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Abstract
In contrast to Hamiltonian perturbation theory which changes the time evolution,
“spacelike deformations” proceedbychanging the translations (momentumoperators).
The free Maxwell theory is only the first member of an infinite family of spacelike
deformations of the complex massless Klein–Gordon quantum field into fields of
higher helicity. A similar but simpler instance of spacelike deformation allows to
increase the mass of scalar fields.

Keywords Quantum field theory · Representation theory · Deformation theory ·
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1 Introduction

The basic idea of Hamiltonian perturbation theory is to start from a time zero algebra
(“canonical commutation relations”) equipped with a free time evolution, and perturb
the free Hamiltonian such that the observables at later time �(t) := eiHt�0e−i Ht

(where H is the perturbed Hamiltonian) deviate from the free ones. We present here
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a “complementary” deformation scheme for free quantum field theories: fixing the
algebra along the time axis, we deform the space translations, so as to obtain a different
local quantum field theory in Minkowski space.

Despite the apparent similarity, there are many differences, though. Hamiltonian
Perturbation Theory (PT) is well-known to be obstructed by Haag’s theorem, which
implies that the perturbation is possible on the same Hilbert space only locally. Glob-
ally, the perturbed vacuum state is not a state in the “free Hilbert space”, so that one
is forced to change the representation of the time zero algebra. The need of renor-
malization of the mass also shows that one is even forced to change the time zero
algebra itself. More precisely, interacting quantum fields in general do not even exist
as distributions at a fixed time (see, e.g., [14,15]).

A recent approach [3], designed to avoid these obstructions, uses instead of a CCR
time-zero algebra, an abstract “off-shell” C*-algebra of kinematical fields on space-
timewhich supports a large class of dynamics (one-parameter groups of time-evolution
automorphisms). The invariant states under each dynamics, however, annihilate differ-
ent ideals of the algebra (“field equations”), such that the corresponding GNS Hilbert
spaces cannot be identified for any time-zero subalgebra.

In contrast, Wightman quantum fields can always be restricted to the time axis [2].
Our spacelike deformations are globally well-defined on a subspace of the original
Hilbert space. They consist in a redefinition of the generators of the spacelike trans-
lations (momentum operators). The perturbed fields away from the time axis are then
defined as �(t, x) = eix

k
˜Pk�0(t, 0)e−i xk ˜Pk , where ˜Pk are the deformed generators.

In Hamiltonian PT, the “field content” is fixed by the choice of the free theory.
The “particle content” is determined by the spectrum of the (renormalized) perturbed
Hamiltonian, and may well change, e.g., when the interacting theory has bound states,
or confinement occurs. Yet, the relation to the free particle content is usually not
entirely lost.

In contrast, our spacelike deformations are (non-perturbative) algebraic deforma-
tions that drastically change the field content without changing the Hamiltonian: e.g.,
one obtains the free Maxwell field by a deformation of a massless free scalar field.

In fact, we know spacelike deformations only for free fields, producing massless
higher helicity fields from scalar ones (Sect. 2.3), or massive scalar fields from mass-
less ones (Sect. 3). The reason is that (a) we work on the one-particle space, from
which the deformation passes to the Fock space by “second quantization”; and (b)
the construction is essentially representation-theoretic. Namely, it transfers the rep-
resentation of the Poincaré group of one theory to a subspace of the representation
space of the other theory by a unitary operator, intertwining the subgroup that fixes
the time-axis.1 We present the deformed generators as (nonlinear) functions of the
undeformed generators.

1 This subgroup consists of the rotations and the Möbius group Möb. The latter is familiar from chiral
conformal QFT on the light-ray of two-dimensional CFT. Here, Möb acts in the same way by fractional
linear transformations on the (compactified) time axis. It is generated by the time translations and the
“conformal inversion” x = (t, x) �→ (−t,x)

t2−x 2 , which becomes t �→ −1/t on the time axis.
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We are therefore far from “interactions via deformation”; but our models illustrate
the potential of a new approach, and more sophisticated new ideas may emerge from
the present simple prototypes.

2 Helicity deformations

2.1 Background

The first examples to be demonstrated rely on a recent observation in [9]: For themass-
less free fields of any integer helicity h > 0, the one-particle spaces H(h) are proper
subspaces of the one-particle space H = H(0) of the complex massless free scalar
field. More precisely,H(h) as representationsUh ⊕U−h of the Poincaré group extend
to representations U(h) of the conformal group, whose restriction to the subgroup
Möb × SO(3) is given by

H(h)|Möb×SO(3) =
∞

⊕

�=h

(U (�+1) ⊗ D(�)) ⊕ (U (�+1) ⊗ D(�)), (2.1)

where D(�) are the spin-� representations of SO(3), and U (d) are the irreducible
positive-energy representations of Möb with lowest eigenvalue d of the “conformal
Hamiltonian” L0 = 1

2 (P0 + K0). (We follow rather standard notation for the gen-
erators of the conformal group, fixing conventions in Sect. 2.2; for more details on
the relations between the various groups and representations, see Sect. 2.2 and [9].)
The doubling is due to the “electric” and “magnetic” degrees of freedom. The same
decomposition with h = 0 holds for the complex scalar field, where the doubling
corresponds to the subspaces of charge ±1.

Möb×SO(3) is the subgroup of the conformal group that fixes the time axis x = 0.
The vectors transforming in the displayed subrepresentations are spacelike derivatives
of fields on the time axis, that transform like quasiprimary fields under Möb, applied
to the vacuum vector �. For the scalar field, these fields are simply [4]

Y�(∇)ϕ(∗)(x)|x=(t,0)

(ϕ(∗) stands for both ϕ and the conjugate field ϕ∗) with harmonic2 homogeneous
polynomials Y� of degree �, transforming like spin-� multiplets of quasiprimary fields
of scaling dimension d = � + 1. For h > 0, when the electric and magnetic fields
are combined into a complex field tensor Fj1... jh = E j1... jh + i B j1... jh , the equations
of motion impose linear relations among the fields ∇i1 . . . ∇ir Fj1... jh (x)|x=(t,0). The
decomposition (2.1) implies that the time-axis field content is given by exactly two
quasiprimary spin-�multiplets (one for both F and F∗) of scaling dimension d = �+1
for each � ≥ h, and that the Casimir operator of the Lie algebra of the rotations
(eigenvalues �(� + 1)) and the Casimir operator of the Lie algebra of the Möbius
group (eigenvalues d(d − 1)) coincide in the one-particle representation.

2 A polynomial in Rn is harmonic iff �Y = 0 where � = ∑n
k=1 ∂2k is the Laplacian. In this paper, n = 3.
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In this count, as h increases, the field content decreases. The lowest fields of the
scalar theory are given by ϕ(∗)(t, 0) (� = 0, d = 1) and ∇ϕ(∗)(t, 0) (� = 1, d = 2),
while, e.g., the Maxwell theory starts at � = 1, d = 2 with the vector field F(∗) =
E±iB. In this sense, contrary to intuition, the higher-helicity theories have less degrees
of freedom than the lower-h theories.

In [9], these facts were exploited to estimate the trace of e−βL0 , whose finiteness
then implies the split property for all finite-helicity massles free quantum field the-
ories. Here, we take them as the starting point of spacelike deformation, as already
speculated in [9]: we unitarily identify the common subrepresentations � ≥ h of the
subgroup Möb × SO(3), and find the necessary modification of the representation of
the remaining generators.

To illustrate the idea, consider the case h = 1 (Maxwell). The Maxwell equations
for F read

∇ · F = 0, ∇ × F = i∂tF.

The component fields Fk(t, 0) on the time axis transform in the same way under
Möbius transformations of the time axis and rotations, like the fields ∇kϕ(x, 0) of the
complex massless Klein–Gordon theory. Similarly, the fields (∇i Fj + ∇ j Fi )(t, 0) of
spin 2 transform in the same way as the fields (∇i∇ j − 1

3δi j�)ϕ(t, 0).
Because the representations of the Möbius and rotation groups on the one-particle

spaces are the same—except for the absence of the subrepresentation with � = 0 in
the Maxwell theory—we can algebraically identify these pairs of fields along the time
axis. We get

Fi (t, 0)
!= 2∇iϕ(t, 0) (2.2)

∇i Fj (t, 0)
!= α ·

(

∇i∇ j − 1

3
δi j�

)

ϕ(t, 0) + iεi jk∂t∇kϕ(t, 0), (2.3)

where the Maxwell equations dictate the anti-symmetric part in (2.3) as well as the
absence of an � = 0 contribution; the two-point function fixes the normalizations,
giving |α|2 = 12.

The problem is apparent: the left-hand side of (2.3) is the derivative of the left-hand
side of (2.2), which is not true for the right-hand sides. The spatial derivatives being
implemented by the momentum operators Pk , we conclude that while the Möbius and
rotation generators of both theories (including the Hamiltonian P0) can be identified,
their spatial momentum operators must differ.

We are going to determine the momentum operators ˜Pk of the Maxwell theory as
polynomials of the conformal and charge generators of the Klein–Gordon theory (and
along with them the boosts and the generators of spatial special conformal transforma-
tions). Then, starting from the identification (2.2) as a definition of the Maxwell field
on the time axis, and acting with ˜U (x) = eix

k
˜Pk on ϕ(t, 0), one obtains the Maxwell

field everywhere in Minkowski space. The same works for any helicity h > 0.
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As a second instance, we present the spacelike deformation of the massless scalar
field into the massive scalar field in Sect. 3.

The mere existence of such deformations should not be too surprising, given that
“all Hilbert spaces are the same”. The noticeable facts are that the deformations fix
parts of the symmetry, and that they can be given on the remaining generators by
explicit formulae.

2.2 Preliminaries about the conformal Lie algebra

Wedenote by Pμ,Mμν , D, Kμ the generators of translations, Lorentz transformations,
dilations, and special conformal transformations in the conformal Lie algebra so(2, 4),
respectively. Their commutators are explicitly

i[Pμ, Pν] = 0, i[Pμ, Mκλ] = ημλPκ − ημκ Pλ, i[Mκλ, Mμν] = ηκμMλν ± · · · ;
i[D, Pμ] = Pμ, i[D, Kμ] = −Kμ, i[D, Mκλ] = 0;
i[Kμ, Kν] = 0, i[Mκλ, Kμ] = ηκμKλ − ηλμKκ , i[Pμ, Kν] = −2ημνD + 2Mμν.

(2.4)

In particular, we have the Lie subalgebras möb:

i[D, P0] = P0, i[P0, K0] = −2D, i[D, K0] = −K0,

and so(3):

i[Mi j , Mkl ] = δ jkMil − δ jl Mik − δikM jl + δil M jk .

Lemma 2.1 The parity reflection (t, x) �→ (t,−x) defines a symmetric space decom-
position of the conformal Lie algebra

so(2, 4) = h ⊕ m, [h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h,

where h = möb ⊕ so(3) = Span(P0, D, K0, Mkl) and m = Span(Pk, M0k, Kk). The
generators of m transform like vectors under so(3):

i[Mkl , Xi ] = δli Xk − δki Xl , (2.5)

and möb acts on m as a möb-module like

i[P0, Pk] = 0, i[P0, M0k] = −Pk, i[P0, Kk] = 2M0k,

i[D, Pk] = Pk, i[D, M0k] = 0, i[D, Kk] = −Kk,

i[K0, Pk] = 2M0k, i[K0, M0k] = −Kk, i[K0, Kk] = 0.
(2.6)

In particular, (adP0)
3 = 0 and (adK0)

3 = 0 on m.

