CORRECTION

Correction to: Regularized Laplacian determinants of self-similar fractals

Joe P. Chen ${ }^{1}$ • Alexander Teplyaev ${ }^{2}$.
Konstantinos Tsougkas ${ }^{3}$

Published online: 4 April 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Correction to: Lett Math Phys https://doi.org/10.1007/s11005-017-1027-y

We provide a correction of some formulas. In Proposition 3.1, there is a factor of $\frac{1}{2}$ missing from the spectral zeta function of the diamond fractal. The correct expression is

$$
\zeta_{\mathcal{L}}(s)=\frac{4^{s}\left(4^{s}-1\right)}{6}\left(\frac{4}{4^{s}-4}+\frac{2}{4^{s}-1}\right) \zeta_{\Phi, 0}(s) .
$$

The $\frac{1}{2}$ term appears at the following equation found in the proof

$$
\begin{aligned}
\zeta_{\Phi,-1}(s) & =\sum_{\substack{\Phi(-\mu)=-1 \\
\mu>0}} \mu^{-s}=\frac{1}{2} \sum_{\substack{\Phi(-4 \mu)=-2 \\
\mu>0}} \mu^{-s}=\frac{1}{2} 4^{s} \sum_{\substack{\Phi(-4 \mu)=-2 \\
\mu>0}}(4 \mu)^{-s} \\
& =\frac{1}{2} 4^{s} \zeta_{\Phi,-2}(s)
\end{aligned}
$$

[^0]due to the double multiplicity in the spectral decimation polynomial.
Moreover, the following formulas we used from [1] have a minor typo in that they miss the minus signs. The proper formulation is given by
$$
\zeta_{\Phi, w}(0)=0 \quad \text { and } \quad \zeta_{\Phi, w}^{\prime}(0)=-\frac{\log a_{d}}{d-1}-\log (-w)
$$
and for $w=0$
$$
\zeta_{\Phi, 0}(0)=-1 \quad \text { and } \quad \zeta_{\Phi, 0}^{\prime}(0)=-\frac{\log a_{d}}{d-1} .
$$

This updates our results by replacing all calculations of $\zeta_{\mathcal{L}}^{\prime}(0)$ with $-\zeta_{\mathcal{L}}^{\prime}(0)$. Specifically,
(1) In Proposition 3.1, we have that $\operatorname{det} \mathcal{L}=2^{\frac{5}{9}}$ and in the comment below the proof we have that $\log \operatorname{det} \mathcal{L}=\frac{5}{9} c$ and

$$
\log \operatorname{det} \mathcal{L}_{n}=\frac{1}{5}\left(-2 \cdot 4^{n}+6 n+11\right) \log \operatorname{det} \mathcal{L}
$$

(2) In Proposition 4.1, we have that $\operatorname{det} \mathcal{L}=\frac{2 N^{\frac{1}{N-1}}}{(N+2)^{N-2}}$ and in Corollary 4.1 that

$$
\log \operatorname{det} \Delta_{n}=c\left|V_{n}\right|+n \log (N+2)+\log \operatorname{det} \mathcal{L}
$$

(3) In Proposition 5.2, we have that $\operatorname{det} \mathcal{L}_{\mu}=\frac{1}{p q}$ and in Corollary 5.1 that $\log \operatorname{det} \Delta_{n}=\left|V_{n}\right|\left(\log 2+\frac{\log (p q)}{2}\right)+n \log \frac{\left(1-q^{2}\right)\left(1-p^{2}\right)}{(p q)^{2}}+\log \operatorname{det} \mathcal{L}$

Reference

1. Derfel, G., Grabner, P., Vogl, F.: The zeta function of the Laplacian on certain fractals. Trans. Am. Math. Soc. 360(2), 881-897 (2008)

[^0]: The original article can be found online at https://doi.org/10.1007/s11005-017-1027-y
 Konstantinos Tsougkas
 konstantinos.tsougkas@math.uu.se
 Joe P. Chen
 jpchen@colgate.edu
 Alexander Teplyaev
 teplyaev@math.uconn.edu
 1 Department of Mathematics, Colgate Universty, Hamilton, NY 13346, USA
 2 Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA
 3 Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden

