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Abstract Weconstruct aUq
(
so(2n+1)

)
-equivariant local star product on the complex

sphere S
2n as a non-Levi conjugacy class SO(2n + 1)/SO(2n).
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1 Introduction

In this paper, we incorporate an example of homogeneous space with non-Levi sta-
bilizer into a uniform quantization scheme for closed conjugacy classes of simple
algebraic groups. Originally, this approach was developed in 2003 for Levi classes
and utilized the presence of quantum isotropy subgroup in the total quantum group,
[1,2]. The key distinction of non-Levi classes is the absence of a natural candidate for
such a subgroup because its root basis cannot bemade a part of the total root basis. Still
the coordinate ring of the class can be quantized by an operator realization on certain
modules [3]. Such a quantization is formulated in terms of generators and relations
and is not apparently local. On the other hand, a dynamical twist constructed from the
Shapovalov form yields a local version of the star product on Levi classes [1,2] (see
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1444 A. Mudrov

also [4,5] for coadjoint orbits with the Kirillov bracket). It is natural to extend that
approach to all closed conjugacy classes. Such a possibility for S

4 was pointed out
without proof in [6]. Here we give a solution for all even-dimensional spheres.

Sphere is a relatively simple curved space endowed with a rich structure that has
numerous applications. An interest to its quantum version started to grow with the
invention of quantum groups [7], and S

2
q was the first quantum G-space [8] after

Manin’sC
2
q [9]. A review of various constructions of the q-sphere in small dimensions

and some references to its applications can be found in [10].
An even sphere admits several independent although isomorphic equivariant quan-

tizations: a subvariety of the quantum Euclidean plane [11], an induced representation
of a quantum symmetric pair (cf. [12]), and a subalgebra of linear operators on a highest
weight module of the orthogonal quantum group [13]. Each particular reincarnation
has its pluses that help tackling hard issues arising in other approaches. For instance,
the operator realization of Cq [S2n] allows to study representations of the coideal sub-
algebra in the corresponding symmetric pair [12]. All realizations of Cq [S2n] known
to date appeal to generators and relations. At the same time, a local formulation may
be of interest for some applications, like Fedosov’s star product approach to the index
theorem [14]. The present work fills that gap. Note that, like in the Levi case [1], this
problem can be placed in a more general context of quantum vector bundles addressed
in [12]. This is also a part of the Gelfand–Zetlin reduction for orthogonal quantum
groups, that is open by now. It turns out that local quantization of the function algebra
on S

2n (the trivial bundle) can be done with elementary means and deserves a special
consideration.

The original approach to the star product on Levi classes was as follows. Let k ⊂ g
be the isotropy Levi subalgebra of a point t and p± ⊂ g its parabolic extensions.
One associates with t a certain weight λ ∈ h∗ and a pair of modules Mλ, Nλ of,
respectively, highest and lowest weights λ and − λ. There is a (essentially unique)
Uq(g)-invariant form Mλ ⊗ Nλ → C, which is non-degenerate if and only if the
modules are irreducible. In that case, there exists the inverse form C → Nλ ⊗ Mλ

and its lift assigning 1 �→ F ∈ Uq(p+) ⊗ Uq(p−) (a completed tensor product). The
element F gives rise to a “bidifferential” operator via the left coregular action on the
Hopf dual A = U∗

q (g). With this operator, the multiplication in A is twisted to a
non-associative operation invariant under the right coregular action ofUq(g). The key
observation is that the new multiplication becomes associative when restricted to the
subspace Ak of Uq(k)-invariants in A. As a (right) Uq(g)-module, Ak has the same
structure as the U (g)-module C[G/K ], where K ⊂ G is the centralizer subgroup of
the point t . Hence,Ak is a flat deformation of C[G/K ]. It is known that the initial star
product on A is local [15]; therefore, the resulting multiplication is local as well.

In the non-Levi case, one can go along those lines and define Ak as the joint
kernel of certain operators that deform generators of k. Then the new product will be
associative on Ak as in the Levi case [16]. However, those operators do not close up
to a deformation ofUq(k), so one cannot be sure thatAk has the proper size. (Observe
that kernel can decrease under deformation.) Therefore, the problem is to check the
size ofAk. We do it for S

2n via a harmonic analysis relative to quantized SO(2n+1).
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Note that odd-dimensional spheres belong to the second connected component of the
orthogonal group O(2n), and the current methods are not directly applicable.