Proof Immediate from (2.4). ��
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In the sequel, we shall need the action of the generators on suitable vectors in the
h = 0 representation. This representation is realized on the one-particle space H of
the real massless scalar field ϕ. Its two-point function

(ϕ(x)�, ϕ(x ′)�) = (2π)−3
∫

d3 p

2p0
e−i p(x−y) (p0 = |p|)

is invariant under the infinitesimal conformal transformations3

i[Pμ, ϕ(x)] = ∂μϕ(x), i[Mμν, ϕ(x)] = (xμ∂ν − xν∂μ)ϕ(x),
i[D, ϕ(x)] = ((x∂) + 1)ϕ(x), i[Kμ, ϕ(x)] = (2xμ(x∂) − x2∂μ + 2xμ)ϕ(x).

(2.7)

BecauseWightman fields can be restricted to the time axis [2], they only need smearing
in the time variable.Wemay thus introduce, for polynomialsY (p) onmomentum space
R
3, improper one-particle vectors

|Y 〉t = Y (−i∇)ϕ(x, t)|x=0 �, (2.8)

such that |Y , f 〉 := ∫

f (t) |Y 〉t dt are proper one-particle vectors. They span the
one-particle space [4]. Their inner product is, in spherical coordinates,

〈Y , f |Y ′, f ′〉 = (2π)−3
∫ ∞

0

p2 dp

2p
̂f (p) ̂f ′(p) ·

∫

dσ(n) Y (pn)Y ′(pn), (2.9)

where p = |p|, p = pn, and dσ is the invariant measure on the unit sphere. The wave
equation �ϕ = 0 states that

|p 2 Y 〉t + ∂2t |Y 〉t = 0 ⇔ |p 2 Y , f 〉 + |Y , ∂2t f 〉 = 0 (2.10)

i.e., these vectors have zero norm w.r.t. the inner product (2.9).
SO(3) acts on Y (p) by rotation of the argument. The harmonic homogeneous poly-

nomials Y� of degree � carry the irreducible representation D(�). Hence |Y�〉t belong
to E�H.

The inner product (2.9) for harmonic homogeneous polynomials is diagonal w.r.t.
�, and the resulting p-integral in (2.9)

∫ ∞

0
p2�+1 dp ̂f (p) ̂f ′(p) (2.11)

is the two-point function of a chiral quasi-primary field (“conformal current”) of
scaling dimension d = � + 1, which defines the inner product for the representation
U (�+1) ofMöb. In this way, the decomposition (2.1) for h = 0 becomes manifest [4].

From (2.7) and the invariance of the vacuum vector �, one reads off the action
of the conformal generators on |Y�〉t for harmonic homogeneous polynomials Y� of

3 We use the same symbol for the second-quantized generators on the Fock space, as for the generators on
the one-particle space.
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degree �. They act (for simplicity of notation on the improper states) as differential
operators on Y and w.r.t. t :

P0|Y�〉t = −i∂t |Y�〉t ,
D|Y�〉t = −i(t∂t + � + 1)|Y�〉t , (2.12)

K0|Y�〉t = −i(t2∂t + 2(� + 1)t |Y�〉t

Mkl |Y�〉t = −i
∣

∣(pk∂l − pl∂k)Y�

〉

t (2.13)

Pk |Y�〉t = |pkY�〉t ,
M0k |Y�〉t = t |pkY�〉t − ∂t |∂kY�〉t , (2.14)

Kk |Y�〉t = −t2|pkY�〉t + 2(t∂t + �)|∂kY�〉t .

The equality of the Casimir operators 1
2MklMkl of so(3) and 1

2 (P0K0+K0P0)−D2 of
möb with eigenvalues �(� + 1) on |Y�〉t , as well as the mass-shell condition P2

k = P2
0

can be directly verified from these formulae and (2.10).
We shall need to control the spin of the vectors on the right-hand sides. The gen-

erators of so(3) and of möb clearly commute with E�, hence (2.12) and (2.13) have
again spin �. The polynomial ∂kY� is again harmonic, hence |∂kY�〉t in (2.14) has spin
� − 1. Since pkY� − p 2

2�+1∂kY� is harmonic, the vector |pkY�〉t splits into

E�+1|pkY�〉t =
∣

∣

∣

(

pk − p 2

2� + 1
∂k

)

Y�

〉

t
and E�−1|pkY�〉t = − 1

2� + 1
∂2t |∂kY�〉t ,

(2.15)

where we have used (2.10) in the latter. All other projections vanish.
Finally, for the complex scalar field,we have two copies of states |Y 〉±t with the same

actions (2.12)–(2.14) of so(2, 4) and actions of the unitary charge and anti-unitary PCT
operators

Q|Y 〉±t = ±|Y 〉±t , J |Y 〉±t = |Y 〉∓−t . (2.16)

Q commutes with the conformal generators, while

J Pμ = Pμ J , JMμν = −Mμν J , J D = −DJ , J Kμ = Kμ J , J Q = −QJ .

(2.17)

2.3 Main result

Let H = H+ ⊕ H− the one-particle space of the complex massless Klein–Gordon
field, where the superscript ± stands for the eigenvalue ±1 of the charge operator Q.
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As representations of Möb × SO(3), both H± decompose as

H±|Möb×SO(3) =
∞

⊕

�=0

H±
� , H+

�
∼= H−

�
∼= U (�+1) ⊗ D(�). (2.18)

Let E� be the projections onto the subspacesH� = H+
� ⊕H−

� , E
(h) = ∑

�≥h E�, and
H(h) = E (h)H = ⊕

�≥h H�. Let Pμ, Mμν , D, Kμ the generators of the conformal Lie
algebra (2.4) represented on the one-particle space of the complex massless Klein–
Gordon field.

The main result defines deformed generators ˜Pk (the translations of the deformed
QFT) in terms of the generators of the scalar QFT on the subspace H(h) of the one-
particle space of the scalar QFT. The deformation is a simple ansatz for a vector
operator of scaling dimension1, that (unlike the undeformed Pk ) admits also transitions
H±

� → H±
� .

Proposition 2.2 Let h a non-negative integer. For k = 1, 2, 3, make an ansatz for
self-adjoint deformed generators ˜Pk, ˜M0k , ˜Kk of m on H(h) = E (h)H by

˜Pk :=
∑

�≥h

a� · (E�+1Pk E� + E�Pk E�+1) +
∑

�≥h

b� · Q · εkmn P0MmnE�, (2.19)

2 ˜M0k := i[K0, ˜Pk], −˜Kk := i[K0, ˜M0k], (2.20)

where the coefficients a�, b� are real.

(i) The deformed generators ˜Pk, ˜M0k , ˜Kk satisfy the correct commutation relations
(2.17) with the PCT operator.

(ii) Together with the undeformed generators P0, D, K0 ofmöb and Mkl of so(3), they
satisfy the conformal Lie algebra (2.4) on H(h) if and only if

a2� = (� + 1)2 − h2

(� + 1)2
, b2� = h2

4�2(� + 1)2
(2.21)

and all coefficients b� have the same sign.
(iii) The generators ˜Pk as specified by (ii) satisfy the mass-shell condition on H(h):

∑

k

˜P2
k = P2

0 . (2.22)

(iv) The resulting representation of the Lie algebra so(2, 4) integrates to a true (i.e.,
not a covering) representation ˜U of the conformal group, which is equivalent to
the irreducible representation U(h) of the conformal group.

Proof (i) is immediate by (2.16). To prove (ii), we start with a Lemma.
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Lemma 2.3 (i) The deformed generators (2.19), (2.20) fulfill the correct [h,m]
commutation relations (2.5) and (2.6) independent of the specification of the coef-
ficients.

(ii) The remaining [m,m] commutation relations are also true on H� (� ≥ h), if and
only if

i[˜Pk, ˜Kl ] = 2δkl D + 2Mkl . (2.23)

Proof of the Lemma (i) is obvious because the projections E� and the charge operator
Q commute with h = möb⊕ so(3), and the remaining operators Pk and εkmnMmn

transform like vectors under so(3) and commute with P0 and have the correct
commutator with D [“scaling dimension 1”, (2.4)], while the commutators with
K0 are part of the definition.

(ii) follows by repeated application of adK0 and adP0 to (2.23), using (2.6) and (2.5).
��

(Alternatively, the correct Poincaré commutation relations

i[˜Pk, ˜Pl ] = 0, i[ ˜M0k, ˜Pl ] = δkl P0, i[ ˜M0k, ˜M0l ] = Mkl

would also serve the same purpose as (2.23).)
The remaining task for the proof of (ii) of the proposition is just a verification of

(2.23), where ˜Pk is given by (2.19) and

˜Kl =
∑

�≥h

a� · (E�+1KkE� + E�Pk E�+1) −
∑

�≥h

b� · Q · εkmnK0MmnE�

by (2.20). Using (2.12)–(2.14), one has to prove that for harmonic homogeneous
polynomials Y� of degree �, the commutators [˜Pk, ˜Kl ] make no transitions H� →
H�±2:

E�±2
(

˜Pk E�±1 ˜Kl − ˜Kl E�±1 ˜Pk
)|Y�〉±t != 0,

(which turns out to be automatically satisfied by the ansatz), as well as

E�±1
(

˜Pk(E�±1 + E�)˜Kl − ˜Kl(E�±1 + E�)˜Pk
)|Y�〉±t != 0, (2.24)

E�

(

˜Pk(E�+1 + E� + E�−1)˜Kl − ˜Kl(E�+1 + E� + E�−1)˜Pk
)|Y�〉±t != −2i(δkl D + Mkl)|Y�〉±t ,

where the actions of the subsequent operators depend on the intermediate projections,
given by (2.15). For example, the first term in the first condition (2.24) (for � + 1)
becomes

ia�b�+1Qεkmn P0MmnE�+1Kl |Y�〉±t − ia�b�E�+1PkQεlmnK0Mmn|Y�〉±t
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which has to be worked out with (2.12)–(2.14). Exploiting the identity for harmonic
homogeneous polynomials Y� [proven by contraction with εakl and using (2.15)]

E�+1|(εlmn pk − εkmn pl)pm∂nY�〉t = � · ε jkl E�+1|p jY�〉,

one finds that the first condition is satisfied if and only if

� · a�b� = (� + 2) · a�b�+1. (2.25)

Similarly, the second condition (2.24) reduces to

a2� + 4�2 · b2� = 1, (2.26a)

a2� − a2�−1 = 4(2� + 1) · b2� . (2.26b)

Eliminating b2� from (2.26a) and (2.26b), one gets a simple recursion

(� + 1)2a2� − �2a2�−1 = (� + 1)2 − �2,

hence (� + 1)2(a2� − 1) = const . The initial condition ah−1 = 0 gives const = −h2,
hence (2.21). (2.25) shows that b� have constant sign.

This proves (ii). Evaluation of (2.22) on arbitrary vectors |Y�〉±t with the given
values (2.21), yields the desired result, proving (iii).

Finally, to prove (iv) we note that the spectrum of L0 in the deformed representation
of so(2, 4) is a subset of its spectrum on H(0), hence integer. Therefore ˜U integrates
to a true representation of the conformal group. Knowing the multiplicities of the
subrepresentations of ˜U |Möb×SO(3), and comparing with (2.1), one concludes that ˜U
is unitarily equivalent to the irreducible representation U(h). ��

The signs of b� may be chosen positive without loss of generality, via the unitary
charge conjugation. Also the coefficients a� may all be chosen positive via a unitary
involution in the center of möb ⊕ so(3).

2.4 Field algebras

The construction of a local QFT on the Fock space F (h) = �(H(h)) over H(h) is
routine.

The deformed representation ˜U of the conformal group (equivalent to U(h) by
Proposition 2.2(iv)) on the one-particle space H(h) lifts to the Fock space F (h) by
second quantization.

