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Abstract

We give a precise connection between combinatorial Dyson—Schwinger equations
and log expansions for Green’s functions in quantum field theory. The latter are tri-
angular power series in the coupling constant « and a logarithmic energy scale L—a
reordering of terms as G(o, L) = 1 £ =0 ol H j(aL) is the corresponding log
expansion. In a first part of this paper, we derive the leading log order Hy and the
next-to/)-leading log orders H ; from the Callan-Symanzik equation. In particular,
H; only depends on the (j + 1)-loop B-function and anomalous dimensions. In two
specific examples, our formulas reproduce the known expressions for the next-to-
next-to-leading log approximation in the literature: for the photon propagator Green’s
function in quantum electrodynamics and in a toy model, where all Feynman graphs
with vertex sub-divergences are neglected. In a second part of this work, we review
the connection between the Callan—-Symanzik equation and Dyson—Schwinger equa-
tions, i.e., fixed-point relations for the Green’s functions. Combining the arguments,
our work provides a derivation of the log expansions for Green’s functions from the
corresponding Dyson—Schwinger equations.
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1 Introduction
1.1 Prologue: Green'’s functions in quantum field theory

Quantum field theory (QFT) predicts probabilities for certain particle processes. For
example, initialize an experiment, where a virtual photon decays into an electron—
positron pair. One cannot predict whether and when the photon decays, and if it does,
where the electron and positron will go in the end. However, one can put two detectors
D; and D, somewhere and predict the probability that an electron enters D; and
a positron enters Dj. This situation is totally different from deterministic classical
mechanics, which predicts the exact time evolution for given initial conditions.

Such probabilities can be found in the following way: Each QFT is defined by
a Lagrangian, which is a functional of the described particle fields. It consists of a
kinetic part (terms that are quadratic in the fields) and interaction terms (of cubic or
higher order in the fields). From all these, one can read off Feynman rules in a simple
way. Now, a given particle process corresponds to a diagram (called Feynman graph)
that translates via these rules to the so-called Feynman amplitude. Finally, the latter
translates via the LSZ formula to a probability amplitude that squares to the actual
probability.!

Consider, for example, the above experiment. The QFT that describes this process
is quantum electrodynamics (QED). The corresponding Lagrangian is a functional of
the photon field A#, the electron 1 and its antiparticle ¥ (i.e., the positron). It contains
one kinetic term for the photon and one for the electron and positron together. It also
includes one interaction term, i.e., gy A* yuw.z Here, the coupling constant g < 1
is the electric charge of the electron and y,, is a Dirac matrix. Each process involving
these particles translates to a graph that consists of edges and vertices: A photon
corresponds to a wiggly line and a straight arrow line indicates an electron or positron
(depending on the direction of the arrow). An interaction between these three particles
is represented by a vertex. Table 1 shows all these basic ingredients of QED Feynman
graphs. The virtual photon decay described above corresponds to the vertex graph in

1 This is similar to electrodynamics, where the E field is an amplitude and only the intensity / « E 2 can
be measured.

2 As a convenient toy model, we consider QED in Landau gauge. Here, another term in the Lagrangian
vanishes [1] and the theory contains only one coupling constant. We discuss more general cases in Sect. 4.
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Log expansions from combinatorial Dyson-Schwinger equations 2177

Table 1 Different types of edges and vertices in QED Feynman graphs

Electron and positron Photon Interaction vertex

- - <

Table 1, and Feynman rules state that the respective Feynman amplitude is proportional
to the electric charge g. It also depends on other factors, e.g., on the relative positions
of the detectors.

Quantum mechanics now tells us that the obtained result is not exact. Indeed, one
has to consider all possible ways in which the final state (an electron in D; and a
positron in D») is achieved. For example, both particles could actually interchange
another photon before entering the detectors. The respective Feynman diagram is the
1-loop graph

: (1.1)

and one has to add the resulting Feynman amplitude to the previous one before com-
puting the actual probability. Note that the latter amplitude is of order g3, because by
Feynman rules, each vertex constitutes one factor of g. Thus, the contribution to the
overall probability is small compared to the initial one. All in all, one has to consider
infinitely many Feynman graphs with more and more loops and vertices. However,
their contributions to the final amplitude (the quantum corrections) become smaller
and smaller. At some point, one may truncate the resulting Feynman amplitude when
it is accurate enough.

There are two problems in this calculation: First, each loop diagram translates to a
divergent integral via Feynman rules. In order to extract the correct quantum correc-
tions, one has to regularize the integrals, i.e., to keep track of the different kinds of
divergences. Then, one applies a renormalization scheme, i.e., one introduces ‘counter
terms’ into the Lagrangian. These lead to additional Feynman graphs, whose ampli-
tudes exactly cancel the divergences. In this way, the resulting Feynman amplitudes
become finite.? A second problem are infrared divergences that occur when the prob-
ability of a particle process is computed from the Feynman amplitude. We do not
discuss these any further, because our work is focused on the computation of Feyn-
man amplitudes.

After regularization and renormalization in a momentum subtraction scheme, each
Feynman graph I' contributes a quantum correction ¢g(I") to the initial Feynman
amplitude. This correction depends on the coupling constants g; and the scalar prod-
ucts p; - p; between the momenta pl” of the particles that enter the process. Here, it is

3 Another way to think about regularization and renormalization is the following: The infinities are absorbed
by the fields and coupling constants in the Lagrangian. In this way, they become unphysical, but the resulting
probability amplitudes remain finite and are physically observable.
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2178 0. Kriiger

very convenient to factor out an energy scale S and to define dimensionless scattering
angles as ® = {p; - p;/S}. Now, renormalization requires some sort of boundary
condition. In our case, we assume that ¢g(I") is known for certain values of § = Sy
and ©@ = ©g. One usually calls Sy renormalization scale and {Sy, O} renormaliza-
tion point.* Then, it turns out that ¢z (I") is a polynomial in the coupling constants
gk and the logarithm L = log(S/Sp) of the energy scale [2]. Hence, renormalized
Feynman rules can be written as a linear map ¢ from the set of Feynman graphs to
the polynomial algebra A[gy, L]. The dependence of ¢z (I") on the scattering angles
© and Oy is hidden in the coefficients of the polynomial. In the following, we will
make this more explicit.

First, ¢g is an algebra homomorphism—the domain of definition is the algebra H
of all one-particle irreducible (1PI) Feynman loop graphs® (of a given QFT) and their
disjoint unions. The disjoint union is an associative product, and the empty graph I is
the corresponding unit element. Furthermore, Feynman rules are normalized such that
a 1PI Feynman graph I contributes a change of ¢ (I") relative to the corresponding
zero-loop Feynman amplitude.® This implies that 1PI graphs without loops would
map to 1 (the unit element in .4). Note that these are not in H, but are identified
with the empty graph I. For example, the QED graphs in Table 1 would map to 1 by
renormalized Feynman rules’ and the 1-loop graph in Eq. (1.1) maps to a term that is
proportional to g2 (and not o< g>). With this normalization, a one-particle reducible
graph (1PR) corresponds to the disjoint union of its 1PI parts, e.g.,

oA e[S

(1.2)

Secondly, the algebra H acquires a grading. In general, it is graded by the number
of vertices of each kind in a graph. However, for QFTs with only one interaction term,
it is more convenient to grade the algebra H by the number of loops,

H =P Ha. (1.3)

k=0

4 In quantum chromodynamics (QCD), there are other kinds of boundary conditions. However, this does
not alter the structure of ¢ (I') that is discussed in the following.

