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Abstract The notion of integrability will often extend from systems with scalar-
valued fields to systems with algebra-valued fields. In such extensions the properties
of, and structures on, the algebra play a central role in ensuring integrability is pre-
served. In this paper, a new theory of Frobenius algebra-valued integrable systems is
developed. This is achieved for systems derived from Frobenius manifolds by utilizing
the theory of tensor products for such manifolds, as developed by Kaufmann (IntMath
Res Not 19:929–952, 1996), Kontsevich and Manin (Inv Math 124: 313–339, 1996).
By specializing this construction, using a fixed Frobenius algebraA, one can arrive at
such a theory. More generally, one can apply the same idea to construct an A-valued
topological quantum field theory. The Hamiltonian properties of two classes of inte-
grable evolution equations are then studied: dispersionless and dispersive evolution
equations. Application of these ideas are discussed, and as an example, an A-valued
modified Camassa–Holm equation is constructed.
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1 Introduction

Of the many ways to generalize the Korteweg–de Vries equation ut = uxxx + 6uux ,
the one that will be of most relevance to this paper is the matrix generalization (see,
for example [3,4])

Ut = Uxxx + 3UUx + 3UxU , (1.1)

where the two first-derivative terms are required due to the non-commutativity of
matrix multiplication. If one restricts such an equation to the space of commuting
matrices, one arrives at the equation Ut = Uxxx + 6UUx which is identical in form
to the original KdV equation but with a matrix-valued, as opposed to a scalar-valued,
field (see, for example [15,23,26]). The purpose of this paper is to constructA-valued,
where A is a Frobenius algebra, generalizations of integrable systems, starting with
those associated to an underlying Frobenius manifold and related dispersionless hier-
archies, and extending the ideas to topological quantum field theories and dispersive
hierarchies.

The structure of this paper may be summarized in the following diagram:

{ A − valued
Frobenius manifold (§2)

}
−→

{A − valued
TQFT (§3)

}

⏐⏐�
{A − valued bi − Hamiltonian

dispersionless systems (§4)

}
−→

{A − valued bi − Hamiltonian
dispersive systems (§5)

}
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The full reconstruction of a dispersive hierarchy (the missing vertical arrow in the
above diagram) remains an open problem, even before one considers A-valued sys-
tems.

The starting point (Sect. 2) for the study of such A-valued hierarchies is the
classical construction of Dubrovin [5] which associates to a Frobenius manifold a
bi-Hamiltonian hierarchy of hydrodynamic type. By constructing the tensor product
[13,14] of such a manifold with a trivial Frobenius manifold (i.e., a fixed algebra), one
automatically obtains a new Frobenius manifold and hence a bi-Hamiltonian hierar-
chy. The component fields of this new hierarchy can then be reassembled to form an
A-valued hierarchy. The important feature of this construction is a simple, explicit,
form of the new prepotential that defines the A-valued hierarchies.

More explicitly, given a Frobenius algebraA with basis ei , i = 1, . . . , n, one can
replace the flat coordinates of a Frobenius manifold M with A-valued fields via the
map

ˆ : tα �→ t̂α = t (αi)ei , α = 1, . . . , m, i = 1, . . . , n

and this action can be extended to functions, at least in the case of analytic Frobenius
manifolds (and to wider classes of functions—see the ”Appendix”). Conversely, an
A-valued field can be reduced to a scalar field via the Frobenius form (or trace form)
ω. This construction is described in Sect. 2. The main result is the following:

MainTheorem 1 (Theorem 2.9) Let F be the prepotential of a Frobenius manifold
M and let A be a trivial Frobenius algebra with 1-form ω. The function

FA = ω
(
F̂
)

defines a Frobenius manifold, namely the manifold M ⊗ A.

Normally the prepotential of a tensor product of Frobenius manifolds bears little
resemblance to the underlying prepotentials and in any case is only defined implicitly
from the original prepotentials. Howeverwhen one of themanifolds is trivial, the above
closed form of the new prepotential exists and this enables the resulting hierarchies to
be constructed explicitly.

In Sect. 3, we extend these ideas to a full topological quantum field theory on the
big phase space M∞, i.e., with gravitational descendent fields and with String and
Dilaton vectors fields S and D, respectively.

MainTheorem 2 (Theorem 3.2) Let Fg≥0 be the prepotentials defining a TQFT, S
andD the corresponding String and Dilaton vector fields andA be a trivial Frobenius
algebra. Let f be an analytic function onM∞ and define theA-valued function f̂ to
be:

f̂ = f |
tαN �→t (αi)N ei

, N ∈ Z≥0, α = 1, . . . , m, i = 1, . . . , n.

Then the functions

FA
g≥0 = ω

(F̂g≥0
)
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1000 I. A. B. Strachan, D. Zuo

and vector fields

SA = −
∑
N ,(αi)

t̃ (αi)N τN−1,(αi), DA = −
∑
N ,(αi)

t̃ (αi)N τN ,(αi),

where t̃ (αi)N = t (αi)N − δN ,1δα,1δi,1, satisfy the axioms of a topological quantum field
theory.

In the remaining sections, a theory ofA-valued integrable systems is developed, first
for dispersionless systems and then for certain dispersive systems.More specifically, in
Sect. 4 the construction of theA-valued dispersionless (or hydrodynamic) hierarchies
is given. The deformed flat coordinates can be described very simply, and these form
the Hamiltonian densities for the new evolution equations. By reassembling the fields,
these equations can be written as A-valued evolution equations. To write these in
Hamiltonian form requires the definition of a functional derivative with respect to an
A-valued field, and such a derivative was defined in [19] and with this one can write
the flow equations as A-valued bi-Hamiltonian evolution equations. These ideas are
then extended to the dispersive case in Sect. 5.

2 Frobenius manifolds and their tensor products

2.1 Frobenius algebras and manifolds

We begin with the definition of a Frobenius algebra [5].

Definition 2.1 A Frobenius algebra {A, ◦, e, ω} over R satisfies the following condi-
tions:

(i) ◦ : A × A → A is a commutative, associative algebra with unity e;
(ii) ω ∈ A� defines a non-degenerate inner product 〈a, b〉 = ω(a ◦ b).

Sinceω(a) = 〈e, a〉 the inner product determines the formω andvisa-versa.This linear
form ω is often called a trace form (or Frobenius form). One-dimensional Frobenius
algebras are trivial: the requirement of an identity and the non-degeneracy of the inner
product determines the algebra uniquely and the inner product up to a nonzero constant.
Two-dimensional Frobenius algebra is easily classified: the requirement of an identity
means there is only one non-trivial multiplication and the associativity condition is
automatically satisfied in two-dimensions.

Example 2.2 Let A be a two-dimensional commutative and associative algebra with
a basis e = e1, e2 satisfying

e1 ◦ e1 = e1, e1 ◦ e2 = e2, e2 ◦ e2 = εe1 + μe2, ε, μ ∈ R. (2.1)

Obviously, the algebra A has a matrix representation as follows

e1 �→ I2 =
(
1 0
0 1

)
, e2 �→

(
0 ε

1 μ

)
.
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It is easy to show that:

(1) if μ2 = −4ε, A is nonsemisimple, i.e., ∃ ẽ = μe1 − 2e2 such that ẽ ◦ ẽ = 0;
(2) if μ2 �= −4ε, thenA is semisimple, i.e., for any nonzero element ẽ = xe1 + ye2,

ẽ ◦ ẽ �= 0.

Furthermore, we introduce two “basic” trace-type forms for a = a1e1 + a2e2 ∈ A as
follows

ωk(a) = ak + a2(1 − δk,2)δε,0, k = 1, 2, (2.2)

which induce two non-degenerate inner products on A given by

〈a, b〉k := ωk(a ◦ b), a, b ∈ A, k = 1, 2. (2.3)

The two Frobenius algebras {A, ◦, e, ωk} will be denoted by Zε,μ
2,k for k = 1, 2.

Example 2.3 Let A be an n-dimensional nonsemisimple commutative associative
algebra Zn over R with a unity e and a basis e1 = e, . . . , en satisfying

ei ◦ e j =
{
ei+ j−1, i + j ≤ n + 1,
0, i + j = n + 2.

(2.4)

Taking � = (δi, j+1) ∈ gl(m, R), one obtains a matrix representation of A as

e j �→ � j−1, j = 1, . . . , n.

Similarly, for any a =
n∑

k=1

akek ∈ A, we introduce n trace-type forms, called “basic”

trace-type forms, as follows

ωk−1(a) = ak + an(1 − δk,n), k = 1, . . . , n. (2.5)

Every trace map ωk induces a non-degenerate symmetric bilinear form onA given by

〈a, b〉k := ωk(a ◦ b), a, b ∈ A, k = 0, . . . , n − 1. (2.6)

Thus, all of {A, ◦, e, ωk−1} are nonsemisimple Frobenius algebras, denoted byZn,k−1
for k = 1, . . . , n. We remark that if we consider a linear combination of n “basic”
trace-type forms as

trn :=
n−1∑
s=0

ωs − (n − 1) ωn−1,
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1002 I. A. B. Strachan, D. Zuo

then {A, ◦, e, trn} is also a Frobenius algebra which is exactly the algebra {Zn, trn}
used in [26]1.

A Frobenius manifold has such a structure on each tangent space.

Definition 2.4 [5] The set {M, ◦, e, 〈 , 〉, E} is a Frobenius manifold if each tangent
space TtM carries a smoothly varying Frobenius algebra with the properties:

(i) 〈 , 〉 is a flat metric on M;
(ii) ∇e = 0, where ∇ is the Levi-Civita connection of 〈, 〉;
(iii) the tensors c(u, v, w) := 〈u ◦ v,w〉 and ∇zc(u, v, w) are totally symmetric;
(iv) A vector field E exists, linear in the flat variables, such that the corresponding

group of diffeomorphisms acts by conformal transformation on the metric and
by rescalings on the algebra on TtM.

These axioms imply the existence of the prepotential F which satisfies the WDVV-
equations of associativity in the flat coordinates of the metric (strictly speaking only a
complex, non-degenerate bilinear form) onM. The multiplication is then defined by
the third derivatives of the prepotential:

∂

∂tα
◦ ∂

∂tβ
= c γ

αβ (t)
∂

∂tγ

where

cαβγ = ∂3F

∂tα∂tβ∂tγ

and indices are raised and lowered using the metric ηαβ = 〈 ∂

∂tα
,

∂

∂tβ
〉.

Example 2.5 Suppose c k
i j are the structure constants for the Frobenius algebra A,

so ei ◦ e j = c k
i j ek and ηi j = 〈ei , e j 〉. For such an algebra, one obtains a cubic

prepotential

F = 1

6
ci jk t

i t j t k,

= 1

6
ω(t ◦ t ◦ t), t = t i ei .

The Euler vector field takes the form E =
∑

i
t i

∂

∂t i
and E(F) = 3F. The notation

A will be used for both the algebra and the corresponding manifold.

Motivated by the classical Künneth formula in cohomology, Kaufmann, Kontsevich
andManin [13,14] constructed the tensor product of two Frobenius manifoldsM′ and

1 It was the realization that the matrix algebra used in this paper was a specific example of a Frobenius
algebra that led to the development of the current paper.
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M′′, denotedM′ ⊗M′′. The following formulation of this construction is taken from
[6]. This formulation also gives criteria to check if a particular manifold is the tensor

product of two more basic manifolds. For simplicity, we use the notation ∂α = ∂

∂tα

and ∂αβ = ∂

∂t (αβ)
.

Proposition 2.6 Let M′ and M′′ be two Frobenius manifolds of dimension n′ and
n′′. A Frobenius manifoldM of dimension n′n′′ is the tensor productM = M′ ⊗M′′
if the following conditions hold:

(i) {TM, 〈, 〉, e} = {TM′ ⊗ TM′′, 〈, 〉′ ⊗ 〈, 〉′′, e′ ⊗ e′′}. Flat coordinates are
labeled by pairs t (α

′α′′), α′ = 1, . . . , n′, α′′ = 1, . . . , n′′, and the unity vector
field is

e = ∂

∂t (11)

and the metric 〈, 〉 has the form

η(α′α′′)(β ′β ′′) = ηα′β ′ ηα′′β ′′ .

(ii) At a point t (α
′α′′) = 0, α′ > 1, α′′ > 1 the algebra TtM is a tensor product

TtM = Tt ′M′ ⊗ Tt ′′M′′,

that is:

c (γ ′γ ′′)
(α′α′′)(β ′β ′′) (t) = c γ ′

α′β ′ (t ′) c γ ′′
α′′β ′′ (t ′′).