The paper consists of five sections: after Introduction, we recall quantization of
C[S2n] via operator realization on a highest weight module Mλ in Sect. 2. In Sect. 3
we construct a system of vectors that spans Mλ. We prove it to be a basis in Sect. 4
by computing the Shapovalov form on Mλ. This way, we show that Mλ is irreducible
and the form is invertible. In the final section we show that for finite Uq(g)-module
Vq , the dimension of V k

q is equal to dim V k of the classical k-invariants. We do it via

realization of Vq with dim V k
q > 0 in the coordinate ring of the quantum Euclidean

plane C
2n+1
q .

2 Operator realization of Cq[S2n]
Throughout the paper, g stands for the Lie algebra sp(2n + 1). We are looking for
quantization of the polynomial ring C[S2n] that is invariant under an action of the
quantized universal enveloping algebra Uq(g). We regard S

2n as a conjugacy class of
the Poisson group G = SO(2n + 1) equipped with the Drinfeld–Sklyanin bracket
corresponding to the standard solution r ∈ g⊗g of the classical Yang–Baxter equation
[7]. The group G supports the Semenov–Tian–Shansky bivector field

rl,l− + rr,r− − rr,l− − rl,r− + rr,l+ − rl,r+ , (2.1)

making it a Poisson G-space with respect to conjugation. Here r− and r+ are, respec-
tively, the skew-symmetric and invariant symmetric parts of r , and the superscripts
designate the vector fields

(
ξ l f

)
(g) = d

dt
f
(
getξ

) |t=0, (ξ r f )(g) = d

dt
f
(
etξ g

) |t=0,

where ξ ∈ g and f is a smooth function on G. This bivector field (2.1) is tangent
to every conjugacy class of G. In particular, the sphere S

2n becomes a homogeneous
Poisson manifold over the Poisson group G [17].

Quantization of C[G] along (2.1) gives rise to the reflection equation dual ofUq(g)
[18]. Accordingly, the algebraCq [S2n] can be presented as its quotient. Here we recall
that construction.

Let h ⊂ g denote the Cartan subalgebra equipped with the inner product restricted
from an ad-invariant form on g. We endow the dual space h∗ with the inverse form
(., .) and normalize it so that short roots have length 1. For any μ ∈ h∗ we denote by
hμ ∈ h the vector such that ν(hμ) = (ν, μ) for all ν ∈ h∗.

The root system R contains an orthonormal basis � = {εi }ni=1 ⊂ h∗ of short roots.
We choose the basis of simple positive roots � as α1 = ε1, αi = εi − εi−1, i =
2, . . . , n. We define the subalgebra l � gl(n) ⊂ g of maximal rank with the root basis
�l = {αi }ni=2.

Throughout the paperwe assume thatq ∈ C is not a root of unity anduse the notation

q̄ = q−1, [z]q = qz−q−z

q−q−1 , and [x, y]a = xy−ayx fora ∈ C. The quantumgroupUq (g)
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1446 A. Mudrov

is a C-algebra generated by q±hα , e±α, α ∈ �, such that qhαe±βq−hα = q±(α,β)e±β

and [eα, e−β ] = δα,β [hα]q for all α, β ∈ �. The generators e±α satisfy the q-Serre
relations

[
e±α, [e±α, e±β ]q

]
q̄ = 0, ∀α, β ∈ � s.t.

2(α, β)

(α, α)
= − 1, and [e±α1 , e±δ] = 0,

where e±δ = [e±α1 , [e±α1 , e±α2 ]q ]q̄ . Also, [e±α, e±β ] = 0 once (α, β) = 0 [7].
The subset �k = {δ, α1, . . . , αn} ⊂ R+ forms a root basis for a subalgebra k ⊂ g

isomorphic to so(2n). Although e±δ are deformations of classical root vectors, they
do not generate an sl(2)-subalgebra inUq(g), so we have no natural subalgebraUq(k)
in Uq(g). Still e±δ play a role in what follows.

By Uq(h) ⊂ Uq(g) we denote the subalgebra generated by {q±hα }α∈�. We use
the notation g± ⊂ g for the Lie subalgebras generated by {e±α}α∈�. They generate
subalgebras Uq(g±) ⊂ Uq(g).