5 1PI Feynman graphs remain connected when one internal edge is removed. For example, W@M is

1PI, while is not. The latter is called one-particle reducible (1PR).

6 In this way, ¢ (I") is a scalar, although the corresponding amplitude may be of a tensorial structure (e.g.,
it could be proportional to a Dirac matrix y;,).

7 There is no problem that three different graphs are identified with the same element I. All of them are
mapped to 1, so why distinguish?
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For example, Hy = {1}, the graph in Eq. (1.1) belongs to # and the disjoint union in
Eq. (1.2) is an element in H3. In this case, there exists a redefinition of the coupling
constant as @ = g', such that renormalized Feynman rules map each k-loop graph
to a term proportional to aX. We show this explicitly in Sect. 3.1. For a vertex with
three outgoing edges (e.g., QED), one finds / = 2, whereas for a vertex with four
outgoing edges (e.g., in ¢* theory), [ = 1. For simplicity, we state our results using
this redefinition. The generalization to QFTs with more than one coupling constant is
presented in Sect. 4.
All in all, renormalized Feynman rules are an algebra homomorphism

¢r : H— Ala, L],

and the quantum corrections of a certain particle process are found by applying ¢ g to an
infinite sum of elements in H (1PI graphs and disjoint unions thereof). This results in a
series expansion in the coupling constant & and the logarithm L, where the dependence
on the scattering angles is hidden in the coefficients. Moreover, the normalization of
Feynman rules implies that ¢ evaluates Feynman graphs for scattering angles at the
renormalization point, @ — @ (see [3]).

We will shortly explain the notion of Green’s functions, using the above definition
of renormalized Feynman rules. However, we first need some more notations: The
residue r of a Feynman graph is its external leg structure. For example, the graph in
Eq. (1.1) hasresidue r = and those in Eq. (1.2) have residue » = . Furthermore,
its degree |r| denotes the number of external edges—Feynman diagrams with |r| =2
are called ‘propagator graphs’ and those with |r| > 2 ‘vertex graphs’. Finally, we
define sgn(r), which is 41 for vertex- and —1 for propagator graphs.

Now, in order to compute the exact Feynman amplitude of a certain particle process,
one has to find the Green’s functions of the respective QFT. These encode all neces-
sary information about the full quantum corrections of all particle processes under
consideration. For example, consider another QED experiment: a source S emits an
electron, which is absorbed at a later time by a detector D. The simplest way for the
electron would be to go straight from S to D. Then, the quantum corrections to the
corresponding Feynman amplitude are obtained by applying renormalized Feynman
rules to the sum of all Feynman diagrams with residue » = —. We denote this sum

by an ellipse. It is given by

where the circle denotes the sum of all 1PI loop graphs. Thus, thanks to the geometric

(@)= -@)]"

This works for all propagator graphs. Hence, let

X =1- Z 1PI loop graphs with residue r, |r| = 2. (1.5)
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2180 0. Kriiger

Then, the corresponding propagator Green’s function G” is defined as G" («, L) =
¢r(X"). Itis the inverse of the quantum corrections to the respective 1-particle process.
(The particle goes from S to D.)

For interaction processes, the situation is similar, but there is no geometric series
to compute. One simply defines

X =1+ Z 1PI loop graphs with residue r, |r| > 2, (1.6)

and calls G" with G"(«, L) = ¢r(X") the vertex Green’s function of residue r.
Knowing these functions allows to compute the correct Feynman amplitude of any
interaction process that is described by the theory. Let us illustrate this again at the
example of QED. First, consider the photon decay described at the beginning. The full
quantum corrections are given by the Green’s functions as follows:

<
=
I

b (v() or (@) (-@-)

GW<(ot, L)
= — = . (1.7)
G (o, L)G (a,L)?

Here, the circle on the vertex denotes the sum of all 1PI graphs including the zero-loop
graph, in contrast to the ‘propagator circles’. Indeed, the argument of ¢ on the above
lhs denotes the sum of all Feynman graphs with residue r = w< Secondly, consider
a scattering between two electrons. The corresponding Feynman graphs have four
external legs, and in this case, the zero-loop graph

>M<

is not 1PI. But again, the full quantum corrections to the corresponding Feynman
amplitude are given by the Green’s functions:

G @ L) +G (@ L)?)G (e L)
B G (o, L)* ‘

(1.8)

Note that the argument of ¢ is the sum of all Feynman graphs with residue >< As
before, the circle on the vertex with four outgoing edges denotes the sum of all corre-
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sponding 1PI graphs. However, it does not contain the respective zero-loop Feynman
graph, because it does not exist.®

Let us summarize: One can compute the Feynman amplitude of any particle process
when the Green’s functions of the corresponding QFT are known. These are a power
series in the coupling constant « and the logarithm of the energy scale L = log S/Sp.
Hence, G" € Ala, L]. But renormalized Feynman rules tell us slightly more, namely
that a k-loop graph maps to a polynomial of degree smaller or equal than k in L. We
conclude that G” can be written as a triangular power series,

G’ (o, L) = ¢r(r) + sgn(r) Y _ a*Gy(L), (1.9)
k>1

where G is a degree k polynomial that encodes the contributions of all k-loop graphs

to G”.° In particular, these polynomials vanish at the renormalization scale (for L =
log §/Sp = 0), such that

G (@,0) = ¢pr(r) = {l, if the 1PI zero-loop graph r exists,

0, else.

The Green’s functions are infinite power series, and the best one can do is to
approximate them perturbatively. One possibility is to truncate the sum in Eq. (1.9)
at some loop order. Since o < 1, this is a reasonable approach, at least for energies
near the renormalization scale S ~ Sp. However, the perturbative computation breaks
down at energies far away from Sy, where L >> 1. Then, it is better to reorder the
terms in Eq. (1.9) as follows:

G'(a. L) = H'(a.aL), H'(a.2) =¢r(r)+sgn(r) Yy o/ Hi(z).  (1.10)
j=0

This is called the log expansion for the Green’s function G". Hy is the leading log
order (LLO), HJ is the next-to-leading log order (NLLO) and in general, H j’ is the

next-10)-leading log order (NV)LLO). A truncation of the above sum, such that
terms of order O(a”*1) are neglected, is called the next-to"™ -leading log (N™ LL)
approximation of H” . Perturbatively, this gives accurate results, as long as the functions
H j’ are regular at z = « L, which may well be the case for energies even far away from
the renormalization scale.