(iii) If the Euler vector fields of the two manifoldsM and M′′ take the form

E ′ =
∑
α′

[
(1 − qα′)tα

′ + rα′
]
∂α′ ,

E ′′ =
∑
α′′

[
(1 − qα′′)tα

′′ + rα′′
]
∂α′′ ,

with scaling dimensions d ′ and d ′′, respectively, then the Euler vector field on
M takes the form

E =
∑
α′,α′′

(1 − qα′ − qα′′)∂(α′α′′) +
∑
α′

rα′∂α′1′′ +
∑
α′′

rα′′∂1′α′′

and d = d ′ + d ′′.

Such products describe the quantum cohomology of a product of varieties, and within
singularity theory it appears when one takes the direct sum of singularities.
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2.2 Tensor products with trivial algebras

We now take the tensor product of a Frobenius manifoldM with a trivial manifoldA
defined by a Frobenius algebra (Example 2.5). To emphasize the different roles played
byM andA, we alter the general notation for tensor products as described above. The
tensor product will be written asMA, (soMA = M⊗A). The basis ei forAwill be
retained and the unity element denoted by e1. Thus, notation such as e = ∂1 will not
be used. Latin indices will be reserved forA-related objects, and Greek indices will be
reserved for M-related objects. Thus, c γ

αβ will denote the structure functions for the

multiplication onM and c k
i j will denote the structure constants for the multiplication

on A. Coordinates on MA are denoted

{t (αi), α = 1, . . . , m = dimM, i = 1, . . . , n = dimA}.

No confusion should arise with this notation.
We begin by constructing a lift of a scalar-valued function to anA-valued function

and visa-versa.

Definition 2.7 Let f be an analytic function on M (that is, analytic in the flat coor-
dinates for M). The A-valued function f̂ is defined to be:

f̂ = f |tα �→t (αi)ei

with f̂ g = f̂ ◦ ĝ and 1̂ = e1. The evaluation f A of f̂ is defined by

f A = ω
(
f̂
)

,

where ω ∈ A�.

Since the function is analytic and the algebra A is commutative and associative, the
above construction is well-defined.

Remark 2.8 This definition requires the existence of a distinguished coordinate system
onM in which the function f is analytic. In the case of analytic Frobenius manifolds,
one automatically has such a distinguished system of coordinates, namely the flat
coordinates of the metric.

With these definitions one may construct a new prepotential from the original one.

Theorem 2.9 Let F be the prepotential of a Frobenius manifold M and let A be a
Frobenius algebra with 1-form ω. The function

FA = ω
(
F̂
)

defines a Frobenius manifold, namely the manifold MA.
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Note, one could ‘straighten out’ the coordinates t (αi) via the map

vi+(α−1)n = t (αi), 1 ≤ i ≤ n, 1 ≤ α ≤ m,

and hence FA = FA(v1, . . . , vmn). However, such a map is not unique and the tensor
structure is lost.

Proof The proof is in two parts: we first show that the prepotential FA defines a
Frobenius manifold and then identify this with the tensor product M ⊗ A.

By construction, we have an nm-dimensional manifold with coordinates t (αi), α =
1, . . . , m = dimM, i = 1, . . . , n = dimA. We begin with two simple results:

• Because ηi j = ω(ei ◦ e j ) it follows, since by definition, (ηi j ) = (ηi j )
−1, that

ω(ei ◦ er )η
rsω(es ◦ e j ) = ω(ei ◦ e j ).

More generally, using the properties of the multiplication on A,

ω(. . . ◦ ei ◦ er )η
rsω(es ◦ e j ◦ . . .) = ω(. . . ◦ ei ◦ e j ◦ . . .). (2.7)

• The fundamental result that will be used extensively in the rest of the paper is the
following:

∂ f̂

∂t (αi)
= ∂̂ f

∂tα
◦ ei . (2.8)

We introduce the notation f̂ = [ f̂ ]pep, so

∂ f̂

∂t (αi)
=
[

∂̂ f

∂tα

]p

ep ◦ ei .

This will be used to separate out the A-valued part of various expressions.

With these,

∂3 F̂

∂t (αi)∂t (β j)∂t (γ k)
=

̂
(

∂3F

∂tα∂tβ∂tγ

)
◦ ei ◦ e j ◦ ek,

so

∂3FA

∂t (αi)∂t (β j)∂t (γ k)
= ω

(
ĉαβγ ◦ ei ◦ e j ◦ ek

)
,

= [
ĉαβγ

]p
ω(ep ◦ ei ◦ e j ◦ ek),

= c(αi)(β j)(γ k).

