Remark 4.4, (4.23) follows
from [25, (18.23.3)]. Indeed, the generating function forMeixner polynomials is given
by

∑
n≥0

(β)n

n! Mn(x;β, c)zn =
(
1 − z

c

)x
(1 − z)−x−β,

where x ∈ Z≥0 and |z| < 1. However, by (4.5) and (4.14), we get

(e−t H̃α1)n =
∑
m≥0

e−t H̃α (n,m)σα(m)2

= 1

(1 + t)α+1

( t

t + 1

)n ∑
m≥0

(α + 1)m
m! Mn

(
m; 1 + α,

t2

t2 − 1

)( t

t + 1

)m

= 1

(1 + t)α+1

( t

t + 1

)n ∑
m≥0

(α + 1)m
m! Mm

(
n; 1 + α,

t2

t2 − 1

)( t

t + 1

)m

= 1

(1 + t)α+1

( t

t + 1

)n(
1 − t − 1

t

)n(
1 − t

t + 1

)−n−α−1 = 1.

��
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Remark 4.9 A few remarks are in order.

(i) For large classes of graphs there are rather transparent geometric criteria for
stochastic completeness (e.g., via volume growth). In particular, applying [15,
Theorem 5] (see also [16, Chapter 9]) to (3.11), we get

∑
n≥0

σα(n)2ωα(n) =
∑
n≥0

1

n + α + 1
= ∞,

which implies stochastic completeness. Taking into account (4.23) this provides
another derivation of the generating function for Meixner polynomials.

(ii) Notice that according to the Khas’minskii-type theorem, stochastic completeness
implies uniqueness of the Cauchy problem for (4.2) in �∞ (respectively, for (4.1)
in �∞(σα)). We do not plan to discuss this issue here and only refer for further
details to, e.g., [10,15], [16, Chapter 7].

5 Eigenvalue estimates

Consider the perturbed operator

Hα,V := Hα − V , (5.1)

where V is a multiplication operator on �2(Z) given by

(Vu)n := vnun, n ∈ Z≥0. (5.2)

We shall always assume that (vn)n≥0 is a real sequence. If V is unbounded (i.e., (vn)n≥0
is unbounded), we define the operator Hα,V as the maximal operator (analogous to
Hα) and this operator is self-adjoint according to the Carleman test (see, e.g., [3]).
We shall denote the total multiplicity of the negative spectrum of Hα,V by κ−(Hα,V ).
Notice that the spectrum of a semi-infinite Jacobi matrix is always simple and hence
κ−(Hα,V ) is the number of negative eigenvalues of Hα,V if the negative spectrum of
Hα,V is discrete.

For a real sequence v = (vn)n≥0 ⊂ R, denote v± := (|v| ± v)/2. Let also V±
be the corresponding multiplication operators. Since V = V+ − V−, the min-max
principle implies the following standard estimate

κ−(Hα,V ) ≤ κ−(Hα,V+). (5.3)

5.1 Rank one perturbations

We begin with the simplest possible case, which however demonstrates several impor-
tant features. Let us consider the operator

Hα(vn) := Hα − vn〈·, δn〉δn, vn > 0. (5.4)
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Thus, Hα(vn) is a rank one perturbation of the operator Hα (the corresponding matrix
coincides with (1.1) except the coefficient h(α)

n,n replaced by h(α)
n,n − vn).

Lemma 5.1 Let vn > 0. If α ∈ (−1, 0], then

κ−(Hα(vn)) = 1. (5.5)

If α > 0, then

κ−(Hα(vn)) =
{
0, vn ∈ (0, α],
1, vn > α.

(5.6)

Proof Since Hα is a positive operator, κ−(Hα(vn)) ≤ 1. Suppose that E < 0 is an
eigenvalue of Hα(vn), that is, there exists f ∈ �2(Z≥0) such that

Hα(vn) f = E f .

Therefore, we get

(Hα − E) f = vn〈 f , δn〉δn,

which shows that

f = vn〈 f , δn〉(Hα − E)−1δn .