1.2 Summary of the results

In this section, we outline our work and summarize the findings. For the explicit
derivations, see the next sections.

8 A comment on the notation: circles denote the sum of all 1PI graphs with the respective residue. For
propagators, the zero-loop graph is excluded, while for vertices, it is included (if it exists).

9 The sgn(r) is a convention that is related to the different signs in the definitions of X" in Eqgs. (1.5) and
(1.6).
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2182 0. Kriiger

In the first part of the paper, we derive the NU)LL approximation of the Green’s
functions H” in Eq. (1.10) with ¢g(r) = 1. These are the propagator as well as
the vertex Green’s function that belongs to the interaction term in the Lagrangian.
The general result is given in Eq. (2.18) in its most compact form. It is obtained by
solving the Callan—Symanczik equation, which is a simple first-order partial differential
equation for G" describing its dependence on the energy scale L; see Eq. (2.7). It turns
out that H l’ only depends on the (j 4+ 1)-loop B-function and anomalous dimension.
The latter are defined in Sect. 2.1 and only depend on the Feynman amplitudes of at
most (j + 1)-loop graphs.

In particle physics, it is long known how to solve the Callan—-Symanzik equation
in order to find the corresponding Green’s function. See, for example, a standard
textbook in quantum field theory (Peskin and Schroeder [4] in Section 12.3). There,
the equations (12.76) and (12.79) show the two- and four-point Green’s functions in a
scalar ¢* theory. These formulas are specific examples of our Eq. (2.18), but written
in a way that is more adapted to particle physics.

We find the explicit log expansions of the Green’s functions by integrating and
expanding the exponent in Eq. (2.18). This was not done before in the literature'? for
the following reason: In QFT toy models and in many examples such as QED, so-
called Ward-Takahashi identities (see, e.g., [S—7]) relate the Green’s functions to the
running coupling parameter. The latter can be found by solving the renormalization
group equation (RGE), which is a linear first-order differential equation similar to the
Callan—-Symanzik equation.!! Now, the standard procedure in particle physics is to
seek the log expansion of the running coupling parameter and to deduce the one for
the Green’s functions from there. In contrast, our approach is more general and can
be directly used, even without Ward—Takahashi identities.

In order to check our formulas, we apply them to a class of QFT toy models, in
which Feynman graphs with vertex sub-divergences are neglected; see Sect. 2.3. An
example is the photon propagator Green’s function H in QED, thanks to the Ward-
Takahashi identities. Here, we explicitly compute the NNLL approximations for the
propagator Green’s functions in Eq. (2.22) and give the precise connection to the log
expansion of the running coupling parameter, see Eq. (2.21).

In the mathematical literature, there are two different direct approaches to obtain
the NU)LL expansions in these toy models. This gives us the opportunity to compare
our result to those derivations. In [8], the infinite sum X" in Eq. (1.5) is mapped to an
element in the shuffle algebra of words. This paper describes an algorithm to filtrate
a word into shuffles of letters and (anti-)symmetrized combinations of letters. The
quasi-shuffle map 6 operates as a symmetrizer, whereas the commutator [,] takes care
of the anti-symmetrization. In the end, each term in the filtration belongs to a certain
NULL order of the corresponding Green’s function G”. Our results do nor agree
with the general findings of that work. The reason is a serious mistake in the filtration
algorithm in [8]. More explicitly, the (anti-)symmetrization operators 6 and [,] have
been implemented self-consistently. However, combinations thereof lead to the wrong

10 At least, we are not aware of.

' We introduce the running coupling parameter in Sect. 2.1. It is related to the B-function via the RGE,
given in Eq. (2.8).
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filtration. The error can be traced back to the computation of a shuffle product of a
letter a with a commutator of two letters b and c. In particular, the resulting expression
depends on the order in which the steps are performed: replacing the commutator by
[b, c] = bc — cb before computing the shuffle product yields another result than doing
it the other way around.'? Another approach to derive the log expansions in such toy
models is given in [10] using chord diagrams. Our expression in Eq. (2.22) agrees
with [10], and we give an explicit translation of the notation in Eq. (2.23).

In the second part of this paper, we review the connection between the Callan—
Symanzik equation and Dyson—Schwinger equations (DSEs) [11,12]. The latter are
fixed-point relations for the infinite sums of Feynman graphs in Egs. (1.5) and (1.6).
The connection is established by extending H to the Hopf algebra of Feynman graphs
[13,14] and writing the DSEs using so-called insertion operators [15]; see Eq. (3.17).

Finally, we comment on possible extensions of our results. For the Green’s functions

H" in Eq. (1.10) with ¢g(r) = 0 (such as H>< in QED), we are not aware of the
existence of DSEs in the literature. However, if such fixed-point relations can be found
in this case, it should also be possible to deduce a Callan—Symanzik-type equation
for H". The latter can then be used to deduce the corresponding log expansion. On
the other hand, there are DSEs for Green’s functions in QFTs with more than one
interaction term [14,16—18]—we generalize our results to such cases in Sect. 4.

The paper is organized as follows: In the next section, we derive the log expansions
of the Green’s functions H” with ¢z (r) = 1 for QFTs with only one interaction term
in the Lagrangian. We also give the example of the propagator Green’s functions in
toy models that neglect Feynman graphs with vertex sub-divergences. The results are
obtained from the Callan—Symanzik equation (2.7). In Sect. 3, we rederive that relation
from Dyson—Schwinger equations for the infinite sums of Feynman graphs in Egs. (1.5)
and (1.6). There, we also review some known aspects about the combinatorics of
Feynman graphs (we extend H to a Hopf algebra and rederive the essential properties
of renormalized Feynman rules ¢g). In Sect. 4, we generalize our results to QFTs with
more than one interaction term in the Lagrangian and conclude in Sect. 5.

2 Results

In this section, we present the derivation of the log expansion H” in Eq. (1.10) with
¢r(r) = 1 from the Callan—-Symanzik equation (2.7); see Sect. 2.2. The result con-
tains the anomalous dimension and the B-function, which we introduce in Sect. 2.1.
Finally, Sect. 2.3 gives a simple example of the log expansion for propagator Green’s
functions in QFT toy models, where all Feynman graphs with vertex sub-divergences
are neglected.

12 This mistake does not affect the LL approximation, which was computed in general in [9], using the
shuffle algebra of words. Here, our results agree; see Eq. (2.19) and the equations after (49) in [9].
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2184 O. Kriiger

2.1 The anomalous dimensions and B-function

For each vertex residue r = v, define

v
S = _x 2.1)
[Tey vVX©

Here, e ~ v means that the edge e is incident to the vertex v. The square root must
be expanded in a Taylor series, similar to the geometric series of propagator Feynman
graphs. For example, in QED:

< X< X X"

X = = , = =
amp \/X_W X amp X )2

The square roots are graphically represented by half ellipses. Since renormalized
Feynman rules ¢ g are an algebra homomorphism, one can easily evaluate these infinite
sums of Feynman graphs:

Gl}
[Tewn VG

In physics literature, szp is often referred to as the amputated Green’s function for
the vertex v. In more mathematical literature, these functions are called the invariant
charges.

