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Abstract
As is well known to physicists, the axial anomaly of the massless free fermion in
Euclidean signature is given by the index of the corresponding Dirac operator. We use
theBatalin–Vilkovisky (BV) formalism and themethods of equivariant quantization of
Costello and Gwilliam to produce a new, mathematical derivation of this result. Using
thesemethods, we formalize two conventional interpretations of the axial anomaly, the
first as a violation of current conservation at the quantum level and the second as the
obstruction to the existence of a well-defined fermionic partition function. Moreover,
in the formalism of Costello and Gwilliam, anomalies are measured by cohomology
classes in a certain obstruction–deformation complex. Our main result shows that—
in the case of the axial symmetry—the relevant complex is quasi-isomorphic to the
complex of de Rham forms of the space–time manifold and that the anomaly corre-
sponds to a top-degree cohomology class which is trivial if and only if the index of
the corresponding Dirac operator is zero.
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1 Introduction

1.1 Background

The axial anomaly is the failure of a certain classical symmetry of the massless free
fermion to persist after quantization (see [2] for an original reference on the topic). It
is well known to physicists that the axial anomaly is measured precisely by the index
of the Dirac operator (see, e.g., Chapter 22.2 of [18] or [16]); the aim of this paper is
to prove this fact in a mathematically rigorous context for perturbative quantum field
theory (QFT). Namely, we use the framework for the study of anomalies in Euclidean
signature developed by Costello and Gwilliam [7].

Given a generalized Dirac operator D on aZ/2-graded vector bundle V → M over
a Riemannian manifold M , the massless free fermion is described by the equation of
motion

Dφ = 0,

for φ a section of V . Consider the operator � which is the identity on even sections
of V and minus the identity on odd sections of V , i.e., � is the chirality involution.
Then, � anti-commutes with D, since D is odd for the Z/2-grading. It follows that if
Dφ = 0, then

D (�φ) = 0.

In other words, the operator � preserves the equations of motion, so generates a U (1)
symmetry of the classical theory. This symmetry is known as the axial symmetry. One
can ask whether this symmetry persists after the massless free fermion is quantized.
This is in general not the case; the axial anomaly measures the obstruction to the
promotion of this classical symmetry to a quantum one. More generally, we say that
a classical symmetry is anomalous if it does not persist after quantization. Anomalies
in fermionic field theories have been an object of renewed recent interest [11,20], in
part because of their relevance to topological phases of matter.

The question of what it means mathematically to quantize a field theory is still an
open one. However, the formalism of Costello and Gwilliam [6–8] is one approach to
the perturbative quantization of field theories which has been able to reproduce many
properties of quantum field theory—especially those pertaining to the observables of
quantum field theories—that physicists have long studied. This formalism naturally
includes a framework for studying symmetries, and it is within this framework that
we prove our results.

From another (heuristic) vantage point, a fermionic anomaly is an obstruction to
the existence of a well-defined fermionic partition function, in the following sense. To
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compute the partition function of a quantum field theory involving fermionic fields,
one performs a path integral over the space of all quantum fields. To do this, one first
fixes a number of pieces of geometric and topological data, such as a manifold M , a
metric on M , a spin structure on M . LetB′ denote the “space” of all relevant pieces of
geometric and topological data. The scare quotes are there because we might need a
more abstract notion of space (such as a stack) to appropriately describe the situation.
Given a point x ∈ B′, we can form the space of fields, which is a product Bx ×Fx of
the fermionic fields Fx and the non-fermionic fieldsBx at x . The non-fermionic fields
Bx may include a gauge field or a scalar field with which the fermionic fields interact.
As x varies, these spaces of fields fit together into something like a product B× F of
fibrations overB′. In a given fiberBx ×Fx , one can choose to perform the path integral
by first integrating over Fx , choosing a fixed b ∈ Bx . Because the fermionic fields are
coupled to the fields inBx , the fermionic integration produces something which varies
over B, i.e., depends both on the fixed non-fermionic field b ∈ Bx and on the point
x ∈ B′. However, the fermionic integration does not canonically produce a number in
general; it produces an element of a (super-)line depending on the background data.
In other words, there is a line bundle

L → B.

This is called the determinant line bundle, because its fiber over a point y ∈ B is the
natural home for the determinant of the Dirac operator corresponding to the massless
free fermion theory with background data encoded in y. The fermionic path integral
produces a section σ of this bundle, which deserves to be called “the partition function”
only when L is endowed with a trivialization, for in that case, one can compare σ to
this trivialization to get an honest function.

There is a well-developed mathematical literature addressing many of the relevant
issues in the case where one chooses B = B′ and restricts attention to a subspace of
B′ which is an actual space (see [4,5,10]). These ideas make maneuvers of physicists
(e.g., zeta-function regularization) precise in the special context of families ofmassless
free fermionic field theories. In the present article, we allowB → B′ to be non-trivial,
fix x ∈ B (and therefore a manifold M on which the theory lives), and study the
dependence of L only over the fiber Bx . In other words, we study the pullback

L ′ L

Bx B

�
.

We will let Bx be a space of perturbative gauge fields, i.e., Bx will be the space of
background gauge fields for the axial symmetry.

We note that the present work differs from the mathematical treatments in the vein
of [10] in two ways. The first is that the “space” Bx is best understood as an object of
formal derived deformation theory [14]. In [7], the authors explain how perturbative
field theory can be described with the language of formal derived deformation theory;
the essence of this relationship is that, for the purposes of quantum field theory, formal

123



1058 E. Rabinovich

derived deformation theory provides a nice unification of perturbation theory and
gauge theory. In the context of symmetries of quantum field theory, the approach of
[7] amounts essentially to turning on a background gauge field for the symmetry in
question and then studying the gauge invariance of the partition function as a function
of this background gauge field. In the present work, we will mainly use formal derived
deformation theory for the geometric intuition it provides. In particular, we will prove
homological algebraic results about certain modules over a commutative differential
graded algebra, and intuitions from formal derived deformation theory will allow us
to interpret these results as related to the heuristic discussion above.

The second way in which our work differs from existing treatments of anomalies
is that we focus on a general approach to field theories and their quantization known
as the Batalin–Vilkovisky (BV) formalism. In the work of Costello and Gwilliam, this
formalism is used to perform the quantization of the observables of field theories and
their symmetries. Our work shows that, simply by “turning the crank on the machine”
of BV quantization, one naturally recovers the axial anomaly. In other words, we
study the axial anomaly using a framework that was not handmade for the case of the
massless free fermion.

We note also that we work entirely in Euclidean signature; for a mathematical
discussion of the axial anomaly in Lorentzian signature, see [1], which also provides
a historical survey of the topic.

1.2 Presentation of main results

This paper has two main results. First, we compute the equivariant quantum observ-
ables of a massless free fermion with a symmetry. Second, we compute the axial
anomaly of the massless free fermion and show that it is given by the index of the
associated Dirac operator.

Costello and Gwilliam provide definitions of the notions of free quantum field
theory and of symmetries of such theories. In their formalism, a symmetry is effected
by the action of a differential graded Lie algebra (dgla) L on the space of fields,
and one can study the obstruction to the quantization of this symmetry, as well as
the cochain complex of equivariant quantum observables, which forms a differential
gradedmodule for the commutative differential graded algebraC•(L ) (theChevalley–
Eilenberg cochains of L ). Our first main result is the following proposition:

Proposition (Cf. Proposition 5.1, Lemma 5.9) Let L be a dgla acting on the mass-
less free fermion by symmetries, C•(L ) be the corresponding Chevalley–Eilenberg
cochain complex, and O(L [1]) the underlying graded vector space of C•(L ). The
equivariant quantum observables of the massless free fermion with action of L are
quasi-isomorphic to a C•(L )-module P whose underlying graded vector space is
O(L [1]). This module is isomorphic to the trivial such module if and only if the
obstruction is trivial.

In Sect. 5, we will comment on the interpretation of this proposition as an instanti-
ation of the heuristic discussion of the line bundle L ′ → B in the previous subsection.
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In the framework of Costello and Gwilliam, there is an obstruction–deformation
complex C•

red,loc(L ) and the obstruction is a cohomology class [Obstr] in this
complex (see Definition-Lemma A.40 and Lemma A.44). The obstruction is what
physicists would call an “anomaly,” and we will use the two terms more or less inter-
changeably.

Our aim is to compute the anomaly, at least for certain actions of a dgla L on
the massless free fermion. To accomplish this, one needs to understand the structure
of C•

loc,red(L ). For the case of the axial symmetry, which corresponds to the dgla
L = �•

M , we show the following two results:

Proposition (Cf. Proposition 6.1) If M is oriented, there is a canonical quasi-
isomorphism

� : �•
M [n − 1] ↪→ C•

loc,red(�•
M )

of complexes of sheaves on M. Here �•
M is the abelian elliptic dgla encoding the axial

symmetry of the massless free fermion theory.

The assumption of orientability is not necessary for a version of the above propo-
sition to be true; see Remark 6.4.

Main Theorem (Cf. Theorem 6.2) The cohomology class of Obstr is equal to the
cohomology class of

�

(
(−1)n+12

ind D

vol(M)
dV olg

)
,

where � is the quasi-isomorphism of the Proposition and dV olg is the Riemannian
volume form on (M, g).

In fact, we will have very similar theorems in case a Lie algebra g acts on the
fermions in a way that commutes with the corresponding Dirac operator. We prove
the corresponding generalizations of the above results in Sect. 7.

We note that the obstruction-theoretic approach to anomalies is known also to
physicists: see, e.g., Chapter 22.6 of [18]. In the presentwork,wegive amathematically
precise version of this approach; in particular, we use the renormalization techniques
of [6].

Readers with a background in physics are likely to be more familiar with the per-
spective on anomalies as violations of current conservation at the quantum level. This
perspective is essentially dual to the one we highlight here; in fact, the formalism of
Costello and Gwilliam in Chapter 12 of [7] incorporates both perspectives—albeit at
a very abstract level—and the authors freely move between the two. We comment on
the current conservation perspective in Sect. 6.3.

Let us summarize. In this paper, we focus on two perspectives on anomalies in
fermionic theories. In the first, anomalies are obstructions to the construction of a well-
defined fermionic partition function, which perspectivewill be justified byLemma 5.9.
In the second perspective, anomalies are the obstruction to the persistence of a sym-
metry after quantization. This perspective is justified by the arguments of Sect. 6.3,
using the obstruction-theoretic result of Main Theorem.
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1.3 Future directions

In this subsection, we outline a few natural extensions of the present work.
One of the novel realizations of Costello and Gwilliam is that the observables of a

quantum field theory fit together into a local-to-global (on the space–time manifold),
cosheaf-like object known as a factorization algebra. In this paper, we use only the
global observables on M . However, the factorization-algebraic structure of observables
often reproduces familiar algebraic gadgets which mix geometry and algebra: locally
constant factorization algebras, as shown by Lurie [15], are equivalent to En-algebras,
and holomorphic factorization algebras produce vertex algebras (see chapter 5 of [8]
for the general construction, and [12] for an example of the construction). It would be
interesting to understand the analogous sort of structure in the case at hand.

Another interesting local-to-global aspect of field theories in the formalism of
Costello and Gwilliam is that, given a theory on amanifold M , the formalism naturally
produces a sheaf of theories on M . Moreover, the construction of the massless free
fermion on M depends only a metric, a Z/2-graded vector bundle on M , and a gener-
alized Dirac operator D. All three objects are local in nature, so that it is to be expected
that the massless free fermion can be extended to a sheaf of theories on an appropriate
site of smooth manifolds (i.e., manifolds equipped with a metric, Z/2-graded vector
bundle, and Dirac operator). We would like to give sheaf-theoretic extensions of the
main theorems of this paper.

In yet another direction, we would like to use the BV formalism to make analogous
constructions to those in [10]. Namely, in the case where we have a family of Dirac
operators parametrized by a manifold B, we expect the BV formalism to produce a
line bundle over B just as we saw in the first subsection.We hope to give a BV-inspired
construction of a metric and compatible connection, which can be used to probe the
line bundle.

Finally, in the case that the anomaly does vanish, we would like to compute the
partition function.

1.4 Plan of the paper

The plan for the rest of the paper is as follows. In the next section, we provide a
lightning review of basic concepts from the theory of generalized Dirac operators
sufficient to define the theory of massless free fermions in the BV formalism. In
Sect. 3, we introduce the main example of the massless free fermion and its axial
symmetry. This section relies heavily on the techniques of Costello and Gwilliam, the
relevant background on which we review in “Appendix.” In Sect. 4, we discuss a few
lemmas concerning BV quantization which appear implicitly in some form or other in
the literature, but whose statements and proofs wemake explicit in the present context.
Next, in Sect. 5, we prove the first proposition from Sect. 1.2. In Sect. 6 (Sects. 6.1
and 6.2) , we show that the index of the Dirac operator completely characterizes the
anomaly by proving more precise versions of the second Proposition above and Main
Theorem. Also in Sect. 6 (Sect. 6.3), we bring our discussion closer to the physics
literature by describing the relationship between the axial anomaly and the existence
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of conserved currents in the massless free fermion quantum field theory. Finally, in
Sect. 7, we prove equivariant generalizations of the preceding results.

1.5 Notation and conventions

We assemble here many conventions and notations that we use throughout the remain-
der of the text. Some may be explained where they first appear, but we believe it to be
useful to the reader to collect them in one place.

– The references we cite are rarely the original or definitive treatments of the subject;
they are merely those which most directly inspired and informed the work at hand.
We have made every attempt to indicate which results are taken or modified from
another source.

– The free fermion theory will be formulated on a Riemannian manifold M . We will
assume M to be connected for simplicity, though our results are easily extended
to non-connected M .

– If a Latin letter in standard formatting is used to denote a vector bundle, e.g., E ,
then that same letter in script formatting, e.g., E , is used to denote its sheaf of
sections. Letters in script formatting, except O , will always denote sheaves of
smooth sections of vector bundles.

– We use the notation ∼= for isomorphisms and � for quasi-isomorphisms (weak
equivalences).

– We use the notation C∞
M and �k

M for the sheaves of smooth functions and smooth
k-forms, respectively, on M .We use the notationR,�k T ∗M for the corresponding
vector bundles.

– If V is a finite-dimensional vector space, V ∨ is the linear dual to V ; if V is a
topological vector space, then V ∨ is the continuous linear dual. If V → M is a
finite-rank vector bundle, then V ∨ → M is the fiberwise dual to V .

– If V1 → M1 and V2 → M2 are vector bundles and M3 is a manifold, then we
denote by V1 � V2 the bundle p∗

1(V1) ⊗ p∗
1(V2) → M1 × M2 × M3, where

p1 : M1 × M2 × M3 → M1 and p2 : M1 × M2 × M3 → M2 are the canonical
projections. If M3 is not explicitly mentioned, it is assumed to be pt .

– We will use ⊗ to denote the completed projective tensor product of topological
vector spaces as well as the algebraic tensor product of finite-dimensional vector
spaces. The completed projective tensor product has the nice characterization that
ifV (M) andW (N ) are vector spaces of global sections of vector bundles V → M
and W → N , then V (M) ⊗ W (N ) is the space of global sections of the bundle
V � W over M × N .

– If V is a Z × Z/2-graded vector space and v is a homogeneous element of v, then
|v| andπv refer to theZ andZ/2-degrees of v, respectively.Wewill also call |v| the
ghost number of v and πv the statistics of v. This gives a convenient terminology
for distinguishing between the various types of grading our objects will have; it
is a terminology that conforms loosely to that of physics. We will sometimes also
refer to ghost number as cohomological degree.

– If V → M is a vector bundle, then V ! is the bundle V ∨ ⊗ DensM , where DensM

is the density bundle of M . V ! will denote the sheaf of sections of V !.
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1062 E. Rabinovich

– If V is a Z-graded vector space, then V [k] is the Z-graded vector space whose i-th
homogeneous space is Vi+k . In other words, V [k] is V shifted down by k “slots.”

– If M is compact and Riemannian with metric g, then for a one-form α,

|α|2 := g−1(α, α) ∈ C∞(M).

Here, g−1 is the metric on T ∗M induced from g. There is a similar definition if α

is a section of a vector bundle V → M with metric (·, ·).
– If V is aZ×Z/2-graded vector space, then Bilin(V ) is theZ×Z/2-graded vector
space of bilinear maps V ⊗ V → V .

– When dealing with Z × Z/2-graded objects, we will always say “graded (anti)-
symmetric” if we wish Koszul signs to be taken into account. If we simply say
(anti)-symmetric, we mean that this notion is to be interpreted without taking
Koszul signs into account.

– If v ∈ Sym(V ) for some vector space V , then v(r) denotes the component of v in
Symr (V ).

– Let V be a (non-graded) vector space and φ : V → V a linear map. We denote by
φ0→1 the cohomological degree 1 operator

V
φ−→ V [−1],

and similarly for φ1→0. We denote by φ0→0 the cohomological degree 0 operator
on V ⊕ V [−1] which acts by φ on V and by 0 on V [−1]; similarly, φ1→1 is the
operator on V ⊕ V [−1] which acts by 0 on V and by φ on V [−1].

– If L is an elliptic dgla, then we will use dL to denote the differential on the
complex of Chevalley–Eilenberg cochains of L .

2 Generalized Laplacians, heat kernels, and Dirac operators

We present here a list of definitions and results relevant to our work, taking most of
these from [3]. Throughout, (M, g) is a closed Riemannian manifold of dimension n
with Riemannian volume form dV olg . We let V → M be a Z/2-graded vector bundle
with V +, V − the even and odd bundles, respectively. We let V be the sheaf of smooth
sections of V , and similarly V ± the sheaf of smooth sections of V ±. We always use
normal-font letters for vector bundles and script letters for the sheaves of sections of
the corresponding vector bundles.

Definition 2.1 A Z/2-graded metric bundle is a metric bundle V → M with an
orthogonal decomposition V = V + ⊕ V −.

Definition 2.2 (Proposition 2.3 of [3]). Let V be a Z/2-graded metric bundle. A gen-
eralized Laplacian on V is a differential operator

H : V → V
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such that

[[H , f ], f ] = −2|d f |2,

where we are thinking of smooth functions as operators which act on sections of V
by pointwise scalar multiplication .

We say that H is formally self-adjoint if for all s, r ∈ V ,

∫
M

(s, Hr)dV olg =
∫

M
(Hs, r)dV olg.

Remark 2.3 The equation defining a generalized Laplacian is a coordinate-free way
of saying that H is a second-order differential operator on V whose principal
symbol is just the metric, i.e., that in local coordinates, H looks like gi j∂i∂ j +
lower-order derivatives. �

Remark 2.4 We did not strictly need V to beZ/2-graded to define a generalized Lapla-
cian, but since we only ever work in this case, we do not use this slightly different
definition. �

Definition 2.5 (Definition 3.36 of [3]) A Dirac operator on V is an odd differential
operator

D : V ± → V ∓

such that D2 is a generalized Laplacian. The definition of formal self-adjointness
makes sense also for Dirac operators.

Example 2.6 Let V = �•T ∗M , with the Z/2-grading given by the form degree mod
2. Then, the operator d + d∗ is a generalized Dirac operator since its square (d + d∗)2
is the Laplace-Beltrami operator. Here, d∗ is the formal adjoint of d, characterized by

∫
M

(α, dβ) dV olg =
∫

M

(
d∗α, β

)
dV olg.

It is clear from this description that d + d∗ is formally self-adjoint, since it is the
sum of an operator with its formal adjoint. Via Hodge theory, the kernel of d + d∗ is
canonically identified with the de Rham cohomology H•

d R(M). �

There are numerous other examples of interest—for example, the traditional

Dirac operator on an even-dimensional spin manifold and
√
2

(
∂̄ + ∂̄∗) on a Käh-

ler manifold—and our formalism will work for these as well. We refer the reader to
Section 3.6 of [3] for the details of the construction of these operators.

Definition-Lemma 2.7 (Proposition 3.38 of [3]) If V is a Z/2 graded bundle over
(M, g) a Riemannian manifold and D a Dirac operator on V , then the Clifford
action of 1-forms on V

c : �1(M) → Endodd(V )
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1064 E. Rabinovich

is defined on exact forms by
c(d f ) = [D, f ], (1)

and extended to all 1-forms by C∞-linearity. This action is well defined.

Theorem 2.8 (The heat Kernel; Section 8.2.3 of [7]) Let V be a Z/2-graded metric
bundle with metric (·, ·) and Dirac operator D. Write H := D2 for the generalized
Laplacian corresponding to D. Then, there is a unique heat kernel k ∈ �(M ×M, V �
V ) ⊗ C∞(R>0) satisfying:

1. d

dt
kt + (H ⊗ 1)kt = 0,

where kt ∈ �(M × M, V � V ) is the image of k under the map

id ⊗ evt : �(M × M, V � V ) ⊗ C∞(R>0) → �(M × M, V � V )

induced from the evaluation of functions at t ∈ R>0.
2. For s ∈ V ,

lim
t→0

∫
y∈M

id ⊗ (·, ·)(kt (x, y) ⊗ s(y))dV olg(y) = s(x),

where the limit is uniform over M and is taken with respect to some norm on V .

The scale t heat kernel kt is the integral kernel of the operator e−t H in the sense that

∫
y∈M

id ⊗ (·, ·)(kt (x, y) ⊗ s(y))dV olg(y) = (e−t H s)(x).

Definition 2.9 (Proposition 3.48 of [3]) Let D± denote D |V ± for D a formally self-
adjointDirac operator D. The index ind(D) of D is dim(ker(D+))−dim(coker(D+)).
By the formal self-adjointness of D, we have also the alternative formula

ind(D) = dim(ker(D+)) − dim(ker(D−)) =: sdim(ker D)

for the index of D.

Example 2.10 The index of the Dirac operator from Example 2.6 is

n∑
i=0

(−1)i dim(ker(d + d∗) |�i
d R

) =
n∑

i=0

(−1)i dim Hi
d R(M) = χ(M),

where χ(M) is the Euler characteristic of M . �

The following definition can be found in the discussion preceding Proposition 1.31

of [3]
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Definition 2.11 If φ : V → V is a grading–preserving endomorphism of the super-
vector space V , then the supertrace of φ is

Str(φ) := Tr(φ |V +) − Tr(φ |V −).

Let� : V → V denote the operator which is the identity on V + andminus the identity
on V −. Then, Str(φ) = Tr(φ�).

With these definitions in place, we can finally state the following

Theorem 2.12 (Theorem 3.50 of [3]) Let V be a Hermitian, Z/2-graded vector bundle
on a closed Riemannian manifold M, with dV olg the Riemannian volume form on M.
Let D be a formally self-adjoint Dirac operator on V , with kt the heat kernel of D2.
Then

ind(D) =
∫

M
Str(kt (x, x))dV olg(x) = Str(e−t D2

), (2)

where the last trace is an L2 trace of the bounded operator e−t D2
.

This is the McKean–Singer theorem.
We will also need a few technical results that will be useful, especially in Sect. 7.

The first is

Lemma 2.13 (Proposition 3.48 of [3]) If D is a formally self-adjoint Dirac operator
over a compact manifold, then

V ± = ker(D±) ⊕ Im(D∓),

where the decomposition is orthogonal with respect to the metric on V induced from
(·, ·).
Remark 2.14 This is a special case of a general Hodge decomposition that applies for
any elliptic complex with a metric on the corresponding bundle of sections. �


The second result is Proposition 2.37 of [3], as used in the proof of the McKean–
Singer Theorem.

Lemma 2.15 If D is a formally self-adjoint Dirac operator, and if P± is the orthogonal
projection onto ker(D±), then for t large,

∣∣∣Tr(e−t D2
∣∣∣
V ± − P±)

∣∣∣ ≤ C · e−tλ1/2,

where λ1 is the smallest nonzero eigenvalue of D2 and C is a constant (i.e., independent
of t).

Finally, we present useful analytic facts about the spectrum of a Laplacian on a
compact manifold.
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Lemma 2.16 (Cf. Proposition 2.36 of [3]) If H is a formally self-adjoint generalized
Laplacian on a compact manifold, then H has a unique self-adjoint extension H̄ with
domain a subspace of L2 sections of V ; H̄ has discrete spectrum, bounded below,
and each eigenspace is finite-dimensional, with smooth eigenvectors. Letting φ j be an
eigenvector for H̄ with eigenvalue λ j , we have

kt =
∑

j

e−tλ j φ j ⊗ φ j .

Moreover, e−t H̄ is compact (and therefore bounded and trace class).

3 Themassless free fermion and its axial symmetry

In this section, we introduce the main examples which will concern us in the rest of the
paper, namely the example of themassless free fermion and its axial symmetry.We use
the formalism of (equivariant) Batalin–Vilkovisky (BV) quantization and renormal-
ization, as developed in [6–8]. “Appendix” consists of a self-contained summary of all
the relevant background materials; we encourage the reader to peruse it as necessary.
To the reader already familiar with this material, we note that in our work, we allow
the space of fields of a free field theory and all objects built from this space of fields to
possess an extra Z/2-grading which tracks particle statistics—fermionic or bosonic,
corresponding to odd or even Z/2-grading, respectively. In this convention for the
usage of the term “statistics,” ghosts, anti-fields, and anti-ghosts for fermionic fields
have fermionic statistics. Of course, fermionic ghosts and anti-fields are eachmutually
commuting, so our usage of the term “statistics” differs from the conventional physics
usage.

In the formalism of [6,8], a free BV theory is specified by a triple (F , Q, 〈·, ·〉loc),
where (F , Q) is an elliptic complex on a manifold N and 〈·, ·〉 is a degree –1 pairing
F ⊗ F → DensN . The triple is required to satisfy some conditions elaborated in
“Appendix.” It is also possible to define what is meant by a gauge-fixing of a free BV
theory and an action of an elliptic differential graded Lie algebra (dgla)L on a free BV
theoryF . Given such an action, one can define cochain complexes Obscl and Obsq [t]
of equivariant classical observables and equivariant scale-t quantum observables for
the action. Moreover, there is a scale-t obstruction Obstr[t] and its t → 0 limit
exists and is denoted Obstr. The aim of this section is to present an example of a
free BV theory with an action of an elliptic dgla, which we call the axial symmetry
of the massless free fermion. The aim of the remainder of the paper will be to better
understand the structure of Obsq [t] and Obstr.

We will show that a formally self-adjoint Dirac operator defines a free BV theory;
first, though, we need to establish some notation. Let (M, g) be, as in Sect. 2, a
Riemannian manifold with Riemannian density dV olg , V aZ/2-gradedmetric bundle
on M with metric (·, ·), and D a formally self-adjoint Dirac operator. Define � : V →
V to be −idV − ⊕ idV + . Let

S := V ⊕ V [−1],
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with purely odd Z/2 grading (and let S denote the sheaf of sections of S), and

〈 f1, f2〉loc = ( f1, f2)dV olg

when either | f1| = 0 and | f2| = 1 or vice versa. As described in Notation and
Conventions subsection of Sect. 1, we let D0→1 denote the operator of degree 1 on
S which is simply given by D, and similarly for D0←1, �0→0, etc. With all these
notations in place, we can state and prove the following

Lemma 3.1 (S , D0→1�0→0, 〈·, ·〉loc) is a free BV theory, which we call the massless
free fermion, and �0→0D1→0 is a gauge-fixing for this theory.

Proof Let us first note the following facts: since D reverses the Z/2-grading of V ,
D� = −�D (hence, D0→1�0→0 = −�1→1D0→1); moreover, � is self-adjoint for
the pairing (·, ·).

D0→1�0→0 and�0→0D1→0 can be checked directly to have the required symmetry
properties with respect to 〈·, ·〉 as a consequence of the above facts and the formal self-
adjointness of D.

〈·, ·〉 is symmetric (in the brute, non-graded, sense) because of the symmetry of
(·, ·); this is consistent with Eq. 16 since all fields have fermionic statistics, i.e., 〈·, ·〉
is graded skew-symmetric.

It remains only to check that [Q, QG F ] is a generalized Laplacian. Using the first
fact noted at the beginning of the proof, and the fact that �2 = 1, it is a direct
computation to show that [Q, QG F ] = D2

0→0 + D2
1→1, so is in fact a generalized

Laplacian. �

Remark 3.2 The metric on V can be used to identify V with V ∨, and the Riemannian
density can be used to trivialize the bundle of densities on M , so that V ! ∼= V . As a
result, it can be shown that the free fermion theory is isomorphic, under the obvious
notion of isomorphism of free theories, to the cotangent theory to the elliptic complex

V + D+−→ V −.

We will use this characterization in the sequel. �

In “Appendix,” we define what it means for an elliptic dgla to act on a free BV

theory. The next lemma provides an action of the elliptic dgla �•
M on the massless

free fermion.

Lemma 3.3 Let LR = �•
d R,M , equipped with the de Rham differential and trivial Lie

bracket. If f ∈ C∞(M), we let

[ f , ·] := f �0→0 − f �1→1. (3)

If α ∈ �1(M), let
[α, ·] = c(α)0→1, (4)
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where c(α) is the Clifford action of forms on sections of V . For β a form of degree
greater than 1, let [β, ·] = 0. Then, these equations define an action of LR on the
massless free fermion. This action is known as the axial symmetry in physics.

Proof Let us check the derivation property of a dgla:

Q[ f , ϕ] = [d f , ϕ] + [ f , Qϕ].

Assuming that |ϕ| = 0 (otherwise both sides of the above equation are 0), we find that
the right-hand side of the above equation is

[d f , ϕ] − f �1→1D0→1�0→0ϕ = D0→1 f ϕ,

which agrees with Q[ f , ϕ].
The remaining checks—namely of the Jacobi equation and the invariance of 〈·, ·〉

under this action—are straightforward and direct computations along similar lines. �

Remark 3.4 Note that the constant functions act by a multiple of � on the degree 0
fields inS . This is the sense in which the symmetry is axial: it acts by opposite factors
on V + and V −. �


4 A few lemmas on Batalin–Vilkovisky quantization

In this section, we prove three lemmas which will be useful in the sequel, and which
are implicit in the literature, but which have not been directly proved there. For a more
complete discussion of the BV formalism, see “Appendix,” which assembles results
from the literature relevant to the discussion here.

In “Appendix,”we define the strong (equivariant) quantummaster equation (sQME)
for the action of an elliptic dgla L on a BV theory F . For the reader familiar with
the formalism of Costello and Gwilliam, a solution of the sQME is what those authors
would call an inner action of L on the quantum theory F . The first of the three
remaining lemmas in this section makes precise the idea that the sQME measures the
failure of anL -equivariant quantization to be trivial over C•(L ). Before we state it,
we make the following

Definition 4.1 Assume given an action of an elliptic dgla L on a free theory F ; let
I�=1[t] denote Itr [t] + Iwh[t]. Then, for any t ∈ R>0, the scale t fundamentally
quantum equivariant observables, denoted Obsq

�=1[t], are
(

Ŝym
(
(L [1](N ) ⊕ F (N ))∨

)
, Q + dL + {I�=1[t], ·}t + �t

)
;

in other words, Obsq
�=1[t] is Obsq [t]with � set to 1. Similarly, let Obsq

�=1,0 denote the

cochain complex whose underlying graded vector space agrees with that of Obsq
�=1[t],

but with differential dL + Q + �t ; this is the analogous construction for the trivial
action of L on F .
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Remark 4.2 It is worth noting here that the scale t plays the same role here as the heat
kernel parameter (which is also denoted by the symbol t) in Theorem 2.8, since the
BV Laplacian �t is defined in terms of this heat kernel. Physically, t carries units of
inverse length squared. �


Lemma 4.3 If I [t] satisfies the scale t sQME, then multiplication by eI�=1[t] gives a
cochain isomorphismObsq

�=1[t] → Obsq
�=1,0[t]. More generally, letObsq

�=1,Obstr[t]
denote the cochain complex

(O(L [1] ⊕ F ), Q + dL + �t − Obstr[t]·) ,

where Obstr[t]· denotes multiplication by the obstruction in the symmetric algebra
O(L [1] ⊕ F ). Then, multiplication by eI�=1[t] gives an isomorphism Obsq

�=1[t] →
Obsq

�=1,Obstr[t].

Proof By direct computation,

(Q + dL + �t )e
I�=1[t] = Obstr[t]eI�=1[t]. (5)

Let J be an element of Obsq
�−1 [t]. Now, consider

(Q + dL + �t − Obstr[t]) (JeI�=1[t]).

Q and dL are both graded derivations for the commutative product; �t , however, is
not, and the Poisson bracket is precisely the failure of this to be the case. In fact, direct
computation reveals that

�t

(
JeI�=1[t]

)
= �t (J )eI�=1[t] + (−1)|J | J�t e

I�=1[t] + eI�=1[t]{I�=1[t], J }t .

It follows that

(Q + dL +�t − Obstr[t]) (JeI�=1[t])
= (Q J + dL J + �t J + {I�=1[t], J }t )e

I�=1[t]

− Obstr[t]JeI�=1[t] + (−1)|J | JObstr[t]eI�=1[t]

= (Q J + dL J + �t J + {I�=1[t], J }t )e
I�=1[t].

The above equation states precisely that multiplication by eI�=1[t] intertwines the
differentials of Obsq

�=1[t] and Obsq
�=1,Obstr[t]. �


Lemma 4.4 For a free theory with an action of the elliptic dgla L , the obstruction
Obstr[t] is independent of t . Using Lemma A.44 in Appendix, this implies thatObstr[t]
is local.
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Proof Let us rewrite Lemma A.43 as the following equation:

Obstr[t ′] = d

dε

(
W (P(t ′, t), I [t] + εObstr[t]) mod �

)

The right-hand side of the above equation is represented diagrammatically by a sum
over connected Feynman trees where one of the vertices uses Obstr[t] and all the
others use Itr [t]. At any scale, the Feynman diagram expansion of Obstr[t] for a
free theory has only external edges corresponding toL . The elements ofL are non-
propagating fields in the sense that the propagators appearing in the Feynman diagrams
of RG flow connect onlyF edges and notL edges. This means, in particular, that the
only connected Feynman diagrams having a vertex labeled by a term from Obstr[t]
are those with only that vertex. In other words, the right-hand side of the equation
above is just Obstr[t], which completes the proof. �

Remark 4.5 This result is particular to the case that we are dealing with families of
free theories. �


Let us now examine what happens if Obstr[t] is exact in C•
red(L ):

Lemma 4.6 If Obstr[t] = dL J for some J ∈ C•
red(L ), then I [t] − �J solves the

scale t sQME. Conversely, if there exists J such that I [t] − �J solves the scale t
sQME, then Obstr[t] = dL J .