For open intervals I ⊂ R (the time axis), let OI be the corresponding doublecone
spanned by I , and define ˜A(OI ) := A(OI )|F (h) , where A(O) are the local algebras of
the scalar field theory. For arbitrary doublecones, choose an interval I and a conformal
transformation g such that gOI = O , and define

˜A(O) := ˜U (g)˜A(OI )˜U (g)∗.
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The definition is unambiguous because if g1OI1 = O = g2OI2 , then g−1
2 g1(I1) =

I2, hence g := g−1
2 g1 ∈ Möb × SO(3), hence ˜U (g)A(I1)˜U (g)∗ = A(I2). Thus, the

net

O �→ ˜A(O)

is conformally covariant.
Because for any pair of spacelike separated doublecones, there is a conformal

transformation g mapping the doublecones into the forward and backward lightcones,
respectively, locality follows from the Huygens property of the scalar field (A(V+)

commutes with A(V−)) by covariance (see, e.g., [10]).

2.5 Field equations

At the level of fields, we define a symmetric and traceless field tensor F (∗)
j1... jh

(t, 0)

by identification with the multiplet of derivative fields Y j1... jh (−i∇)ϕ(∗)(t, 0) (where
Y j1... jh is the appropriately normalized symmetric traceless tensor of harmonic poly-

nomials of spin � = h) restricted toF (h), and hence F (∗)
j1... jh

(t, 0)�with the (improper)

spin-h vectors |Y j1... jh 〉±t of H±
h . We define F (∗)

j1... jh
(t, x) by the adjoint action of

˜U (x) = eixk ˜Pk such that F (∗)
j1... jh

(t, x)� are (improper) vectors inH(h)±. Then, F (∗)(x)

smeared within a doublecone O are affiliated with the algebra ˜A(O), hence they are
local fields.

In order to make the identification of the deformed field thus defined with the free
field of helicity ±h, we have to establish the equation of motion [9]

∇k Fk j2... jh = 0, εk jm∇k Fj j2... jh = i∂t Fmj2... jh , (2.27)

where F = E + i B, and E j1... jh and Bj1... jh are symmetric traceless “electric” and
“magnetic” tensors. On the time axis, we have by construction

Fj1... jh (t, 0)� = |Y j1... jh 〉+t , hence ∇k Fj1... jh (t, 0)� = i ˜Pk |Y j1... jh 〉+t .

With Proposition 2.2, we compute

˜Pk |Y j1... jh 〉+t = ah Eh+1|pkY j1... jh 〉+t − 2bh ·
∑

a

εkmn∂t |pm∂nY j1... jh 〉+t . (2.28)

With (2.15), this implies

˜Pk |Ykj2... jh 〉+t = 0, εk jm ˜Pk |Y j j2... jh 〉+t = −2bh∂t |(pn∂m − pm∂n)Ynj2... jh 〉+t ,(2.29)

because
(

pk − p 2

2h+1∂k
)

Ykj2... jh and εkmn pm∂nYk j2... jh and εk jm
(

pk − p 2

2h+1∂k
)

Y j j2... jh
are symmetric traceless tensors of rank r = h − 1, h − 1, h, respectively, of harmonic
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homogeneous polynomials of degree � = h + 1, h, h + 1, respectively, which vanish
since r �= �.

Now, the recursion Ynj2... jh = (

pn − p 2

2h−1∂n
)

Y j2... jh together with harmonicity
and homogeneity of Y j2... jh imply (pn∂m − pm∂n)Ynj2... jh = −(h + 1)Ymj2... jh . Since
2(h+ 1)bh = 1, we conclude that the higher Maxwell equations hold on the time axis
and on the vacuum vector:

∇k Fk j2... jh (t, 0)� = 0, εk jm∇k Fj j2... jh (t, 0)� = i∂t Fmj2... jh (t, 0)�. (2.30)

The complex conjugate higher Maxwell equations for F∗ = E − i B are guaranteed
by the presence of the operator Q in (2.19), that switches the sign of i in the right-hand
side of (2.28) for the vectors |Y 〉−t of charge −1.

At this point, it becomes apparent how the charge of the scalar field is re-interpreted
as the sign of the helicity of the higher Maxwell field.

By applying the spacelike translations ˜U (x) to (2.30), we conclude that the higher
Maxwell equations on the vacuum vector hold everywhere in Minkowski space.
Because F (∗) are local fields on the time axis, by conformal covariance they are
local on Minkowski spacetime. Then, the Reeh–Schlieder theorem ensures that the
higher Maxwell equations hold as operator equations.

2.6 Unitary implementation

It is clear from our identification of the helicity-deformed representation on the sub-
space E (h)H0 of the one-particle space for the complex scalar field with the known
representation on the higher-helicity one-particle space, that there must exist a unitary
operatorU intertwining the two representations. While our result Proposition 2.2 was
foundwithout knowing this unitary, we could identify it a posteriori for the case h = 1
(Maxwell). We sketch the essential steps.

To prevent confusion, we rename the one-particle Hilbert space and its (improper)
vectors of Sect. 2.3 asHscl and |Y 〉sclt

± = Y (−i∇)ϕ(∗)(x)�|x=(t,0), and we introduce
the one-particle Hilbert space of theMaxwell theoryHMaxw and its (improper) vectors

|Y〉Maxw
t

± := 1√
2

· Y j (−i∇)
(

E j (x) ± i B j (x)
)

�|x=(t,0),

where Y = (Y1,Y2,Y3) is a triple of polynomials, and the sum convention for vec-
tor indices is understood. We consider only the case of charge + and suppress the
superscript. The case of charge − is identical, up to a change of sign, see below.

The respective inner products deriving from the respective two-point functions are

scl
t 〈Y |Y ′〉sclt ′ = (2π)−3

∫

d3 p

2p0
Y (p)Y ′(p) e−i(t−t ′) (p0 = |p|),

Maxw
t 〈Y|Y′〉Maxw

t ′ = (2π)−3
∫

d3 p

2p0
Yi (p)

(

δi j p
2
0 − pi p j + iεi jk p0 pk

)

Y ′
j (p) e−i(t−t ′).
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For the conjugate field E− iB, only the εi jk-term would change sign. We write the
latter as

Maxw
t 〈Y|Y′〉Maxw

t ′ = scl
t 〈Yi |Ti j |Y ′

j 〉sclt ′ (2.31)

where

Ti j = δi jP2
0 − Pi Pj + iεi jk P0Pk .