Fix the weight λ ∈ h∗ by the conditions q2(λ,εi ) = − q−1 for all i = 1, . . . , n, and
(αi , λ) = 0 for i > 1. Define two one-dimensional representations C±λ of Uq(l) by
ehα �→ q±(λ,α), α ∈ �g, and by zero on the generators on nonzero weight. Extend
them to representations of Uq(p±) by zero on e±α for all α ∈ �g. Then set

M̂λ = Uq(g) ⊗Uq (p+) Cλ, N̂λ = Uq(g) ⊗Uq (p−) C−λ.

Denote by 1λ ∈ Mλ and 1∗
λ ∈ Nλ their highest/lowest weight generators. Due to the

special choice of λ, the vectors e−δ1λ ∈ M̂λ and eδ1∗
λ ∈ N̂λ are killed by eα and,

respectively, by e−α for all α ∈ �. They generate submodules M̂λ−δ ⊂ Mλ and
N̂λ−δ ⊂ Nλ. Set Mλ = M̂λ/M̂λ−δ and Nλ = N̂λ/N̂λ−δ .

The module Mλ supports quantization ofC[S2n] in the following sense. The sphere
S
2n is isomorphic to a subvariety in G of orthogonal matrices with eigenvalues ±1,

where 1 is multiplicity-free. It is a conjugacy class with a unique point of intersec-
tion with the maximal torus relative to h. The isotropy subalgebra of this point is k.
Quantization of C[G] along the Poisson bracket (2.1) can be realized as a subalgebra
Cq [G] ⊂ Uq(g) invariant under the adjoint action. The image of Cq [G] in End(Mλ)

is an equivariant quantization of C[S2n], see [13] for details.

3 Spanning Mλ

In this section we introduce a set of vectors in Mλ which is proved to be a basis in
the subsequent section. Here we demonstrate that it spans Mλ. Put fα = e−α for all
simple roots and define

fεi = [
. . . [ fα1 , fα2 ]q̄ , . . . fαi

]
q̄ ∈ Uq(g−), 1 � i � n.

The elements fεi can be included in the set of composite root vectors generating a
Poincare–Birkhoff–Witt basis in Uq(g−), [19]. By deformation arguments, the set of
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monomials B = { f m1
ε1 . . . f

mn
εn 1λ}m1,...,mn∈Z+ is a basis in Mλ extended over the local

ring C[[h̄]], where h̄ = log q, see [13] and references therein. We will prove that B is
a C-basis once q is not a root of unity.

Let k−m denote the subspaceC fδ +Span{ fα2 , . . . , fαm } ⊂ Uq(g−) assumingm � 2.

Lemma 3.1 For all 1 < i � m, the elements fεi belong to the normalizer of the left
ideal Uq(g)k

−
m.

Proof The Serre relations readily yield [ fαm , fεm ]q̄ = 0, for m > 1. For 1 < i < m,
the identity [ fαi , fεm ] = 0 follows from Lemma A.1. So we are left to study how fεi
commute with fδ .

It is immediate that [ fδ, fε2 ] = 0, cf. [6], which completes the proof for m = 2.
Suppose that m = 3. All calculations below are done modulo Uq(g)k

−
m . Denote a =

[2]q , then

fα1 fα2 fα1 = 1

a
fα2 f

2
α1

,

fα2 f
3
α1

=
(
a − 1

a

)
fα1 fα2 f

2
α1

, fα2 f
3
α1

=
(
a2 − 1

)
f 2α1 fα2 fα1 , (3.2)

where the left equality means fδ ∈ Uq(g)k
−
3 and the last two equalities are obtained

from it and from [ fδ, fα1 ] = 0 (a Serre relation). Furthermore, the Serre relations
along with (3.2) yield

fα1 fα2( fα1 fα3) fα2 fα1 = fα1 fα2 fα3( fα1 fα2 fα1) = 1

a
fα1( fα2 fα3 fα2) f

2
α1

= 1

a2
fα3( fα1 f

2
α2

) f 2α1

= 1

a
fα3 fα2( fα1 fα2 f

2
α1

)

− 1

a2
fα3 f

2
α2

f 3α1 = 1

a2 − 1
fα3 f

2
α2

f 3α1 − 1

a2
fα3 f

2
α2

f 3α1

= 1

a2(a2 − 1)
fα3 f

2
α2

f 3α1 ,

fα2( f
2
α1

fα3) fα2 fα1 = fα2 fα3( f
2
α1

fα2 fα1) = 1

(a2 − 1)
fα2 fα3 fα2 f

3
α1

.

Multiply the first equality by a and subtract from the second:

fδ fε3 =
(
fα2 f

2
α1

− a fα1 fα2 fα1
)
fα3 fα2 fα1 = 1

a(a2 − 1)

(
a fα2 fα3 fα2 − fα3 f

2
α2

)
f 3α1

∈ Uq(g)k
−
3 .

This completes the case m = 3.
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1448 A. Mudrov

For all i > k � 1, the elements fεi−εk = [ fαk+1 , . . . [ fαi−1 , fαi ]q̄ . . .]q̄ belong to
∈ Uq(g)k

−
m with m � i . Then fδ fεi = −q−1 fδ fεi−ε3 fε3 = −q−1 fεi−ε3 fδ fε3 =

0 mod Uq(g)k
−
m, for all m � i > 3, as required. 
�

Corollary 3.2 The set B spans Mλ. The action of Uq(g−) on Mλ is given by

fα1 f
m1
ε1

. . . f mn
εn

1λ = f m1+1
ε1

f m2
ε2

. . . f mn
εn

1λ,

fαi+1 f
m1
ε1

. . . f mn
εn

1λ = − q[mi ]q f m1
ε1

. . . f mi−1
εi

f mi+1+1
εi+1 . . . f mn

εn
1λ, i > 1.

Proof First let us show that fεi+1 fεi = q−1 fεi fεi+1 mod Uq(g)k
−
i+1. Indeed, for

i = 1we have fε2 fε1 = q−1 fε1 fε2 −q−1 fδ = q−1 fε1 fε2 mod Uq(g)k
−
2 as required.

For i > 2 we get

[
fεi , fεi+1

]
q =

[[
fε1 , fεi−ε2

]
q̄ , fεi+1

]

q
= [

fε1 ,
[
fεi−ε2 , fεi+1

]] +
[[

fε1 , fεi+1

]
q , fεi−ε2

]

q̄
.

The first summand vanishes since fεi−ε2 commutes with fεi+1 , by Lemma A.1. The
internal commutator in the second summand is [ fδ, fεi+1−ε2 ]q̄ ∈ Uq(g)k

−
i+1, so this

term is in Uq(g)k
−
i+1 as well.

Now we can complete the proof. The linear span CB is invariant under the obvious
action of fα1 = fε1 . For i > 0, we push fαi+1 to the right in the product

fαi+1 f
m1
ε1

. . . f mn
εn

1λ = f m1
ε1

. . . fαi+1 f
mi
εi

. . . f mn
εn

1λ.

Thanks to Lemma 3.1, we replace fαi+1 f
mi
εi with

[
fαi+1 , f mi

εi

]
qmi

= − q
mi−1∑

l=0

ql f lεi fεi+1 f
mi−1−l
εi

= − q[mi ]q f mi−1
εi

fεi+1 mod Uq(g)k
−
j+1.

For any form � in n − i variables, the ideal Uq(g)k
−
j+1 ⊂ Uq(g)k

−
n kills

�( fεi+1 , . . . , fεn )1λ by Lemma 3.1. This yields the action of fαi+1 on CB and proves
its Uq(g−)-invariance. Since CB � 1λ, it coincides with Mλ. 
�

4 Invariant bilinear form Mλ ⊗ Nλ → C

Introduce positive root vectors by

eεi = [. . . [eαi , eαi−1 ]q , . . . eα1 ]q , 1 � i � n.

The elements fεi , eεi are known to generate Uq(sl(2))-subalgebras in Uq(g) with the
commutation relation [eεi , fεi ] = [hεi ]q . Define by induction ẽεi+1 = [eαi+1 , ẽεi ]q̄
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with ẽε1 = eα1 . Then ω( fεi ) = ẽεi , where ω is the anti-algebra involution of Uq(g)
extending ω( fα) = eα,∀α ∈ �.

Fix the comultiplication on Uq(g) as in [19]:


(eα) = eα ⊗ qhα + 1 ⊗ eα, 
( fα) = fα ⊗ 1 + q−hα ⊗ fα,

and 
(qhα ) = qhα ⊗ qhα , for all α ∈ �. Then γ −1(eα) = −q−hαeα for the inverse
antipode γ −1. Define a map Uq(g) → C, x �→ 〈x〉, as the composition of the pro-
jection Uq(g) → Uq(h) mod

∑
α∈�(e−αUq(g) + Uq(g)eα) with evaluation at λ.