Proof Let us start with the first assertion:

(dL + Q)(I [t] − �J ) + 1

2
{I [t] − �J , I [t] − �J }t + �t (I [t] − �J )

= �Obstr[t] − �dL J = 0,

where we are using that J does not depend on F , so that Q J = �t J = {J , ·}t = 0.
Thus, I [t] − �J solves the sQME. Conversely, the above equation shows that if there
exists a J ∈ C•

red(L ) such that I [t] − �J satisfies the scale t sQME, then Obstr[t]
is exact. �

Remark 4.7 Combining the preceding lemma with Lemma A.39, we see that the
obstruction is exact at one scale if and only if it is exact at all scales, since

W (P(t ′, t), I [t] − �J ) = I [t ′] − �J ,

by an analysis of the Feynman diagram expansion of

W (P(t ′, t), I [t] − �J ).

If one prefers not to use Feynman diagrams, one can use the explicit definition of the
operator W (P(t ′, t), ·) and the fact that ∂P J = 0. �
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5 The equivariant observables of themassless free fermion

In this section, we use the notations of Sect. 3 concerning the massless free fermion.
We will assume that an elliptic dgla L acts on the free theory S . This could be the
complex LR from Lemma 3.3, but our results will hold in the more general case.

The main goal of this section is to prove the following

Proposition 5.1 If an elliptic dgla L acts on the massless free fermion theory S , then
there is a deformation retraction of C•(L )-modules

(O(L [1]), dL + δ) Obsq
�=1[∞]ι̃

π̃
η̃ .

More precisely, η̃ is a degree –1 map and the three maps satisfy

ι̃ ◦ π̃ − id = [dObsq
�=1

, η̃]
π̃ ◦ ι̃ − id = 0.

Here, δ is a degree-one endomorphism such that (dL + δ)2 = 0. We recall that
O(L [1]) is the underlying graded vector space of C•(L ), and it is given the obvi-
ous C•(L )-module structure, namely the one where C•(L ) acts on O(L [1]) by
multiplication.

We will see that δ is given by an explicit, if complicated, formula.

Remark 5.2 By a small modification of the arguments in [7], (infinitesimal) homo-
topical RG flow defines cochain isomorphisms Obsq

�=1[t] ∼= Obsq
�=1[t ′] for all t, t ′.

It follows that Obsq
�=1[t] also deformation retracts onto a rank-one C•(L ) module

for all t . �

We note that because D is formally self-adjoint, we can use the characterization

of the heat kernel from Lemma 2.16. This implies, in particular, that we can define
the scale-infinity BV heat kernel K∞ and propagator P(0,∞), and therefore, the
cochain complex of scale-infinity equivariant quantum observables Obsq [∞] in the
proposition is well defined.

Recall that theL symmetry has an obstructionObstr to quantization.As a corollary
of Proposition 5.1, we will find the following:

Corollary A Choose the same hypothesis as in Proposition 5.1, and recall the notation
Obsq

�=1,Obstr from Lemma 4.3. There is a deformation retraction of C•(L )-modules

(O(L [1]), dL + Obstr[∞]·) Obsq
�=1,Obstr[∞]ι̃

π̃
η̃ .

Here, Obstr[∞]· denotes multiplication by Obstr[∞] in O(L [1]).
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Finally, in Lemma 5.9, we show that—as a consequence of the corollary—the rank-
one module of the proposition is isomorphic to the trivial C•(L )-module if and only
if Obstr is cohomologically trivial.

Remark 5.3 The C•(L )-module O(L [1]) with differential dL + δ can be thought
of as the space of sections of a line bundle over the formal moduli problem BL (M).
Lemma 5.9 then implies that this line bundle is trivial if and only if the obstruction is
cohomologically trivial. In other words, Lemma 5.9 is an interpretation the statement
“the anomaly is the obstruction to the existence of a well-defined and gauge-invariant
partition function” discussed in the introduction. �


5.1 The proof of Proposition 5.1

The proof of Proposition 5.1 is a minor modification of arguments in Chapters 2.5-
2.6 of [13], and it uses the Hodge decomposition of Lemma 2.13 and properties
of deformation retractions, including the homological perturbation lemma. Before we
begin the proof itself, we spell out some details of the relevant background information.

The following is themain theoremdiscussed in [9]; it is a generalization of Theorem
2.5.3 of [13].

Lemma 5.4 (Homological perturbation lemma). Suppose that

(W , dW ) (V , dV )
ι

π
η

is a deformation retraction, and suppose that δV is a degree 1 operator such that
dV + δV is a differential and (1 − δV η) is invertible. Then,

(W , dW + δW ) (V , dV + δV )
ι′

π ′
η′

is a deformation retraction, where

δW = π(1 − δV η)−1δV ι

ι′ = ι + η(1 − δV η)−1δV ι

π ′ = π + π(1 − δV η)−1δV η

η′ = η + η(1 − δV η)−1δV η

are the perturbed data of the deformation retraction.

Lemma 5.5 Given two deformation retractions

(V1, d1) (V2, d2)
ι1

π1
η1
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and

(V2, d2) (V3, d3)
ι2

π2
η2 ,

the composite

(V1, d1) (V3, d3)
ι2ι1

π1π2
η2+ι2η1π2

is also a deformation retraction.

Proof Direct computation. �

Armed with the preceding results on deformation retractions, we can proceed to

the proof of Proposition 5.1. The main idea of the proof is repeated application of the
homological perturbation lemma. We will break the proof up into small pieces.

Let us first establish some notation that we will use throughout the remainder of
this section. Let O denote the underlying graded vector space of Obsq

�=1. Let us also

abbreviate Ŝym((H•S )∨) to W , letting W ( j) denote the Sym j space of W . Similarly,
let W⊥ denote Ŝym((H•S )⊥,∨), with W ( j)

⊥ the Sym j space of W⊥.
The Hodge decomposition of Lemma 2.13 tells us that the cokernel of D is iso-

morphic to its kernel. This allows us to decompose S as follows:

ker D ⊕ Im D ker D ⊕ Im D.
D� (6)

It follows that H•S = ker D ⊕ (ker D[−1]), and we denote by H•S ⊥ the cochain

complex Im D
D�−→ Im D; this notation is appropriate because Im D = ker D⊥.

It follows that W = Ŝym
(
(ker D)∨ ⊕ (ker D)∨[1]) and similarly

W⊥ = Ŝym
(
(Im D)∨ ⊕ (Im D)∨[1]) .

Using Eq. 6,

O =
∞∏

i, j,k=0

(
Symi (L ∨) ⊗ W ( j) ⊗ W (k)

⊥
)

.

SinceO = O(L [1])⊗W ⊗W⊥, we can endowO with aO(L [1])-module structure,
which gives a dg-C•(L )-module structure when we endow O with the differentials
from either Obsq

�=1[∞] or Obsq
�=1,0[∞]. Throughout the remainder of this section,

any cochain complex whose underlying graded vector space is of the formO(L [1])⊗
U , where U is a graded vector space, is given the dg-C•(L )-module structure in an
analogous way. In all cases, it will be manifest that theO(L [1]) action onO(L [1])⊗
U interacts as necessary with the differential on O(L [1]) ⊗ U .
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Recall that the differential on Obsq
�=1[∞] can be written as a sum

Q + dL + {I�=1[∞], ·}∞ + �∞.

We will treat the terms �∞ and {I�=1[∞], ·}∞ as successive deformations of the
differential Q + dL on O , starting from a homotopy equivalence of (O, Q + dL )

with a smaller subspace. The cochain complex (O, Q + dL ) describes the classical
observables of the massless free fermion with trivial L action.

Proposition 5.6 (Cf. Proposition 2.5.5 and Theorem 2.6.2 in [13]) There is a defor-
mation retraction of C•(L )-modules

C•(L ) ⊗ W (O, Q + dL )
ι

π
η .

Proof As described in Section 2.6 of [13], the Hodge decomposition leads to the
desired homotopy equivalence, with maps π, ι, and η defined as follows. π is just
projection onto the subspace of O for which k = 0, and ι is the inclusion of this
subspace intoO . On the other hand, η is a bit more subtle. We let P denote the degree
–1 operator on S whose kernel is P(0,∞) (see Definition A.27). On V [−1] ⊂ S ,
P acts by 0 on ker D and by D−1 on Im D. P also induces an operator on S ∨, and
we can also extend it C•(L )-linearly to O as a derivation for the multiplication in
W⊥; we will abuse notation and call all three operators P . We define η to be 0 on the
k = 0 component of O and P/k on the k �= 0 components of O . Note that η acts only
on the W⊥ part ofO . The fact that this is a deformation retraction is verified in [13]. �


Now, we turn on the deformation �∞ to compute the quantum observables of the
theory with trivialL action:

Proposition 5.7 There is a deformation retraction of C•(L )-modules

(O(L [1]) ⊗ W , dL + �∞) Obsq
�=1,0[∞]ι′

π ′
η′ .

In other words, the deformation �∞ of the differential on O induces the same defor-
mation on O(L [1])⊗W .

Proof We use the homological perturbation lemma, though we need to check that the
hypotheses of that lemma apply. First, note that the operator Q + dL + �∞ is a
differential, since it is the differential on Obsq

�=1,0, i.e., it is the differential on O for
the trivial action of L on S . Moreover, (1 − �∞η) is invertible, as we now show.
The operator �∞ is the operator of contraction with K∞; based on the description of
Kt in the proof of Lemma 6.5 in the next section, and using the characterization of the
heat kernel immediately preceding Proposition 2.37 in [3], it follows that

K∞ =
dim ker D∑

i=1

−φi ⊗ ξi + ξi ⊗ φi .
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Here, {φi } is an orthonormal basis for ker D sitting in degree 0 and ξi is φi as an
element of V , but living in degree 1 in S . Let {φ∗

i } and {ξ∗
i } denote the dual bases

for ker D∨.
It follows that

�∞ = 2
dim ker D∑

i=1

∂2

∂ξ∗
i ∂φ∗

i
.

So �∞ lowers Sym-degree in W by 2. On the other hand, η does not change Sym-
degree in W . More important, no element of O can have a dependence of degree
greater than dim ker D on the φi , since the φi are of ghost number 0 and have fermionic
statistics and so anti-commute with each other. It follows that (�∞η)dim ker D+1 = 0
so that

(1 − �∞η)−1 =
dim ker D∑

l=0

(�∞η)l ,

and the homological perturbation lemma applies to our situation. Moreover, since ι, π ,
and η were constructed to be C•(L )-linear, the explicit formulas of the homological
perturbation lemma show that the perturbed data are also C•(L )-linear.

The perturbation δ�∞ of the differential on C•(L )⊗W is given by the formula

δ�∞ = π(1 − �∞η)−1�∞ι = π

dim ker D∑
l=0

(�∞η)l�∞ι;

however, since η acts trivially on elements of C•(L )⊗W and �∞ preserves
C•(L )⊗W ⊂ O , the formula for δ�∞ simplifies:

δ�∞ = π�∞ι.

The proposition follows. �

Now, we would like to understand the cochain complex (O(L [1])⊗W , dL +�∞)

a bit better. We continue to use the notation ξ∗
i , φ∗

i from the proof of the previous
proposition.

Proposition 5.8 There is a deformation retraction of C•(L )-modules

(O(L [1]), dL ) (O(L [1])⊗W , dL + �∞)
ι′′

π ′′
η′′ .

The main consequence of this proposition, together with Proposition 5.7, is

Corollary B Obsq
�=1,0[∞] deformation retracts onto a free rank-one C•(L )-module.
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Proof of Proposition 5.8 ι′′ and π ′′ will be, just like ι and π , inclusion and projection
operators; we simply need to identify the relevant one-dimensional subspace ofW onto
which to project. To this end, let {φ̃∗

i }dim ker D+
i=1 be an orthonormal basis for (ker D+)∨

and { ˜̃
φ∗

i }dim ker D−
j=1 be an orthonormal basis for (ker D−)∨. The one-dimensional sub-

space of W we seek is spanned by

φ̃∗
1 · · · φ̃∗

dim ker D+
˜̃
φ∗
1 · · · ˜̃

φ∗
dim ker D− ,

i.e., it is the subspace �top(ker D+)∨ ⊗ �top(ker D−)∨. Now, ι′′ can be verified
directly to be a cochain map, while to verify that π ′′ is a cochain map, note first that
π ′′�∞ = 0 since �∞ necessarily lowers the degree of dependence on the φi . Thus,

π ′′(dL α + �∞α) = π ′′dL α = dL π ′′(α),

since π ′′ manifestly intertwines the dL differential. Moreover, π ′′ι′′ = id, by con-
struction.

It remains to construct η′′ and verify that η′′ is a chain homotopy between ι′′π ′′ and
id. We can write

W = R[[φ∗
i , ξ∗

i ]],

where theφ∗
i have ghost number 0 andhave fermionic statistics,while the ξ∗

i have ghost
number –1 and have fermionic statistics as well. In other words, the ξ∗

i commute with
each other, while the φ∗

i anti-commute among themselves and with the ξ∗
i . Now, we let

I = (i1, · · · , idim ker D) be amulti-index, J ⊂ (1, · · · , dim ker D), andα ∈ O(L [1]);
we consider J to be a multi-index with all indices zero or 1. Moreover, define

σI ,J = #
({i j | j ∈ J , i j �= 0}) ,

and denote by |I | the total degree of I , that is

|I | =
dim ker D∑

k=1

ik .

Let

η′′(α ⊗ ξ∗
I φ∗

J ) = (−1)|α|+1α ⊗ (−1)|I |

2(|J c| + σI ,J )

⎛
⎝∑

j /∈J

1

i j + 1
ξ∗

j ξ
∗
I φ∗

j φ
∗
J

⎞
⎠ .

Here, |J c| is the cardinality of the complement of J in {1, · · · , dim ker D}. We let
1/(|J c| + σI ,J ) = 0 when both summands in the denominator are zero. Note that

|(J\{k})c| + σI\{k},J\{k} = |J c| + σI ,J
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when ik �= 0, where I\{k} is I with ik set to 0. We will use this fact tacitly below. Let
us verify, using the notation δ jk for the Kronecker delta:

(dL + �∞)η′′(α ⊗ ξ∗
I φ∗

J )

= −η′′(dL α ⊗ ξ∗
I φ∗

J )

−α ⊗ (−1)|I |(−1)|I |+1

|J c| + σI ,J

⎛
⎜⎜⎝

∑
j /∈J

k∈J∪{ j}

1

i j + 1

(
δ jkξ

∗
I + ξ∗

j
∂ξ∗

I

∂ξ∗
k

) (
δ jkφ

∗
J − φ∗

j
∂φ∗

J

∂φ∗
k

)⎞
⎟⎟⎠

= −η′′(dL α ⊗ ξ∗
I φ∗

J )

+α ⊗ 1

|J c| + σI ,J

⎛
⎜⎜⎝

∑
j /∈J

1

i j + 1

(
ξ∗

I φ∗
J + i j ξ

∗
I φ∗

J

) −
∑
j /∈J
k∈J

1

i j + 1
ξ∗

j
∂ξ∗

I

∂ξ∗
k

φ∗
j
∂φ∗

J

∂φ∗
k

⎞
⎟⎟⎠

η′′(dL + �∞)(α ⊗ ξ∗
I φ∗

J ) = η′′(dL α ⊗ ξ∗
I φ∗

J ) − α ⊗ (−1)|I |−1(−1)|I |

|J c| + σI ,J⎛
⎜⎜⎝

∑
j∈J

k∈J c

1

ik + 1
ξ∗

k
∂ξ∗

I

∂ξ∗
j
φ∗

k
∂φ∗

J

∂φ∗
j

+
∑
j∈J

i j �=0

1

i j
ξ∗

j
∂ξ∗

I

∂ξ∗
j
φ∗

j
∂φ∗

J

∂φ∗
j

⎞
⎟⎟⎠

It follows that, unless |J c| = σI ,J = 0, i.e., unless ξ∗
I φ∗

J = φ∗
1 · · · φ∗

dim ker D (a
spanning element of det D+ ⊂ W ),

[η′′, dL + �∞](ξ∗
I φ∗

J ) = −ξ∗
I φ∗

J = (−id + ι′′π ′′)(ξ∗
I φ∗

J ).

And, if |J c| = σI ,J = 0, then

[η′′, dL + �∞]φ∗
J = 0 = (−id + ι′′π ′′)(φ∗

J );

whence, the proposition follows, once we note that η′′ is manifestly C•(L )-linear
(once one takes into account the fact that η′′ has odd cohomological degree and so
acquires an extra sign when commuting past elements of C•(L )). �


So far, we have shown that Obsq
�=1,0[∞]—i.e., the cochain complex of equivari-

ant observables for the trivial L -action onS—deformation retracts onto a rank-one
C•(L )-module. To prove Proposition 5.1, we need to prove the analogous state-
ment for the cochain complex of equivariant observables with non-trivial L action.
The differential on this latter chain complex is a perturbation of the differential on
Obsq

�=1,0[∞] by the term {I�=1[∞], ·}∞, so to complete the proof of Proposition 5.1,
we need to check that this perturbation satisfies the hypotheses of the homological
perturbation lemma.
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Proof of Proposition 5.1 The three preceding propositions, together with Proposi-
tion 5.5, can be combined to yield a deformation retraction

C•(L ) (O, dL + Q + �∞)
ι′′′

π ′′′
η′′′ .