Let us shortly motivate the above definition by showing how the amputated Green’s
functions appear in physics computations. For example, consider any particle inter-
action process that is described by the QFT. Let v be the residue of the respective
Feynman graphs. Then, one can easily show that the corresponding Feynman ampli-
tude (including all quantum corrections) is given by [ [, (G*) ™ 172 times a polynomial
of the amputated Green’s functions. For example, the right-hand sides of Eqgs. (1.7)
and (1.8) read

GZmp = ¢r (X:mp) = 2.2)

2
—Gfmp and —sznp i <G;<mp) .
VGG (G’

Secondly, it is common in particle physics to redefine the coupling constants of the
theory as gx = gk GZ{‘np. This makes them dependent on the energy scale and has the
advantage that a perturbative expansion for the Green’s functions in terms of g; and
the logarithmic energy scale L may behave much better. This is an alternative way to
approximate the Green’s functions accurately without using the log expansion. The
8 are called the running coupling parameters. In our case, there is only one coupling
constant and we redefined it such that @ = g’ counts the number of loops in a Feynman
graph. Hence, we must also redefine the respective invariant charge as'3

l
Xo = (x;mp) . 0@ L) = ¢r(Xg) = Gy, L. 2.3)

13 Here, v is the vertex residue that corresponds to the interaction term in the Lagrangian.
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Then, the running coupling parameter is @ = o Q. At the renormalization scale (L =
0), one has @ = «, because Q(«, 0) = 1.

Now, the anomalous dimension y" is defined as the negative of the L-linear part of
the Green’s function G”,

oG (o, L)

r _ r k+1 _
y@ =)yt =———

k=0

(2.4)

L=0

Similarly, the S-function'* is the L-linear part of the invariant charge,

1 e v
L (5 Y v -y (a)) . @)

e~v

00(a, L)
Bla) = ];,Bkwk—H ="

The latter identity follows from Eq. (2.2): the S-function is a linear combination of
the various anomalous dimensions. For example, / = 2 in QED:

0@, L) = Gom(@, L)%, B=2y"+y" 2% 2.6)

Two remarks are in order: First, the notion of an anomalous dimension y” for
vertex-type residues is unusual in particle physics. Indeed, it is redundant, since y*
can be expressed by the g-function and the various propagator anomalous dimensions
y¢ via Eq. (2.5). In our case, however, the definition in Eq. (2.4) including vertex-
type residues is very convenient because the formulas for the log expansions of the
Green’s functions H" generalize to all kinds of residues. Secondly, the minus sign
in Eq. (2.4) is chosen such that it cancels the sign in Eq. (1.5) for propagator-type
residues = e. In this case, the anomalous dimension y ¢ is given by the L-linear part
of the Feynman amplitude that corresponds to the sum of all respective 1PI propagator
graphs.

The functions y” and § can be computed perturbatively. Neglecting terms of order
O™t in Egs. (2.4) and (2.5) gives the so-called n-loop anomalous dimensions
and n-loop B-function. These approximations can be obtained by only evaluating
Feynman graphs with at most 7 loops. It turns out that the N®”LL approximation of
the Green’s functions H” only depend on the (n + 1)-loop anomalous dimensions y”
and B-function. We show this explicitly in the next section.

2.2 Log expansions

We start with the following formula for the Green’s functions:

dlogG" |
L~ 7 (@ Q). 2.7

A detailed derivation from combinatorial Dyson—Schwinger equations is collected in
Sect. 3 (for a short proof, see Sect. 3.4). Taking a linear combination of the above rela-

14 In our case, there is only one B-function.
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tions for different residues r implies an ordinary differential equation for the invariant
charge, i.e.,

dlog O
— = . 2.8
Y3 Bl Q) (2.8)
Together with the initial conditions,
G (2,00 =¢r(r) =1, Q(a,0) =1, (2.9)

Equations (2.7) and (2.8) determine the full L-dependence of the Green’s functions
GrlS‘

In particle physics, the above relations are usually written in terms of the (L-
dependent) running coupling parameter « = « Q. Then, Eq. (2.8) corresponds to
the renormalization group equation (RGE)lf and Eq. (2.7) represents the Callan—
Symanzik equation for the Green’s function G” with G" (¢, L) = G"(«, L):

da_ ap(@), (i + &ﬁ(&)i + y’(&)) G" (@, L) =0.
oL oL oo

The derivation of the log expansions for the Green’s functions requires another
differential equation for the invariant charge Q. The latter can be found as follows:
Integrating Eq. (2.8) via separation of variables and using the above definition of the
running coupling parameter leads to

/‘“ dx
=L
a XB(x)

Here, the integration constant is well chosen such that @ = « for L = 0. Since we
cannot solve this for Q, it is more convenient to take the derivative with respect to «.

This results in

dlogQ  B(xQ)
do Bla)
With these considerations, we can now give the main equations that determine

the log expansions for the Green’s functions. Here, it is convenient to define a log
expansion for the invariant charge as well,!”

1+a (2.10)

Q(a. L) = R(a. L), R(at.2) = Ro(z) — Y _ &' R;(2). (2.11)
j=1

15 Note that this only requires to know the anomalous dimensions " and B-function of the QFT, i.e., to
say the L-linear parts of the Green’s functions.

16 The usual definition of the B-function in the literature slightly differs from ours:
Biit(@) = aB(@).

For example, the QED 1-loop B-function is Byt (&) = ,30652. The notations in this paper are consistent, such
that our 1-loop B-function is /inear in the (loop counting) coupling parameter.

17 Accordingly, the log expansion for the running coupling is given by a(«, z) = ¢ R(«, 2).
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A change of variables in Egs. (2.7-2.10) finally results in

dlogH"  y"(aR)

: C H (@0 =1, 2.12)

Z

mng _PER) oy =1, (2.13)

1ol l0eR PR (1 - Zﬁ(a)) = 0. 2.14)
oo B(a) o

Now, one uses Eqs. (2.13) and (2.14) in order to find the N LL approximation of the
invariant charge.'® The obtained result can then be used in Eq. (2.12) to deduce the
N®™LL approximation of the Green’s functions H”.