Hence by (2.17)

1

vn
= 〈

(Hα − E)−1δn, δn
〉 = Gα(E; n, n). (5.7)

Since Hα is positive,Gα(·; n, n) is increasing on (−∞, 0). Moreover,Gα(E; n, n) →
0 as E → −∞. Therefore, by 2.1 Gα(·; n, n) maps (−∞, 0) ontoR>0 if α ∈ (−1, 0]
and onto (0, α−1) if α > 0, which implies that (5.7) has a solution exactly when

vn ∈
{

(0,∞), α ∈ (0, 1],
(α,∞), α > 0.

This immediately proves the desired claim.

Remark 5.2 Notice that in the case n = 0 the corresponding eigenvalue λ(v0) is
explicitly given by

λ(v0) = m−1
α (1/v0) < 0, (5.8)

where mα is the Weyl function (2.11). The case α = 0 has been addressed in [22].
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5.2 CLR and Bargmann-type bounds

We begin with the following extension of Lemma 5.1.

Lemma 5.3 Let α ∈ (−1, 0]. If v = v+ �≡ 0, then κ−(Hα,V ) ≥ 1.

Proof The proof is immediate from Lemma 5.1 and the min-max principle. ��
Ourmain aim is to extend the second claim inLemma5.1 tomore general potentials.

We begin with the following result, which may be seen as the analog of the famous
Cwikel–Lieb–Rozenblum bound (see [9,24], [26, Theorem XIII.12]).

Theorem 5.4 Let α > 0 and v+ ∈ �1+α(Z≥0; σ 2
α ). Then the operator Hα,V is bounded

from below, its negative spectrum is discrete and, moreover, there is a constant C =
C(α) > 0 (independent of v) such that

κ−(Hα,V ) ≤ C(α)
∑
n≥0

(v+
n )1+α (α + 1)n

n! . (5.9)

Proof By (5.3), we can assume that V = V+, that is, vn = v+
n ≥ 0 for all n ≥ 0.

Taking into account that the operator H̃α is Markovian, by Varopoulos’s theorem (see
[30, Theorem II.5.2]), (4.21) is equivalent to the validity of the following Sobolev-type
inequality

( ∑
n≥0

|un|2+ 2
α
(α + 1)n

n!
) 2α

2α+2 ≤ C1(α)
∑
n≥0

(α + 1)n+1

n! |un − un+1|2, (5.10)

for all u ∈ dom(̃tα) and the constant C1(α) depends only on α. By Theorem 1.2 from
[24], the latter implies that for each v with v+ ∈ �1+α(Z≥0; σ 2

α ) the operator H̃α,V =
H̃α −V is bounded from below, its negative spectrum is discrete and, moreover, there
is a constant C = C(α) > 0 such that

κ−(H̃α,V ) ≤ C(α)
∑
n≥0

v1+α
n

(α + 1)n
n! . (5.11)

It remains to notice that the operators H̃α,V and Hα,V are unitarily equivalent since V
commutes with Lα and thus

κ−(Hα,V ) = κ−(Hα − V ) = κ−(Lα(H̃α − V )L−1
α ) = κ−(H̃α − V ) = κ−(H̃α,V ).

��
Remark 5.5 Taking into account (4.21), C1(α) ≥ 1

1+α
(see [9, Remark 2.1]). More-

over, the constants C(α) and C1(α) satisfy (see [9, Theorem 2.1])

C1(α)1+α ≤ C(α) ≤ eαC1(α)1+α. (5.12)

The optimal constants in (5.9) and (5.10) remain an open problem.
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We finish this section with another estimate, which can be seen as the analog of the
Bargmann bound (see, e.g., [26, Theorem XIII.9(a)].

Theorem 5.6 If α > 0, then

κ−(Hα,V ) ≤ 1

α

∑
n≥0

v+
n

(α + 1)n
n! . (5.13)

Proof Again, by (5.3) it suffices to prove (5.13) for V = V+. Let ε > 0. It is the
standard Birman–Schwinger argument (see [27]) that −E < 0 is an eigenvalue of
Hα,εV if and only if ε−1 is the eigenvalue of V 1/2(Hα + E)−1V 1/2. Therefore, if the
operator V 1/2H−1

α V 1/2 extends to a bounded operator on �2(Z≥0) (notice that H−1
α

is densely defined on �2(Z≥0) since 0 is not an eigenvalue of Hα), then the number
of negative eigenvalues of Hα,V equals the number of eigenvalues of V 1/2H−1

α V 1/2

which are greater than 1. And hence

κ−(Hα,V ) ≤ tr (V 1/2H−1
α V 1/2).