We need only to verify that the perturbation {I�=1[∞], ·}∞ satisfies the hypothe-
ses of the homological perturbation lemma. Then, the degree-one endomorphism
δ which appears in the statement of the proposition can be computed by apply-
ing the homological perturbation lemma with (V , dV ) = Obsq

�=1, W = O(L [1]),
δV = {I�=1[∞], ·}∞:

δ = π ′′′ (1 − {I�=1[∞], ·}∞η′′′)−1 {I�=1[∞], ·}∞ι′′′.

We have seen that the operator

Q + dL + �∞ + {I�=1[∞], ·}∞
is a differential (satisfies the wQME), so it remains to show that (1−{I�=1[∞], ·}∞ ◦
η′′′) is invertible. To do this, we must understand η′′′ a bit better. In the notations of
Propositions 5.7 and 5.8,

η′′′ = η′ + ι′η′′π ′.

Let us explicitly compute ι′, η′, and π ′. Let ι, η, and π be as in Proposition 5.6. Then,

η′ = η

∞∑
l=0

(�∞η)l

ι′ = ι + η

∞∑
l=0

(�∞η)l�∞ι = ι

π ′ = π + π

∞∑
l=1

(�∞η)l = π.

ι′ = ι because �∞ preserves O(L [1])⊗W ⊂ O , but η acts by 0 on this subspace. To
show that π ′ = π , note that�∞η commutes with ιπ because both�∞ and η preserve
W . Moreover, ηιπ = 0; whence,

π ′ = π + πιπ

∞∑
l=1

(�∞η)l = π + π

∞∑
l=1

(�∞η)l ιπ = π

Recall also that the sum in η′ is finite, since η and�∞ commute and�dim ker D++1∞ = 0.
Wewill need to understand the effect that various operators haveon theSym-grading

in O . The results are depicted in Fig. 1. The table should be interpreted as follows:
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Fig. 1 Effect of various
operators on Sym-degree and
�-power in O

C•(L ) W W⊥
{Ih̄=1[∞], ·}∞ > ≤ ≥

η′ 0 ≤ 0
ι′η′′π′ 0 ≥ 0

a “0” means that the operator preserves the corresponding degree, a “>” means the
operator has only terms which increase the corresponding degree, a “≥” means the
operator has terms which increase the corresponding degree, but none that decrease
it; “<′’ and “≤” have analogous meanings. In all cases except the “>”, the operators
only have a finite number of terms increasing or decreasing the corresponding degree.

To show that (1 − {I�=1[∞], ·}∞ ◦ η′′′) is invertible, we will show that the sum

∞∑
l=0

({I�=1[∞], ·}∞ ◦ η′′′)l

is well defined. Let θ(i, j,k) denote the component of θ in

Ŝym
i
(L [1]∨) ⊗ W ( j) ⊗ W (k)

⊥ ,

and let ζ denote the putative value of (1 − {I�=1[∞], ·}∞ ◦ η′′′)−1θ , with ζ (i, j,k)

defined similarly. The C•(L ) column in Fig. 1 tells us that ζ (i, j,k) contains only sums
of terms like

({I [∞, ·}∞η′′′)l
θ(i ′, j ′,k′)

for l + i ′ ≤ i , i.e., only a finite number of i ′ contribute to ζ (i, j,k). Moreover, since in all
spaces, but the>, the corresponding operator has only a finite number of terms chang-
ing degree, at a fixed l and i ′, there is a maximum amount by which

({I [∞, ·}∞η′′′)l

can change j ′, k′. Thus, ζ (i, j,k) only has contributions from

({I [∞, ·}∞η′′′)l
θ(i ′, j ′,k′)

when l + i ′ ≤ i and | j ′ − j |, |k′ − k| are small enough for the given l and i ′. It follows
that (1 − {I�=1[∞], ·}∞η′′′)−1 is well defined, whence the proposition. �


5.2 More results concerning the equivariant observables

In Sect. 4 and the previous subsection, we saw some indication that the obstruction
Obstr is related to the triviality of the equivariant quantum observables Obsq as a
C•(L )-module (see, e.g., Lemma 4.3 and the Corollary to Proposition 5.1). In this
subsection, we show that Obstr is precisely the measure of the non-triviality of the
observables as a C•(L )-module. We begin by proving Corollary A:
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Proof of Corollary A From the proof of Proposition 5.1, we have a deformation retrac-
tion

(O(L [1]), dL ) (O, dL + Q + �∞)
ι′′′

π ′′′
η′′′ .

Thedifferential onObsq
�=1,Obstr[∞] is a perturbationofdL +Q+�∞ by theoperator

Obstr[∞]·. For the same reasons as in the proof of Proposition 5.1, this perturbation
satisfies the hypotheses of the homological perturbation lemma. Therefore, all we need
to check is that the corresponding differential on O(L [1]) is as specified. To see this,
recall that the perturbation of the differential on O(L [1]) is given by the formula

π ′′′(1 − Obstr[∞] · η′′′)−1 (Obstr[∞]·) ι′′′.

Since Obstr[∞] ∈ C•(L ), multiplication by Obstr[∞] preserves the subspace

O(L [1]) ⊂ Obsq
�=1,Obstr[∞].

Moreover, by construction, η′′′ is 0 on this subspace. Also, tracing through the defini-
tions of ι′′′ and π ′′′, one finds that they are simply the usual inclusion and projection
maps for the subspace O(L [1]) ⊂ O with respect to the Hodge decomposition of O .
The Corollary follows. �


Together with the isomorphism Obsq
�=1[∞] → Obsq

�=1,Obstr[∞], Corollary A
gives us an explicit characterization of the differential on O(L [1]) from Proposi-
tion 5.1. Moreover, this differential is directly related to the obstruction. Finally, we
can state and prove the following lemma.

Lemma 5.9 The dg C•(L ) module

(O(L [1]), dL + Obstr[∞]·)

is isomorphic to the trivial C•(L )-module C•(L ) if and only if Obstr[∞] is exact
in C•(L ).

Proof Suppose Obstr[∞] = dL α for α ∈ C0(L ). Then, multiplication by eα gives
a cochain isomorphism

(O(L [1]), dL + Obstr[∞]·) C•(L )
·eα

.

On the other hand, suppose given a cochain isomorphism of C•(L )-modules

(O(L [1]), dL + Obstr[∞]·) C•(L )
�

.
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The statement that this map intertwines differentials and multiplication by elements
of C•(L ) implies, in particular, that

Obstr[∞] · �(1) = �(Obstr[∞] · 1) = �((dL + Obstr[∞]·)1) = dL �(1).

Since� is an isomorphism,�(1)must be invertible in the symmetric algebra C•(L ),
so that log�(1) is defined. It follows that

Obstr[∞] = (dL �(1))�(1)−1 = dL log�(1),

so that Obstr[∞] is exact in C•(L ). �


6 The obstruction and the obstruction complex

In this section, we study and characterizeObstr in its entirety for the case of the axial
symmetry. In Sect. 6.1, we give an abstract characterization of the cohomology class of
Obstr (Theorem 6.2). This is the main theorem of the paper. The proof of the theorem
relies on a Feynman diagram computation which we defer to Sect. 6.2, where we also
compute the obstruction as evaluated on one-forms. Finally, in Sect. 6.3, we connect
our approach to the more traditional Fujikawa approach, as discussed in [18].

6.1 Themain results

We continue to use the notations from Sect. 3 relating to the massless free fermion
and its axial symmetry; in short, we continue to let S be the space of fields for the
free fermion theory, with LR := �•

M acting by the axial symmetry. The follow-
ing nice characterization of the obstruction complex C•

loc,red(LR) will allow us, in
Theorem 6.2, to characterize the obstruction entirely.

Proposition 6.1 (Obstruction Complex). If M is oriented, the map of complexes of
sheaves

� : �•
M [n − 1] ↪→ C•

loc,red(�•
M )

given by

�(U )(α) : β �→ (−1)|α|α ∧ β

is a quasi-isomorphism.

Having established a characterization of the obstruction complex, we can state the
main theorem of this paper (cf. Main Theorem of the introduction):

Theorem 6.2 Let (M, g) be a Riemannian manifold of dimension n, V → M a Z/2-
graded vector bundle with metric (·, ·), and D a formally self-adjoint Dirac operator.
Denote by LR the dgla �•

M . (These are the data of the massless free fermion and its
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axial symmetry, which has an obstruction Obstr.) Under the quasi-isomorphism � of
Proposition 6.1, the cohomology class of Obstr[t] corresponds to

(−1)n+1 2 Str kt (x, x)dV olg(x).

More precisely,

[
�

(
(−1)n+1 2 Str kt (x, x)dV olg(x)

)]
= [Obstr]

in cohomology. This statement is also true if M is not oriented.

Remark 6.3 Top-degree classes in de Rham cohomology on an oriented manifold are
determined by their integral; the integral of Obstr is

(−1)n+12
∫

M
Str kt (x, x)dV olg(x) = (−1)n+1 2 ind(D).

Thus, the cohomology class of Obstr coincides with the class of

(−1)n+1 2 ind(D)

vol(M)
dV olg,

as stated in the Introduction. �

Proof of Proposition 6.1 Our line of attack will be to first prove that the two complexes
have the same cohomology and then to use the well-understood structure of the coho-
mology of the de Rham complex to show that � is a quasi-isomorphism. This first
step uses very similar techniques to those employed in Chapter 5.6 of [6], Proposition
8.10 of [12], and elsewhere; we adapt those techniques to the case at hand and fill in
details missing in the references. The proof in the second step is, to the best of our
knowledge, new.

We first invoke Lemma A.14, which provides a quasi-isomorphism

C•
loc,red(�•

M ) � DensM ⊗L
DM

Ored(J (�•
M )),

where the sheaf of jets J (�•
M ) is defined in Definition A.13 and Ored(J (�•

M )) is
defined in Eq. 18. We will replace both terms in the derived tensor product above
with quasi-isomorphic complexes. Let’s start with the map of bundles of dglas and of
DM -modules

ι : C∞
M ↪→ J (�•

M )

which in the fiber over x ∈ M takes c ∈ R to the jet at x of the constant zero-form
c. Recall that DM is the sheaf of differential operators on M . By definition, it acts on
C∞

M ; J (�•
M ) is a DM -module, as discussed in Section 6.2 of Chapter 5 of [6]. The

Poincaré lemma can be used to show that this is a quasi-isomorphism of DM modules.
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Namely, since the differential arises from a fiberwise endomorphism of J , we can in
each fiber use the Poincaré lemma to show that the fiber is quasi-isomorphic to R in
degree 0. More precisely, on a sufficiently small open set U ⊂ M ,

J (�•
M )(U ) ∼= C∞(U ) ⊗ R[[x1, · · · , xn]][dx1, · · · , dxn],

with dxi in cohomological degree 1. Here, the xi are formal coordinates on U ,
i.e., variables with respect to which the Taylor expansions of elements in the fibers
of the jet bundle of �•T ∗M over U are computed. The “evaluation at 0” map
R[[x1, · · · , xn]][dx1, · · · , dxn] → R gives a map

π(U ) : J (�•
M )(U ) → C∞

M (U )

which, as U varies over the open subsets of M , gives a sheaf map. Finally, the proof
of the Poincaré Lemma furnishes a degree –1 map

η : R[[x1, · · · , xn]][dx1, · · · , dxn] → R[[x1, · · · , xn]][dx1, · · · , dxn]

which provides a chain homotopy in a deformation retraction of R[[x1, · · · , xn]]
[dx1, · · · , dxn], equipped with the de Rham differential, onto R; we let

η(U ) := id ⊗ η : J (�•
M )(U ) → J (�•

M )(U ).

η(U ) is manifestly C∞
M (U )-linear and intertwines with restriction maps. Moreover,

ι(U ),π(U ), and η(U ) together form a deformation retraction of complexes of sheaves;
it follows that ι(U ) is a quasi-isomorphism for all sufficiently small U , so that ι is a
quasi-isomorphism of complexes of sheaves.

Moreover, ι induces a quasi-isomorphism of DM -modules

Ored(J (�•
M )) =

(
Ŝym

>0
C∞

M
(J (�•

M )∨), dC E

)
→

(
Ŝym

>0
C∞

M
(C∞

M [−1]), dC E

)
= C∞

M [−1].

Weconsider next theDensM factor in the localChevalley–Eilenberg cochains. Since
M is Riemannian, DensM is trivial as a bundle, and its (right) DM -module structure is
induced from viewing a density as a distribution. This DM -module structure encodes
the fact that total derivatives integrate to zero, and it has the following projective
resolution:

�•
M [n] ⊗C∞

M
DM → DensM ,

where the differential δ is given by the formula

δ(α ⊗ f X1 · · · Xs) = d( f α) ⊗ X1 · · · Xs + (−1)|α| f α ∧ ∇(X1 · · · Xs),

where ∇ is the natural flat connection on DM and the map �n
d R ⊗ DM → DensM is

given by the action of DM on densities, which happen to also be n forms because M
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is oriented. It is a direct computation to check that on a local coordinate patch U , this
is a Koszul resolution of DensM (U ) with respect to the regular sequence {∂i }n

i=1 of

DM and so gives a quasi-isomorphism
(
�•

M [n] ⊗C∞
M

DM

)
→ DensM .

As a result, we have the following equivalence

C•
loc,red(LR) �

(
�•

M ⊗C∞
M

DM

)
⊗DM C∞

M [n − 1],

where here, the symbol � means “has isomorphic cohomology to.” We now need to
identify this last complex with �•

M , but this simply follows from the associativity of
the tensor product and variations on the fact that A ⊗A M ∼= M (isomorphism of left
A-modules) for any left A-bimodule M . More precisely, by associativity we have

(�•
M ⊗C∞

M
DM ) ⊗DM C∞

M
∼= �•

M ⊗C∞
M

(DM ⊗DM C∞
M );

DM ⊗DM C∞
M is isomorphic as a left DM -module and hence as a C∞

M -module, to C∞
M ;

it follows that

C•
loc,red(LR) � �•

M [n − 1],

where, again, the symbol � means “has isomorphic cohomology to.”
We need only to show that � itself is a quasi-isomorphism, which can be checked

on open balls. Suppose that U is homeomorphic to R
n ; then by the Poincaré Lemma,

the cohomology of �•
M (U )[n − 1] is just R concentrated in degree −n + 1 and

spanned by the constant function 1. Thus, it suffices to check that the following ghost
number −n + 1 element (which is precisely the image of 1 ∈ �0

d R(U ) under �) of
C•

loc(LR)(U ) is not exact:

� : ω �→ (−1)|ω|ω,

where on the left-hand side we are thinking of ω as a collection of jets of n forms on
U and on the right-hand side we are thinking of ω as a density on U . � is linear in the
jets of its input, and since we are dealing with an abelian dgla, the differential dLR

preserves the Sym grading. Therefore, if � were exact in C•
loc,red(LR)(U ), it would

be dLR
J for J some degree −n element of

DensM ⊗DM HomC∞
M

(J (�•
M )[1], C∞

M );

but the degree −n elements of this latter space are zero, and � �= 0, so � is not exact.
Thus, �(U ) is a quasi-isomorphism for all open R

n’s U , which implies the statement
of the proposition. �

Remark 6.4 The assumption of orientability is not crucial: we can replace the de Rham
complex in the domain of � with the twisted de Rham complex, i.e., the space of
de Rham forms with values in the orientation line bundle. The proof is essentially
identical, except that since the densities are no longer to be identified with top forms,
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but rather with top twisted forms, we use DM ⊗ �•
tw,d R in the Koszul resolution of

the sheaf of densities. �

Proof of Theorem 6.2 Obstr represents a degree 1 cohomology class in C•

loc(LR), so
corresponds under � to a top-degree cohomology class in H•

d R,tw(M). Whether or
not M is oriented, its top-degree twisted de Rham cohomology is R, and the map
evd R : �

top,tw
d R (M) → R given by integration is a surjection onto cohomology. In

a similar vein, define a map evloc : C1
loc,red(LR) → R given by evaluation of the

cochain at the constant function 1. These maps descend to cohomology, and we have
the following commutative diagram:

Htop
d R,tw(M) H1(C•

loc,red(LR)(M))

R R.

H1�

evd R (−1)n+1evloc

id

(7)

We claim that the map H1� is an isomorphism. This is because � is a quasi-
isomorphism, so induces a quasi-isomorphismonderived global sections. Both�•

d R,tw
andC•

loc,red(LR) are complexes of c-soft sheaves since they are sheaves of sections of
smooth vector bundles, so their spaces of global sections give a model for the derived
global sections. The claim follows.

All but the arrowon the right side of the square have been shown to be isomorphisms,
so that arrow is also an isomorphism. It follows that α ∈ H1(Oloc(LR)(M)[1]) corre-
sponds to β ∈ Htop

d R,tw(M) under H1� if and only if evd R(β) = (−1)n+1evloc(α). To
complete the proof, we need to show that Obstr(1) = −2

∫
M Str kt (x, x)dV olg(x).

Wewill prove this claim in the next subsection using a Feynman diagram computation.
�


6.2 Explicit computation of the obstruction

Our first main goal here is to prove the following

Lemma 6.5 Let (M, g) be a Riemannian manifold, V → M a Z/2-graded metric
vector bundle with metric (·, ·), and D a formally self-adjoint Dirac operator. Denote
by LR the dgla �•

M . (These data define the massless free fermion theory S , together
with an action of LR on the theory, which has an obstruction Obstr.) Then, Obstr[t],
when evaluated on a constant function λ, satisfies,

Obstr[t](λ) = −2λ
∫

M
Str(kt (x, x))dV olg(x),

where kt is the heat kernel for the generalized Laplacian D2.

Once this lemma is proved, Theorem 6.2 follows immediately.
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Remark 6.6 Compare this formula to Equations 22.2.10 and 22.2.11 in [18], which
provide an unregulated formula for the anomaly, i.e., the author computes the t → 0
limit of the above expression by computing the supertrace of the t → 0 limit of kt .
This is ill-defined: since the t → 0 limit of kt is the kernel of the identity operator,
this limit is singular on the diagonal in M × M . In [18], the author regulates those
expressions by introducing a mass scale and taking that scale to infinity. On the other
hand, in the present work, we have used the heat kernel techniques of [6] to make
sense of the ill-defined expressions. �


The proof of Lemma 6.5 is not tremendously difficult; it simply requires a careful
accounting of signs. One major component of this accounting consists of determining
the precise relationship between theBVheat kernel Kt and the heat kernel kt as defined
in Theorem 2.8, and the next lemma is devoted to specifying this relationship.

Lemma 6.7 Let kt,1 denote the heat kernel for the generalized Laplacian D2, viewed
as an element of V ⊗ (V [−1]) ⊂ S ⊗ S . Similarly, let kt,2 denote the heat kernel
viewed as an element of (V [−1])⊗V . Then, the BV heat kernel satisfies the following
equation

Kt = −kt,1 + kt,2.

In particular, Kt is antisymmetric under interchange of its two factors.

Proof Recall that, by Definition A.24, Kt ∈ S ⊗ S satisfies

−id⊗〈·, ·〉(Kt ⊗ f ) = exp
(
−t[Q, QG F ]

)
f = exp

(
−t

(
D2
0→0 + D2

1→1

))
f , (8)

where f ∈ S . We need to make precise meaning of the expression on the left-hand
side of Equation 8, keeping track of all the signs that arise from the Koszul sign rule.
This is a slightly subtle issue, so we will first consider a simple example to illustrate
why this subtlety arises.

Let us consider the symmetric monoidal category of Z×Z/2-graded vector spaces
where the braiding is given by

τW1,W2 : W1 ⊗ W2 → W2 ⊗ W1

w1 ⊗ w2 �→ (−1)|w1||w2|+πw1π22w2 ⊗ w1.

Given W in this category, we ask what the natural way to pair an element ω1 ⊗ ω2 ∈
W ∨ ⊗ W ∨ with an element w1 ⊗ w2 ∈ W ⊗ W is, assuming that ω1, ω2, w1, and w2
are homogeneous. To do this, we compute the image of ω1 ⊗ω2 ⊗w1 ⊗w2 under the
following composition of maps:

W ∨ ⊗ W ∨ ⊗ W ⊗ W
id⊗τW∨,W ⊗id−→ W ∨ ⊗ W ⊗ W ∨ ⊗ W

ev⊗ev−→ R ⊗ R
μ→ R,

where ev : W ∨ ⊗ W → R is the natural pairing of a vector space with its dual and μ

is multiplication of real numbers. In short, by (ω1 ⊗ ω2)(w1 ⊗ w2), we mean

(−1)|w1||ω2|+πw1πω2ω1(w1)ω2(w2).
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Analogously, we understand the term on the left-hand side of Eq. 8 as the image of
−id ⊗ 〈·, ·〉 ⊗ Kt ⊗ s under the following chain of compositions:

Hom(S ,S ) ⊗ Bilin(S ) ⊗ (S )⊗3

Hom(S ,S ) ⊗ S ⊗ Bilin(S ) ⊗ S ⊗ S S ,

id⊗τBilin(S ),S ⊗id⊗id

where the first map uses the Koszul braiding on our symmetric monoidal category to
move the first factor of S past Bilin(S ) and the second map is a tensor product of
evaluation maps

Hom(S ,S ) ⊗ S → S

and

Bilin(S ) ⊗ S ⊗ S → R.

It follows that Kt = −kt,1 + kt,2, with the relative minus sign arising because the
first factors of kt,1 and kt,2 have ghost numbers of opposite parity. �

Proof of Lemma 6.5 Recall (Lemma A.41) that

Obstr[t] = dLR
Iwh[t] + �t Itr [t].

We note that the term dLR
Iwh[t](λ) is zero because it evaluates Iwh with dλ = 0 in

one of the slots, so the only term we have to consider is �t Itr [t](λ).
Let us study the Feynman diagrams appearing in Itr [t] with a λ input into eachLR

leg, i.e., onto each “wavy” external edge. See Fig. 2 for a diagrammatic interpretation
of Itr [t]. Let I (r)

tr [t] denote the component of Itr [t] in Sym-degree r with respect to
LR inputs (I (r)

tr [t] is represented by a tree diagram with r squiggly edges). Because
of the shift by one in the definition of Chevalley–Eilenberg cochains, I (r) must be
antisymmetric with respect to zero-form inputs; in particular, I (r)(λ, · · · , λ) = 0
if r > 1. It follows that Obstr[t](λ) = �t I (1)

tr [t](λ), which has a diagrammatic
interpretation as the tadpole in Fig. 3.

The tadpole diagram, evaluated on λ, gives

Obstr[t](λ) = −∂Kt I (1)
tr [t](λ) = −1

2
(〈·, [λ, ·]〉)(Kt + τ Kt ) = −(〈·, [λ, ·]〉)(Kt ),

(9)
where τ is the Koszul braiding on the symmetricmonoidal category ofZ×Z/2-graded
(topological) vector spaces. Relative to the corresponding notionwithoutKoszul signs,
τ Kt has

1. no sign arising from ghost number considerations, since Kt is of degree 1 and
therefore belongs to V ⊗ (V [−1]) ⊕ (V [−1]) ⊗ V , and

2. a sign arising from the fact that all elements of S have fermionic statistics.
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Fig. 2 Tree-level diagrams contributing to Itr [t]

Fig. 3 Single diagram appearing
in the Feynman diagram
expansion for Obstr[t](λ)

The last equality in Eq. 9 then follows because by construction 〈·, [λ, ·]〉 is antisym-
metric in its two arguments.

We need to show that

−〈·, [λ, ·]〉(Kt ) = −2λ
∫

M
Str(kt (x, x))dV olg(x),

which will complete the proof in light of Eq. 9. Heuristically, the term

(〈·, [λ, ·]〉)(Kt )

should compute the trace of Kt , since λ simply acts by multiplication by ±λ and
〈·, ·〉 (Kt ) pairs the two tensor factors of Kt via (·, ·).
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To compute −〈·, [λ, ·]〉(Kt ), we take Kt (x, x) (which is an element of the fiber of
V ⊗ V over x), let λ act on the second factor, pair the two factors using (·, ·), and
integrate the resulting function over M against the Riemannian density. We also use
the description of Kt from Lemma 6.7. Taking into account all of these comments, we
have

−〈·, [λ, ·]〉(Kt ) = λ

∫
M
Tr

(
(id ⊗ �0→0 − id ⊗ �1→1)(kt,1(x, x) − kt,2(x, x))

)
dV olg(x)

= −2λ
∫

M
Str(kt (x, x))dV olg(x),

which is precisely what we claimed; this completes the proof. �

Remark 6.8 The proof of the McKean–Singer formula in [3] has two parts: one first
shows that the supertrace of the heat kernel is independent of t ; then one shows that
the t → ∞ limit of the supertrace is ind(D). Our work has given a physical, Feynman
diagrammatic interpretation of the first part of that proof. Namely, Lemmas 4.4 and
6.5 together imply that

∫
M
Str(kt (x, x))dV olg(x)

is independent of t . One can take the t → ∞ limit to get ind(D). �

Wehave so far only understood explicitly the obstructionObstr evaluated on closed

zero-forms λ.What happens whenwe evaluate it on other closed forms? The following
two results show that Lemma 6.5 already contains all of the difficult computations we
need to do to answer this question. This subsection lies somewhat outside the main
line of development of this paper, but we include it here for completeness.

Lemma 6.9 Let Obstr(r)[t] be the component of Obstr[t] living in Sym-degree r in
C•

red(LR). Then, for α1, · · · , αr ∈ �•
M (M), Obstr(r)[t](α1, · · · , αr ) is zero unless

one of the αi is a function and the rest are one-forms.

Proof Since Obstr[t] is a degree 1 Chevalley–Eilenberg cocycle, Obstr(r)[t] is
nonzero only when evaluated against arguments whose total ghost number in LR[1]
is–1. However, if any of these forms has degree higher than 1 inLR, thenObstr will
evaluate to zero because Obstr only uses forms through their action on S and these
higher forms act trivially on S . Thus, Obstr(r)[t] is nonzero only when evaluated
on a collection of one-forms and functions whose total ghost number inLR[1] is –1.
This can only be accomplished if all but one of the forms is a one-form. �


Thus, to understand Obstr[t] explicitly, we need only to evaluate it on collections
of de Rham forms of the sort described in the preceding lemma. In fact, because a
symmetric function is determined by its value when all of its inputs are identical, it
suffices to consider Obstr[t](λ + α), where α is a 1-form and λ is a function, and
we are most interested in the case that α and λ are closed. The following corollary
then follows from Theorem 6.2 and suffices to characterizeObstr[t] evaluated on any
collection of closed forms.
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Corollary Let α be a closed 1-form and λ a closed 0-form. Then,

Obstr[t](λ + α) = −2λ
∫

M
Str(kt (x, x))dV olg(x).

Together with Lemma 6.9, this characterizes the value of Obstr[t] on all closed forms.

Proof First note that both Obstr[t] and �t I (1)
tr are closed elements of C•

loc,red(LR).
For Obstr[t], this is contained in the statements of Definition-Lemma A.40 and
Lemma 4.4. On the other hand, �t I (1)

tr is local because by a small modification in
the proof of Lemma 6.5, it satisfies

�t I (1)
tr ( f ) =

∫
M

f (x)Str(kt (x, x))dV olg(x)

for f ∈ C∞(M). This is manifestly local. Furthermore, �t I (1)
tr is closed because it is

an element of Sym1(L ∨
R

[−1]) of top ghost number and dLR
preserves Sym-degree.

Thus, dLR
�t I (1)

tr is of Sym-degree 1 and of ghost number one greater than �t I (1)
tr ;

hence, it is 0.
The crucial observation is that Obstr[t](λ) = �t I (1)

tr (λ), as we saw in the proof
of Lemma 6.5. Then, by the proof of Theorem 6.2, it follows that Obstr[t] and
�t I (1)

tr represent the same cohomology class in H•(C•
loc,red(LR)(M)). Since eval-

uation on cocycles in H•
d R is independent of the choice of representative of a class

in H•(C•
loc,red(LR)(M)), the two cocycles take the same value when evaluated on

closed de Rham forms, so that

Obstr[t](λ + α) = �t I (1)
tr (λ + α) = �t I (1)

tr (λ) + �t I (1)
tr (α),

where the last equality follows from the linearity of I (1)
tr in itsLR arguments. But, by

Lemma 6.9, �t I (1)
tr (α) = 0, so that

Obstr[t](λ + α) = �t I (1)
tr (λ) = −2λ

∫
M
Str(kt (x, x))dV olg(x),

as desired. �


6.3 The anomaly as a violation of current conservation

In this subsection, we make contact with the traditional (and familiar to physicists)
notion that an anomaly is the failure of a current which is conserved classically to be
conserved at the quantum level. The discussion will be relatively informal, but we will
secretly be using a very simplified version of the Noether formalism of Chapter 12 of
[7].

Before we begin, we should establish some notation. So far, we have worked only
with the equivariant observables. In this subsection, we will work also with the non-
equivariant observables; that is, wewillworkwith the observables of the theory defined
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by S , an object which is well defined without reference to any particular action of a
dgla onS .We letObscl(S ) denote the classical observables ofS , i.e., theChevalley–
Eilenberg cochains of the abelian dglaS [−1], and Obsq [t](S ) denote the quantum
observables ofS , i.e., the graded vector spaceO(S )[[�]] together with the differential
dS [−1] + ��t .

We discuss the classical master equation (Eq. 21) in “Appendix.” In the case at
hand, the classical master equation is equivalent to the statement that the map

I : LR[1] → Obscl (S )

given by

I (X)(φ,ψ) = 〈φ, [X , ψ]〉

is a cochain map.

Remark 6.10 Recall that we defined I to be an element of LR[1]∨ ⊗ Obscl (S ). We
abuse notation and refer to the corresponding mapLR[1] → Obscl(S ) also as I . We
will often use the notation IX for the observable I (X). �

Remark 6.11 We should think of the above map as defining a conserved vector current
because it (in particular) takes in a one-form and gives a degree zero observable. More
precisely, let us “define” a vector current

j ∈ Obscl(S ) ⊗ Vect(M)

by the equation

∫
M

α( j)dV olg = Iα.

for all one-forms α. j is conserved in the following sense. The above Lemma tells us
that if α = d f , then

Iα =
∫

M
d f ( j)dV olg

is an exact observable.Unpacking the definitionof exactness inObscl (S ),wediscover
that Iα is zero when evaluated on fields φ,ψ which satisfy the equation of motion
Qφ = Qψ = 0. In other words, the following observable

∫
M

d f ( j)dV olg = −
∫

M
f div( j)dV olg

is zero when evaluated on fields satisfying the equations of motion. This implies that
div( j) = 0 when evaluated on the solutions of the equations of motion, which is the
usual statement of current conservation. �
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Now, we would like to see whether we can define an analogous map LR[1] →
Obsq [t](S ). We will see that this is obstructed precisely by the supertrace of the heat
kernel. In particular, suppose we had a map

I ′ : LR[1] → Obsq [t](S )

whose �
0 component is I . Let us write

I ′ = I +
∞∑

i=1

�
i I (i).

To say that I ′ is a cochain map, we need to show that

I ′
d X = (dS [−1] + ��t )I ′

X .

The �
0 part of this equation is satisfied by the previous Lemma. However, the �

1

coefficient is:

dS [−1] I (1)
X + �t IX = I (1)

d X .

It follows after a bit of reflection that I (1) satisfies this equation if and only if

�t IX = J (d X)

for some linear map J : �•
M [1] → R. But this last equality is equivalent to the

cohomological triviality of Obstr, since [Obstr] = [�t I (1)
tr [t]], as we have seen.

Moreover, we can simply take I ( j) = 0 for j > 1. We have therefore shown the
following Lemma:

Lemma 6.12 There exists a lift in the diagram

Obsq [t](S )

LR[1] Obscl(S )

mod �

I

I ′

if and only if Obstr is cohomologically trivial in C•
red,loc(LR).

Remark 6.13 In the proof of the previous lemma, we found that the lift was obstructed
by the one-leg (i.e., Sym1) term ofObstr (the one represented by the tadpole diagram
in Fig. 3). However, Obstr has higher-leg contributions which made no appearance
in the proof. Although these higher-leg terms are exact as a corollary of Theorem 6.2,
it is still worth wondering why those terms did not appear in the proof of the lemma.
The answer lies in the fact that we are only considering whether or not I can be lifted
to a quantum observable, whereas our computation is a precise way of addressing the
question of whether or not eI/� is a quantum observable. �
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The preceding Lemma still seems to make little point of contact with the notion of
conserved quantum vector currents. The following remark closes the gap.

Remark 6.14 Wehave not proved or discussed this here, but the exactness of an observ-
able in Obsq implies that that observable has expectation value zero, if expectation
values exist at all (see [8] for details on this point). Thus, the lift I ′ (when it exists)
should be viewed as giving a current whose expectation value is conserved. More
precisely, just as we should think of Id A as the divergence of the conserved vector j ,
I ′
d A is a quantization of the divergence of j . The fact that I ′

d A is exact says that the
quantum expectation value of div( j) vanishes. �


7 Equivariant generalizations

In this section,we continue to study themassless free fermion theoryS associatedwith
aZ/2-graded vector bundle V equippedwith a Dirac operator; however, wewould like
to replace the Lie algebra LR from Lemma 3.3 with a slightly more general algebra,
in the following way. Suppose we have an ordinary Lie algebra g acting on V and that
this action commutes both with the C∞

M action and with D. In other words, we have a
map of Z/2-graded Lie algebras

ρ : g → C∞(M;End(V ))

such that ρ(γ )(Dφ) = Dρ(γ )(φ) for all φ ∈ V , f ∈ C∞(M), and γ ∈ g. What we
have performed so far is the special case that g = R acting by scalar multiplication,
and in fact the general case proceeds very similarly, as we will see.