The assignment (x1λ, y1∗
λ) = 〈γ −1(y)x〉, ∀x, y ∈ Uq(g), defines a unique invariant

bilinear form Mλ ⊗ Nλ → C such that (1λ, 1∗
λ) = 1.

Lemma 4.1 Suppose that ki ,mi ∈ Z+, for i = 1, . . . , n. Then

〈eknεn . . . ek1ε1 f
m1
ε1

. . . f mn
εn

〉 =
n∏

i=1

δki ,mi [mi ]q !θ−mi q−mi (λ,εi )−mi
2 (−1)mi , (4.3)

where θ = q
1
2 − q− 1

2 .

Proof The δ-symbols are due to orthogonality of weight subspaces Mλ[μ] and Nλ[ν]
unless μ = − ν. Now we prove factorization of the matrix coefficients on setting
ki = mi for all i . Observe that

emε f mε =
m∏

l=1

[ l2 ]q
[ 12 ]q

m−1∏

l=0

[
hε − l

2

]

q
mod Uq(g)eε, ∀ε ∈ �, (4.4)

and 〈emε f mε 〉 = (− 1)mq−m(λ,ε)−m
2 θ−m[m]q ! on substitution q2(λ,ε) = − q−1. Sup-

pose we have proved that the LHS of (4.3) is equal to 〈emn
εn . . . ems

εs f ms
εs . . . f mn

εn 〉∏s−1
l=1 〈eml

εl f ml
εl 〉 for some s = 1, . . . , n − 1. For all i > s, [eεs , fεi ] ∈ Uq(g)k

−
i ⊂

Uq(g)k
−
n . Then eεs . . . f ms+1

εs+1 . . . f mn
εn 1λ = 0, by Lemma 3.1. Now the presen-

tation (4.4) for ε = εs , along with the orthogonality of different εi , gives
〈emn

εn . . . ems−1
εs−1 f ms−1

εs−1 . . . f mn
εn 〉∏s

l=1〈eml
εl f ml

εl 〉. Induction on s completes the proof. 
�
There is also an ω-contravariant form on Mλ defined by x1λ ⊗ y1λ �→ 〈ω(x)y〉,

for all x, y ∈ Uq(g). It is called the Shapovalov form and related to the invariant form
in the obvious way.

Proposition 4.2 Suppose that q is not a root of unity. Then

1. B ⊂ Mλ is an orthogonal (non-normalized) basis with respect to the Shapovalov
form.

2. The modules Mλ and Nλ are irreducible.
3. The tensor

F =
∞∑

m1,...,mn=0

(−θ)
∑n

i=1 mi

∏n
i=1 q

−m2
i
2 +2mi (i−1)

∏n
i=1[mi ]q ! ẽm1

ε1
. . . ẽmn

εn
⊗ f m1

ε1
. . . f mn

εn
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1450 A. Mudrov

is a lift of the inverse invariant form,C → Nλ⊗Mλ → Uq(g+)⊗Uq(g−), 1 �→ F .

Proof (1) Corollary 3.2with (4.3) proves the completeness ofB and independence. All
weight subspaces in Mλ have dimension 1, and the form is non-degenerate; hence, the
basis B is orthogonal with respect to the Shapovalov form. (2) Non-degeneracy of the
form implies irreducibility of Mλ. (3) The normalizing coefficients in F are obtained
from (4.3) via the equality (x1λ, γ (y)1∗

λ) = 〈yx〉 and γ (eεi ) = − ẽεi q
−hεi +2(i−1) for

all i = 1, . . . , n. 
�

5 Star product on S
2n

Denote byAq the RTT dual ofUq(g) with multiplication • and the Hopf paring (., .).
It is equipped with the two-sided action (here f (1) ⊗ f (2) = 
( f ) in the Sweedler
notation)

u � f = f (1)
(
f (2), u

)
, f � u =

(
f (1), u

)
f (2), ∀u ∈ Uq(g), f ∈ Aq .

making it a Uq(g)-bimodule algebra. The multiplication • is known to be local [15].
We define a new operation � by

f � g = (F1 � f ) • (F2 � g), f, g ∈ Aq . (5.5)

It is obviously equivariant with respect to the right coregular action ofUq (g). However,
� is not associative on the entire Aq .

