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Abstract We point out that recently published analyses of null and timelike infinity
and long-range structures in electrodynamics to large extent rediscover results present
in the literature. At the same time, some of the conclusions these recent works put
forward may prove controversial. In view of these facts, we find it desirable to revisit
the analysis taken up more than two decades ago, starting from earlier works on null
infinity by other authors.
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1 Introduction

In a series of recent articles—see [24] and [8] and works cited there—a group of
authors report on new conservation laws and symmetries both in classical and quan-
tum electrodynamics. These structures are supposed to be encoded in the asymptotic
properties of electrodynamics. Later, an analog of this structure in gravitation theory
was used to analyze anew the black hole information paradox [17]. Also, in the context
set by these investigations there is a noticeable interest in the literature in the so-called
memory effects, both in gravitation, as well as electrodynamics (see [24,28] andworks
cited there).
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1440 A. Herdegen

In this article we want to comment on the electromagnetic part of this programme
in view of results known from the literature. We shall point out that the structure
of asymptotic electrodynamics, along lines similar to those proposed by the authors
mentioned above, has received more extensive attention in the past. On the other hand,
we shall also point out that some claims in their programme may prove controversial.
We use this opportunity to summarize the programme taken up by the present author
more than two decades ago.

We sketch our main points and the plan of the article.

(i) On the classical level, a more extensive analysis of the asymptotic structure of
electrodynamics is proposed in the article [18], which extends many ideas present
earlier in the literature, in particular the null infinity analysis by Bramson [4] and
Ashtekar and Streubel [2]. The null infinity ‘matching conditions’ (so called by
Strominger et al. [24]) were known before, and in [18] they are derived in full
generality. After recalling an important tool in the field of the wave equation in
Sect. 2, we discuss the classical electrodynamics, and the asymptotics of fields in
Sects. 3, 4 and 5. Invariant structures in the asymptotic regions are introduced in
Sect. 6.

(ii) Our discussion consequently uses Lorenz gauge potentials in electrodynamics.
These potentials have well-defined dynamics and null asymptotes appropriate
for the asymptotic structure. In Sect. 7, still on the classical level, we ask what
other gauges are admitted by this structure. We point out that although the gauge
transformation called by the authors of [24] and [8] (and others) ‘large gauge
transformation’—LGT in the following—produces potentials with asymptotes
admitted by the structure, it is not a symmetry of this structure. Therefore, the
changes induced by LGT may be incorporated within this structure, but with
interpretation wholly different from a gauge transformation: theymodify the elec-
tromagnetic fields of the state.

(iii) Commenting in Sect. 8 on the relations between long-range structure and the
so-called memory effects, we recall that the earliest effect of this type in elec-
trodynamics was discovered long ago by Staruszkiewicz [31]. What concerns us
here, Staruszkiewicz’s effect is a clear argument in favor of the observability of
the long-range degrees of freedom in electrodynamics.

(iv) The classical asymptotic structure was quantized and analyzed extensively in
a series of papers [19–22]. ‘Asymptotic quantization’ by Ashtekar [1] may be
viewed as the reference starting point of this analysis, but the discussion goes
much further toward asymptotic algebraic formulation of matter–radiation sys-
tem. The authors mentioned at the beginning, as it seems, may have motivations
similar to my own: they treat variables at spatial infinity as genuine quantum
observables. Wemake general remarks on specific infrared problems of quantum
electrodynamics in Sect. 9 and then summarize the construction of our asymptotic
quantum theory in Sects. 10, 11 and 12.

(v) We construct a unitary operator built from the long-range quantum variables at
spacelike infinity in Sect. 13 . We indicate that the construction of such an opera-
tor demands an explicit use of a concrete representation of the theory and, within
that representation, a subtle limiting. We show that this unitary operator induces
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Asymptotic structure of electrodynamics revisited 1441

a nontrivial transformation of the basic quantum variables of the asymptotic alge-
bra. This transformation contains elements corresponding to the classical effect
induced by LGT. As in the classical case, the changes modify the physics of the
state, and their interpretation within the limits of the asymptotic theory is far from
a gauge symmetry. We show in Appendix D that our rigorously constructed oper-
ator corresponds, in loose terms, to the ‘LGT generator’ of [24] and [8] (which
is not rigorously defined).

(vi) However, if a scattering matrix may be defined, then it is true that the operators
constructed by smearing of long-range variables should be conserved. This is
a quantum version of a ‘continuous conservation’ law for long-range tails in
classical electrodynamics. We mention earlier statements on this problem in
Sect. 14.

(vii) Appendix contains some more technical material needed in the main text.

The article is based mainly on the articles [18–22]. We give a specific reference
only in some special cases.

2 Invariant measure on the set of lightlike directions

The first fact worth wider knowledge is the existence of a Lorentz-invariant measure
on the set of lightlike directions. The existence of this measure is a classical result
[14,29,31,35], but—strangely enough—ignored by most physicists despite its crucial
role in the field of the wave equation and massless fields.

We consider the flat spacetime with a fixed origin, thus described by the Min-
kowski vector space M with the signature (+,−,−,−). We shall write l for any
future-pointing lightlike (nonzero) vector and denote

C+ = {l | l · l = 0, l0 > 0 }.

We shall write t for any future-pointing timelike, unit vector and denote

Ct+ = {l ∈ C+ | t · l = 1 }

(a unit sphere in the hyperplane t · x = 1). It is well known that the measure
dμ0(l) = d3l/ l0 on the lightcone is Lorentz invariant. However, equally important,
but less known, is the following construction. Let f (l) be a measurable function on
C+, homogeneous of degree −2: for each γ > 0, there is f (γ l) = γ −2 f (l). Then
the integral defined by ∫

f (l) d2l =
∫
Ct+

f (l) dΩt (l), (1)

where dΩt (l) is the angle measure on the unit sphere, does not depend on the choice
of the vector t (Lorentz invariance1). We give a simple proof of this fundamental fact

1 In fact, the measure is not only Lorentz, but generally conformal invariant, see [14,29] and Appendix A.
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1442 A. Herdegen

in Appendix A. It follows that if we denote (a, b, etc. are spacetime indices2)

Lab = la
∂

∂lb
− lb

∂

∂la

—the generators of the Lorentz transformations, intrinsic differential operators on the
lightcone, then ∫

Lab f (l) d
2l = 0. (2)

3 Homogeneous Maxwell equations

Let A(x) be a Lorenz gauge potential (we often suppress spacetime indices) of a free
electromagnetic field Fab = ∂a Ab − ∂b Aa , thus satisfying the homogeneous wave
equation. The Fourier representation

A(x) = 1

π

∫
e−i x ·ka(k)ε(k0)δ(k2)d4k,

where δ is the Dirac measure, ε(ω) is the sign of ω, and where the relations

a(k) = −a(−k), k · a(k) = 0, a(k) → a(k) + kβ(k)

reflect reality of A, the Lorenz condition and a possible gauge transformation respec-
tively, defines a very wide class (also possibly distributional) of such fields, and one
needs a physically motivated selection criterion. An obvious restriction is to consider
fields with finite energy-momentum, which is given by

Pa = −
∫

a(k) · a(k) ka dμ0(k).

This is still a very large class and its often considered subclass—having mathemati-
cal advantages—consists of the so-called regular wave packets—solutions with initial
data (on a Cauchy hyperplane) having smooth Fourier transforms with compact sup-
port not containing the zero vector. However, this class does not include fields of
the Coulomb-like decay at spatial infinity—such fields are produced in scattering of
charged particles. We describe further selection in three steps.

3.1 Step 1: Coulomb-like spacial decay; conservation of spacelike tails

The selection criterion which admits fields produced in scattering events, but at the
same time leaves more infrared singular solutions outside, is this: for y2 < 0 the
potential A has a well-defined scaling limit

2 Usually, we treat spacetime indices in the spirit of ‘abstract index notation’ of Penrose [29], but if
concrete coordinates are needed (as, for example, for asymptotic expansion), then always a Minkowski
basis coordinates are meant.
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Asymptotic structure of electrodynamics revisited 1443

Aas(y) := lim
λ→∞ λA(λy), y2 < 0.

In terms of the Fourier transform this is equivalent to the existence of the limit

aas(k) = lim
μ↘0

μ a(μk); (3)

note that aas(l) is homogeneous of degree −1. This type of singularity of a(k) is
consistent with the finite energy demand,3 and we further consider fields satisfying
both restrictions. For fields satisfying our selection criterion not only the scaling limit
centered at zero is well defined, but also for each x ∈ M and y ∈ M , y2 < 0, there is

lim
λ→∞ λA(x + λy) = −i

2π

∫
aas(l)

y · l − i0
d2l + compl. conj.

= 1

π

∫
Im aas(l)

y · l d2l +
∫

Re aas(l) δ(y · l) d2l. (4)

This may be viewed, if one wishes, as a ‘continuous conservation law’: the form of
the limit does not depend on the choice of the reference point x in Minkowski space.
We note that:

This ‘conservation law’ has nothing to do with any gauge symmetry—the field
A may be of any algebraic type—and is only a property of the wave equation
together with the selection criterion (3).

Note also that the two parts on the rhs have definite paritieswith respect to the reflection
y → −y: the first part is odd, while the second is even.4 Now, all standard free fields
taking part in scattering processes in electrodynamics are of the second type: the
spacelike tails of their Lorenz potentials are even (and the tails of the fields themselves
are correspondingly odd). For example, the potential of the radiation field (i.e. Aret −
Aadv) of a point particle with charge q scattered instantaneously in x = 0 is given by

Arad(x) = qθ(−x2)

(
v√

(v · x)2 − x2
− u√

(u · x)2 − x2

)
, (5)

where v and u are the initial and the final velocity, respectively (the singularity at the
cone x2 = 0 is an artifact due to the instantaneous nature of the scattering event).
The same is true for radiation fields produced by sources due to massive fields (as
in the Maxwell–Dirac system). This absence of an odd part may be used as a further
restricting criterion, but before doing this we want to give another form to the above
formulae.

3 We emphasize this well-known fact, as the authors of [24] seem not to appreciate it. We shall return to
this point later on.
4 We mention as an aside, that there exists an interesting quantum theory by Staruszkiewicz [32], based on
a slight extension of the structure appearing in (4), which aims at geometrization of the elementary charge.
See also other later works of this author, as well as [20].
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1444 A. Herdegen

Let l ∈ C+ and denote

V̇ (s, l) = −
+∞∫

−∞
ωa(ωl)e−iωs dω, (6)

where overdot denotes differentiation with respect to the real variable s, and the func-
tion V will be obtained by integration. It is easy to see that V̇ is a real function
homogeneous of degree −2, and—in the case of a vector function representing a
Lorenz potential—transversal:

V̇ (μs, μl) = μ−2V̇ (s, l) (μ > 0), l · V̇ (s, l) = 0.

Using this function in the Fourier representation of A(x), one obtains another useful
integral representation of the solution of the wave equation

A(x) = − 1

2π

∫
V̇ (x · l, l) d2l, (7)

whose advantage is that the integration goes over a compact set. If A is a Lorenz
potential of an electromagnetic field, then the field is expressed by

Fab(x) = − 1

2π

∫ [
la V̈b(x · l, l) − lbV̈a(x · l, l)] d2l, (8)

and the gauge transformation takes now the form

V̇ (s, l) → V̇ (s, l) + lα̇(s, l).

Now, our selection criterion—the existence of aas(k), Eq. (3)—implies thatωRe a(ωl)
is continuous in ω at zero, while ω Im a(ωl) has a jump at zero of the magnitude
2 Im aas(l). Correspondingly, the behavior of V̇ (s, l) for large |s| is governed by5

V̇ (s, l) = −2

s
Im aas(l) + O

(
|s|−1−ε

)
for |s| → ∞. (9)

3.2 Step 2: null asymptotes

The null asymptotic behavior of the field, which we now want to investigate, depends
crucially on this estimate. If Im aas(l) �= 0, then RA(x ± Rl) is of order log R for
large R. Moreover, one can show that also angular momentum radiated over finite
time into any solid angle is not well defined for R → ∞. This is another reason to

5 More precisely, the estimate of the rest in the form O(|s|−1−ε ) is a slightly stronger assumption. If
Im aas(l) = 0, what we are going to assume in the next section, and ε ∈ (0, 1), then this estimate implies
that ωa(ωl) is ε-Hölder continuous in ω.
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Asymptotic structure of electrodynamics revisited 1445

apply the more restrictive selection criterion mentioned before. Thus, from now on
we assume that

Im aas(l) = 0. (10)

In that case the estimate (9) implies that the function V̇ (s, l) is absolutely integrable
over s ∈ R and we fix V (s, l) by demanding that it vanishes for s → ∞:

V (s, l) = −
∫ +∞

s
V̇ (s′, l) ds′ ⇐⇒ V (+∞, l) = 0; (11)

then for s → −∞ it has awell-defined limit obtained from the inversion of formula (6):

V (−∞, l) = 2π lim
ω→0

ωa(ωl).

We also define
V ′(s, l) = −V (s, l) + V (−∞, l), (12)

so that
V ′(−∞, l) = 0, (13)

and then
V ′(+∞, l) = V (−∞, l). (14)

With these definitions, the null asymptotic behavior of the potentials is easily
expressed [18]:

lim
R→∞ RAb(x + Rl) = Vb(x · l, l), lim

R→∞ RAb(x − Rl) = V ′
b(x · l, l), (15)

and the null asymptotes of the electromagnetic fields are then:

lim
R→∞ RFab(x + Rl) = la V̇b(x · l, l) − lbV̇a(x · l, l),
lim
R→∞ RFab(x − Rl) = la V̇

′
b(x · l, l) − lbV̇

′
a(x · l, l).

It is evident that the relations between V and V ′ are gauge independent, and quantities
l ∧ V (s, l) and l ∧ V ′(s, l) are gauge invariant.

The real parameter s appearing in our formulae has a twofold interpretation. On the
one hand, if in the above asymptotic formulas one sets x = st (t as defined in Sect. 2)
and scales l’s to t · l = 1, then s is the retarded or advanced time, according to the case.
On the other hand, if one compactifies the spacetime a la Penrose, then s is an affine
parameter along generators of future or past null infinity. In particular, V ′(+∞, l) and
V (−∞, l) are the values of the respective functions on the future (past) edge of the
past (future) null infinity respectively, and their equality (14) is a free field version of
a general ‘matching property’ to be discussed below. Fields with V (−∞, l) = 0 are
called infrared-regular, and for them the spacelike tail vanishes, as seen from formula
(4). Fields with V (−∞, l) �= 0 are called infrared-singular.
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1446 A. Herdegen

At this point we want to stress once more a crucial fact concerning the definition of
V (s, l). As indicated above, this function is obtained by integrating V̇ (s, l) over s, so
it may appear one has a freedom of transformation V (s, l) → V (s, l) + V0(l), with
V0 constant in s. However, A(x) is uniquely determined by V̇ (s, l) alone according to
formula (7), so its null asymptotes (past and future) are also unique. It is only with the
specification (11) [and (12) for the past null asymptote, with (13) as a consequence]
that the asymptotic formulae (15) are true.

We exploit this knowledge to characterize more fully possible functions of gauge
transformations. Suppose that two Lorenz potentials differ by a gauge transformation,
A(2) = A(1) + ∂Λ. Then V (2)(s, l) = V (1)(s, l) + lα(s, l), with V (2)(+∞, l) =
V (1)(+∞, l) = 0, thus also α(+∞, l) = 0. According to formula (7), we have
∂Λ(x) = − 1

2π

∫
lα̇(x · l, l) d2l, which implies

Λ(x) = − 1

2π

∫
α(x · l ′, l ′) d2l ′ + ε+,

where ε+ is a constant number. We set here x = st ± Rl and take the limit R → ∞.
As l · l ′ > 0 almost everywhere, we find

lim
R→∞ Λ(st ± Rl) = ε±, ε− = ε+ − 1

2π

∫
α(−∞, l ′) d2l ′. (16)

We summarize:

Among Lorenz gauges there can be no gauge transformation ∂Λ whose asymp-
tote lα(s, l) remains constant along null infinity generators (i.e., is independent
of s). For any admissible gauge function Λ, the null asymptotic limits (16) are
two, in general different, constant numbers.6

To close this section, we would like to illustrate the null asymptotic behavior and
comment on the possibility of asymptotic expansions of the form7 A(st + Rl) =∑∞

n=1 R
−n A(n)(s, l), in the simplest possible case of a scalar field A, spherically

symmetric in a chosen frame. Let A be given by (7)with V̇ (s, l) = (t ·l)−2Ẇ ((t ·l)−1s),
where t is a fixed time axis vector and Ẇ (τ ) is any regular function decaying at least
like |τ |−1−ε for |τ | → ∞. This field satisfies all our selection criteria, and the explicit
integration in formula (7) gives

A(x) =
W

(
t · x − √

(t · x)2 − x2
)

− W
(
t · x + √

(t · x)2 − x2
)

√
(t · x)2 − x2

,

where W (τ ) = − ∫ ∞
τ

Ẇ (τ ′)dτ ′. One can now immediately explicitly confirm all our
statements on the null asymptotes, Eqs. (12)–(15) and subsequent comments. Let us
choose two examples:

6 Note that although the field Λ(x) is smooth, in general the past and future null asymptotic limits ε± do
not ‘match.’
7 An equivalent form is assumed in [24], formulas (2.8); the difference in expansion of Az results from the
use of coordinate basis in which z-vector is proportional to R.
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Asymptotic structure of electrodynamics revisited 1447

W1(τ ) = α(
τ 2 + τ 20

)ε/2 , W2(τ ) =
+∞∫

τ

β dτ ′
(
τ ′2 + τ 20

)(1+ε)/2
,

where α, β and τ0 are constants. With these choices, both fields A1 and A2 fall into
the class specified in this section; the first one is infrared-regular, while the second is
infrared-singular. However, for ε < 1 the asymptotic expansion of these fields does
not exist in the form of the series in 1/R beyond the leading order. In general, this
problem is even more involved, but for the electromagnetic fields due to the potentials
defined in the present section the two leading orders do exist.

3.3 Step 3: fields of electric type

There is one final step needed to complete our selection criterion. The fact that there
are no magnetic monopoles and free fields are thus produced by scattering electric
charges is encoded in the property of the spatial tail of the field being of electrical
type. This is equivalent, as it turns out, to the condition

L [abVc](−∞, l) = L [abV ′
c](+∞, l) = 0.

Smooth functions, homogeneous of degree −1, transversal: l · V (−∞, l) = 0, and
satisfying the above condition form a linear space, whose properties are described in
Appendix C. It follows that

laVb(−∞, l) − lbVa(−∞, l) = LabΦ(l), (17)

where Φ(l) is a homogeneous function given by

Φ(l) = 1

4π

∫
l · V (−∞, l ′)

l · l ′ d2l ′. (18)

Further properties of the relation of V withΦ, which will be used later, are to be found
in Appendix C.

We end this section with a simple illustration of the null structures for the potential
of the scattered particle (5). In this case V (s, l) = θ(−s)V (−∞, l) (θ is the Heavi-
side step function; the singularity at s = 0 is again due to unrealistic instantaneous
scattering), V (−∞, l) = q[(v/v · l) − (u/u · l)] and Φ(l) = q log(v · l/u · l).

4 Matter–radiation system: null and spacelike infinity

Let now the inhomogeneous Maxwell equations be a part of a closed electrodynamic
system. We again assume Lorenz gauge, thus

�A(x) = 4π J (x)
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1448 A. Herdegen

in Gaussian units, which we use in this paper.8 We consider a scattering situation; thus
the conserved current J (x) describes sources which stabilize in remote past and future.
This stabilization, more specifically, means that for v on the future unit hyperboloid,
the leading behavior of the current is

J (±λv) ∼ λ−3v ρ±(v) for λ → ∞, (19)

with some scalar functions ρ±(v) on the hyperboloid. This is precisely true for
asymptotically freely moving classical particles, but also, up to oscillating terms not
contributing to the leading behavior of A, for matter fields like massive Dirac field.
Also, we assume that J (x) vanishes sufficiently fast in spacelike directions. It follows
then that the function defined by

VJ (s, l) =
∫

J (x) δ(s − l · x) d4x,

where δ is the Dirac measure, is well defined, bounded and for s tending to ±∞ has
finite limits

VJ (±∞, l) =
∫

v

v · l ρ±(v) dμ(v),

the integral over the unit hyperboloid. These limits are fully determined by the asymp-
totic forms of the current in the future/past. The conserved charge carried by the current
is

Q = l · VJ (s, l) =
∫

ρ±(v) dμ(v).

Moreover, due to (19) one has

L [abVJ c](±∞, l) = 0.

The reason to define this function is that the null asymptotes of the retarded and
advanced fields are then given by

lim
R→∞ RAret(x + Rl) = VJ (x · l, l), lim

R→∞ RAret(x − Rl) = VJ (−∞, l),

lim
R→∞ RAadv(x − Rl) = VJ (x · l, l), lim

R→∞ RAadv(x + Rl) = VJ (+∞, l).

It also follows that the radiation field Arad = Aret − Aadv is the free field given by
Formula (7) in which one should substitute V̇J for V̇ , and it satisfies all our selection
criteria.

The total potential is decomposed in two ways appropriate for incoming and outgo-
ing characterization, A = Aret + Ain = Aadv + Aout, respectively, where Ain and Aout

are free fields. It is now evident that if the incoming field Ain satisfies our selection
criteria, then also the outgoing field Aout does. We again denote by V out and V in the

8 Let us remark in passing that the authors of [24] write the inhomogeneous Maxwell equation with e2 J
on the rhs. This implies a possible, but a rather exotic units system.
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Asymptotic structure of electrodynamics revisited 1449

future asymptotes, and by V out ′ and V in ′
the past asymptotes of Aout and Ain, respec-

tively. Then it follows that the null asymptotes of the total potential and the total field
are given by

lim
R→∞ RA(x + Rl) = V (x · l, l), lim

R→∞ RA(x − Rl) = V ′(x · l, l),
lim
R→∞ RFab(x + Rl) = la V̇b(x · l, l) − lbV̇a(x · l, l),
lim
R→∞ RFab(x − Rl) = la V̇

′
b(x · l, l) − lbV̇

′
a(x · l, l), (20)

where

V (s, l) = VJ (s, l) + V in(s, l) = VJ (+∞, l) + V out(s, l),

V ′(s, l) = VJ (−∞, l) + V in′(s, l) = VJ (s, l) + V out ′(s, l). (21)

Putting here s = ±∞, one finds that

V (+∞, l) = VJ (+∞, l), V ′(−∞, l) = VJ (−∞, l),

so these characteristics are totally due to the outgoing/incoming currents, respectively,
while

V (−∞, l) = VJ (+∞, l) + V out(−∞, l),

V ′(+∞, l) = VJ (−∞, l) + V in ′(+∞, l),

so these characteristics are the sums of the source and the free infrared singular contri-
butions.Moreover, adding the sides of equations (21) one finds that V (s, l)+V ′(s, l)−
VJ (s, l) is constant in s, thus

V (s, l) + V ′(s, l) − VJ (s, l) = V ′(+∞, l) = V (−∞, l). (22)

The second equality in this formula constitutes a matching property of the values at
the past edge of the future null infinity, and the future edge of the past null infinity
(see [18], Eq. (2.26) and the following discussion). We stress once more that to this
matching equality contribute both retarded/advanced as well as free ‘in’/‘out’ fields.9

The spacelike asymptotic behavior is also governed by this characteristic, for y2 < 0:

lim
R→∞ RAb(x + Ry) =

∫
Vb(−∞, l)δ(y · l)d2l, (23)

lim
R→∞ R2Fab(x + Ry) =

∫
(laVb(−∞, l) − lbVa(−∞, l)) δ′(y · l)d2l, (24)

where δ′ is the derivative of the Dirac delta distribution.

9 It is not true that ‘finite energy wave packets die off at i0’ as the authors of [24] put it.
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1450 A. Herdegen

At this point, an observation on gauge of the total potential is due. As we work
in a scheme which assumes Lorenz gauge, the gauge transformation A → A + ∂Λ

demands�Λ = 0. Therefore, ∂Λ is a free potential satisfying all our selection criteria.
In particular, if lα(s, l) is its future null asymptote, then α(+∞, l) = 0, as in the free
case with no sources (and similarly α′(−∞, l) = 0 for past asymptote). Thus, the
limit values V (+∞, l) and V ′(−∞, l) are gauge independent (in the Lorenz gauge
class).10

We end this section with an illustration of the ‘matching property’ (22). Consider a
scattering event in which there are n′ incoming particles and n outgoing particles, with
charges and four-velocities given by q ′

i , v
′
i and q j , v j , respectively. It is easy to show

that for a single free particle with charge q and velocity v, one has VJ (s, l) = q v/v · l.
Therefore, in our scattering event we have

VJ (−∞, l) =
n′∑
i=1

q ′
i

v′
i

v′ · l , VJ (+∞, l) =
n∑

i=1

qi
vi

v · l .

Then, Eq. (22) gives

2π lim
ω→0

ω
(
aout(ωl) − ain(ωl)

) =
n′∑
i=1

q ′
i

v′
i

v′ · l −
n∑

i=1

qi
vi

v · l . (25)

This relation is a clear announcement of the problems to come in quantum theory:
suppose the space of incoming states does not contain infrared-singular ‘in’ fields, so
the ‘in’ fields are represented in the usual Fock space of photons. However, this is only
possible if the profiles of incoming photon states satisfy limω→0 ωain(ωl) = 0. On the
other hand, the rhs of Eq. (25) cannot vanish for all scattering amplitudes (depending
on velocities v′

i and vi ) in the given representation. The relation tells us then that
limω→0 ωaout(ωl) �= 0, which contradicts the possibility of representing the ‘out’
profiles in Fock space. We shall come later to existing strategies for the resolution of
this difficulty.

5 Matter–radiation system: timelike infinity

We start by recalling the Fourier representation of the solution of the free Dirac equa-
tion. A convenient version of this integral representation is:

ψ(x) =
( m

2π

)3/2 ∫
e−im x · v γ · vγ · v f (v) dμ(v), (26)

10 In this connection, we note that there is an erroneous remark on ‘constant gauge’ transformation in [19]
preceding formula (3.18), but in fact no such freedom exists and this formula gives the correct unique value
of V (+∞, l). This lapse has no further continuation or consequences in that article.
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where dμ(v) = d3v/v0 is the standard invariantmeasure on the unit future hyperboloid
and f (v) is a Dirac spinor-valued function on this hyperboloid. A more standard-
looking form is obtained by noting that

e−im x · v γ · vγ · v = e−im x ·vP+(v) − e+im x ·vP−(v),

where P±(v) = 1
2 (1 ± γ · v). While the free electromagnetic field is fully encoded

in its null asymptote, the free Dirac field is fully encoded in its timelike asymptote,
which is

ψ(±λv) ∼ ∓i λ−3/2e∓i(mλ + π/4)γ · v f (v) for λ → ∞. (27)

Remember that the free field has no gauge freedom of the second kind, so ψ and f
are unique up to a constant phase.

Suppose now that the current J appearing in the last section is produced by the
Dirac electron–positron field, and the fields form a closed theory with the Dirac equa-
tion added. It is well known that the full Dirac field in standard Lorenz gauge does
not approach then in simple manner any free field for time tending to plus/minus
infinity, its leading asymptotic term containing electromagnetic contributions. The
standard technique usually employed for handling this problem was proposed by Dol-
lard [12] and in quantum electrodynamics was applied by Kulish and Faddeev [26].
However, we find it more convenient, for reasons to become clear below, to use another
procedure.

We introduce a new gauge of the total electromagnetic potential: if A is the Lorenz
potential discussed in the preceding sections, then

Atr(x) = A(x) − ∂S(x),

where S is any scalar function assumed to satisfy

S(x) 
 log
√
x2 x · A(x) for x2 → ∞. (28)

For x = ±λv, the leading asymptotic terms of A(±λv) for λ → ∞ are of order 1/λ.
It follows then that in this limit v · Atr(±λv) = O(λ−1−ε). Now we can use one of the
results of [18], which says the following. In the gauge defined above, the full Dirac field
again has the asymptotic behavior given by (27),with some spinor functions f∓ for ‘in’
and ‘out’ asymptotes, respectively. There are no electromagnetic field modifications
of these asymptotic terms, and one could define free incoming/outgoing fields by
plugging f∓ into the integral representation (26). We indeed intend to perform such
operation, but with one additional modification explained in the next section.

We note an important fact that there is no gauge freedom of the second kind in the
definition of asymptotes f∓. Indeed, one can show that f∓ do not depend either on
the choice of particular Lorenz gauge of A, or of the specific function S satisfying
(28).
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6 Invariant structures and conserved quantities

The causal ‘in’ and ‘out’ infinities are equipped with two Poincaré invariant structures:
symplectic form at the null infinity and scalar product in the timelike infinity. In the
following we restrict attention to the ‘out’ infinity; similar structures exist in the ‘in’
case. Namely, the Poincaré transformations acting by

[
Tx,AV

]
a (s, l) = Λ(A)a

b Vb
(
s − x · l,Λ−1l

)
,

[
Rx,A f

]
(v) = eimx · vγ · vS(A) f (Λ−1v)

leave invariant the symplectic form

{V1, V2} = 1

4π

∫ (
V̇1 · V2 − V̇2 · V1

)
(s, l) ds d2l = {

Tx,AV1, Tx,AV2
}
, (29)

and the pre-Hilbert scalar product

( f1, f2) =
∫

f1(v)γ · v f2(v) dμ(v) = (Rx,A f1, Rx,A f2). (30)

Here (x, A) is an element of the affine extension by translations of the group SL(2,C),
Λ(A) is the corresponding Lorentz transformation, and S(A) the bispinor representa-
tion.

For two solutions ψi (i = 1, 2) of the Dirac equation in electromagnetic field, one
has the scalar product defined by the integral over any Cauchy surface: (ψ1, ψ2) =∫

ψ(x)γ aψ(x) dσa(x). Product (30) expresses this quantity in terms of the asymptotic
variables defined at the end of Sect. 5.

For a pair of free, infrared-regular electromagnetic fields, one has the standard
symplectic form defined by the integral over any Cauchy surface by {F1, F2} =
1
4π

∫
(Fab

1 A2b − Fab
2 A1b)(x) dσa(x). This form, when expressed in terms of null

asymptotes, is equal to the form (29). As can be easily seen, the integral (29) extends
to all free fields in the class considered in this article (it is absolutely convergent also
for infrared singular fields11). Note that for free fields the form (29) is gauge invariant:
it does not change under the transformation Vi (s, l) �→ Vi (s, l) + lαi (s, l) (i = 1, 2).

The symplectic form (29) extends also to the asymptotes of total fields, with the
integral staying absolutely convergent. In this case the gauge transformation causes
the following change of this quantity:

{V1 + lα1, V2 + lα2} = {V1, V2} + Q1

4π

∫
α2(−∞, l)d2l − Q2

4π

∫
α1(−∞, l)d2l,

(31)
where Qi = l · Vi (s, l) is the charge of the field Vi . This addition will play a role in
the quantum case.

11 We note that, in contrast, the integral over a Cauchy surface is not absolutely convergent for such fields,
and one needs a regularization to make it well defined, see [21].
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Let us return to the Poincaré transformations of the asymptotic structures. The
generators of these transformations defined by

Tx,A − 1 ≈ xara − 1

2
ωabnab, Rx,A − 1 ≈ i xa pa − i

2
ωabmab,

for infinitesimal xa and ωab, where Λa
b ≈ gab + ωa

b, are

(raV )c(s, l) = −la V̇c(s, l), (pa f )(v) = mvaγ · v f (v),

(nabV )c(s, l) = −LabVc(s, l) − gcaVb(s, l) + gcbVa(s, l),

(mab f )(v) = i
(
μab + 1

4

[
γa, γb

])
f (v),

where μab = va(∂/∂vb) − vb(∂/∂va) acts intrinsically in the hyperboloid. Consider
now the energy-momentum and 4-angular momentum going out into timelike and
null infinity, carried by massive and electromagnetic fields, respectively. One finds
that these quantities are elegantly expressed by

Pout
a = ( f+, pa f+) + 1

2 {V, raV } ,

Mout
ab = ( f+,mab f+) + 1

2 {V, nabV } , (32)

where V (s, l) is the asymptote of the total electromagnetic potential, and f+(v) is
the asymptotic variable of the Dirac field as defined at the end of Sect. 5. All four
expressions on the rhs of these equations are gauge invariant: the scalar product
parts because of the second-kind gauge invariance of f+, and the invariance of the
symplectic form parts is proved by an easy calculation using the form of generators
and identity (31).

If analogous incoming quantities P in
a and M in

ab are formed, then one finds the
expected conservation laws P in = Pout and M in = Mout. In case of the energy-
momentum, this is also equal to the integral of the total energy-momentum density
over any Cauchy surface, but in case of the angular momentum, a similar statement
needs a comment. The 1/R2 spacelike tail of the electromagnetic field has the con-
sequence that the density of the angular momentum is not absolutely integrable over
a Cauchy surface. However, the oddness of the tail of electromagnetic field implies
that this density is also asymptotically odd, which allows one to regularize the integral
over spacelike hyperplane by taking a limit of integrals over balls of finite radius. The
quantity so regularized is equal to the incoming and the outgoing angular momentum.
As an aside, we note the following interesting fact. In a theory in which both elec-
tric and magnetic charges are present, the analogous statements are not true, namely
M in �= Mout—the angular momentum leaks into the spacelike infinity [18].

If we now decompose V (s, l) = V (+∞, l) + V out(s, l), then {V, raV } =
{V out, raV out}—the electromagnetic energy-momentum is expressed in terms of the
free ‘out’ field. However, the angular momentum turns out to contain a mixed adv-out
term:

1
2 {V, nabV } = 1

2

{
V out, nabV

out} + {
V out, nabV (+∞, .)

}
.
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Using the asymptotic form of the Dirac field, one finds

Va(+∞, l) =
∫

n(v)V e
a (v, l) dμ(v), (33)

where n(v) = f (v)γ · v f (v) is the asymptotic density of particles moving with
velocity v and V e

a (v, l) = eva/v · l is the null asymptote of the Lorenz potential of the
Coulomb field surrounding the particle with charge emoving with constant velocity v.
Noting the identity (nabV e)c(v, l) = μabV e

c (v, l), we obtain

{
V out, nabV (+∞, .)

} = −
∫

n(v)μab
{
V e(v, .), V out} dμ(v).

The latter form of this term allows its absorption into the matter part by a phase
transformation. We introduce

g(v) = exp
(
i
{
V e(v, .), V out}) f (v) = exp

(
i
{
V e(v, .), V

})
f (v) (34)

(the second form following from {V e(v, .), V (+∞, .)} = 0) and then the conserved
quantities take the form

Pout
a = (g+, pag+) + 1

2

{
V out, raV

out} ,

Mout
ab = (g+,mabg+) + 1

2

{
V out, nabV

out} .

These expressions look formally as sums of independent free fields contributions.
Therefore, we identify the Dirac out-field by placing g+ in place of f in the integral
representation (26). However, this Dirac field must then describe massive particles
together with their Coulomb fields. This will be confirmed in quantization. We end
this section by giving another form to the f → g transformation: if one uses the
definition (18), then the identity (53) applied to the pair V out(−∞, l), Φout(l) implies

g(v) = exp

(
ie

4π

∫
Φout(l)

(v · l)2 d2l

)
f (v). (35)

7 Other gauges; LGT is not a gauge symmetry of the asymptotic
structure

We have thus completed the discussion of the asymptotic structure of the classical
electrodynamics. With this picture before our eyes, let us now once more return to the
question of the gauge symmetry of this structure.

In our constructions we have assumed the class of the Lorenz gauges. This class is
distinguished by a well-defined dynamics and allows for gauge transformations within
the class, which are encoded in the null asymptotes by V2(s, l) = V1(s, l) + lα(s, l).
The question we want to discuss now is the following: are there other/wider classes
of gauges for which this structure is preserved?
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The class of electromagnetic fields Fab(x) considered here is characterized by the
existence of the Lorenz gauge potentials Ab(x) with well-defined null asymptotes
Vb(s, l). We now want to admit other gauges Â = A+ ∂Λ, but we keep the restriction
demanding that the potentials have well-defined null asymptotes, i.e. for each Âa(x)
there is

lim
R→∞ R Âb

( st

t · l + Rl
)

= V̂b(s, l)

—thedenominator t ·l guarantees that the asymptote V̂b(s, l)has the samehomogeneity
property asVb(s, l): V̂ (λs, λl) = λ−1V̂ (s, l),λ > 0 (see the discussion of the variables
R, s, l in Appendix B). It follows that for the gauge function Λ(x) the limit

lim
R→∞ R(∂bΛ)

(
st

t · l + Rl

)
= V̂b(s, l) − Vb(s, l)

has to exist. This condition restricts the gauge functions to those with the asymptotic
expansion

Λ

(
st

t · l + Rl

)
= ε+(l) + βt (s, l)

R
+ o

(
R−1

)
, (36)

with the sufficiently regular rest, so that the leading term of ∂Λ is obtained by differ-
entiation of the two leading explicitly written terms; note that ε+(l) is homogeneous
of degree 0, and βt (s, l) is homogeneous of degree −1.

Let V+
b (l) be a vector function entering with ε+(l) into the relation described in

Appendix C for the pair V and ΦV , formulae (50)–(53). Using these relations, and
applying the formula for differentiation, Eq. (49) in Appendix B, we obtain

(∂bΛ)

(
st

t · l + Rl

)
= 1

R

[
ta

t · l Labε
+(l) + lbβ̇t (s, l)

]
+ o

(
R−1

)

= 1

R

[
V+
b (l) + lb

(
β̇t (s, l) − t · V+

t · l
)]

+ o
(
R−1

)
. (37)

The form of the expansions (36) and (37) remains valid if the time axis vector
t is replaced by another such vector t ′. However, while the function ε+(l) remains
unchanged (as the notation suggests), the function βt undergoes the following trans-
formation:

βt ′(s, l) − βt (s, l) = s

t · l t ′ · l t
at ′bLabε

+(l) = s
t ′ · V+

t ′ · l − s
t · V+

t · l
—this is shown by writing (s′/t ′ · l ′)+ R′l ′ = (s/t · l)+ Rl and expressing R′, s′, l ′ in
terms of R, s, l in leading orders in 1/R. This shows that βt (s, l) − st · V+(l)/t · l =
γ (s, l) does not depend on t , and with this notation the most general transformation of
the null asymptote of the potential is given by V̂b(s, l) = Vb(s, l)+V+

b (l)+ lbγ̇ (s, l).

However, if |γ̈ (s, l)| = O(|s|−1−ε) for |s| → ∞, which is needed for V̂ (s, l) to satisfy
the demands of the asymptotic structure, then the term lbγ̇ (s, l) is just the gauge
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transformation previously considered in the Lorenz class,12 so this addition brings
nothing new. Therefore, we set γ (s, l) = 0 and we are left with the transformation

V̂b(s, l) = Vb(s, l) + V+
b (l). (38)

This is, in a somewhat different guise, the ‘large gauge transformation’ considered by
the authors of [8,24], and in numerous other recent articles.

We now look at the transformation (38) from the intrinsic point of view of the
asymptotic structure as described in preceding sections. Does the new asymptote
V̂ (s, l) fit into the picture? It does, but with interpretation wholly different from the
gauge transformation which led to the relation (38).

First of all, the addition V+(l) to the asymptote of the potential, if it results from
the gauge transformation as discussed above, does not have the meaning of the initial
data at infinity as before, as no equation is given which propagates these data into
the bulk of the Minkowski space. Any rigid choice of the bulk functions is rather a
transformation into a different sector, than a symmetry.

Secondly, and even more importantly, the transformation (38) is not a symmetry
of the structure. The symplectic structure is changed under this transformation: if
V̂i (s, l) = Vi (s, l) + V+

i (l), i = 1, 2, then

{
V̂1, V̂2

} = {
V1, V2

} + 1

4π

∫ [
V+
1 (l) · ΔV2(l) − V+

2 (l) · ΔV1(l)
]
d2l,

where ΔVi (l) = Vi (−∞, l) − Vi (+∞, l). This addition to the symplectic form does
not vanish even in the free field case (characterized by Vi (+∞, l) = 0). Moreover,
the electromagnetic field contribution to the angular momentum (32) changes:

1
2

{
V̂ , nabV̂

} = 1
2

{
V, nabV

} + {
V, nabV

+}
.

On the other hand, the transformation (38)may be interpreted within the asymptotic
structure of the preceding sections, but it then changes the physics of the system.
Namely, if we decompose V (s, l) into the sum of the advanced part of the outgoing
current

V (+∞, l) =
∫

v

v · l ρ+(v) dμ(v)

(see the discussion in Sect. 4) and the free outgoing field V out(s, l) = V (s, l) −
V (+∞, l), then we see that V̂ (+∞, l) = V (+∞, l) + V+(l) and V̂ (s, l) −
V̂ (+∞, l) = V out(s, l). The transformation (38) does not change the asymptote of
the potential of the free ‘out’ field. On the other hand, we show in Appendix C that
for almost all V+ (the precise sense of this statement is to be found there) there exists
the representation

V+(l) =
∫

v

v · l ρ(v) dμ(v),

12 Up to a possible term lb γ̇ (+∞, l), whichmay be included into the term V+
b (l) by an appropriate addition

of a constant to ε+(l).

123



Asymptotic structure of electrodynamics revisited 1457

where ρ(v) is a smooth function of compact support on the unit hyperboloid, and such
that

∫
ρ(v) dμ(v) = 0. This uniquely induces the interpretation of the transformation

(38) within the limits of the asymptotic structure:

The transformation (38) adds the advanced electromagnetic field of an exter-
nal, asymptotic, charge-free current J+(x) = xρ(x), ρ(x) homogeneous of
degree −4.

The current J+ is not unique: the function ρ(v) depends on three real variables, while
the asymptote V+(l) is a function of two independent real variables.

As we shall see, the above interpretation will also be confirmed in the quantum
case.

8 Electromagnetic memory

The long-range electromagnetic variables play a substantial role, both in the classical
structure described above and in the quantum theory to be developed below. We stop
here to ask what is the observational status of such degrees of freedom.

In this connection, it is appropriate to invoke certain analogy between electromag-
netic and gravitationalwaves.Within the limits of linearized gravity, it has been pointed
out in 1974 by Zel’dovitch and Polnarev [34] that if a pair of test bodies is exposed to
a gravitational wave burst, then their relative separation undergoes a finite and perma-
nent shift between remote past, when the burst has not arrived yet, and remote future,
when it has passed away. This effect was discussed again and named the ‘memory’ of
the gravitational wave burst in 1985 [3]. The size of this effect depends on the initial
and final masses and velocities of the bodies which produce gravitational wave burst
(see, for example, [33]). In 1991, it was shown byChristodoulou [11] that a substantial,
and potentially more prominent, contribution to the displacement of the test bodies is
caused by nonlinear effects of gravitation.

In the meantime, in 1981, Staruszkiewicz has discussed an electromagnetic effect
which may also be interpreted as a kind of memory of wave packets [31]. To my best
knowledge, this was the first observation of this kind in electrodynamics. Moreover,
Staruszkiewicz’s effect shows in themost clear way the connection between ‘memory’
and infrared degrees of freedom. We describe the effect in our notation. Let A(x) be a
free Lorenz potential with the asymptote V (s, l), thus given by formula (7). The scaled
potential Aλ(x) = λ−1A(x/λ), λ > 0, with the asymptote Vλ(s, l) = V (s/λ, l), has
the same spacelike tail (as it depends on Vλ(−∞, l) = V (−∞, l), see (23)), but with
λ → ∞ the energy content of the scaled electromagnetic field tends to zero; we call
this large λ regime the infrared limit. In this limit the field is too weak to change
the momentum of a charged test particle. However, as shown by Staruszkiewicz in the
quasi-classical approximation, the phase of thewave function of the particle undergoes,
between times minus and plus infinity, the momentum-dependent phase shift

δ(p) = − q

2π

∫
p · V (−∞, l)

p · l d2l,

where q is the charge of the particle and p its momentum. For particle wave packets
this produces interference effects, which result in an adiabatic finite shift of the wave
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packet of the particle. The shift is solely due to the long-range degrees of freedom
of the electromagnetic field; the field itself may have a negligible energy content.
Later this effect was confirmed in more elevated settings in [18] and [23] (in the latter
reference a quantum Dirac field in the external infrared limit field was considered).13

The Staruszkiewicz effect may be simply explained for a classical test particle with
charge q and mass m placed in the free external electromagnetic field Fab(x). The
equation of motion for the trajectory za(τ ):

z̈a(τ ) = q
m Fa

b(z(τ ))żb(τ ),

where τ is the proper time and the overdot denotes differentiation with respect to τ ,
may be written in the equivalent form

za(τ ) = za(0) + τ ża(τ ) − q

m

∫ τ

0
Fa

b(z(σ ))żb(σ ) σ dσ.

For τ tending to ±∞, the integrals Δa± = −(q/m)
∫ ±∞
0 Fa

b(z(σ ))żb(σ ) σdσ give
the vectors separating the ‘out’/‘in’ asymptotic free trajectories (straight lines) from
the point za(0). For scaled F , in the infrared limit we have ż(τ ) 
 v, a constant
four-velocity, and then the ‘out’ asymptotic trajectory is parallel to the ‘in’ asymptotic
trajectory, but shifted by Δa = �a+ − Δa−. Substituting in these integrals z(σ ) 

z(0) + vσ , using the representation (8), and integrating by parts in σ we find in the
infrared limit14

Δa(v) = − q

m

+∞∫

−∞
Fa

b(vσ )vbσdσ = q

2πm

∫
laV b(−∞, l) − lbV a(−∞, l)

(v · l)2 d2l vb.

Now we use the relation (17), followed by (2), to obtain

Δa(v) = q

πm

∫
(la − l · vva)

Φ(l)

(v · l)3 d
2l.

All steps in this sketchy derivation could be made watertight, what we are not going
to discuss here.

9 Quantum theory

Construction of interacting quantum field theories faces numerous problems. Not only
perturbative solutions of nonlinear equations of physically realistic models involving
quantum fields need elaborate techniques in order to avoid the well-known ultraviolet

13 There is, recently, a considerable activity in the field of ‘electromagnetic memory’ and its connection
with the long-range structure of electrodynamics, apparently not aware of Staruszkiewicz’s work, and the
articles just mentioned; see [28] and the literature cited there.
14 We assume that the field F satisfies all our selection criteria, in particular the condition (10).
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divergencies, but the very existence of these equations is not clear beyond perturbative
formulation.Whether this state of art is dueonly to technical problems, or is somebetter
physical input needed, in our opinion is still not clear. However, on the perturbative
level the Epstein–Glaser technique [13,30] of proper time splitting of distributions
supplies the most fundamental, conceptually clear, even if calculationally formidable,
solution of the problem.

However, here we are interested rather in the opposite, in terms of momentum
transfer, end of scale, the infrared problems. In perturbative calculations these diffi-
culties manifest themselves in the appearance of divergencies in Feynmann diagrams
for small momenta. But this perspective only touches the tip of an iceberg: in this
case the source of the difficulties is definitely not merely technical, but related to the
long-range character of the interaction. To understand the source of the problem, one
has to consider the theory from its algebraic structure and representation perspective.

One of the paradigms on which the standard quantum field theory is build is
relativistic locality. This is best expressed in algebraic terms [16] and consists of
two assumptions: (i) basic quantum observables are localized in compact space-
time regions, and all other observables are limits of such quantities; (ii) observables
localized in regions spacelike separated commute. For electrodynamics this has the
following consequence [5,6,15]: Suppose that in the representation space one can
define the spacelike asymptotic field of the type indicated by the classical expression
(24). As the localization of this field becomes spacelike to any compact set in the limit,
this asymptotic field commutes with all observables. In any irreducible representation
this implies that the field is proportional to the unit operator and its specific value is
a superselection label of the representation. In the language of previous sections this
means that in such setting V (−∞, l) = V ′(+∞, l) is a classical function character-
izing the choice of representation. In view of this knowledge, we look once more at
relations (22) and (25). If quantum charged free ‘in’ and ‘out’ particles are ascribed
their Coulomb fields, then incoming and outgoing free electromagnetic fields cannot
be both represented in unitarily equivalent way (e.g., as mentioned before, if ain is
Fock, then aout cannot be Fock). Thus, the description of scattering falls into troubles.

Standard way to deal with this problem is to ‘dress’ charged particles, in addition
to their Coulomb fields, with some permanent ‘radiation clouds.’ These clouds must
be chosen so as to decouple the long-range tail of the field attached to the charged
particle from its specific momentum and make the rhs of the relation (25) vanish.15

Another potentially possible strategy is to use representations which do not satisfy the
above assumptions and are so singular in the infrared/long-range regime as to be able
to mask radiative soft additions (e.g., so-called KPR infravacua [25]).

In what follows we want to avoid any of the above two paths. We insist that free
charged particles carry their Coulombfields, and these fields alone form their structural
parts. The onlyway not to come in conflict with the above discussion is to admit certain
degree of nonlocality in the theory: the long-range variables will acquire genuinely
quantum character. Having agreed to this, we proceed as follows.

15 Some recent examples of dressing constructions include [9,10,27], where also further bibliographic
information may be found.
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10 Construction of the algebra

We want to use the heuristic method of ‘relativistic quantization,’ in which one
demands that the classical expressions for energy-momentum and 4-angular momen-
tum should become the Poincaré generators of the quantum theory. This is not in
conflict with the knowledge that Lorentz symmetry may be broken in electrodynam-
ics: the heuristic idea is applied only on the algebraic level,while breaking of symmetry
happens on the level of representations. The form of conserved quantities (32) sug-
gests that f and V should be quantized independently. We denote the corresponding
quantumvariables f q and V q and then the quantization conditions are easily obtained:

[{
V1, V

q} ,
{
V2, V

q}] = i {V1, V2} ,[(
f1, f q

)
,
(
f2, f q

)]
+ = 0,

[ (
f1, f q

)
,
(
f2, f q

)∗ ]
+ = ( f1, f2).

Here fi and Vi are test variables. The variable V q has a well-defined physical meaning
as the total electromagnetic field at null infinity. On the other hand, as argued above,
the physical field equipped with its Coulomb field should be defined by (34), thus on
the quantum level gq(v) = exp

(
i{V e(v, .), V q}) f q(v). We now use the pair gq , V q

as generating a closed algebra. Denoting

Ψ (gi ) = (gi , g
q), W (Vi ) = exp

[−i
{
Vi , V

q}] , (39)

one obtains

W (V1)W (V2) = e− i
2 {V1, V2}W (V1 + V2),

W (V )∗ = W (−V ), W (0) = 1, (40)

[Ψ (g1), Ψ (g2)]+ = 0,
[
Ψ (g1), Ψ (g2)

∗]
+ = (g1, g2)1, (41)

W (V )Ψ (g) = Ψ (SΦg)W (V ), (42)

where

(SΦg) (v) = exp

(
i
e

4π

∫
Φ(l)

(v · l)2 d2l

)
g(v). (43)

One notes that {V1, V q}W (V2) = W (V2)
({V1, V q} + {V1, V2}

)
. Thus W (V2), when

acting on a state, adds to this state the field V2. However, the Coulomb fields carried
by particles are now attached to the field Ψ (g), so the test fields Vi should be free
fields test functions; therefore, we demand Vi (+∞, l) = 0. Function Φ(l) is related
to V (−∞, l) as described in Sect. 3.3.

Relations (40)–(43) may be now considered detached from the heuristic consider-
ations which led to them. One shows that they generate a C∗-algebra, which simply
means that they can indeed be represented by bounded operators in a Hilbert space.
Physically meaningful representations must satisfy some selection criteria, and we
shall briefly comment on the form of possible representations below. But first we want
to clarify the question of gauge (in)dependence of the algebra.
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11 Gauge invariance

First, we recall that the test functions Vi (s, l) are free field functions, in particu-
lar l · Vi (s, l) = 0. It follows that any gauge transformation of the quantum field
Vq(s, l) → Vq(s, l) + lα(s, l) leaves the quantity {Vi , V q} unchanged16. Thus
W (Vi ) should be interpreted as exponentiations of the total electromagnetic field,
and not merely potential. Second, the field f was obtained in a gauge-independent
way, and the transition from f to g is given by (35). Thus, on the (heuristic) quan-
tum level the gauge transformation causes the transformation gq → eieσ gq , where
σ = 1

4π

∫
α(−∞, l)d2l. In terms of algebraic elements: Ψ (gi ) → eieσ Ψ (gi ). Sum-

marizing, gauge transformations lead only to transformations of the first kind of the
elements of the algebra.

Another question related to gauge symmetry is whether the elements of the algebra
depend on the gauge of test fields Vi (s, l). To answer this, it is sufficient to consider
W (lα)—element with pure gauge test field. Then {lα, Vq} = −σQq , where Qq =
l · Vq should have the interpretation of the total charge (see Eq. (31)). Therefore,
one should have W (lα)Ψ (g)W (lα)∗ = e−ieσ Ψ (g), what agrees with the relations
(42), (43). This also shows that the only dependence on gauge is through the factor
appearing in the definition (43) of SΦ . Therefore, we interpret the additive gauge
constant in eΦ(l) as a phase variable and identify eΦ ∼ eΦ ′ mod 2π .

12 Representations

Physically meaningful representations of the algebra must satisfy some selection
criteria. We impose two standard conditions: regularity of representation of W (V )

(which means that these unitary operators are in fact exponentiations of self-adjoint
generators) and positivity of energy. The latter condition means that translations
are represented by unitary transformations and their generators—energy-momentum
operators—have joint spectrum in the forward lightcone. It was shown in [19] that such
representations have the following form. The representation space isH = HF ⊗Hr ,
where HF is the usual Fock space for Dirac fermions, on which Ψ (g) = (g, gq) act
in the usual way. The space Hr carries some regular, positive energy representation
Wr (V ) of commutation relations (40). The representation of W (V ) is then given by

W (V ) = e−i{V,Vq (+∞,.)} ⊗ Wr (V ),

where Vq(+∞, l) is the quantum version of (33):

V q
a (+∞, l) =

∫
nq(v)V e

a (v, l) dμ(v), nq(v) =: gq(v)γ · vgq(v) : (44)

—normal ordering in nq .

16 In accordance with the remark on the gauge of potential in Sect. 4, after Eq. (24), we assume
α(+∞, l) = 0. Moreover, we assume, as is usual in such analyses, that the gauge function α(s, l) is a
c-number; otherwise the transformation of gq could pose problems and lead to a change of algebra.
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Representation Wr (V ) is not uniquely defined. However, it is important to realize
that the algebra contains in a substantial way variables at infinity. One of the conse-
quences is that Wr (V ), the electromagnetic part of the representation, cannot be the
usual Fock representation or any coherent state representation. More than that, there
can be no vector state with zero energy. However, a class of representations which
are close to standard structures may be formed by a direct integral over coherent state
representations [19]. In the following, we shall use properties of these representations.

13 Variables at spacelike infinity and quantum transformations induced
by them

Let us discuss the spacelike asymptotic structure of the electromagnetic field in some
detail. As was seen in (23) and (24), the spacelike tail is determined by V (−∞, l).
In quantum case this has to be smeared with some test function, so let us consider the
quantity

U (V+) = exp

{
i

4π

∫
V+(l) · Vq(−∞, l) d2l

}
, (45)

where V+(l) is a smooth test function related to a homogeneous function ε+(l) as
described in Sect. 7. In spite of the smearing in l, the quantity (45) is not yet completely
defined, as it involves a formal value at s = −∞. Now, we split

V q(−∞, l) = V q(+∞, l) + [
Vq(−∞, l) − V q(+∞, l)

]
.

The first part involves only the Coulomb fields of outgoing particles, and in our rep-
resentation has a well-defined meaning (44), giving

UCoul(V+) = exp

{
i

4π

∫
V+(l) · V q(+∞, l) d2l

}
⊗ 1

= exp

{
ie

4π

∫
nq(v)

∫
v · V+(l)

v · l d2l dμ(v)

}
⊗ 1

= exp

{
ie

4π

∫
nq(v)

∫
ε+(l) d2l

(v · l)2 dμ(v)

}
⊗ 1,

the third equality by an analogue of (53). The second part Vq(−∞, l) − V q(+∞, l)
involves only the free quantum outgoing field, thus it should be possible to obtain the
corresponding part ofU by some limiting processU free(V+) = 1⊗ limβ↘0 Wr (V

+
β ),

with appropriately chosen V+
β (s, l). This indeed is the case, andwe sketch the solution.

For functions of s we denote the Fourier transform:

f̃ (ω) = 1

2π

∫
f (s)eiωs ds.
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Let h̃(ω, l)be a smooth function, fast vanishing for |ω| → ∞, such that h̃(λ−1ω, λl) =
h̃(ω, l) (λ > 0), and h̃(0, l) = 1. Denote17

Ṽ+
β (ω, l) = −|ω|β−1h̃(ω, l)

2
∫ |u|β−1 |̃h(u, l)|2du V+(l). (46)

Then V+
β (s, l) is homogeneous of degree −1 and vanishes for |s| → ∞. In conse-

quence, as one can show, its symplectic form with any classical function V (s, l) with
asymptotes V (±∞, l) may be written as

{
V+

β , V
} = i

∫ ˜̇V+
β (ω, l) · ˜̇V (ω, l)

dω

ω
d2l.

Now, using the definition (46) one finds

lim
β↘0

{
V+

β , V
} = − 1

4π

∫
V+(l) · [V (−∞, l) − V (+∞, l)] d2l.

This is a classical calculation, but remembering that Wr (V
+
β ) = e−i{V+

β ,Vq } one can
askwhether a similar limit exists for this operator-valued expression. It turns out that in
the representations mentioned above it does: for β↘0 the operatorsWr (V

+
β ) converge

weakly to a unitary operator, which implies that the convergence is in fact in the strong
operator sense. Thus, we define the unitary operators:

U free(V+) = 1⊗ lim
β↘0

Wr (V
+
β ), U (V+) = UCoul(V+)U free(V+).

The transformation induced by these unitaries on the basic variables of the algebra is
easily calculated and yields:

U (V+)W (V1)U (V+)∗ = U free(V+)W (V1)U
free(V+)∗

= exp

{
i

4π

∫
V+(l) · V1(−∞, l) d2l

}
W (V1), (47)

U (V+)Ψ (g1)U (V+)∗ = UCoul(V+)Ψ (g1)U
Coul(V+)∗

= Ψ (Sε+g1), (48)

where Sε+ is the transformation defined in (43). For the interpretation of this result,
we note what follows.

1. The asymptotic algebra is generated by the second-kind gauge-invariant quantities
W (V ) andΨ (g), which are nontrivially transformed under the action (47) and (48).

17 What follows is a simplified version of the construction of the function V ′
βa(s, l) in the proof of Theorem

6.4 in [19]. The existence of the limit defining U (V+) is a special case of the construction in part (iii) of
this proof.
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2. The action of the free part U free(V+) transforms W (V1), while leaving Ψ (g1)
unchanged. Recall the interpretation of the elements of the algebra supplied
by (39), in particular that W (V1) = exp[−i{V1, V q}], and also note that
1
4π

∫
V+(l) · V1(−∞, l) d2l = −{V1, V+}. Therefore, the rhs of (47) should

be interpreted as exp[−i{V1, V q + V+}], which means that this transformation
adds a classical constant function V+(l) to Vq(s, l). As discussed in concluding
paragraphs of Sect. 7, this addition is naturally interpreted as the asymptote of
the Lorenz potential of the Coulomb field of some classical external, charge-free
current added by this transformation. Such addition does not change the quantum
field Ψ (g1).

3. The action of the Coulomb part UCoul(V+) transforms Ψ (g1), while leaving
W (V1) unchanged. To interpret this transformation we choose any free Lorenz
potential asymptote V (s, l) (thus V (+∞, l) = 0) such that V̇ (s, l) is even in s,
and V (−∞, l) = V+(l). This asymptote defines an even potential A(x) accord-
ing to (7). The scaled function Vλ(s, l) = V (s/λ, l), λ > 0, produces the scaled
potential Aλ(x) = λ−1A(x/λ), which for λ → ∞ gives the electromagnetic
field with energy content tending to zero, but with unchanged spacelike tail.
The operator W (Vλ) creates this electromagnetic field as discussed after (43).
Using the algebraic relations (40) and (41), one finds that the transformation of
Ψ (g1) induced by W (Vλ) is identical with that induced by UCoul(V+), while
W (Vλ)W (V1)W (Vλ)

∗ = exp[−i{Vλ, V1}]W (V1). Integrating by parts, we obtain

{Vλ, V1} = − 1

4π

∫
V+(l) · V1(−∞, l) d2l − 1

2π

∫
V (s/λ, l) · V̇1(s, l) dsd2l,

which vanishes in the limit λ → ∞, as V (0, l) = V+(l)/2 due to evenness of
V̇ (s, l). Now, the operators W (Vλ) do not converge in this limit, but the transfor-
mation induced by them on the basic variables agrees in the limit with that induced
by U (V+), which is therefore interpreted as the infrared limit transformation.

4. The above discussion shows that the variables at spacelike infinity have a kind of
duality structure: the Coulomb tail variables are conjugate to the infrared free tail
variables.

14 Scattering

The constructions started at the beginning of Sect. 6 and further developed up to now
refer to the causal future—outgoing fields. Similar constructions of the asymptotic
algebra and its representation may be performed for causal past— incoming fields.
Smearing functions g in Dirac fieldsΨ in(g) are then as in outgoing elementsΨ out(g).
A slight modification occurs for electromagnetic fields. Recall that the smearing test
functions in W out(V ) are free field future null asymptotes V (s, l) vanishing for s →
+∞. Recall, also, that the past null asymptote of this field is then given by V ′(s, l)
related to V (s, l) by (12). Therefore, we take as test functions for ‘in’ case these past
asymptotes:W in(V ′). The mappingΨ in(g) → Ψ out(g),W in(V ′) → W out(V ) is then
a canonical isomorphism of the two algebras. If a complete theory could indeed be
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developed along the lines sketched here, then there should exist the scattering operator
S in the representation space such that on the level of representations W out(V ) =
S∗W in(V ′)S, Ψ out(g) = S∗Ψ in(g)S.18 By an appropriate limit described in the last
section, one obtains the long-range variables U in(V+) and U out(V+), which are thus
also related by this adjoint transformation. However, in fact the variables at spacelike
infinity are conserved, so U in = U out ≡ U . Therefore, one obtains

[U (V+), S] = 0.

This is convergent with an observation made by the authors of [24].

15 Concluding remarks

The problem of understanding, from fundamental point of view, the long-range—
infrared structure of quantum electrodynamics is still open. There are many ideas how
to approach its solution, some of them mentioned above. The persistent resistance of
the field to be fully understood provokes radical attempts, including a recent proposal
[7] to deny the spacelike infinity quantities an experimentally accessible status.

This article summarizes a proposal going in the opposite direction (as compared to
[7]). The scheme summarized above goes outside the strict local paradigm and admits
into the theory some nonlocal observables at spacelike infinity. Whether it may be
developed further to become indeed the asymptotic description of interacting theory
is still to be seen. The scheme seems to be a rather direct quantization of the classical
causal asymptotic structure, if free charged particles are to carry their Coulomb fields,
not extended by some ‘clouds’—a theoretical construct, rather not having experi-
mental motivation. As we have seen, the scheme necessarily leads outside traditional
structures of popular quantum field theory, like Fock space, and needs a substantial
mathematical care in defining and handling quantum variables. The scheme has been
further developed in other directions, including spacetime localization properties and
scattering with classical currents [21,22].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Invariance of the integral (1)

Let the function f (k) be homogeneous of degree −2. We note that the integral on the
rhs of (1) may be written as

It = 2
∫

f (k) δ(k2) δ(t · k − 1) d4k.

18 In a slightly different language—with test functions localized in spacetime—this was discussed in [21].
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As the Dirac distribution δ(k2) is also homogeneous of degree −2, we have

∂ · [
k f (k) δ(k2)

] = 0

outside any neighborhood of k = 0. Thus, using the Gauss theorem we obtain for
vectors t , t ′ (θ is the Heaviside step function):

0 = 2
∫

∂ ·
{
k f (k) δ(k2)

[
θ(t · k − 1) − θ(t ′ · k − 1)

]}
d4k = It − It ′ ,

which shows that It in fact does not depend on t (note that the expression in braces
has a compact support outside zero, so there are no boundary terms).

In fact, as mentioned in a footnote in Sect. 2, the invariance of the integral is much
larger. Let ρ(k) be a homogeneous function of degree +1, such that ρ(k) = 1 is a
Cauchy surface cutting the forward lightcone (any such surface can be defined in this
way in the neighborhood of the lightcone). Replacing in the last equation t ′ ·k by ρ(k),
one shows that It is also equal to

Iρ = 2
∫

f (k) δ(k2) δ(ρ(k) − 1) d4k.

Appendix B: Variables R, s, l

Let B(x) be any differentiable field on Minkowski space. We choose a unit, future-
pointing timelike vector t , and for R ≥ 0, s ∈ R and l ∈ C+ write

x = st

t · l + Rl, B(x) = b(R, s, l).

Then b has the following scaling property: b(R/λ, λs, λl) = b(R, s, l), λ > 0.
In particular:

if b(R, s, l) =
N∑

n=K

b(n)(s, l)

Rn
+ o(R−N ), then b(n)(λs, λl) = λ−nb(n)(s, l).

Differentiation: as the R-dependence of b(R, s, l) is determined by the s, l-
dependence and the scaling property, it is sufficient to apply ∂s ≡ ∂/∂s and Lab.
We find

∂sb(R, s, l) = t

t · l · ∂B(x), Labb(R, s, l) = R
(
la∂bB(x) − lb∂a B(x)

)
.

Contracting the second equality with ta and using the first equality, one finds

∂bB(x) = lbḃ(R, s, l) + ta

R t · l Labb(R, s, l), (49)

where ḃ ≡ ∂sb.
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Appendix C: Uncharged functions Va(l)

We consider here the linear space of real, smooth vector functions V (l) on C+ with
the following properties:

V (λl) = λ−1V (l), l · V (l) = 0, L [abVc](l) = 0. (50)

For each function in this class, there exists a smooth function Φ(l) homogeneous of
degree 0, such that

LabΦ(l) = laVb(l) − lbVa(l). (51)

Conversely, for each smooth homogeneous function Φ(l) the relation (51) holds with
some V . The correspondence V ↔ Φ is not quite unique, namely:

1. given V , the function Φ is determined up to the addition of a constant;
2. given Φ, the function V is determined up to the following addition, referred in the

following as a gauge transformation: V (l) → V (l)+ lα(l). To obtain Vb given Φ,
one may extend Φ(l) into the neighborhood of the cone respecting homogeneity,
differentiate ∂Φ(l)/∂lb, and then again restrict the result to the cone. Different
extensions yield functions differing by a gauge transformation.

However, for a given function V there does exist a specific choice of the functionΦ,
denoted in the following ΦV , satisfying the above structure and making the mapping
V �→ ΦV unique, namely:

ΦV (l) = 1

4π

∫
l · V (l ′)
l · l ′ d2l ′. (52)

Gauge transformations of V induce then addition of constants to ΦV by:

V (l) → V (l) + lα(l) �⇒ ΦV (l) → ΦV (l) + 1

4π

∫
α(l ′) d2l ′.

Note that not every gauge transformation changes ΦV , depending on the value of the
integral in the last formula. For later use, we note the following identity: if ΦV (l) is
defined by (52), then for each t :

∫
ΦV (l)

(t · l)2 d
2l =

∫
t · V (l)

t · l d2l. (53)

The space of functions V (l) may be equipped with the scalar product

(V1, V2)I R = −
∫

(V1 · V2)(l) d2l.

This product is strictly positive definite on the space of equivalence classes of functions
V up to gauge transformations. This space may be completed to a real Hilbert space,
which we denote HI R (see [19]). In the rest of this section we prove the following
new result needed in the main text.

123



1468 A. Herdegen

Proposition 1 Functions of the form Vρ(l) =
∫

v ρ(v)

v · l dμ(v), where ρ runs over

the space of smooth, compactly supported functions on the unit future hyperboloid,
such that

∫
ρ(v) dμ(v) = 0, form a dense subspace ofHI R.

Proof Functions Vρ are smooth, and all the assumptions (50) are straightforwardly
checked. Let V ∈ HI R be orthogonal to all functions in this class. We have to show
that then V = 0. The assumption may be written as

∫ { ∫
v · V (l)

v · l d2l

}
ρ(v) dμ(v) = 0

for each ρ. The integral in braces is a continuous function in v, thus it follows from
this equation that it is a constant function. Choosing a fixed vector t , one can write
this as ∫

V (l) ·
(

v

v · l − t

t · l
)

d2l = 0. (54)

For all V in the Hilbert space HI R , there exists Φ satisfying relation (51) (see [19],
Appendix). Moreover, for smooth V1 one has then (V, V1)I R = ∫

Φ(l) ∂ · V1(l) d2l.
Hence, Eq. (54) has an equivalent form

∫
Φ(l)

(
1

(v · l)2 − 1

(t · l)2
)

d2l = 0.

Using the freedom of adding a constant to Φ, one can assume without restricting
generality that

∫
Φ(l)/(t · l)2 d2l = 0. For all x = √

x2v in the forward lightcone we
now have

1

2π

∫
Φ(l)

(x · l)2 d2l = 0.

Now, the lhs is the integral representation (7) of a solution C(x) of the wave equation
inside the future lightcone; for y inside the cone this solution has the asymptote
limR→∞ RC(y + Rl) = Φ(l)/(y · l). Therefore, Φ = 0, and consequently also
V = 0. ��

Appendix D: An identity

Herewe prove an identity showing the equivalence, at the classical level, of a generator
postulated by the authors of [24] to the expression in the exponent of our definition (45).

Let the future null asymptote of the total electromagnetic field Fab(x) be given by
(20). Then one shows that19

lim
R→∞ R (x + Rl)a Fab(x + Rl) = Zb(x · l, l),
Zb(s, l) = LbaV

a(s, l) − Vb(s, l) + sV̇b(s, l).

19 This follows directly from the spinor formula (2.44) in [18].
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We contract the limit relation with tb and set x = st/t · l. This gives

t · Z(s, l) = lim
R→∞ R2latbFab

( st

t · l + Rl
)
.

We choose a homogeneous function ε+(l) and form the integral

Qε+ = 1

4π

∫
ε+(l) t · Z(−∞, l)

t · l d2l, (55)

which is the definition put forward by the authors of [24] as the generator of LGT. The
following identity is proved by a straightforward calculation

Lab

[
ε+(l)

taV b(−∞, l)

t · l
]

= Q

[
ε+(l)

(t · l)2 − t · V+(l)

t · l
]

+V+(l) · V (−∞, l) + ε+(l)
ta

t · l
[
LabV

b(−∞, l) − Va(−∞, l)
]
,

where Q = l · V (−∞, l) and V+ is related to ε+(l) as described in Sect. 7; note that
the last term in this identity is equal to the integrand of (55). Integrating this identity
with d2l, one finds

Qε+ = − 1

4π

∫
V+(l) · V (−∞, l) d2l

(the lhs of the identity is annihilated under integration by (2), and the term proportional
to Q falls out by the analogue of (53)). The latter form of Qε+ has the advantage of
being manifestly Lorentz invariant, and it appears in the exponent of our U (V+),
Eq. (45).
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