The null vectors of these inner products are (2.10), respectively,

|p 2 Y〉Maxw
t + ∂2t |Y〉Maxw

t = 0, |pY 〉Maxw
t = 0, |p × Y〉Maxw

t + ∂t |Y〉Maxw
t = 0.

The action of the conformal generators on the vectors inHMaxw is similar as (2.12)–
(2.14), with modifications due to the vector character of the field and its scaling
dimension 2. They will be displayed in due context in the proof of Proposition 2.5.

We now introduce operators Vi and ∇i onHscl:

Vi := Mki Pk − i

2
P0εikl Mkl , ∇i |Y 〉sclt := |∂i Y 〉sclt (2.32)

and operators V : HMaxw → Hscl and V ∗ : Hscl → HMaxw:

V |Y〉Maxw
t := Vi |Yi 〉sclt , V ∗|Y 〉sclt := −i |∇Y 〉Maxw

t . (2.33)

Here, ∇Y (p) denotes the gradient w.r.t. p. These operators are well-defined because
they respect the respective null vectors.

The following Lemma and Proposition provide the desired unitary operator.

Lemma 2.4 (i) The range of Vi is orthogonal to the � = 0 subspace E0Hscl.
(ii) It holds Ti j∇ j = iV ∗

i
(iii) It holds Ti j = V ∗

i C
−1Vj where C = 1

2MklMkl = ∑

� �(� + 1)E� is the Casimir
operator.

(iv) V ∗ is the adjoint of V .

Proposition 2.5 (i) It holds V V ∗ = C.

(ii) The operator U = C− 1
2 V : HMaxw → (1 − E0)Hscl is unitary. In other words,

U arises by polar decomposition of V ∗ = U∗C 1
2 .

(iii) U intertwines the actions of möb ⊕ so(3) onHMaxw and (1 − E0)Hscl.
(iv) U intertwines the actions of the generators Pk, M0k , Kk of m on HMaxw with

the actions of the deformed generators of m according to Proposition 2.2 on
(1 − E0)Hscl.

The proofs proceed by direct computation heavily using (2.12)–(2.14) and the
present definitions. It could be rewarding to have a more elegant proof providing a
better insight into the algebraic nature of the deformation.
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Proof of the Lemma (i) Obvious because Mkl E0 = 0.
(ii) Straight computation, using (2.13).
(iii) The lengthy computation goes as follows: One first shows, for harmonic polyno-

mials Y� of degree �, that ∇kC−1Vj |Y�〉sclt = iδ jk |Y�〉sclt + terms annihilated by
Tik (summation over k), and then uses (ii). For the first step, the identities

E�+1Pi Mi j E� = i� · E�+1Pj E�, E�+1Mi j Pi E� = i(� + 2) · E�+1Pj E�

and their adjoint are extensively exploited.
(iv) Straight computation:

Maxw
t 〈Y|V ∗|Y ′〉sclt ′ Def= −i Maxw

t 〈Y|∇Y ′〉Maxw
t ′ = −i sclt 〈Y|Ti j∇ j |Y ′〉sclt ′ =

(ii)= scl
t 〈Yi |V ∗

i |Y ′〉sclt ′ = scl
t ′ 〈Y ′|Vi |Yi 〉sclt

Def= scl
t ′ 〈Y ′|V |Y〉Maxw

t .

��

Proof of the Proposition (i) Straight computation: VV ∗ = −iVi∇i = C because the
iεikl -terms vanish.

(ii) On the range (1 − E0)Hscl of V , C− 1
2 is well defined. Then, UU∗ =

C− 1
2 VV ∗C− 1

2 = 1 by virtue of (i). On the other hand, using (ii) of the Lemma,

Maxw
t 〈Y|U∗U |Y′〉Maxw

t ′ = scl
t 〈Yi |V ∗

i C
−1Vj |Y ′

j 〉sclt ′ = scl
t 〈Yi |Ti j |Y ′

j 〉sclt ′ = Maxw
t 〈Y|Y′〉Maxw

t ′ ,

hence U∗U = 1 as well.
(iii) BecauseMkl commutewithC andV transforms as a vector, it is easily seen that the

chain of mapsU∗P0U takes |Y〉Maxw
t to −i |(pk∂l − pl∂k)Q+ Qlek − Qkel〉Maxw

t ,
which is the action of Mkl in the Maxwell one-particle space; the additional terms
as compared to (2.13) account for the vector character of the Maxwell field.
Because P0 commutewithVi andwithC ,U∗P0U takes |Y〉Maxw

t to−i∂t |Y〉Maxw
t =

P0|Yt 〉Maxw.
Because Vi scale like P, U∗DU takes |Y〉Maxw

t to −i t∂t |Y〉Maxw
t − i |(p · ∇)Y +

2Y〉Maxw
t , which is the action of D in the Maxwell one-particle space. The factor

2 as compared to (2.12) reflects to the scaling dimension 2 of the Maxwell field.
Finally, for K0, it suffices to note that the equality of Casimir operators 1

2MklMkl =
C = 1

2 (P0K0 + K0P0) − D2 = P0K0 − D2 − i D holds in both representations
by (2.1). Since U intertwines Mkl , D and P0, it also intertwines C and K0 =
P−1
0 (C + D2 + i D).

(iv) It suffices to verify U PkU∗ = ˜Pk . The others then follow by (2.6) because U
intertwines K0. One computes the various contributions E�′V PkV ∗|Q�〉sclt , and

by dividing by the respective eigenvalues ofC
1
2 , one obtains (2.19) with the correct

coefficients (2.21). ��
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3 Mass deformation

A second, and much simpler, instance of spacelike deformation is the construction
of the massive Klein–Gordon field as a deformation of the spacelike translations and
boosts of themasslessKlein–Gordon field. It is “complementary” to the corresponding
Hamiltonian deformation treated in [6].

In the present instance, we can just write down the deformed generators. Because
the massive one-particle vectors have energy p0 ≥ m, the spectral projection Em =
θ(P0 − m) will play the role of the projection E (h) in Sect. 2.3.

The Lie algebra of the Poincaré group again has a symmetric space decomposi-
tion h ⊕ m, where h = t ⊕ so(3) (t = time translations), and m is spanned by the
spacelike momenta and the boost generators. By definition, the rotations Mkl and the
Hamiltonian P0 remain undeformed. Thus, the deformed boosts ˜M0k also determine
the deformed momenta ˜Pk = −i[P0, ˜M0k].

We return to the real scalar field, and denote by ϕ0 and ϕm the massless and massive
fields.

For the massless field, we write |Y 〉t := Y (−i∇)ϕ0(t, 0)� as before, and for the
massive field denote |Y 〉mt := Y (−i∇)ϕm(t, 0)�. The massive two-point function
yields

m〈Y , f |Y ′, f ′〉m = (2π)−3
∫

p2 dp

2p0
· ̂f (p0) ̂f ′(p0)

∫

dσ(n) Y (pn)Y ′(pn),

(3.1)

where p0 = √

p2 + m2, p = pn, and dσ is the invariant measure on the unit sphere.
The Klein–Gordon equation becomes |p 2Y 〉mt + (∂2t + m2)|Y 〉mt = 0 w.r.t. the inner
product (3.1).

The inner product (3.1) is diagonal w.r.t. the spin of the polynomials Y , Y ′. Conse-
quently, it is a direct sum of inner products for polynomials Y� of spin � as before

m〈Y�, f |Y ′
�, f ′〉m = (2π)−3

∫

p2�+2 dp

2p0
· p2� · ̂f (p0) ̂f ′(p0)

∫

dσ(n) Y�(n)Y ′
�(n),

(3.2)

Passing to the integration variable ω = p0, one has

p2�+2dp

2p0
= 1

2
(ω2 − m2)�+1/2dω.

It will be advantageous to pass to their Fourier transforms |Y 〉mω = ∫

dt e−iωt |Y 〉mt ,
such that

|p 2Y 〉mω = (ω2 − m2)|Y 〉mω . (3.3)
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Then, the identificationU : Hm → EmH0 of the massive one-particle spaceHm with
the subspace EmH0 of the massless one-particle space H0

U : |Y�〉mω �→ σ(ω)�+
1
2 |Y�〉ω, where σ(ω) =

(

1 − m2

ω2

) 1
2
, (3.4)

is unitary w.r.t. the respective inner products (3.1) for m = 0 and for m > 0. In view
of (3.1), the same equation (3.4) remains true for all homogeneous polynomials of
degree �; this is compatible with (2.10) and (3.3) by virtue of ω2 −m2 = ω2 · σ(ω2).

The deformed Poincaré generators on EmH0 arise by the unitary conjugation AdU
of the known action of themassive Poincaré generators onHm , i.e., the pull-back under
the identification (3.4). The massive Poincaré generators Pμ and Mμν act on |Y�〉mt
in exactly the same way as the corresponding massless generators on |Y�〉t in (2.12)–
(2.14). In particular, the deformation preserves the Hamiltonian P0 and the generators
Mkl of rotations. The deformation of the spacelike momenta gives immediately

˜Pk |Y�〉ω = σ(ω) · Pk |Y�〉ω ⇒ ˜Pk = Pk ·
(

1 − m2

P2
0

) 1
2
. (3.5)

The mass-shell condition

∑

k

˜P2
k = P2

0 − m2

is trivially fulfilled by (3.5).
For the deformed boosts on EmH0, one gets

˜M0k |Y�〉ω = σ(ω)−�− 1
2

(

∂ω

(

σ(ω)�+
3
2 |pkY�〉ω

) + ωσ(ω)�−
1
2 |∂kY�〉ω

)

=
((

� + 3

2

)

σ ′(ω) + σ(ω)∂ω

)

|pkY�〉ω + ωσ(ω)−1|∂kY�〉ω.

Using (2.12)–(2.14), this can be seen to be equivalent to

˜M0k =
(

M0k − 1

2P0
(DPk + PkD) · m

2

P2
0

)

·
(

1 − m2

P2
0

)− 1
2

(3.6)

(where the operator ordering has been adjusted so as to match the coefficient � +
3
2 ). Because in the massless one-particle representation the Casimir operators C =
1
2MklMkl of so(3) and 1

2 (P0K0 + K0P0) − D2 of möb coincide, this can also be
written

˜M0k = 1

2

(

σ(P0)M0k + M0kσ(P0)
)

+ i

2
[C, Pk] · σ ′(P0). (3.7)

By construction (unitary conjugation with U ) the deformed generators on the sub-
space EmH0 are self-adjoint and satisfy the Poincaré commutation relations. Indeed,
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the hermiticity, as well as the commutator i[P0, ˜M0k] = −˜Pk , are also explicitly
verified without much effort. The explicit verification of the commutation relation
i[ ˜M0k, ˜M0l ] = Mkl does not directly give the desired result, but rather

i[ ˜M0k, ˜M0l ] =
(

Mkl + (

M0k Pl − M0l Pk)
m2

P3
0

) (

1 − m2

P2
0

)−1

.

This equals Mkl on EmH0 because M0k Pl + Ml0Pk + Mkl P0 = εkl jW j , and
the Pauli-Lubanski operator Wμ = 1

2ε
μνκλMνκ Pλ vanishes in the massless scalar

representation.

4 Summary

We have presented two families of examples of spacelike deformations that allow to
construct new quantum field theories by fixing the restriction of a given QFT to the
time axis, and deforming only the “transverse” symmetry generators. The remarkable
feature is that the scheme admits the change of discrete quantum numbers (the helicity
in our first example).

Both instances of spacelike deformation presented here make essential use of the
enveloping algebra of the Lie algebra of the respective spacetime symmetry group
(conformal, resp. Poincaré).

In both cases, it is true that we knew the expected deformation from the outset. But
only in the mass deformation case did we know the unitary operator that transfers the
massive generators to the massless one-particle space, and we used this knowledge to
compute the deformed generators. In contrast, Proposition 2.2 is a uniqueness result,
once the subspace is specified on which the deformation is supposed to be defined.

It is not difficult to see that one can also deform any given helicity h′ > 0 to a
helicity h > h′, and any given mass m′ > 0 to a mass m > m′, as would be expected
from the underlying pattern of inclusions of Hilbert spaces. One only needs to re-
adjust the numerical coefficients of E�′ ˜Pk E� in (2.19), and replace σ(P0) in (3.7) by
√

(P2
0 − m2)/(P2

0 − m′2). On the other hand, increasingmass and spin simultaneously
might not be possible by lack of an inclusion of one-particle representations of the
subgroup fixing the time axis. However, it seems possible to get a representation with
m > 0 and s > 0 by deforming the direct sum of massless helicity representations
running over all |h| ≤ s, because conversely, the restriction of a massive spin-s
representation to the rotation subgroup is the direct sum of the restrictions of helicity-
h representations with |h| ≤ s.

The case of interacting theories will need methods going beyond representation
theory of spacetime symmetry groups. Similar ideas leading to integrable models in
two spacetime dimensions were previously pursued in [1, Sect. 4]. Here, based on
an operator-algebraic deformation result for chiral conformal QFT [8], models with
translation generators P0 = 1

2 (P + m2/P) and P1 = 1
2 (P − m2/P), satisfying
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the mass-shell condition P2
0 − P2

1 = m2, were constructed starting from a Möbius
covariant QFTs with generator P .

5 Outlook

Our constructions may give insights into the modular theory of local algebras for
massive theories [7,13], which is not as well known as for massless theories. Let us
explain the idea.

In a generic QFT, if the local algebras A(OI ) = A(I ) for doublecones OI spanned
by an interval I along the time axis are given, then they are defined for general dou-
blecones by the adjoint action of Poincaré transformations. In Sects. 2.3 and 3, the
deformed local algebras on the time axis arise just by restriction of the undeformed
local algebras to the respective second-quantized subspace �(E (h))F0 or �(Em)F0.

In the case of helicity deformations, one may adopt a different point of view, refer-
ring only to the representations of the conformal group. Namely, given a unitary
representation ˜U of Möb on H and its extension by the anti-unitary PCT operator
J , the Brunetti–Guido–Longo construction [5] (BGL) allows to define a real Hilbert
space H(R+) ⊂ H such that H(R+) ∩ i H(R+) = {0} and C H(R+) = H. This
definition uses only the dilations and J . Acting with ˜U (g), g ∈ Möb, one obtains a
net of real standard subspaces I �→ H(I ) on the intervals of the circle. This net of
subspaces is local in the sense that the symplectic complement H(I )′ ≡ (i H(I ))⊥
of H(I ) coincides with H(I ′), where I ′ is the complement of I in S1 and orthogo-
nality ⊥ refers to the real part of the scalar product. Upon second quantization, these
properties turn into locality of a Möbius covariant chiral net of local algebras with the
Reeh–Schlieder property. It trivially restricts to a net on the time axis by deleting the
point −1 ∈ S1 and identifying S1\{−1} with R via the Cayley transform.

If the unitary representation of Möb extends to a representation of the four-
dimensional conformal group onH, then the net of standard subspaces on S1 extends
to a conformally covariant net O �→ H(O) on the four-dimensional Dirac manifold,
which in turn restricts to a net on Minkowski spacetime. By second quantization, one
obtains a Huygens local net of local algebras O �→ A(O). “Huygens locality” (=
commutativity also at timelike distance) is a consequence of the locality along the
time axis, that is guaranteed by the BGL construction.

By construction, the modular group of H(R+) is given by the dilations, and that of
H(I ) is the one-parameter subgroup of Möb that fixes the interval I . It follows that
the modular groups of the local algebras A(O) (O a doublecone or a wedge) in the
vacuum state are the subgroups of the conformal group (conjugate to boost subgroups)
that fix the doublecone or wedge O . In the construction of Sect. 2.3, the one-particle
space is given by E (h)H, the representation of theMöbius group remains undeformed,
and the local subspaces and local algebras away from the time axis are constructed
with the deformed translations and boosts. Because the projection E (h) commutes
with the representation of Möb, it is automatic that the modular groups on the time
axis coincide with those of the scalar field restricted to E (h)H, and away from the time
axis are conjugate by deformed Poincaré transformations.
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The situation is very different in the mass deformation of Sect. 3. Because the
spectral projection Em does not commute with the dilations, the latter are not defined
on the subspace Hm , and the BGL construction is not possible. Indeed, it is well-
known that in the massive case, Hm(R+) (to be identified with Hm(V+) in the net on
Minkowski spacetime) has trivial symplectic complement ([11,12]), in contrast to the
duality (i H0(R+))⊥ = H0(R−) in the massless case. On the other hand, we know
that the massive local subspace Hm(I ) of an interval I on the time axis coincides
with the local subspace Hm(OI ) for the doublecone OI spanned by I ; and by the
work [6] of Eckmann and Fröhlich, we have a local unitary equivalence between the
massive and massless time-zero algebras. Specifically, there is a unitary operator UR

such that for intervals Ir = (−r , r) ⊂ R symmetric around t = 0 and r < R, one
has Hm(Or ) = URH0(Or ) where Or is the causal completion of the time-zero ball
of radius r . Thus, the modular groups of Hm(Or ) are, for r < R, conjugate to the
known modular groups of H0(Or ) by UR . Increasing R, the unitary UR will change,
but the subspaces H(Ir ) for r < R and their modular groups remain unchanged. Thus,
the modular groups for r < R1 < R2 commute with UR2U

∗
R1
, and a more detailed

investigation of the unitaries UR would be worthwhile to get a first insight into the
hitherto unknown massive modular groups.

This information about the modular groups then passes to arbitary doublecones via
the adjoint action of the deformed translations and boosts, as constructed in Sect. 3.
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