As a two-sidedUq(g)-module,Aq is isomorphic to⊕V V ∗ ⊗V , where the summa-
tion is over all equivalence classes of irreducible finite-dimensional representations of
Uq(g). This is a q-version of the Peter–Weyl decomposition.

For every Uq(g)-module V we define V k ⊂ V to be the intersection of the space
V l ofUq(l)-invariants with the joint kernel of the operators eδ and fδ . For q = 1, this
definition gives the subspace of U (k)-invariants.

Proposition 5.1 Ak
q is an associative Uq(g)-algebra with respect to �.

Proof Identify M∗
λ with N∗∗

λ and the locally finite part of Mλ ⊗ M∗
λ with the locally

finite part End◦
C
(Mλ) of EndC(Mλ) regarded as a Uq(g)-module. For every com-

pletely reducible module V , there is a unique φ̃ ∈ Hom(V ∗,End◦
C
(V )) for each

φ ∈ Hom(Mλ ⊗ Nλ, V ), due to the natural isomorphism of the hom-sets.
Let M̂λ and N̂λ denote the Verma modules, i.e., induced from theUq(b±)-modules

C∓λ. Every homomorphismMλ⊗Nλ → V amounts to a homomorphism M̂λ⊗ N̂λ →
V vanishing on

∑
α∈�k

M̂λ−α ⊗ N̂λ +∑
α∈�k

M̂λ ⊗ N̂λ−α . Therefore, φ corresponds

to a unique zero weight element �(φ) ∈ ∩α∈±�k ker eα = V k. Given also ψ ∈
Hom(Mλ ⊗ Nλ,W ) there is a unique element φ �ψ ∈ Hom(V ⊗W,End◦

C
(M)) such

that φ̃ � ψ = φ̃◦ψ̃ ,where◦ is themultiplication inEnd◦(Mλ).Define�(φ)��(ψ) =
�(φ � ψ) ∈ (V ⊗ W )k.
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Now take V = W = Aq and f, g ∈ Ak
q (with respect to the �-action). Then f �g is

the image of f �g ∈ (Aq ⊗Aq)
k under the multiplication •: Aq ⊗Aq → Aq , which

is again in Ak
q since • is �-equivariant. Associativity of � follows from associativity

of ◦ and •. 
�

Theorem 5.2 The rightU (g)-moduleAk
q is a deformation of theU (g)-moduleC[G]k.

Themultiplication �makesAk
q an associativeUq(g)-algebra, a quantization ofC[S2n].

Proof Weonly need tomake sure thatAk
q � ⊕V

∗V k⊗V is a deformation ofC[S2n] �
C[G]k. It is done in Proposition 6.2 below. 
�

Note that, though Ak
q goes over to C[G]k at q = 1, the fact Ak

q � C[G]k ⊗ C(q)

as a C(q)-vector space needs a proof because ker eδ and ker fδ may decrease under
deformation. That is done in the next section.

6 Quantum Euclidian plane

To complete the proof of Theorem 5.2, it is sufficient to check dim V k
q = dim V k for

all finite-dimensional modules V that appear in C[S2n]. They all can be realized in
the polynomial ring of the Euclidian plane C

2n+1 [20]. So we are going to look at its
quantum version.

Choose a basis {xi }ni=−n ⊂ C
N , N = 2n + 1, and define a representation of Uq(g)

on C
N by the assignment

eαi � xk = δk,i−1xi − δk,−i x−i+1, fαi � xk = δk,i xi−1 − δk,−i+1x−i

for i = 1, . . . , n. Then xi carry weights εi subject to εi = − ε−i . The quantum
Euclidian planeCq [CN ] is an associative algebra generated by {xi }ni=−n with relations

xi x j = q−1x j xi , i > j, i �= ± j, x1x−1 − x−1x1 = (q − 1)x20 ,

x j x− j − x− j x j = qx j−1x− j+1 − q−1x− j+1x j−1, j > 1.