Remark 7.1 The physical interpretation of this g-action is as symmetries of the mass-
less free fermion: since elements of g commute with D, they infinitesimally preserve
the equation of motion Dφ = 0. �


We will usually just denote the action of an element γ ∈ g on a section φ ∈ V by
γφ. Since γ commutes with D, it preserves ker D+ and coker D+, so we are free to
make the following

Definition 7.2 Let g act on V as in the first paragraph of this section. Then, the equiv-
ariant index of D is the following linear function on g:

ind(γ, D) = Tr(γ |ker D+) − Tr(γ |coker D+).

Remark 7.3 Note that ind([γ, γ ′], D) = 0, since traces of commutators are always
zero. In other words, the index defines an element of the Lie algebra cohomology of
g. This will be important in the sequel, since the obstruction–deformation complex in
this context will be related to the Lie algebra cohomology of g in a way made precise
by Proposition 7.6. �


With this definition in hand, we can now state the equivariant McKean–Singer
theorem:
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Theorem 7.4 Let (M, g) be a Riemannian manifold, V → M a Z/2-graded metric
vector bundle, and D a formally self-adjoint Dirac operator on V . Suppose given an
action ρ of the Lie algebra g on V which commutes with the Dirac operator. Then,

ind(γ, D) =
∫

M
Str(ρ(γ )kt (x, x))dV olg(x). (10)

Here, dV olg is the Riemannian density.

The version of the equivariant McKean–Singer theorem presented here is the
infinitesimal version of Proposition 6.3 of [3]. Alternatively, one can prove Equa-
tion 10 using a slight modification of either of the proofs of that proposition.

Note that in the special case where g = R and the action is given by scalar multi-
plication, this theorem just reproduces the regular McKean–Singer formula.

The relevant elliptic dgla in this context is Lg := g ⊗ �•
M . We will see that,

assuming that g acts as above, Lg acts on the free fermion theory. Let us first make
the following notational choice. Recall that S = V ⊕ V [−1]. If γ ∈ g, we denote
by γ ‡ the operator which acts by γ on V + ⊕ V −[−1] and −γ T on V − ⊕ V +[−1].
In other words, γ ‡ acts on V + ⊕ V −[−1] by the given representation ρ of g and on
V − ⊕ V +[−1] by the dual representation. Now, we can construct the action of Lg

on the theory S .

Lemma 7.5 Let

σ : Lg ⊗ S → S

be given by

σ(γ ⊗ f , ζ ) = f γ ‡ζ

for f ∈ C∞(M),

σ(γ ⊗ α, ζ ) = c(α)0→1γ
‡�0→0ζ

for α ∈ �1
d R(M), and

σ(γ ⊗ ω, ζ ) = 0

for ω ∈ �>1
d R(M). σ is an action of Lg on the massless free fermion theory. Here,

c(α) denotes the Clifford action of Definition-Lemma 2.7.

Proof As above, wewill often use [·, ·] to denote the bracket onS [−1]⊕Lg provided
by σ . We need to check that

1. Q[α, ζ ] = [dd Rα, ζ ]+(−1)|α|[α, Qζ ] for all forms α and all ζ ∈ S , i.e., Q+dd R

is a derivation for [·, ·],
2. [α, [β, ζ ]] = [[α, β], ζ ] + (−1)|α||β|[β, [α, ζ ]] for all forms α, β and all ζ ∈ S ,

i.e., the Jacobi identity is satisfied, and
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3. 〈[α, ζ ], η〉 + (−1)|α||ζ | 〈ζ, [α, η]〉 = 0 for all forms α, ζ, η ∈ S , i.e., [α, ·] is a
derivation for the pairing 〈·, ·〉.

The terms in the first identity are nonzero only if α has degree zero in Lg and ζ has
ghost number zero in S ; in that case, the identity reads

D0→1�0→0 f γ ‡ζ
?= c(d f )0→1γ

‡�0→0ζ − f γ ‡D0→1�0→0ζ. (11)

Here, the question mark over the equals sign means that the equality does not neces-
sarily hold, and is rather an equality whose truth we want to check.

We note the following identities

1. γ ‡�i→i = �i→iγ
‡

2. D0→1γ
‡ = γ ‡D0→1

3. γ ‡c(d f )0→1 = c(d f )0→1γ
‡.

The first holds because γ and γ T preserve V + and V −; the second identity holds
because by assumption γ commutes with D and so too does γ T by the formal self-
adjointness of D; the third identity holds because c(d f ) is defined in terms of only D
and f , both of which commute with γ and γ T by assumption. Using these identities,
Eq. 11 becomes

D0→1 f γ ‡�0→0ζ
?= c(d f )0→1γ

‡�0→0ζ + f D0→1γ
‡�0→0ζ,

which is true by the definition of c(d f ).
Nowwe turn to the verification of the Jacobi identity. If α and β are both of nonzero

cohomological degree, then both sides of the Jacobi identity are automatically zero.
Hence, suppose α = γ1 ⊗ f and β = γ2 ⊗ g where f , g ∈ C∞ and γ1, γ2 ∈ g. We
have

[γ1 ⊗ f , [γ2 ⊗ g, ζ ]] = f gγ
‡
1 γ

‡
2 ζ

[[γ1 ⊗ f , γ2 ⊗ g], ζ ] + [γ2 ⊗ g, [γ1 ⊗ f , ζ ]] = f g[γ1, γ2]‡ζ + f gγ
‡
2 γ

‡
1 ζ,

and we see that the Jacobi identity is satisfied because the actions of γ and −γ T are
Lie algebra actions. In case f , γ1, γ2 are as above and α is a one-form, we have

[γ1 ⊗ f , [γ2 ⊗ α, ζ ]] = f gγ
‡
1 γ

‡
2 (c(α0→1)ζ )

[[γ1 ⊗ f , γ2 ⊗ α], ζ ] + [γ2 ⊗ α, [γ1 ⊗ f , ζ ]] = f [γ1, γ2]‡(c(α)0→1ζ ) + f γ
†
2 (c(α)0→1γ

‡
1 ζ ).

Because c(α) is defined using only the actions of D and C∞
M on V , c(α) commutes

with γ
‡
1 , and so the last term in the above equation is γ2γ1(c(α)ζ ). Just as for the first

case, then, the Jacobi identity is satisfied.
Finally, we must verify that the pairing is invariant under this action. To this end,

let ζ, η ∈ S have ghost numbers 0 and 1, respectively, and both be elements of V +,
f ∈ C∞

M , γ ∈ g, and α ∈ �1
d R . Then
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〈[γ ⊗ f , ζ ], η〉 =
∫

M
f (γ ‡ζ, η)dV olg =

∫
M

f (−γ T ζ, η)dV olg

=
∫

M
f (ζ,−γ η)dV olg = −〈ζ, [γ ⊗ f , η]〉 ;

the result holds analogously if ζ, η ∈ V −; if ζ, η have the same ghost number or live
in opposite Z/2 components of V , all terms in the above chain of equalities are zero.
For ζ, η now both of ghost number 0 and in V −, we have

〈[γ ⊗ α, ζ ], η〉 =
〈
c(α)0→1γ

‡�0→0ζ, η
〉
=

∫
M

(c(α)γ�ζ, η)dV olg

= −
∫

M
(ζ, �γ T c(α)η)dV olg =

∫
M

(ζ, c(α)γ T �η)dV olg

= −〈ζ, [γ ⊗ α, η]〉 ;

just as for the case of zero-forms, the proof for ζ, η ∈ V + is entirely analogous, and
if ζ, η have differing ghost number or live in pieces of V of opposite Z/2-grading, all
terms in the preceding chain of equalities are zero. �


We also have results analogous to those of Sect. 6.

Proposition 7.6 Let M be a manifold, g a Lie algebra, and Lg := g ⊗ �•
M . If M is

orientable, there is a map

� : C•
red(g) ⊗ �•

M [n] → C•
loc,red(Lg)

given by

�(ω ⊗ α) (γ1 ⊗ α1, · · · , γr ⊗ αr ) = (−1)|α|ω(γ1, · · · , γr )α ∧ α1 ∧ · · · ∧ αr ,

and � is a quasi-isomorphism. Here, C•
loc,red(Lg) is the cochain complex of reduced,

local Chevalley–Eilenberg cochains. There is an analogous statement if M is not
orientable using twisted de Rham forms.

Proof The proof is similar to that of Proposition 6.1. Letting Jg refer to the jet bundle
of �•

M ⊗ g, we have a quasi-isomorphism of sheaves of dglas

C∞
M ⊗ g ↪→ Jg,

and then, C•
red(Jg) is quasi-isomorphic to C∞

M ⊗ C•
red(g). Then, just as in Proposi-

tion 6.1, we can show that both the source and target of � have the same cohomology
groups.

It remains to show that the map specified above is a quasi-isomorphism. We show
this by a spectral sequence argument. Both source and target of � are filtered by Sym
degree, and � preserves the filtrations. Therefore, the cohomology of both can be
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computed by a spectral sequence and there is a map of spectral sequences between
the two. The first page of the spectral sequence just computes the cohomology of both
sides with respect to the differential induced by the de Rham differential; on both sides,
this is Sym>0(g[1]∨) ⊗ H•

d R . This is obvious on the source side, while on the target
side, this is a minor modification of the argument of Proposition 6.1. The induced
map on E1 pages is induced from �, where we think of both source and target as
having only the truncated, Sym-degree-preserving differential. A small modification
of the argument from Proposition 6.1 can be used to show that the map on E1 pages is
indeed an isomorphism. Namely, on a neighborhoodU of M homeomorphic toR

n , the
cohomology of Sym>0(g[1]∨)⊗�•

M (U ) is Sym>0(g[1]∨). To prove that the induced
map on E1 pages is an isomorphism, we need to show that the images of elements of
Sym>0(g[1]∨) under � are not exact in the cochain complex

(
Oloc,red(g ⊗ �•

M )(U )[1], dd R
)
.

(The differential on this complex is just the differential on the E1 page in the spectral
sequence forC•

loc,red(Lg), since the differential induced from the Lie bracket changes
Sym-filtration.) However, if �(ω) were exact in this truncated CE complex for some
ω, then

∫
U

ω(γ1, · · · , γr )α1 ∧ · · · ∧ αr

would be zero for any γ1, · · · , γr and any closed α1, · · · , αr of total degree n, with at
least 1 of the αi compactly supported. Take γ1, · · · , γr such that ω(γ1, · · · , γr ) �= 0,
set α1 = · · · = αr−1 = 1, and choose a closed, but non-exact compactly supported top
form αr ∈ �n

d R . Such a top form exists because the compactly-supported cohomology
of R

n is R in degree n. Then,

∫
U

ω(γ1, · · · , γr )α1 ∧ · · · ∧ αr = ω(γ1, · · · , γr )

∫
U

αr �= 0.

This shows that the map induced on E1-pages is locally an isomorphism, so it is an
isomorphism of sheaves. It follows that the induced map on E2-pages is an isomor-
phism. But the E2 page is also the E∞ page, so we see that � indeed induces an
isomorphism on cohomology. �


We also have an analogue to Theorem 6.2; however, this proof requires a slightly
more sophisticated touch, since the appropriate generalization of the diagram in Eq. 7
is not immediately obvious.

Theorem 7.7 Let (M, g) be a Riemannian manifold, V → M a Z/2-graded vector
bundle with metric (·, ·), and D a formally self-adjoint Dirac operator. Let g act on V
D-equivariantly and denote by Lg the dgla g ⊗ �•

M . (These are the data defining a
free classical fermion theory S , together with an action of Lg on the theory, which
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has an obstruction Obstr.) Under the quasi-isomorphism � of Proposition 7.6, the
cohomology class of Obstr as an element of

C•
loc,red(g ⊗ �•

M (M))

coincides with the cohomology class of

T : γ �→ (−1)n+12 Str(ρ(γ )kt )dV olg

in C•
red(g) ⊗ �•

M (M)[n].

Proof Consider the following diagram:

C•
red (g) ⊗ �•

M (M)[n] C•
loc,red (g ⊗ �•

M (M)) C•
red (g ⊗ �•

M (M))

C•
red (g) ⊗ HomR(H−•

d R (M), R)

�

id⊗P D

i

res
.

Only the downward pointing arrows have not yet been discussed. P D, whose letters
stand for “Poincaré Duality,” is a composition given by first taking the projection of
�•

M onto H•
d R given by Hodge theory and then taking the Poincaré duality map. The

map res is a bit more involved. Let p be an element of Symk((g⊗ �•
M (M))∨). Then,

res is defined by

res(p)(β, γ1, · · · , γk) = p(γ1 ⊗ β, γ2 ⊗ 1, · · · , γk ⊗ 1),

where on the right-hand side we have used the harmonic representative for the coho-
mology class β to understand β as a de Rham form. We are also thinking of the
right-hand side of the above expression as an element of the coinvariants with respect
to the Sk action of permutation of the γi ’s. It is a quick verification that the diagonal
map is a chain map and that the diagram commutes.

Now, since the two maps out of C•
red(g) ⊗ �•

M (M) are quasi-isomorphisms, it
follows that the composite map

η := res ◦ i

is a quasi-isomorphism as well. In particular, this tells us that the inclusion of local
Chevalley–Eilenberg cochains into the full space of Chevalley–Eilenberg cochains is
injective on cohomology, i.e., if two local cochains differ by an exact term in the full
space, they also differ by an exact term in the local complex.

We claim that

[η(Obstr[t])] = [id ⊗ P D(T)]
in cohomology. Here, it is crucial to us that η factors through the full Chevalley–
Eilenberg cochain complex, since this allows us to treat the dLg

Iwh[t] and �t Itr [t]
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terms separately. (Recall that we knowonly that the sum dLg
Iwh[t]+�t Itr [t] is local.)

First of all, this allows us to note that the term dLg
Iwh[t] in the scale t obstruction is

exact in C•
red(g ⊗ �•

M ), so that it does not contribute to the class [η(Obstr[t])].
We are left with the task of showing that the cohomology class of�t Itr [t] coincides

with that of �(T). We claim first of all that the one-leg term η(�t I (1)
tr [t]) = id ⊗

P D(T) To see this, note that id ⊗ P D(T) ∈ C1
red(g) ⊗ HomR(H0

d R(M), R) =
C1

red(g), so corresponds to a linear functional on g. In fact, we have

η ◦ �(T)(γ ) = −2
∫

M
Str(ρ(γ )kt )dV olg.

To prove the claim about the one-leg term, it suffices to show that

Obstr[t](γ ⊗ 1) = −2
∫

M
Str(ρ(γ )(x)kt (x, x))dV olg(x). (12)

The single-leg contribution corresponds to the tadpole diagram in Fig. 3, and that
diagram gives a contribution

−
∫

M
TrS(γ ‡(x)kt (x, x))dV olg(x)

= −
∫

M
TrV +(ρ(γ )kt (x, x))dV olg(x)

+
∫

M
TrV −(ρ(γ )T kt (x, x))dV olg(x) − (+ ↔ −)

= −2
∫

M
Str(ρ(γ )(x)kt (x, x))dV olg(x).

In the last equality, we use the fact that kt = kT
t as a result of the formal self-adjointness

of D, so that we have TrV −(γ T kt (x, x)) = TrV −((kt (x, x)γ )T ) = TrV −(γ kt (x, x)).
Equation 12 follows.

To complete the proof of the theorem, it now suffices to show that all higher-leg
contributions to �t Itr [t] go to something exact under res. To see this, note that—by
Lemma 6.9, which applies equally well here—any term with r legs is nonzero only
when it has one zero-form input and r −1 one-form inputs. This implies, in particular,
that η takes any term in �t Itr [t] with more than two legs to zero. This is because such
diagrams are zero when evaluated on anything with more than one zero-form input,
and η evaluates a Sym-degree r element of C•

loc,red on r − 1 zero-forms.
We are left with just the task of showing that the two-leg term in �t Itr [t] goes

to something exact under η. Under η, the two-leg term gives a class in H2(g) ⊗
HomR(H1

d R(M), R); however, for the special case of a simple Lie algebra g, H2(g) =
0, so that the two-leg term is exact under η and therefore exact inC•

loc,red (g⊗�•
M (M)).

We prove the general case in the t → ∞ limit, after first establishing some notation.
Let

Zt := γ
‡
1 ⊗ α ◦ Pt ◦ γ

‡
2 ⊗ 1 + γ

‡
2 ⊗ 1 ◦ Pt ◦ γ

‡
1 ⊗ α,
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1100 E. Rabinovich

Fig. 4 Two-leg contribution to
�t Itr [t]

where Pt is the operator which appears in Definition A.27 for the propagator P(0, t).
We will let P denote the t → ∞ limit of Pt ; P is characterized by the fact that it is 0
on ker D[−1] ⊂ S and D−1 on Im D[−1] ⊂ S . Both Pt and P are distributional in
nature, acting as operators on smooth sections ofS . We also allow t to take the value
∞ in Zt . Finally, let H := [Q, QG F ] be the generalized Laplacian of the gauge-fixed
massless free fermion.

With all these notations in place,we note that the two-leg contribution to η(�t Itr [t])
comes from the diagram shown in Fig. 4, and its value, on a harmonic one-form α and
elements γ1, γ2 ∈ g, is

TrS (Zt exp(−t H)), (13)

where TrS (�(x, y)) = ∫
M Tr(�(x, x))dV olg for any smooth kernel � ∈ C∞(M ×

M; S � S). We claim that the t → ∞ limit of the above quantity is given by

TrH•S (Z∞), (14)

Here, for any operator Z on S TrH•S (Z) := TrS (Z�), where � is the orthogonal
projection onto cohomology afforded to us by Lemma 2.13.