Taking into account (3.8), we (at least formally) get (however, see Remark 5.7 below)

V 1/2H−1
α V 1/2 = V 1/2Lα(I − S)−1Wα(I − S∗)−1LαV

1/2,

and hence the trace of this operator is given explicitly by

tr(V 1/2H−1
α V 1/2) =

∑
n≥0

〈V 1/2H−1
α V 1/2δn, δn〉�2

=
∑
n≥0

‖W1/2
α (I − S∗)−1LαV

1/2δn‖2�2

=
∑
n≥0

vn
(α + 1)n

n! ‖W1/2
α (I − S∗)−1δn‖2�2

=
∑
n≥0

vn
(α + 1)n

n!
n∑

k=0

k!
(α + 1)k+1

.

Thus we get

κ−(Hα,V ) ≤
∑
n≥0

vn
(α + 1)n

n!
n∑

k=0

k!
(α + 1)k+1

. (5.14)

Now take into account that by [25, (15.4.20)]

∑
k≥0

k!
(α + 1)k+1

= 1

α + 1

∑
k≥0

k!
(α + 2)k

= 1

α + 1
2F1

(
1, 1

α + 2
; 1

)
= 1

α
.

Combining the latter with (5.14), we arrive at the desired estimate. ��

123



Heat kernels of the discrete Laguerre operators Page 23 of 29    32 

Remark 5.7 A few remarks are in order.

(i) Using the string factorization (3.8), it follows from [14, §13] that the operator
V 1/2H−1

α V 1/2 with α > 0 is compact exactly when

n∑
k=0

vklα(k)
∑
k>n

ωα(k) =
n∑

k=0

vk
(α + 1)k

k!
∑
k>n

k!
(α + 1)k+1

= o(1)

as n → ∞. In particular, the inclusion v ∈ �1(Z≥0) would imply compactness of
V 1/2H−1

α V 1/2 if α > 0.
(ii) Clearly, �1(σ 2

α ) is contained in �1+α(σ 2
α ) if α > 0 and hence (5.9) applies to a

wider class of potentials than (5.13). However, this embedding is not continuous.
Moreover, we do not know the optimal C(α) in (5.9).

(iii) The case α ∈ (−1, 0] requires different considerations and it will be considered
elsewhere. However, let us mention that using the Birman–Schwinger principle
and applying the commutation to the string factorization, one can show that for
α ∈ (−1, 0],

κ−(Hα,V ) ≤ 1 +
∑
n≥0

n!
(α + 1)n+1

∑
k≥n

v+
n

(α + 1)k
k! , (5.15)

where the second summand on the RHS in (5.15) is dual to the RHS (5.14).
(iv) The study of spectral types (ac-spectrum, sc-spectrum etc.) of a positive spectrum

of Hα,V is beyond the scope of the present paper, however, see the recent preprint
[31].

5.3 Hardy inequality

Our final goal is to provide the optimal Hardy inequality for the operator Hα (the
optimality is understood in the sense of [17, §1.2]). For each α > 0, define the
following weights vα = (vα(n))n≥0,

vα(n) = qα(n) + qα(n + 1)

2
, n ≥ 0, (5.16)

where qα = (qα(n))n≥0 is a positive sequence given by

qα(n) = 2n + α −
√

(2n + α)2 − α2 = α2

2n + α + √
(2n + α)2 − α2

. (5.17)

Theorem 5.8 Let α > 0. The weight vα is the optimal Hardy weight for Hα , that is,
the following assertions hold true:
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(i) The operator Hα − Vα is nonnegative and the Hardy-type inequality

∑
n≥0

∣∣√n + α + 1un − √
n + 1un+1

∣∣2 ≥
∑
n≥0

vα(n)|un|2 (5.18)

holds true for all u ∈ �2c(Z≥0).
(ii) For any positive v = (vn)n≥0 such that V �= Vα and V ≥ Vα the operator Hα −V

in no longer nonnegative in �2(Z≥0).
(iii) For any λ > 0 and any finite subset X ⊂ Z≥0, Hα − Vα ≥ λVα fails to hold on

�2c(Z≥0 \ X) (the inequality is understood in the form sense).