The first step is simply achieved by a Taylor series expansion of Eq. (2.14) in «.
The Oth order reads

Ro(z) =

, 2.15
e &1
which gives the LLO of the invariant charge. Now, consider all terms of order «” in
Eq. (2.14) with n > 1 and note that they do not contain any of the functions Ry with
N > n. Hence, collecting all terms that involve R, one finds

1—n

— Ry ()=,
Ro(z) @

where the rhs only consists of the functions Ry, ..., R,—1. This is a nice recursive
formula for the various log orders of the invariant charge, except for n = 1. Two
remarks are in order: First, the a-linear terms in Eq. (2.14) vanish completely, because
an «-derivative was taken in order to obtain Eq. (2.10). However, R; can be found
from the a-linear part of Eq. (2.13), which reads

dR; 3
—— =2BoRoR| — B1R;.
& BoRoR1 — B1Ry

The solution of this ordinary first-order differential equation with the respective initial
condition R{(0) = 0 is given by

Ri(2) = —%Ro(z)z log Ro(2). (2.16)

Secondly, an explicit form of the recursive relation for R, is not required. This is
because Eq. (2.14) with cleared fractions can be given directly to a computer alge-
bra program in order to obtain the various log orders. For example, the a® order in
Eq. (2.14) reads

18 This is equivalent to solving the RGE and implies a log expansion for the running coupling parameter
a; see, e.g., [19].
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2
Rxw=&mf(wﬂ+§%@m—mywm—M£M@ﬁ> 2.17)

0

when Egs. (2.15) and (2.16) are used.

The second step (the derivation of the log expansion for the Green’s functions H")
is a bit more involved, because one has to integrate " (o R) with respect to z. Indeed,
from Eq. (2.12),°

H" (o, 7) = exp (— /Z Y (@R@ 7)) dz’) . (2.18)
0

o

In order to obtain the N LL approximation of H", one needs to expand the exponent
up to order &"T!. As promised earlier, this requires knowledge of the (n + 1)-loop
anomalous dimension y” and B-function.

For example, the LL approximation requires to compute the nominator in the expo-
nent up to first order in . Using the one-loop anomalous dimension (see Eq. 2.4) and
the explicit form of Ry in Eq. (2.15), we find

Z
Wthwm<j/mﬂ&&&>+OW%=%&)W%+OW% (2.19)
0

This expression agrees with the result already obtained in [9] using the shuffle algebra
of words.

We close this section by contentedly giving the NNLL approximation. Here, the
exponent in Eq. (2.18) must be computed up to third order in «. This requires knowl-
edge of the three-loop anomalous dimension and the invariant charge up to NNLL
order (Ro, Ry and R»). The integration is technical, but can always be done with the
help of a computer algebra program. We used FORM [21] to obtain

. r R
H' (a,2) = Ry(2) 770/ [1 +- ,302(2) (75 B1(1 —log Ry(2)) — ¥{ By)
0

ozzRO(Z)2
268
+ 2838275 — o1V ) Ro@ ™!

= 2(B06)° — o1 Vi + BP1 ) log Ro(2)

x(%%—%ﬁf+%ﬁ%—%m%+%mﬁ—%ﬁ

—%@ﬁmf—mﬁmjmfm@ﬂ+om%} (2.20)

19 1 [20], the author discussed the behavior of the Green’s functions at fixed points. In this case, the
invariant charge evaluates to unity, R(«, z) = 1 and Eq. (2.18) reproduces the known results.
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2.3 Examples: truncated propagator Green'’s functions and QED

Let us give a short example of the above formula (2.20). In QED, the Ward-Takahashi
identities state that the Green’s functions for the fermion propagator G and the 3-

point vertex GW< coincide [22]. Therefore, the invariant charge in Eq. (2.3) is given
by the inverse of the photon propagator Green’s function. Furthermore, the 8-function
equals the respective anomalous dimension, see Eq. (2.6):

1
Q== and g=y

The above relation is a special case of a broader class of QFT toy models that
describe only one particle (edge-type e in Feynman graphs). In such models, the
invariant charge and S-function are given by

0=(G°)" and B=sy° (2.21)

for integers s. Examples are s = 1 in QED, as well as s = 2 (s = 3) for a truncated
Yukawa theory (¢° theory), where all vertex divergences are neglected. In all these
cases, there is only one propagator Green’s function G¢ with log expansion H*®*) and
itis given by R~1/* 20 The NNLL approximation can be obtained in two ways: either
by inserting the relation between the B-function and the anomalous dimension into
Eq. (2.20) or by using the explicit expression for the log expansion of the invariant
charge in Egs. (2.11, 2.15-2.17). In both cases, we obtain

2R 2
og Ry(2) + o? 'Bls%
0

X <,30Z <l — %) —log Ry(z) + I-s 10g2 Ro(z)> + O(a3)].

H) (o, 2) = Ro(z)l/s[l —a M 1
sPo

i 2s
(2.22)

For this class of toy models, equivalent expressions have been derived using chord
diagrams in [10]. These formulas contain the symbols a; ;, which are related to the
anomalous dimension y¢ as follows:

1 1 1
Voe( = —ay, Vf( = —ayy, )/26( = —(a30 +az1a10),
e2) _ e(2) _
Yo  =—a10, ¥, = —(azo+ai1a10),
2
;@ = —(as0+ a0 +al 4, +3a; 501 o + 3az1a10). (2.23)

Using this translation, Eq. (2.22) agrees with the expressions found in [10].

20 Note that this is consistent with Egs. (2.13,2.18 and 2.21).
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3 Mathematical background

This section collects the essential properties of Feynman graphs and renormalized
Feynman rules that lead to the Callan—-Symanzik equation (2.7). The derivation of
this relation is given in Sect. 3.4 and requires two main ingredients: The first one is
the well-known exponential formula for ¢r; see Eq. (3.8). We motivate this property
of renormalized Feynman rules and give a short introduction to the Hopf algebra of
Feynman graphs in Sect. 3.2. The second ingredient is an (also well-known) expression
for the coproduct of the infinite sums X" in Egs. (1.5) and (1.6); see Eq. (3.10). We
review in Sect. 3.3, how this relation is obtained from fixed-point equations for X",
i.e., so-called combinatorial Dyson—Schwinger equations (DSEs). In the literature,
the latter are written down in full detail only for those sums X" with ¢r(r) = 1,21
which is the reason why we restrict our results to that case. For presentation purposes,
we consider QFTs with only one interaction term in the Lagrangian. (We explain the
redefinition of the coupling constant in Sect. 3.1.) However, DSEs also exist in theories
with more than one coupling parameter—the generalization to that case is given in
Sect. 4.

3.1 The grading of H

For QFTs with only one interaction term in the Lagrangian, one redefines the coupling
constant as @ = g’, which implies that a K -loop graph maps to a term proportional to
o X under renormalized Feynman rules. Let us show this now.

First, Euler’s formula states that for a graph with K loops, V vertices and E internal
edges, the following identity holds:

K+V-FE=1

Secondly, let |v| be the degree of the vertex v2? that corresponds to the interaction
term in the Lagrangian. For example, |v| = 3 in QED and |v| = 4 in ot theory. Then,
a Feynman graph with residue » has |r| external edges; hence,

V.lv| =2E +|r|.
Together with Euler’s formula and the definition of / := 2/(|v| — 2), one finally finds

0, for|r|=2

. 3.1
1, for|r| = |v| G-

V:lK—i—!