Let us assume for the moment that the claim is proved; we wish to show that
the quantity in Expression 14 is zero. To see this, suppose that ϕ ∈ H1(S ) =
coker(D0→1) = ker(D)[−1] ⊂ V [−1]; then, because γ

‡
1 ⊗ α changes degree by

+1, γ ‡
2 ⊗ 1 ◦ P ◦ γ

‡
1 ⊗ αϕ = 0; on the other hand, Pϕ = 0, since ϕ ∈ H•(S ) and

by construction P is zero on the cohomology of S . Moreover, γ ‡
2 ⊗ 1 preserves the

cohomology of S , so

(γ
‡
1 ⊗ α ◦ P ◦ γ

‡
2 ⊗ 1)ϕ = 0.

123



Amathematical analysis of the axial anomaly 1101

Thus, Z∞ϕ = 0. Similarly, if ϕ ∈ H0(S ),

Z∞ϕ = 0.

This shows that Expression 14 is zero.
It remains only to show that Expression 13 has Expression 14 as its t → ∞ limit.

The difference between the two expressions is

TrS
(
Zt e

−t H − Z∞�
)

= TrS
(
Zt

(
e−t H − �

)
+ (Zt − Z∞)�

)
.

Let us note that Zt e−t H = Zt e−t H/2e−t H/2, so is the product of two operators
Zt e−t H/2 and e−t H/2 with smooth kernels, which therefore admit extensions to
bounded operators acting on L2 sections of S. As operators on L2(M; S), they are
Hilbert–Schmidt and the trace T rS (Zt e−t H ) corresponds to the Hilbert space trace,
using a modification of the arguments presented in the proof of Proposition 2.32 of
[3]. Similar arguments apply for Zt� and Z∞�, using e−t H/2� = �. Thus, we are
permitted to switch to the L2 context for the computation of traces; all appearances
of the expression TrS in the sequel will therefore refer to the trace in the Hilbert
space sense. Now, on an eigenvector of D with eigenvalue λ, Pt is zero if λ is zero
and otherwise multiplies the eigenvector by λ−1(1 − e−tλ2). This is bounded as a
function of λ, so that Pt is a bounded operator. Similarly, P acts by 0 on ker D and
by λ−1 on nonzero eigenvectors of D with eigenvalue λ. Since the spectrum of D is
discrete (Lemma 2.16), it follows that P is bounded in norm. It also follows from the
characterizations of Pt and P that Pt − P acts by zero on ker D and by λ−1e−tλ2 on
eigenvectors with nonzero eigenvalue. This last quantity is monotonically decreasing
with λ and so

||(Zt − Z∞)e−t H/2|| ≤ C |λ−1
1 |e−3tλ21/2,

where λ1 is the smallest nonzero eigenvalue of D and C is some constant and || · ||
refers to the operator norm on bounded operators on L2. Again, we have used the
fact that the spectrum of D2 is discrete. It follows that Zt e−t H/2 → Z∞e−t H/2 in the
operator norm. Thus,

∣∣∣TrS
(
Zt e

−t H − Z∞�
)∣∣∣ ≤ ||Zt e

−t H/2||
∣∣∣TrS

(
e−t H/2 − �

)∣∣∣
+||(Zt − Z∞)e−t H/2|||TrS (�)|, (15)

where we have used the fact that for a bounded operator A and a trace class, formally
self-adjoint, nonnegative operator B,

|Tr(AB)| ≤ ||A||T r(B).
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Now, since Zt → Z∞ in the operator norm and e−t H → � in the trace norm
(Lemma 2.15), this shows that

TrS (Zt e
−t H )

t→∞−→ TrS (Z∞�),

as desired. �


Remark 7.8 Just as in Sect. 6.2, the t-independence of the obstruction, together with
the single-leg computation in the above proof, shows the t-invariance of the quantity
appearing on the right-hand side of the equivariant McKean–Singer formula, Equa-
tion 10. Moreover, one can take the t → ∞ limit of this quantity (see [3]). As is to
be expected, the result is ind(γ, D), the global quantity appearing in the equivariant
McKean–Singer formula. �
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A Background on equivariant BV quantization

A.1 Introduction

In this appendix, we set up the mathematical framework for studying what is in
physics called an anomaly. Roughly speaking, an anomaly is the failure of a sym-
metry of a classical field theory to persist after quantization. Symmetries are usually
encoded in actions of a Lie algebra—or more generally a dgla, or even more gener-
ally an L∞-algebra—on the space of fields of the theory. We develop this perspective
below, following [7,13], which provide a general framework for treating actions of
an L∞-algebra on a quantum field theory. We will not need the full generality of that
framework below—restricting ourselves to dgla actions on free field theories—though
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by illuminating the relationship of this special case to index theory, we hope to provide
motivation for the study of the more general case.

Another perspective on symmetries is that they consist of an interaction term I
representing a coupling of the physical fields to background gauge fields. I is required
to satisfy a Maurer–Cartan equation which contains the content of the fact that g acts
on the corresponding theory. This equation is called the classical master equation. This
perspective is equivalent to the perspective of the previous paragraph.

To summarize, there are two equivalent perspectives on the notion of a symmetry
of a classical theory. We can view a symmetry as

1. an action of a dgla g on the space of fields of a field theory or
2. a g-dependent interaction term in the action of the field theory. The elements of g

are considered to be background fields.

There will be analogues of the classical master equation for I in the quantum case,
called the weak and strong quantum master equations. The strong quantum master
equation, in particular, is central to the discussion of anomalies.

A.2 Free Batalin–Vilkovisky theories

Free Batalin–Vilkovisky (BV) theories are the starting point for quantization, since
in the perturbative formalism we think of interacting theories as perturbations of free
ones. In this paper, we aremostly be concernedwith families of free theories. However,
the formalism for families of free theories requires us to consider interactions, even if
the individual theories in the family are free; we will discuss the necessary formalism
for interactions in Sect. A.4.

We will frequently deal with Z × Z/2-graded vector spaces in the sequel. Recall
from Sect. 1.5 that if v is a homogeneous element of a Z × Z/2-graded vector space,
we use the notation |v| to denote its Z degree and πv to denote its Z/2 degree.

The following is Definition 7.0.1 of Chapter 5 of [6], modified to allow an extra
Z/2-grading on the space of fields.

Definition A.1 A free classical BV theory on a compact manifold N consists of the
following data:

1. A Z × Z/2-graded R−vector bundle F over N . We will call the sheaf of sections
F the space of fields of the theory.

2. A map of vector bundles

〈·, ·〉loc : F ⊗ F → DensN

of degree (−1, 0). We will denote by 〈·, ·〉 the following pairing on the space of
global sections F (N ):

〈 f1, f2〉 =
∫

N
〈 f1, f2〉loc .

3. A differential operator Q : F → F of degree (1,0).
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1104 E. Rabinovich

The above data are required to satisfy the following additional conditions:

1. 〈·, ·〉loc is graded antisymmetric and non-degenerate on each fiber.
2. (F , Q) is a (Z/2-graded) elliptic complex.
3. Q is graded skew self-adjoint for 〈·, ·〉.
Remark A.2 By graded anti-symmetry of 〈·, ·〉loc, we mean that if f1, f2 are homoge-
neous elements of the fiber of F over x ∈ N , then

〈 f1, f2〉loc = −(−1)| f1|| f2|+π f1π f2 〈 f2, f1〉loc .

All notions of graded symmetry and anti-symmetry should be analogously understood.
We also note that since 〈·, ·〉 is of degree –1, it is only nonzero on pairs f1 and f2 with
| f1| and | f2| of opposite parity, so that we can rewrite the above equation as

〈 f1, f2〉loc = −(−1)π f1π f2 〈 f2, f1〉loc . (16)

�

Remark A.3 The elliptic complex (F , Q) encodes the information of the linear PDE

Qφ = 0.

The zeroth cohomology of (F , Q) is the space of solutions to this PDE modulo the
identification of solutions differing by an exact term; physically, the zeroth cohomol-
ogy is the space of solutions of the equations of motion modulo the identification of
physically indistinguishable (gauge-equivalent) configurations. �


When we discuss the quantization of free BV theories in Sect. A.4, we will need to
equip the free BV theory with one more piece of auxiliary data:

Definition A.4 (Definition 7.4.1 of Chapter 5 of [6]) A gauge-fixing QG F for a free
BV theory is a degree (−1, 0) differential operator F → F , such that [Q, QG F ] is
a generalized Laplacian for some metric on N and QG F is graded self-adjoint for the
pairing 〈·, ·〉.
Remark A.5 In physics, the (opposite of the)Z-degree of an element ofF (N ) is called
the “ghost number,” while its Z/2-degree is often called its “statistics;” we say that
an element of F (N ) has bosonic or fermionic statistics depending on whether it has
grading 0 or 1, respectively. The extra Z/2-grading has the effect of changing signs
in commutation relations. �


As a very simple example of a free field theory, we have

Example A.6 Given an (ordinary, i.e., Z-graded) elliptic complex (F , P), the cotan-
gent theory T ∗[−1]E to F has space of fields F ⊕ F ![−1], with all fields having
odd Z/2-grading. We define 〈·, ·〉loc to be the natural pairing onF ⊕ F ![−1] and Q
to be P + P !. Here, F ! is the sheaf of sections of the bundle F∨ ⊗ Dens. �
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As another simple example, we have the massless scalar boson theory:

Example A.7 Let (N , h) be a Riemannian manifold with Riemannian density dV olh .
The massless scalar boson is the free BV theory with space of fields C∞

N ⊕ C∞
N [−1],

Q the Laplacian on N , and with the pairing 〈·, ·〉loc determined uniquely by

〈 f1, f2〉loc := f1 f2dV olh,

when | f1| = 0 and | f2| = 1. To satisfy the appropriate anti-symmetry conditions, we
must take the opposite sign if | f1| = 1 and | f2| = 0. All fields have bosonic statistics.

�


A.3 Actions of an elliptic differential graded Lie algebra on a free theory

We would like to understand what it means for a dgla to act on a free theory. To begin
with, we should specify the particular class of dglas suited to the analytic nature of
quantum field theory and the associated notions of Chevalley–Eilenberg cochains.

A.3.1 Elliptic differential graded Lie algebras and their Chevalley–Eilenberg cochains

Definition A.8 (Definition 7.2.1 of [13]) An elliptic differential graded Lie algebra
L is a sheaf of sections of a Z-graded vector bundle L → N which is also a sheaf
of dglas. The differential must give L the structure of an elliptic complex, and the
bracket must be given by a bidifferential operator.

Example A.9 For a manifold M and a Lie algebra g, the sheaf�•
M ⊗g is an elliptic dgla

with differential given by the de Rham differential and bracket given by the wedge
product on the differential form factor and Lie bracket on the g factor. �


An elliptic dgla has the standard Chevalley–Eilenberg (CE) cochain complex, as
well as a cochain complex of functionals that are more nicely behaved and are defined
using the fact that L is a sheaf of smooth sections of a vector bundle.

Definition A.10 Let L be an elliptic dgla. The Chevalley–Eilenberg cochain com-
plex of L is the commutative differential graded algebra

C•(L ) =
∞∏

n=0

Symn(L (N )∨[−1])

equippedwith theChevalley–Eilenberg differential defined as in the finite-dimensional
case.Here,we use∨ to denote continuous linear dual, and the Sym is takenwith respect
to the projective tensor product of Nuclear spaces. Namely,

Symn(L (N )∨[−1]) = Hom((L (N )[1])⊗n, R)Sn ,
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where the subscript Sn denotes coinvariants of the Sn action which permutes the tensor
factors. See Appendix 2 in [6] and Appendix B.1 in [7] for more details. We will often
use the notation O(L [1]) to describe the underlying graded vector space.

Definition A.11 (Definition 7.2.7 of [13]) The cochain complex C•
loc(L ) of local

Chevalley–Eilenberg cochains of the dglaL is the subcomplex of C•(L ) given by
sums of functionals of the form

Fn(φ1, · · · , φn) =
∫

N
D1φ1 · · · Dnφndμ,

where each Di is a differential operator from L to C∞
N and dμ is a smooth density

on N . We view Fn as a coinvariant of the Sn action. We can also study C•
loc,red(L ),

which is the quotient of C•
loc(L ) by the subcomplex R (which lives in Sym-degree

0). We also have C•
red(L ), defined analogously.

Remark A.12 Here, we are using that N is compact to be able to integrate densities.
However, to prove our main theorem, it is necessary to extend C•

loc(L ) to a sheaf on
N . On open subsets of N , we would like to define C•

loc(L )(U ) to be the space of
all Lagrangian densities (an idea made precise below). Densities cannot in general be
integrated over non-compact U . Thus, in this case, we cannot think of local cochains
on U as living inside the space of all CE cochains. �


In light of the previous remark, wewould like to have an alternative characterization
of the local Chevalley–Eilenberg cochain complex that is naturally sheaf-like. To do
this, we introduce the language of jets:

Definition A.13 (Cf. Section 5.6.2 of [6]) The sheaf of jets J (L) of the elliptic dgla
L is the sheaf of sections of the vector bundle of dglas over N whose fiber at a point
x ∈ N is the space of formal germs at x of sections of L .

The dgla structure on the fiber is induced from the same structure on L and the fact
that the dgla operations ofL are polydifferential operators. Moreover, as discussed in
Section 6.2 of Chapter 5 of [6], J (L) has a natural (left) DN -module structure, where
DN is the sheaf of differential operators on N . Furthermore, J (L) is an inverse limit
of finite-dimensional C∞

N -modules; we can therefore endow it with the topology of
the inverse limit.

Now, let J (L)∨ denote the following C∞
N -module

HomC∞
N

(J (L), C∞
N ), (17)

where HomC∞
N

means continuous homomorphisms of C∞
N modules (i.e., those that

respect the inverse limit topology on J (L)). Let also

Ored(J (L)) :=
∏
n>0

Symn
C∞

N

(
J (L)∨

)
. (18)

Note that O(J (L)) has a natural differential encoding the Chevalley–Eilenberg dif-
ferential on C•

loc(L ). Moreover, O(J (L)) has the structure of a left DN -module.
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Lemma A.14 (Lemma 6.6.1 of Chapter 5 of [6]). For L an elliptic dgla, there is a
canonical isomorphism of cochain complexes

C•
loc,red(L ) ∼= DensN (N ) ⊗DN Ored(J (L))(N ).

Here, DensN is given the right DN -module structure induced from considering den-
sities as distributions.

Remark A.15 The object on the right-hand side of the isomorphism of Lemma A.14
is manifestly the space of global sections of the sheaf DensN ⊗DN Ored(J (L)). We
therefore will, in the sequel, abuse notation and use C•

loc,red(L ) to refer also to this
sheaf. �

Lemma A.16 (Lemma 6.6.2 of Chapter 5 of [6]). For L an elliptic dgla, there is a
quasi-isomorphism

C•
loc,red(L ) � DensN ⊗L

DN
Ored(J (L)).

Putting this together with the previous lemma, we see that the actual tensor product
is a model for the derived tensor product.

We use this Lemma in the proof of Proposition 6.1.

A.3.2 Actions of an elliptic dgla on a free theory

In this subsubsection, we review the main results concerning the action of an elliptic
dgla on a free BV theory. However, most of what we do works in a far more general
context of elliptic L∞-algebras acting on a general BV theory. We will point out the
few instances in which results are specific to the case we consider.

Definition A.17 (Special case of Definition 11.1.2.1 of [7]) If L is an elliptic dgla,
and E is an elliptic complex, then an action of L on E is the structure of an elliptic
dgla on E [−1] ⊕ L such that the maps in the linear exact sequence

0 → E [−1] → E [−1] ⊕ L → L → 0,

as well as the map L → E [−1] ⊕ L , are openwise dgla maps (i.e., they commute
with brackets). We are thinking of E [−1] as an elliptic abelian dgla.

In other words, an action ofL on E is just a map

ρ : L ⊗ E → E

satisfying certain coherence relations encoding the fact that the differential onE [−1]⊕
L is a derivation for ρ and that the bracket on E [−1]⊕L satisfies the Jacobi identity.
Equivalently, we require that E be an L -module. We will also use [·, ·] to denote ρ

and L � E [−1] to denote the resulting dgla.
Finally, we define what it means for an elliptic dgla to act on a free BV theory:
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Definition A.18 (Definition 11.1.2.1 of [7]) Let (F , Q, 〈·, ·〉) be a free BV theory and
L an elliptic dgla. An action of L on (F , Q, 〈·, ·〉) is an action ofL on the elliptic
complex (F , Q) such that the map ρ leaves the pairing 〈·, ·〉 invariant in the sense
that ρ(α, ·) is a graded derivation with respect to 〈·, ·〉 for all α ∈ L . This means that

〈[α, f1], f2〉 + (−1)| f1||α| 〈 f1, [α, f2]〉 = 0

for all f1, f2 ∈ F . Moreover, we require the action ofL onF to be even with respect
to the Z/2 grading of F in the sense that

π[α, f1] = π f1

for all f1 ∈ F and α ∈ L .