Remark 5.9 Before proving the above result let us briefly comment on the asymptotic
behavior of vα for large n. Clearly,

vα(n) = α2

4n
+ o(n−1) (5.19)

as n → ∞. On the other hand, using the Taylor series expansion

x −
√
x2 − a2 = x

(
1 −

√
1 − (a/x)2

) = x

2

∑
k≥1

(1/2)k−1

k!
(a
x

)2k
,

∣∣∣a
x

∣∣∣ < 1,

we immediately get

vα(n) = 1

4

∑
k≥1

(1/2)k−1α
2k

k!
(

1

(2n + α)2k−1 + 1

(2n + α + 2)2k−1

)
, (5.20)

for all n ≥ 0. Combining (5.20) with (5.19), we arrive at the estimate

0 < vα(n) − α2

4

(
1

2n + α
+ 1

2n + α + 2

)
= O(n−3), (5.21)

as n → ∞. The latter together with (5.18) implies the following Hardy inequality

∑
n≥0

∣∣√n + α + 1un − √
n + 1un+1

∣∣2 >
α2

2

∑
n≥0

|un|2
2n + α + 1

, (5.22)

which holds true for all 0 �= u ∈ �2c(Z≥0).

Proof of Theorem 5.8 Taking into account that (5.18) is noting but

tα[u] ≥ 〈Vαu, u〉�2 ,
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then using the operator Lα given by (3.9) as well as the equality (3.10), the above
inequality is equivalent to

t̃α[u] ≥ 〈Vαu, u〉�2(σ 2
α ).

By (3.12), the latter reads

∑
n≥0

(α + 1)n+1

n! |un − un+1|2 ≥
∑
n≥0

(α + 1)n
n! vα(n)|un|2. (5.23)

The proof of this inequality is based on [17, Theorem 1.1]. Consider the sequences
f = ( fn)n≥0 and g = (gn)n≥0 given by

fn = 1, gn = 1

σα(n)2
= n!

(α + 1)n
,

for all n ≥ 0. It is straightforward to verify that (̃τα f )n = 0 for all n ≥ 0 and
(̃ταg)n = 0 for all n ≥ 1, where τ̃α is given by (3.11) (on the other hand, notice
that f = L−1

α Pα(0) and g = αL−1
α 
α(0), where Pα(0) = (Pα,n(0))n≥0 and


α(0) = (
α,n(0))n≥0 = (Qα,n(0) + mα(0)Pα,n(0))n≥0). Taking into account that
gn is strictly decreasing as n → ∞ (since α > 0), f and g satisfy the assumptions of
[17, Theorem 1.1] and hence the weight Ṽα = (̃vα(n))n≥0 given by

ṽα(n) = 1√
gn

∑
k≥0 : |k−n|=1

√
gn − √

gk
ωα(min(n, k))

, n ≥ 0,

is the optimal Hardy weight for H̃α (in the sense of [17]). This in particular implies
the validity of the inequality

t̃α[u] ≥
∑
n≥0

ṽα(n)|un|2,

for all u ∈ �2c(Z≥0). It remains to notice that

ṽα(0) = α + 1 − √
α + 1=vα(0),

ṽα(n) = (α + 1)n
(n − 1)!

(
1−

√
n + α

n

)
+ (α+1)n+1

n!
(
1−

√
n + 1

n + α + 1

)
=σα(n)2vα(n),

for all n ≥ 1. This immediately implies that (5.23) is the optimal Hardy inequality for
H̃α , which completes the proof. ��
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Remark 5.10 A few concluding remarks are in order.

(i) The classical Hardy inequality (after a simple change of variables un �→ nun)
states that the inequality1

∑
n≥0

|(n + 1)un+1 − nun|2 ≥ 1

4

∑
n≥1

|un|2 (5.24)

holds true for all u ∈ �2(Z≥0). Setting α = 1 in (5.22) and changing variables
un �→ 1√

n+1
un (cf. (5.23) with α = 1), we get the inequality

∑
n≥0

(n + 1)(n + 2)
∣∣un+1 − un

∣∣2 ≥ 1

4

∑
n≥0

|un|2, (5.25)

which looks in a certain sense similar to the classical one.
(ii) CLR and Bargmann-type bounds can be seen as “integral” conditions which guar-

antee the positivity of the perturbed operator Hα,V (if the RHS in (5.9) or (5.13) is
less than 1, then clearly the corresponding LHS is zero). Hardy-type inequalities
allow to obtain “pointwise” positivity conditions. Namely, applying the standard
minmax principle, (5.18) implies that

κ−(Hα,V ) = 0 (5.26)

whenever v+
n ≤ vα(n) for all n ≥ 0. In particular, using (5.22) we conclude that

(5.26) holds true whenever

v+
n ≤ α2

2(2n + α + 1)
, for all n ≥ 0.

(iii) The Hardy inequality implies the following Kneser-type result: if

lim sup
n≥0

nv+
n <

α2

4
, (5.27)

then κ−(Hα,V ) < ∞. Conversely, if there is ε > 0 such that vn ≥ α2+ε
n for all

large enough n, then κ−(Hα,V ) = ∞.
(iv) If α ∈ (−1, 0], then Lemma 5.3 implies that for each v = v+ �≡ 0 there is

u ∈ �2c(Z≥0) such that

∑
n≥0

∣∣√n + α + 1un − √
n + 1un+1

∣∣2 <
∑
n≥1

vn|un|2.

1 It was proved in [17, Theorem 7.3] that replacing 1/4 on the RHS (5.24) by the weight w = (wn)n≥0,
wn = n2(2 − √

1 + 1/n − √
1 − 1/n) is the optimal Hardy inequality.
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In the terminology of [17,18] the lattermeans that Hα is critical for allα ∈ (−1, 0].
However, choosing g = gα = (gα(n))n≥0 as

gα(0) = 0, gα(n) =
n∑

k=1

ωα(k), n ≥ 1,

it is straightforward to check that for all α ∈ (−1, 0], gα satisfies the assumptions
of Theorem 1.1 from [17]. Therefore, by [17, Theorem 1.1], the weight

ṽα(n) = 1√
gα(n)

∑
k≥0 : |k−n|=1

√
gα(n) − √

gα(k)

ωα(min(n, k))
, n ≥ 1, (5.28)

is the optimalHardyweight and the following optimalHardy inequality (cf. (5.23))
holds true

∑
n≥0

(α + 1)n+1

n! |un − un+1|2 ≥
∑
n≥1

ṽα(n)|un|2, (5.29)

however, for all u ∈ �2c(Z≥0) with u0 = 0. In particular, for α = 0, g0(n) =∑n
k=1

1
k = hn are the harmonic numbers and the corresponding inequality is

∑
n≥0

(n + 1)|un − un+1|2 ≥
∑
n≥1

v0(n)|un|2, u0 = 0,

where

v0(n) = q0(n) + q0(n + 1), q0(n) = n −
√
n2 − nhn, n ≥ 1.
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Appendix A. Jacobi polynomials

For α, β > −1, let w(α,β)(x) = (1− x)α(1+ x)β for x ∈ (−1, 1) be a Jacobi weight.
The corresponding orthogonal polynomials P(α,β)

n , normalized by

P(α,β)
n (1) =

(
n + α

n

)
= (α + 1)n

n! (A.1)

for all n ≥ 0 (see (1.7) for notation of Pochhammer symbols and binomial coeffi-
cients), are called the Jacobi polynomials. They are expressed as (terminating) Gauss
hypergeometric series (1.8) by [29, (4.21.2)]

P(α,β)
n (x)

P(α,β)
n (1)

= 2F1

(−n, n + α + β + 1

α + 1
; 1 − x

2

)
. (A.2)

They also satisfy Rodrigues’ formula [29, (4.3.1), (4.3.2)]

P(α,β)
n (x) =

n∑
k=0

(
n + α

n − k

)(
n + β

k

) (
x − 1

2

)k (
x + 1

2

)n−k

(A.3)

= (−1)n

2nn! (1 − x)−α(1 + x)−β dn

dxn
{
(1 − x)α+n(1 + x)β+n}. (A.4)

This formula immediately implies

P(α,β)
n (−x) = (−1)n P(β,α)

n (x), (A.5)

and hence

P(α,β)
n (−1) = (−1)n

(
n + β

n

)
= (−1)n

(β + 1)n
n! . (A.6)

Jacobi polynomials include the Chebyshev polynomials, the ultraspherical (Gegen-
bauer) polynomials, and the Legendre polynomials (see [25,29] for further details).
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