One concludes that with the correct normalization of renormalized Feynman rules, a

graph with K loops and V' vertices maps to a term that is proportional to g'K = X,

21 Hence, |r| = 2 or r = v is the vertex that corresponds to the interaction term in the Lagrangian.

22 That is, the number of edges which are incident to v.
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3.2 Feynman rules from a Hopf algebraic point of view

This section represents a minimal introduction to the Hopf algebra of Feynman graphs
[13,14]. As a motivation, consider a typical observation during the renormalization of
Feynman amplitudes:

o (T ) =mop (T o (T )rert (WOm)a (270 ).
(3.2)

Here, and only within this section, we write renormalized Feynman rules d)llg" with an
upper index L;. It indicates the energy scale L; = log S;/So at which Feynman graphs
are evaluated. The goal of this section is to generalize the above observation (to the
exponential formula). This can be achieved in a very elegant way, once we introduced
the Hopf algebra of Feynman graphs.

Let us start with the algebra 7, i.e., the vector space H equipped with an associative
product m : H ® ‘H — H (the disjoint union) and a unit element I (the empty graph).
In a more mathematical notation,

associativity: mo (m ®id) =mo (id®@ m),
unitelement: mX QI = mIX)=X VXecH,

where id denotes the identity map on H.

In a first step, a coproduct A and a co-unit 1 are defined, such that H extends to
a bi-algebra. The important tool for our purposes is the coproduct. It is a linear map
A :'H — H ® H, which decomposes a graph into its subgraphs in a certain way. The
explicit definition of its action on 1PI Feynman graphs is given by

AT =T@I+I®T+ Y y®I/y, (3.3)
y&r

where the sum extends over (disjoint unions of) divergent subgraphs y of I'. Fur-
thermore, I'/y corresponds to I', but with the subgraphs y shrunk to a point. For
example,

A )= Py @l4le Py 4w e S (4

On a disjoint union of Feynman graphs, A is defined such that it is compatible with
the product (a requirement for bi-algebras),

AXY) = Z XY ®Xx'y". (3.5)

Here, Sweedler’s notation for the coproduct is used, e.g., AX = > X' ® X”. The
co-unit I : H — K maps an element X € H to the coefficient of I in X. Indeed, it is

23 Note that this relation only makes sense because all scattering angles are set to @9—in other words, ¢
is normalized appropriately.
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easy to show that the coproduct is co-associative and that [ is the co-unit element for
A3

co-associativity: (A®id)o A =(G{dRQ A)o A,
co-unit element: (ﬁ ®id)o A =1 ® ﬁ) oA ~id.

Hence, (H, m, I, A, ﬁ) forms a bi-algebra.
Secondly, one defines an antipode to further extend H to a Hopf algebra. It is the
linear map S : H — H, which is recursively given by

Mmo(S®id)oA=mo@(d®S)oA=Iol, Som=mo(S®S).

Allinall, (H, m, I, A, ﬁ, S) forms a Hopf algebra, called the Hopf algebra of Feynman
graphs.

With the above-defined structures, the vector space Hom(H, A) of algebra homo-
morphisms extends to a group Gﬁ, which is called the convolution or character group
[23]. For example, renormalized Feynman rules are a character, ¢ € Gﬁ. The con-

junction in Gﬁ is the convolution product *: let ¢, ¥ € Gﬁ. Then,

oxf:=mygo(PpRY)oA 3.6)

is also an algebra homomorphism; hence, ¢xi € G;f‘[. The convolution is associative
because the coproduct is co-associative and the product m 4 in A[e, L] (multiplication)
is associative. The unit element in Gﬁ is the linear mape = 1 o ﬁ and the inverse of
a character ¢ is given by ¢ o S.

We can now state a fundamental property of renormalized Feynman rules:

PR = pEiapr?. (3.7)
This follows from a more general decomposition relation [2,3], which reduces to
Eq. (3.7), because qﬁé evaluates Feynman graphs for scattering angles at the renormal-
ization point, @ — @y. Note that Eq. (3.2) is a special case of Eq. (3.7).

The above relation implies that the vector space of maps ¢1%, equipped with the
convolution product, forms a group. This is the so-called renormalization group and
it is isomorphic to the additive group. Hence, there exists a linear map o : 'H — A,

such that 5

L
¢r =exp*(Lo) =e+ Lo + 70*0 + - (3.8)

This is the exponential formula (see, e.g., [2,3]). Here, we dropped the upper index in
¢r again, in order to adapt the notation to the rest of this paper.

The map o is an infinitesimal character, and we can give a meaning to it: it maps a
(disjoint union of) Feynman graph(s) to the L-linear part of the corresponding Feynman
amplitude,
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o H—> A

dpr(X)

XoX)=—1—|

In particular, the infinite sums X" in Egs. (1.5) and (1.6) are mapped to the negative
of the anomalous dimension (see Eq. 2.4),

(X" ) ==y (@) =—) yia*Th (3.9)

k=0

From now on, we do not need the co-unit and antipode of the Hopf algebra anymore.
These structures were only required for a proper definition of the convolution group
Gﬁ. The proof of Eq. (2.7) only uses the coproduct and the exponential formula in
Eq. (3.8).

3.3 Graph insertion and Dyson-Schwinger equations

In this section, we motivate the following formula for the coproduct?* of the infinite
sums X" in Egs. (1.5) and (1.6):%

=> X'X5 X', (3.10)
k>0

Here, X € 'H is the combinatorial invariant charge (¢pr(X o) = 0), see Eq. (2.3).
For example, in QED: <
_ oy
X (X )
Furthermore, |, denotes the projection onto Hy; hence, pp (X |x) ok foreach X € H.

Let us start by introducing the notion of graph insertion. Therefore, consider, for
example, the QED Feynman graphs

Wé and W{ 3.11)

The first one is obtained, when the subgraph @ is inserted into W< However,

the second one does not contain any subgraph and cannot be constructed via graph
insertion. Note that the coproduct of a 1PI Feynman graph I" without subgraphs is
givenby A =T ® I +1® I'; see Eq. (3.3). Hence, ¢r(I") o< L by the exponential
formula (3.8) and all graphs I' with that property are called primitive graphs. On

24 This relation is well known in the literature; see, e.g., [24-27], or in a slightly different context, also
[28,29]. Generalizations thereof can be found in [30,31].

25 Note that X" maps to the Green’s functions G” under renormalized Feynman rules.
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the other hand, each non-primitive 1PI Feynman graph can be obtained via graph
insertions of primitive ones.