Remark A.19 The requirement that the differential onF [−1] �L act as a derivation
for [·, ·] implies that H•L acts on H•F [−1]. This is the sense in which we should
think of a dgla action as a symmetry; since the cohomology ofF [−1] is to be thought
of as the moduli space of classical solutions, the fact that H•L acts on H•F [−1]
is a precise way of saying that L acts on F [−1] in a way that (cohomologically)
preserves the equations of motion. �


Returning now to the general context of an elliptic dgla acting on a free theoryF ,
we note that a free BV theory provides the quadratic action functional

S(φ) = 1

2
〈φ, Qφ〉

and the action of L on F provides the following cubic deformation of the action
functional on L [1] ⊕ F :

I (X , φ) = 1

2
〈φ, ρ(X , φ)〉 . (19)

The complex C•
loc(F [−1]) has a degree +1 Poisson bracket {·, ·} induced from 〈·, ·〉,

whose precise construction can be found in Section 5.3 of [6]. The bracket {·, ·} can be
extended to all of C•

loc(F [−1] � L ) by C•(L )-linearity. Moreover, as discussed in
Section 11.1 of [7], we can equivalently think of an action ofL onF as a degree-zero
element

I ∈ Oloc(F ⊕ L [1])/(O•
loc(L [1]) ⊕ C•

loc(F )), (20)

satisfying the Maurer–Cartan Equation

(dL + Q)I + 1

2
{I , I } = 0, (21)

which is also known as the classical master equation. In our special case, we require
I to have Sym-degree 1 with respect to L and Sym-degree 2 with respect to F .
If I has the correct Sym-degrees and satisfies the classical master equation, then it
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Fig. 5 A vertex depicting the
interaction I

determines the action of L on F and vice versa. Furthermore, we consider L to be
the space of background fields because we have not demanded that L be endowed
with a pairing as F [−1] is.

Notice that the interaction I (X , φ), though of cubic and higher order with respect
to X and φ together, is only quadratic in φ. This is particular to our case; if we were
to use the full language of L∞-algebras, we would be able to describe deformations
of F into non-free theories, in which case we would allow cubic and higher-order
interactions inF fields.

Graphically, the interaction I can be depicted by a vertex with two straight half-
edges and one wavy half-edge. See Fig. 5. The perspective on I as such a vertex
anticipates the formalism of Feynman diagrams. See also Remark A.29.

Remark A.20 If (F , P) is an elliptic complex, andL acts on the cotangent theory to
F as an extension of an action ofL onF , then the interaction I can be rewritten as

I (X , ϕ, ψ) = 〈ϕ, [X , ψ]〉

where ϕ ∈ F and ψ ∈ F ![−1] are viewed as the base and fiber components of
a general element of T ∗[−1]F . The factor of 1/2 has disappeared because of the
symmetry properties of [X , ·]. In this case, we can add arrows to the vertex to indicate
that, with respect to the decomposition of T ∗[−1]F into base and fiber, I is nonzero
only when evaluated on a base field as one input and a fiber field as another. Figure 6
shows this modified graphical interpretation. �


Definition A.21 (Proof of Proposition 11.3.0.1 in [7]) IfL acts on the free field theory
(F , Q, 〈·, ·〉), then the cochain complex of global equivariant classical observables
Obscl isC•(F [−1]�L ), the (completed) differential graded commutative algebra of
Chevalley–Eilenberg cochains on the dgla (F [−1]�L )(N ). We will useO(L [1]⊕
F ) to denote the underlying graded vector space.
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Fig. 6 Vertex corresponding to
the interaction I for a cotangent
theory

Remark A.22 Recall that Chevalley–Eilenberg cochains of a dgla M are, as a vector
space, Ŝym(M ∨[1]); sincewe letF beZ×Z/2 graded, we viewL (N )⊕F [−1](N )

as a Z × Z/2 graded object and the symmetrization is with respect to the Koszul sign
rules for Z × Z/2 graded objects. �


A.4 Equivariant quantization

In this subsection, we continue the notation of the previous subsection, letting L act
on the free classical theory F . Since 〈·, ·〉 gives a sort of L -equivariant symplectic
structure on F , we would hope that it induces a Poisson bracket and Laplacian �

on Obscl , as can be performed in the finite-dimensional case. If this were the case,
we could define Obsq to be O•(L [1] ⊕ F )[[�]], but with the differential from Obscl

deformed by the term ��. This is what is considered BV quantization in the finite-
dimensional case. However, the Poisson bracket is only defined if one of the arguments
is local, and the Laplacian is undefined. This is because the naïve way to define these
operations involves pairing distributions with each other, an operation which is ill-
defined in general.

The solution to this problem is effective field theory, whose essence, as developed
in [6] (especially Chapters 2 and 5), is to replace the interaction I with a family I [t],
one for each t ∈ R>0, and to correspondingly define a Poisson bracket {·, ·}t and
BV Laplacian �t for every t (see also [19] and Chapter 12.1 of [17] for physical
perspectives on some of these ideas.) We can then define Obsq [t] as a graded vector
space to beObscl [[�]], butwith putative differential Q+dL +{I [t], ·}t+��t .However,
the putative differential may not square to zero. We will first address the procedure of
renormalization, then the question of the existence of the desired differential.

123



Amathematical analysis of the axial anomaly 1111

A.4.1 Renormalization and the BV formalism

Weassume thatF has been equippedwith a gauge-fixing QG F ; then, H := [Q, QG F ]
is a generalized Laplacian, and so H has an integral heat kernel kt . We will actually
use a heat kernel more suited to the study of BV theories:

Definition A.23 (Section 8.3 of Chapter 5 of [6]) Let t ∈ R>0. The scale t BV heat
kernel Kt is the unique degree 1 element ofF ⊗ F satisfying

−id ⊗ 〈·, ·〉 (Kt ⊗ f ) = e−t H f

for all f ∈ F . The non-degeneracy property of the pairing 〈·, ·〉, along with the
existence of the heat kernel kt , guarantees that Kt exists.

Definition A.24 (Section 9.1 of Chapter 5 of [6]) The scale t BV Laplacian �t is the
operator −∂Kt : O(L [1] ⊕ F ) → O(L [1] ⊕ F ), where ∂Kt is the unique order-2
differential operator on O(L [1] ⊕ F ) which is 0 on Sym<2 and which on Sym2 is
just contraction with Kt .

Definition A.25 (Section 9.2 of Chapter 5 of [6]) The scale t Poisson bracket {·, ·}t

is the map

O(L [1] ⊕ F ) × O(L [1] ⊕ F ) → O(L [1] ⊕ F )

given by

{J , J ′}t = �t (J J ′) − �t (J )J ′ − (−1)|J | J�t J ′.

In other words, the Poisson bracket measures the failure of the BV Laplacian to be
a derivation for the commutative algebra O(L [1] ⊕ F ). Figure 7 gives a schematic
depiction of the Poisson bracket and BV Laplacian. Notice that, based on the diagram-
matic depiction of �t , {J , J ′}t is 0 if either J or J ′ has a dependence only onL and
not onF . The same is true for�t J . This is because Kt has components only inF⊗F
as a consequence of the fact that we have not required L to have a gauge-fixing or a
pairing 〈·, ·〉. These facts about �t and {·, ·}t simplify our analysis dramatically.

The following lemma is useful for computational reasons. It can be verified by
explicit computation.

Lemma A.26 �t has the following two properties:

1. �t squares to zero.
2. �t is a derivation for the Poisson bracket {·, ·}t .

We have addressed two of the three scale-t objects that are needed for our purposes:
we just need to explain how I gives rise to the family I [t]. This is by far the most
subtle part of renormalization, and we refer the reader to [6] for the full treatment of
this subject. We will content ourselves to present the results of the renormalization
procedure as applied in the case ofL acting on a free theory. To do this, we first need
the following few definitions:
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(a)

(b)

Fig. 7 Schemata of the Poisson bracket and BV Laplacian. a A diagrammatic depiction of a term in the
Poisson bracket {J , J ′}. The Poisson bracket is the graded sum over all ways of contracting out one edge
from J with one edge from J ′ with Kt . b A diagrammatic depiction of a term in the BV Laplacian. It is a
graded sum over all ways of contracting out pairs of edges in J with Kt

Definition A.27 (Section 8.3 of Chapter 5 of [6]) Let t ′ > t > 0. The propagator
from scale t to t ′ is denoted P(t, t ′) and is the unique element ofF ⊗F satisfying

id ⊗ 〈·, ·〉 (P(t, t ′) ⊗ f ) =
(

QG F
∫ t ′

t
e−s[Q,QG F ]ds

)
f ,

for f ∈ F .

This tells us that, in particular, P(t, t ′) is smooth so long as both t and t ′ are positive. In
the limit as t → 0, P(t, t ′) becomes distributional. On occasion, we need to consider
P(0, t).

Definition A.28 (Section 13.4 of Chapter 2 of [6]) The RG flow operator from scale
t to scale t ′ is the following operator on O(L [1] ⊕ F )[[�]]

W (P(t, t ′), ·) : J �→ � log (exp (�∂P ) exp (J/�)) ,

where P is the operator whose kernel is P(t, t ′). ∂P is defined analogously to ∂Kt (see
Definition A.24).

Remark A.29 The RG flow operator has a natural interpretation in terms of Feynman
diagrams, and we refer the reader to [6] Chapter 2.3 for details. We comment only
that we use the word “leg” where [6] uses the word “tail” to describe external edges
of Feynman diagrams, i.e., edges that end at a univalent vertex. �


Asmentioned above, we would like to replace I with a family of interactions {I [t]},
one for each t > 0; however, we will do so in a way that the I [t] are related by the
RG flow equation I [t ′] = W (P(t, t ′), I [t]). This is the main purpose of the operator
W (P(t, t ′), ·), but we will have other uses for it in the sequel, e.g., the following
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Definition A.30 (Definition 7.5.1 of [13]) The tree-level, scale-t interaction is the
element Itr [t] of C•(F [−1] � L ) given by

Itr [t] := lim
t ′→0

(
W (P(t ′, t), I ) mod �

)
,

where I is the interaction in Expression 19.

Remark A.31 The limit exists, though we do not prove it here. See section 5 of Chapter
2 of [6] for details. �

Remark A.32 This is called the tree-level interaction because the Feynman diagrams
which represent it are all trees. �


Since the propagator P(t, t ′) connects only F edges, all of the trees contributing
to Itr have only two F legs. Thus, �t Itr belongs to Ŝym(L [1]∨).

If the limit as t → 0 of W (P(t, t ′), I ) (not just the �
0 part) existed, we would not

need renormalization; this is, however, not the case. So, wemust take the renormalized
limit of the operator W . The precise procedure for doing this in general is spelled out
in Chapter 2 of [6], and the result of this procedure in the case at hand is discussed in
[13]. We note only that in the case of an action of L on a free theory, this procedure
produces a family Iwh[t] of interactions schematized in Fig. 8 (the subscript wh stands
for “wheel,” describing the corresponding Feynman diagrams). We do not need to
know much about Iwh[t]; it suffices for our purposes to know that it’s an element of
C•

red(L ). With these data in place, we can describe the promised family I [t].
Definition A.33 (Lemma 7.5.3 of [13]) The scale-t renormalized interaction for L
acting on F is denoted I [t] and given by

I [t] = Itr [t] + �Iwh[t]

Fig. 8 A graphical depiction of
one of the terms appearing in
Iwh [t]. Not depicted is the
diagram for the counter-term
necessary to make this wheel
diagram finite
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Remark A.34 The renormalized interaction takes this form only in the context of an
elliptic dgla (or more generally an elliptic L∞-algebra) deforming a free theory into a
family of free theories. If the original theory is interacting, or if the L∞-algebra deforms
free theories into interacting ones, the structure of I [t] becomes more complicated and
in particular includes contributions at all powers of �. �


A.4.2 The quantummaster equation and the obstruction

The essence of BV quantization is the introduction of a deformation of the Chevalley–
Eilenberg differential on O(L [1] ⊕ F )[[�]]. Indeed, we would like to define the
cochain complex Obsq [t], which is, as a vector space O(L [1] ⊕ F )[[�]], but which
has as differential dt := dF [−1]�L +��t . The only issue is that this differential may
not square to zero. In fact,

Lemma A.35 The square of the putative differential dt = dF [−1]�L +��t onObsq [t]
satisfies the equation

(dF [−1]�L + ��t )
2 =

{
(Q + dL )I [t] + 1

2
{I [t], I [t]}t + ��t I [t], ·

}
t
.

Proof Direct computation, using the fact that �t is a derivation for {·, ·}t . �

Therefore, d2

t = 0 if and only if

O[t] := (Q + dL )I [t] + 1

2
{I [t], I [t]}t + ��t I [t]

is in the {·, ·}t -center of Obsq [t], or equivalently if O[t] lies in C•(L ).
We will see below that d2

t will always be 0 for an action of L on a free theory.
However, we would like to demand something stronger, which we codify in the second
part of the following definition.

Definition A.36 The weak scale t quantum master equation (wQME) is

(dL + Q + {I [t], ·}t + ��t )
2 = 0.

The strong scale t quantum master equation (sQME) is

(Q + dL )I [t] + 1

2
{I [t], I [t]}t + ��t I [t] = 0.

Definition A.37 If I [t] satisfies thewQME, then the cochain complex of global equiv-
ariant quantum observables is

Obsq [t] := (O(L [1] ⊕ F ), dL + Q + {I [t], ·}t + ��t ) .

Multiplication by elements of C•(L ) in the obvious way naturally endows Obsq [t]
with the structure of a C•(L )-module.
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If the generalized Laplacian [Q, QG F ] is formally self-adjoint and positive for
some metric on F , then we can also define scale ∞ observables because the operator
exp

(−t[Q, QG F ]) is bounded and has a t → ∞ limit.

Remark A.38 In the language of [7], the wQME is the equation defining an action of
L on the quantum field theory ofF , and the sQME is the equation defining an inner
action of L on F . �


The following lemma tells us that the sQME interacts as we would like with the
RG flow operator. It is Lemma 9.2.2 of Chapter 5 of [6].

Lemma A.39 If I satisfies the scale t sQME, then W (P(t ′, t), I ) satisfies the scale t ′
sQME.

Let us examine the failure of the sQMEtobe satisfied in abitmoredetail. Since I was
required to satisfy (dL +Q)I + 1

2 {I , I } = 0, the generalmachinery of renormalization
implies that the �

0 part of the sQME is satisfied (see, e.g., Lemma 9.4.1. of Chapter 5
of [6]). Thus, we make the following definition:

Definition-Lemma A.40 (Cf. Corollary 5.11.1.2 of [6]) The scale t obstruction to the
L -equivariant quantization of F is

Obstr[t] := 1

�

(
Q I [t] + dL I [t] + 1

2
{I [t], I [t]}t + ��t I [t]

)
.

The obstruction is a closed, cohomological degree 1 element of Obsq [t].
The following is Lemma 7.5.4 of [13]. It gives us an explicit formula for the scale

t obstruction.

Lemma A.41 For the action of an elliptic dgla on a free theory,

Obstr[t] = (�t Itr [t] + dL Iwh[t]).

Obstr[t] depends only on L , i.e., is also a closed, ghost number 1 element of
C•

red(L ) ⊂ Obsq [t].
Proof Recall that I [t] = Itr [t]+�Iwh[t], where Iwh[t] ∈ C•

red(L ), so that Q Iwh[t] =
{Iwh[t], ·}t = �t Iwh[t] = 0. Moreover, by the commentary preceding the definition
of the obstruction, Q Itr [t] + dL Itr [t] + 1

2 {Itr [t], Itr [t]}t = 0. The first statement
of the lemma then follows by direct computation. To see that Obstr[t] ∈ C•

red(L ),
recall that Itr [t] has Sym-degree two with respect to F inputs, so that �t Itr [t] has
Sym-degree zero with respect toF inputs, so thatObstr[t] ∈ C•(L ). Moreover, all
terms in �t Itr [t] and dL Iwh have at least linear dependence on L inputs, so that
Obstr[t] ∈ C•

red(L ). �

Remark A.42 This form for the obstruction is particular to families of free theories. �
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By Lemma A.41, I [t] satisfies the wQME, since Obstr[t] ∈ C•(L ) and all ele-
ments of C•(L ) are in the {·, ·}t -center of Obsq [t].

We have also the following lemma, which describes the relationship between the
obstructions at various length scales. It is amodification ofLemma11.1.1 fromChapter
5 of [6] to the case where the obstruction lives only at order �, which we know to be
the case by the previous lemma.

Lemma A.43 (Lemma 11.1.1 of Chapter 5 of [6]). Let

Wt,t ′ : O(L [1] ⊕ F ) → O(L [1] ⊕ F )

be the map defined by

Wt,t ′(J ) = W (P(t, t ′), J ) mod �.

Then, if ε is a parameter of cohomological degree −1 and square 0, we have

Itr [t ′] + εObstr[t ′] = Wt,t ′ (Itr [t] + εObstr[t]) .

This lemma gives precise meaning to the idea that the collection {Obstr[t]} lies in
the tangent space to the classical theory described by {Itr [t]}. Moreover, it is discussed
in [6] that limt→0 Wt,t ′(Itr [t]) exists and is local, so we have the following

Lemma A.44 (Corollary 11.1.2 of Chapter 5 of [6]). The limit

Obstr := lim
t→0

Obstr[t]

exists and is a closed, degree 1 element of C•
loc,red(L ).
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