They are equivalent to the relations presented in [11].
The representation on C

N extends to an action � on Cq [CN ] making it a
Uq(g)-module algebra. Let θ denote the involutive algebra and anti-coalgebra lin-
ear automorphism of Uq(g) determined by the assignment eα → − fα , qhα → q−hα .
Define also an anti-algebra linear involution on Cq [CN ] by ι(xi ) = (x−i ). They
are compatible with the action � in the sense that ι(u � x) = θ(u) � ι(x) for all
u ∈ Uq(g), x ∈ Cq [CN ].
Lemma 6.1 For all k ∈ Z+ the monomials xk0 are killed by eδ and fδ .
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Proof Put ck = q−k−1
q−1−1

for k ∈ Z+. Since fα2x
k
0 = 0, the equality fδ � xk0 = 0 follows

from

fα1 � xk0 = − x−1x
k−1
0 ck,

f 2α1 � xk0 = x2−1x
k−2
0 qck−1ck,

fα2 f
2
α1

� xk0 = − x−2x−1x
k−2
0 ck−1ck[2]q ,

fα1 fα2 fα1 � xk0 = − x−2x−1x
k−2
0 ck−1ck .

Finally, eδ � xk0 = −ι( fδ � xk0 ) = 0. 
�
The q-version of the quadratic invariant is Cq = 1

1+q x
2
0 + ∑n

i=1 q
i−1xi x−i ∈

Cq [CN ]. LetPm
q ⊂ Cq [CN ] denote the vector space of polynomials of degree m and

Pm
q the irreducible submodule of harmonic polynomials of degree m. Then

Cq [CN ] = ⊕∞
m=0P

m
q , Pm

q = ⊕[m2 ]
l=0C

l
qH

m−2l
q .

Let Pm and Hm denote their classical counterparts.

Proposition 6.2 For any finite-dimensional Uq(g)-module Vq , dim V k
q is equal to

dim V k of the classical k-invariants.

Proof It is sufficient to show that dim(Pm
q )k = dim(Pm)k. In the classical limit, the

trivial k-submodule in Hm−2l is multiplicity-free, so its dimension in Pm is [m2 ] + 1.

On the other hand, the subspace of Uq(l)-invariants is spanned by {Cl
q x

m−2l
0 }[

m
2 ]

l=0 and
has the same dimension. Since allUq(l)-invariants are killed by eδ, fδ by Lemma 6.1,
this proves the statement. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A

For reader’s convenience, we prove an algebraic identity that is useful for the study of
the subalgebras Uq(g±) ⊂ Uq(g).

Lemma A.1 Suppose x, y, z satisfy the relations

[
y, [y, x]q

]
q̄ = 0,

[
y, [y, z]q

]
q̄ = 0, [x, z] = 0.

Then
[[x, y]q̄ , [y, z]q

] = 0 and [y, [x, [y, z]q ]q ] = 0.

123

http://creativecommons.org/licenses/by/4.0/


Star product on complex sphere S
2n 1453

Proof The proof is based on the “Jacobi identity”

[X, [Y, Z ]a]b = [[X,Y ]c, Z ] ab
c

+ c
[
Y, [X, Z ] b

c

]
a
c

,

which holds true for all elements X,Y, Z of an associative algebra and scalars a, b, c
with invertible c. Apply it to the equalities

0 =
[
x,

[
y, [y, z]q

]
q̄

]

q̄2
=

[
z,

[
y, [y, x]q

]
q̄

]

q̄2
= 0

with a = q̄, b = q̄2, c = q̄ , and rewrite them as

0 = [[x, y]q̄ , [y, z]q
]
q̄2 + q̄

[
y,

[
x, [y, z]q

]
q̄

]
= [[z, y]q̄ , [y, x]q

]
q̄2

+ q̄
[
y,

[
z, [y, x]q

]
q̄

]
= 0.

Observe that the second terms cancel due to [x, [y, z]q ]q̄ = [[x, y]q̄ , z]q =
[z, [y, x]q ]q̄ . Then

[[x, y]q̄ , [y, z]q
]
q̄2 = [[z, y]q̄ , [y, x]q

]
q̄2 = [[y, z]q , [x, y]q̄

]
q̄2 .

This yields (1+ q−2)[[y, z]q , [x, y]q̄ ] = 0, which proves the first formula. Using the
“Jacobi identity” with X = x,Y = y, Z = [y, z]q , a = q̄, b = 1, and c = q̄ , we get

0 = q
[
x, [y, [y, z]q ]q̄

] = q
[[x, y]q̄ , [y, z]q

] + [
y, [x, [y, z]q ]q

] =
[
y,

[
x, [y, z]q

]
q

]
,

which proves the second formula. 
�
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