In the following, we make this more explicit. Therefore, let I" be a primitive graph.
Each vertex of I" represents an insertion place for a 1PI vertex graph. Furthermore,
each internal edge of type e in I is an insertion place for 1PI propagator graphs with
residue e. Note that more than one propagator graph can be inserted into an edge,
whereas only one vertex graph can be inserted into a vertex of I'. Now, for each
primitive ', define an insertion operator as a linear map B}: : ' H — 'H, such that a
disjoint union of 1PI Feynman graphs maps to

r
BL(ry---T,) = — (3.12)
* n=2 sym([")
Here, the sum extends over all graphs [ that can be obtained byinsertionofI'y, ..., [y,

into the various insertion places of I'. The factor sym(I") is assigned such that the
insertion operator commutes with the coproduct in the following way:>

ABL()=B{()®I+ (id® B}) A(). (3.13)

The following examples should make Eq. (3.12) clear. For a more rigorous definition,
see [15]:

5 () =

)

Note that by Eq. (3.3), these examples imply Eq. (3.13).

Some remarks are in order: First, inserting zero-loop graphs into I" does not change
it. This is consistent with our realization of zero-loop graphs as the unit element I € H.
For example, B_1; (I) =T and B_1; (') = B_l; (I'1). Secondly, inserting more than V
vertex graphs into a primitive with V vertices does not give a well-defined object in
‘H. For example, there is no element in H that corresponds to

3
e N
B+

Finally, there are non-primitive graphs in H that are not in the image of some insertiO%l

operator. For example, contains a subgraph, but it is not in the image of B, ™.

However, the infinite sums X" in Egs. (1.5) and (1.6) consist of such linear combi-

26 The BJl; are Hochschild 1-co-cycles.
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nations of 1PI Feynman graphs that are in the image of some insertion operator B}:.
This will be essential in the following.

The closed formula for the coproduct in Eq. (3.10) can be found from fixed-point
relations (DSEs) for the infinite sums X”. Let us motivate this again at the QED
example, where the sums of all 1PI Feynman graphs of a certain residue satisfy [32]

RO C.

Here, we recall the notation of the introduction: A circle represents the sum of all
respective 1PI graphs and an ellipse denotes the geometric series of propagator Feyn-
man graphs, as in Eq. (1.4).27 On the rhs, these infinite sums are inserted into the
one-loop primitives

AN W W<§

Here, only one vertex of the propagator primitives is dressed with an infinite sum
in order to avoid double counting of graphs. The dots in Eq. (3.14) represent all
graph insertions into higher loop primitives. The QED example is somewhat special,
because the propagator DSE can be formulated for the quenched limit. Then, the first
two fixed-point relations in Eq. (3.14) are actually complete.

Equation (3.14) translate to DSEs for the infinite sums X" in Egs. (1.5) and (1.6).
These can be written in a very elegant way using the insertion operators:

o {2
- (X)) - O (X )
<4 (3.15)
XW<=H+BI<<(3(—12>+
X (X))

Note that there is no double counting of Feynman graphs, althow%h the structure differs
from the one in Eq. (3.14). Indeed, the (negative) power of X " (X¢) in the argument
of an insertion operator BJI: corresponds to the number of vertices (type e edges) in
I". Hence, in contrast to Eq. (3.14), each insertion place is dressed by an infinite sum.

27 Remember that the zero-loop propagator graph is contained in the ellipse, but not in the circle on an
edge—it belongs to the geometric series, but not to the sum of 1PI graphs.
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Here, the insertion operators take care that there is no double counting and the deeper
reason for that is the commutation relation in Eq. (3.13) [15].

With these considerations, the above relations generalize in a simple way. Denote
the sum of all insertion operators B_I;_ for K-loop primitives I with residue r by

K;
BY"= > Bl (3.16)
IeH g primitive
res(I")=r

Then, the general DSEs [11,12,29,32] for the infinite sums X" in Eqgs. (1.5) and (1.6)
with ¢g(r) = 1 read

X =T+sen() Y BE" (x°XE). (3.17)
K>1

Before we proceed, we quickly show that the insertion places of each K-loop
primitive graph are fully dressed by infinite sums in Eq. (3.17):?% Consider a K -loop
primitive graph I'. The argument of the corresponding insertion operator B_l; is X' X g ,
where by Eqgs. (2.1) and (2.3),

xv o\
Xo=|—""—].
[Te~y vX©

The power of XV in the argument of B£ isl-Kfor|rl=2and/-K + 1,if r = v.
This matches the number of vertices V in I', given by Eq. (3.1). Secondly, the power
of 1/X¢ in the argument of B£ for some edge-type residue e corresponds to

1 L i 1 1, ifr=e
ifr=e
IKY -—1" =Vy - - Loifr = .
ZZ {0, else 22 23 ¥r v
e~ e~ 0, iflrl=2,r#e

This equals the number of type e internal edges in I', which completes the proof.
Note that Eq. (3.15) coincide with the general form in Eq. (3.17), but only include the
K =1 terms.

To close this section, we show that the coproduct formula in Eq. (3.10) and the
commutation relation in Eq. (3.13) are consistent with the DSE in Eq. (3.17). With
slightly more effort, one can turn this into a proof of Eq. (3.10) by induction. For
details, see, e.g., [24-27]. First, let M (X") = [ [, (X")* withintegers s, be an arbitrary
monomial in X”. Then, Eq. (3.10) implies that

AM(X") = > M(X")X}H @ M(X")|,.
k>0

28 The reader may consider this as a motivation that Eq. (3.17) indeed holds. Note that the insertion operators
ensure that there is no double counting.
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Now, we compute the coproduct of the rhs in Eq. (3.17). We commute A with the
insertion operators via Eq. (3.13) and use the above relation for the monomials:

Alrhs@3.17)] = X" @ [+ sgn(r) Kg g (la@Bf") (xxg e (x'x) | ).

Finally, we rearrange the sums as ) ;- Zl;<=1 using an index shift, which results in

k
Alrhs@GA7] = X" @1+ <er’jQ ®sen(r) Y B (xrxg|k_K)> .

k>1 K=1

Note that the terms on the rhs of the ® sign correspond to X" | (see Eq. 3.17). Hence,
we are left with

Alrhs(3. 17)]_X’®]I+ZX’X" ® X", Zxr ®X"|, = A [lhs(3.17)].
k>1 k>0

3.4 Rederivation of the Callan-Symanzik equation

With the considerations of the previous sections, the proof of Eq. (2.7) is simple. It
requires the exponential formula (3.8) and the coproduct relation (3.10). Together with
the definitions of the convolution product in Eq. (3.6) and the o function in Eq. (3.9),
we find

0G”
aL

a a
3L Pr(X") = — eXp*(LU)(Xr) = (pr*o)(X")

= or (X’Xk) (X)) = ZG’ (_Vkr—lak) =-G"y"(aQ).

k=0

4 Multiple coupling constants

In this section, we rederive the Callan-Symanzik equation from Dyson—Schwinger
equations in QFTs with multiple interaction terms in the Lagrangian. We assume that
each such term comes with a separate coupling constant and gives rise to a certain
vertex in Feynman graphs. We denote the different vertices by vy, ..., v, and collect
the coupling parameters to a vector g = (g1, .. ., gm). The positive integer m is given
by the number of interaction terms. In the following, we summarize the main changes
to the one coupling case.

First of all, it is inappropriate to grade the Hopf algebra H of Feynman graphs with
respect to the loop number in this setting. Instead, H is multi-graded as [14,18,30,33]

H =P H.
k
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Here, k = (k1, ..., k;,) denotes a multi-index (a vector of integers) and the subspaces
‘Hx contain the following Feynman graphs:

k; vertices v;, if [resT"| =2
NeHx < Thas {7/ K ,| | )
kj + &;; vertices v;, if resI" =v;

Note that this grading respects the product and coproduct of H.

Secondly, the Green’s functions G depend on all coupling constants g and the
logarithmic energy scale L. In particular, G" (g, L) = ¢r(X") as before, where the
X" are given by the infinite sums in Eqgs. (1.5) and (1.6). Hence, the corresponding
anomalous dimensions y” are power series in all coupling parameters,

aG" (g, L)

v () =— Y3

_ r ki k,
—ZVkSﬁ o 8m
L=0 %

Furthermore, there is one amputated Green’s function (invariant charge) for each
vertex v;; see Eq. (2.1). These define the running coupling parameters as before. In
order to simplify the notation, we write

Xi = Xghps Qi(g, L) :=¢r(Xi), &=(81,---.8m) = (€101, &mOm)-
Accordingly, there is one S-function for each vertex v;, with power series expansion

00i(g. L)

B'(g) = L

ik
= Bigl gl
0 k

L=

Finally, the Dyson—Schwinger equation for the infinite sums in Egs. (1.5) and (1.6)
is given by

X" =]1+sgn(r)ZB_'§’ (er’;l ...anm), 4.1)
k

where .
; r
B+r = § : B,

I'e’Hy primitive
res(I")=r

is the generalization of Eq. (3.16); see, e.g., [18,34]. Note that in Eq. (4.1), each
insertion place of a primitive I" is fully dressed with an infinite sum and there is no
double counting of graphs because the insertion operators B_lfr are Hochschild 1-co-
cycles, i.e., they satisfy the commutation relation in Eq. (3.13). In full analogy to the
end of Sect. 3.3, the DSE in Eq. (4.1) implies the coproduct formula (see, e.g., [30,31])

4.2)

AX" =) XX} Xk @ X
k

where |k is the projection onto Hy. This is the generalization of Eq. (3.10).
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The Callan—Symanzik equation can now be derived in the same way as in Sect. 3.4.
Therefore, the coproduct formula in Eq. (3.10) is replaced by Eq. (4.2) and the action
of o on the infinite sums X" in Eq. (3.9) must be generalized to

o (X"|) =gl g

Then, using the exponential formula in Eq. (3.8) and the definition of the convolution
product in Eq. (3.6) results in

oG"
G = @rx)(X)=G" 300 Qo (X]) = -Gy @),
k

which can be written in the same form as in the one coupling case; see Eq. (2.7):

3 L
ﬁlogG’(g,L)=—J/’(g), g=@101,---,8m0m). (4.3)

In particular, taking certain linear combinations of these relations yields a system of
ordinary differential equations, which is the analogue to Eq. (2.8),

aiLlog Qi(g. L)=p'@. £=(8101,---,8m0m). 4.4)
Together with the initial conditions G"(g,0) = 1 and Q;(g,0) = 1, Eqgs. (4.3) and
(4.4) fully determine the Green’s functions, when only the anomalous dimensions and
B-functions are known.

Two remarks are in order. First, in terms of the running coupling parameters,
Eq. (4.4) represents the usual system of renormalization group equations®® and
Eq. (4.3) is the usual form of the Callan-Symanzik equation for the Green’s func-
tions G” with G’(g, L)y=G"(g,L):

08 _ - hiosy [0 = pica O rea Y Ers Ty —
o =8B @, <8L +Zi:gl/3 @5z +7 (g))G (& L)=0.

Secondly, the log expansions for the Green’s functions can be derived as shown in
Sect. 2.2 via a change of variables. Here, the main difference to the previous case is that
we have several coupling constants, but only one energy scale. Hence, one has to choose
one coupling g; and changes L — z = g; L. Inparticular, let G" (g, L) = H" (g, g L).
Then, the solution to Eq. (4.3) is given by

H'(g,2) = exp (— /0 ' ";g) dz’). (4.5)

This formula only requires the log expansion for the running coupling parameters g,
which can be found log order by log order from the RGE. Note that the resulting log

2 Again, our definition of the B-functions differs from the one in the literature, ﬂliit @) =& B Q).
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expansion will depend on the choice of g;. We hope to investigate such cases further
and give examples in future work.

5 Conclusions

In this paper, we established a precise connection between Dyson—Schwinger equa-
tions for the Green’s functions in a given QFT and their corresponding log expansions.
We mainly discussed QFT's with only one interaction term in the Lagrangian (Sect. 2.2),
but also expanded the results to the more general case (Sect. 4).

The formulas for the log expansions are given in Eqs. (2.18) and (4.5)—the next-
to"-leading log approximation is obtained by an analytical integration that requires
the solution of the renormalization group equation up to the next-to™-leading log
order. In particular, it only depends on the (n + 1)-loop B-function and anomalous
dimension. An explicit expression for the next-to-next-to-leading log approximation
is given in Eq. (2.20), when only one coupling constant is involved. Restricting to
special cases, our formulas reproduce the known expressions in the literature. These
cases include the photon propagator Green’s function in quantum electrodynamics and
a toy model, where all Feynman graphs with vertex sub-divergences are neglected.
Compare Eq. (2.19) with [9] and Egs. (2.22, 2.23) with [10].

Our results may be used for an accurate perturbative calculation of the Green’s
functions, for energy scales far away from the renormalization scale S > Sy. However,
the log expansions do only converge, if the coefficients do well behave perturbatively.
The latter must not be true. So far, we have no control about the dependence of the
Green’s functions on the scattering angles @ at the renormalization point. In order to
understand this better, one needs to generalize the exponential formula in Eq. (3.8) to
include also the angle dependence. Together with the coproduct formulas in Egs. (3.10)
and (4.2), this would lead to a generalization of the Callan—Symanzik equation, from
which the correct perturbative approach may be obtained. However, this is a highly
non-trivial problem, as it requires to understand the behavior of the Green’s functions
orthogonal to the renormalization group flow.

Our work gives the derivation of the log expansions for the Green’s functions from
the corresponding Dyson—Schwinger equations. However, if the latter are not known,
we cannot comment on the corresponding log expansions. For e=>x<amp1e, in QED,
a detailed Dyson—Schwinger equation for the 4-point function G” " in terms of the
insertion operators is not explicitly written down in the literature. From there, one
could generalize the coproduct formula in Eq. (3.10). Together with Eq. (2.7), this
would lead to the respective Callan—Symanzik equation and then to the corresponding
log expansion.

Finally, we would like to investigate the case with multiple coupling parameters.
Here, we need to solve the system of renormalization group equations in Eq. (4.4)
analytically, such that Eq. (4.5) can be integrated log order by log order.
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