123
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Normalization
We define η(αi)(β j) by

η(αi)(β j) = c(11)(αi)(β j),

= ω
(̂
c1αβ ◦ e1 ◦ ei ◦ e j

)
,

= ηαβ ηi j

since ĉ1αβ = η̂αβ = ηαβe1, and e1 is the unity for the multiplication on A.

This is non-degenerate (since by assumption ηαβ and ηi j are non-degenerate) and
this will be taken to be the metric and used to raise and lower indices. In particular,
η(αi)(β j) = ηαβ ηi j .

Associativity
Using the metric to raise an index, one obtains

c (γ k)
(αi)(β j) =

[
ĉ γ
αβ

]p
c q
i j c

k
pq (2.9)

and this defines a multiplication on MA. The structure of this multiplication may be
made more transparent if one writes the basis for TMA as a tensor product:

∂

∂t (αi)
= ∂α ⊗ ei .

With this, the multiplication may be written as:

(∂α ⊗ ei ) ◦ (∂β ⊗ e j
) =

[
∂̂α ◦ ∂β

]p ⊗ ep ◦ ei ◦ e j ,

where f̂ ∂α = [ f̂ ]p∂α ⊗ ep, and hence
[̂
f ∂α

]p = [ f̂ ]p∂α. By construction, this

multiplication defines a commutative multiplication with unity e = ∂

∂t (11)
= ∂1 ⊗ e1.

To prove associativity, we first rewrite the equation that has to be satisfied by FA,
namely the WDVV equation:

∂3FA

∂t (γ k) ∂t (σ s) ∂t (αi)
η(αi)(β j) ∂3FA

∂t (β j) ∂t (δp) ∂t (μq)

= ∂3FA

∂t (μq) ∂t (σ s) ∂t (αi)
η(αi)(β j) ∂3FA

∂t (β j) ∂t (δp) ∂t (γ k)
.

This is equivalent to

[
ĉγ σα

]a
ω(ea ◦ ek ◦ es ◦ ei )η

αβηi jω(e j ◦ ep ◦ eq ◦ eb)
[
ĉβδμ

]b
= [

ĉμσα

]a
ω(ea ◦ eq ◦ es ◦ ei )η

αβηi jω(e j ◦ ep ◦ ek ◦ eb)
[
ĉβδγ

]b
,
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Frobenius manifolds and Frobenius algebra-valued... 1007

which becomes, on using Eq. (2.7),

[
ĉγ σα

]a
ηαβω(ea ◦ ek ◦ es ◦ ep ◦ eq ◦ eb)

[
ĉβδμ

]b
= [

ĉμσα

]a
ηαβω(ea ◦ eq ◦ es ◦ ep ◦ ek ◦ eb)

[
ĉβδγ

]b
. (2.10)

Since the prepotential F for the Frobenius manifoldM satisfies the WDVV equation

∂3F

∂tγ ∂tσ ∂tα
ηαβ ∂3F

∂tβ ∂tδ ∂tμ
= ∂3F

∂tμ ∂tσ ∂tα
ηαβ ∂3F

∂tβ ∂tδ ∂tγ
,

it follows that

̂∂3F

∂tγ ∂tσ ∂tα
◦ η̂αβ ◦

̂∂3F

∂tβ ∂tδ ∂tμ
=

̂∂3F

∂tμ ∂tσ ∂tα
◦ η̂αβ ◦

̂∂3F

∂tβ ∂tδ ∂tγ
,

where η̂αβ = ηαβ e1. This reduces to

[
ĉγ σα

]a
ηαβea ◦ eb

[
ĉβδμ

]b = [
ĉμσα

]
ηαβea ◦ eb

[
ĉβδγ

]b
. (2.11)

Thus we have, by multiplying by eq ◦ es ◦ ep ◦ ek ,

[
ĉγ σα

]a
ηαβea ◦ ek ◦ es ◦ ep ◦ eq ◦ eb

[
ĉβδμ

]b
= [

ĉμσα

]a
ηαβea ◦ eq ◦ es ◦ ep ◦ ek ◦ eb

[
ĉβδγ

]b
,

and evaluating the function with ω, gives the identity (2.10). Hence FA satisfies the
WDVV equation in the flat coordinates of the metric η(αi)(β j).

Quasi-homogeneity
This follows immediately from the definition of FA, but one can also derive the

result by direct computation. The quasi-homogeneity of F is expressed by the equation

∑
α

[
(1 − qα)tα + rα

] ∂F

∂tα
= (3 − d)F

where quadratic terms will be ignored. On lifting this and using the evaluation map
defined by ω, one obtains

∑
(αi)

(1 − qα)t (αi)ω

((̂
∂F

∂tα

)
◦ ei

)
+
∑
α

rαω

(
∂̂F

∂tα

)
= (3 − d)FA.

Using (2.8) yields the result EA (
FA) = (3 − d)FA (again, up to quadratic terms)

where

EA =
∑
(αi)

(1 − qα)t (αi)
∂

∂t (αi)
+
∑
α

rα
∂

∂t (α1)
.
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1008 I. A. B. Strachan, D. Zuo

These show that FA defines a Frobenius manifold. It remains to show that this is the
tensor product M ⊗ A. In fact this is straightforward. Parts (i) and (iii) of Propo-
sition 2.6 are immediate from above (since for the trivial Frobenius manifold A,
qi = ri = d = 0), so it just remains to verify condition (ii). Since c γ

αβ is independent

of t1 it follows that at points t (αi) = 0, α > 1, i > 1 that
̂
c γ
αβ = c γ

αβ

(
t (σ1)

)
e1 and

the result follows from Eq. (2.9).
Hence, the prepotential FA = ω(F̂) defines the Frobenius manifold structure on

the tensor productMA = M⊗A. If the multiplications onM andA are semisimple,
then the multiplication on MA is also semisimple [13,14]. ��
Remark 2.10 Note the existence of such a prepotential FA for such a tensor product
follows from the original work of Kaufmann, Kontsevich and Manin. However, the
explicit form for such an FA is not immediate from their construction. The above
result gives an explicit and easily computable prepotential in the case when one of the
manifolds is trivial.

Example 2.11 Let M be a one-dimensional Frobenius manifold

F(t1) = 1

6
(t1)3, e = ∂1, E = t1∂1,

soMA = A given in Example 2.5.

Example 2.12 Suppose A is a Frobenius algebra Zε,0
2,2 defined in Example 2.2. When

ε �= 0, A is semisimple. When ε = 0, A is nonsemisimple and exactly the algebra
Z2,2 given in Example 2.3. LetM be a two-dimensional Frobenius manifold with the
flat coordinate (t1, t2). We denote

t̂1 = v1e1 + v2e2, t̂2 = v3e1 + v4e2.

Case 1. M = C
2/W (A2), i.e.,

F(t) = 1

2
(t1)2t2 − 1

72
(t2)4, e = ∂

∂t1
, E = t1

∂

∂t1
+ 2

3
t2

∂

∂t2
.

The unity vector field and the Euler vector field ofMA are given by, respectively,

e = ∂

∂v1
, EA = v1

∂

∂v1
+ v2

∂

∂v2
+ 2

3
v3

∂

∂v3
+ 2

3
v4

∂

∂v4

and the potential ofMA is given by

FA(v) = 1

2
(v1)2v4 + v1v2v3 − 1

18
(v3)3v4 + ε

(
1

2
(v2)2v4 − 1

18
v3(v4)3

)
.

We remark that when ε �= 0, MA is a polynomial semisimple Frobenius manifold.
By a result of Hertling [11], the manifold MA decomposes into a direct product
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MA2×MA2 of two A2-Frobeniusmanifolds. The algebraA can be seen as controlling
this decomposition.

Case 2. M = QH∗(CP1), i.e.,

F(t) = 1

2
(t1)2t2 + et

2
, e = ∂

∂t1
, E = t1

∂

∂t1
+ 2

∂

∂t2
.

The unity vector field and the Euler vector field ofMA are given by, respectively,

e = ∂

∂v1
, EA = v1

∂

∂v1
+ v2

∂

∂v2
+ 2

∂

∂v3
+ 2

∂

∂v4

and the potential ofMA is given by

FA(v) =

⎧⎪⎨
⎪⎩

1

2
(v1)2v4 + v1v2v3 + ε(v2)2v4 + sinh(

√
εv4)√

ε
ev3 , ε �= 0,

1

2
(v1)2v4 + v1v2v3 + v4 ev3 , ε = 0.

3 A-valued topological quantum field theories

The ideas developed in the last section may be applied to the construction of A-
valued topological quantum fields Theories on a suitably defined big phase space (i.e.,
with gravitational descendent fields). In fact, one could have started with this larger
construction and obtained the results of the last section by restriction to the small phase
space. Conversely, the reconstruction theorems which give big phase space structures
from Frobenius manifold structures could be used to construct theseA-valued TQFTs
from the Frobenius manifold MA.

3.1 Background

A topological quantum field theory (or TQFT) is defined in terms of properties of
certain correlators which are themselves defined in terms of prepotential Fg≥0. For
example, consider a smooth projective variety V with Hodd(V ; C) = 0, {γ1, . . . , γN }
a basis for the cohomology ring M := H∗(V ; C) and let

ηαβ = η(γα, γβ) =
∫
V

γα ∪ γβ

be the Poincaré pairing which defines a non-degenerate metric which may be used
to raise and lower indices. Following the conventions of Liu and Tian [16,17], a flat
coordinate system {tα0 , α = 1, . . . , N } may be found on M so γα = ∂

∂tα0
, and in which

the components of η are constant.
The big phase space consists of an infinite number of copies of the M, the small

phase space, so
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1010 I. A. B. Strachan, D. Zuo

M∞ =
∏
n≥0

H∗(V ; C).

The coordinate system {tα0 } induces, in a canonical way, a coordinate system {tαn , n ∈
Z≥0, α = 1, . . . , N } on M∞. We denote by τn(γα) = ∂

∂tαn
(also abbreviated to τn,α )

the associated fundamental vector fields, which represent various tautological line
bundles over the moduli space of curves [16,17].

The descendant Gromov–Witten invariants

〈τn1(γa1) . . . τnk (γak )〉g
may be combined into generating functions, called prepotentials, labeled by the
genus g,

Fg =
∑
k≥0

1

k!
∑

n1,α1...nk ,αk

tα1n1 . . . tαknk 〈τn1(γα1) . . . τnk (γαk )〉g,

and these in turn may be used to define k-tensor fields on the big phase space, via the
formula

〈〈W1 . . .Wk〉〉g =
∑

m1,α1,...,mk ,αk

f 1m1,α1
· · · f kmk ,αk

∂kFg

∂tα1m1 . . . ∂tαkmk

, (3.1)

for any vector fields Wi = ∑
m,α f im,α

∂
∂tαm

. The tensor field (3.1) has a physical
interpretation as the k-point correlation function of the TQFT.

The basic relationships between these correlators may then be encapsulated in the
following:

Definition 3.1 Let t̃αn = tαn − δn,1δα,1 and let

S = −
∑
n,α

t̃αn τn−1(γα),

D = −
∑
n,α

t̃αn τn(γα)

be the string and dilaton vector fields, respectively. Then the prepotentials Fg satisfy
the following relations:

String equation

〈〈S〉〉g = 1

2
δg,0

∑
α,β

ηαβ t
α
0 t

β
0 ;

Dilaton equation

〈〈D〉〉g = (2g − 2)Fg − 1

24
χ(V )δg,1 ;
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Genus-zero topological recursion relation

〈〈τm+1(γα)τn(γβ)τk(γσ )〉〉0 = 〈〈τm(γα)γμ〉〉0〈〈γ μτn(γβ)τk(γσ )〉〉0 .

By restricting such theories to primary vector fields with coefficients in the small
phase space, one recovers a Frobenius manifold structure [5,6] on the small phase
space, with

F0(t
1
0 , . . . , t N0 ) = F0(t)|tαn =0, n>0

becoming the prepotential for the Frobenius manifold and multiplication given by

τ0,α ◦ τ0,β = 〈〈τ0,ατ0,βγ σ 〉〉0 |Mγσ .

3.2 A-TQFT

Given such a theory, one may extend the previous construction to obtain a new TQFT.
Again, the existence of such a result follows from various reconstruction theorems, but
explicit formulae may be obtained when one tensors by a constant Frobenius algebra.

Theorem 3.2 Let Fg≥0 be the prepotentials defining a TQFT, S and D the corre-
sponding String and Dilaton vector fields andA be a trivial Frobenius algebra. Let f
be an analytic function on M∞ (that is, analytic in the flat coordinates tαN for M∞)

and define the A-valued function f̂ to be:

f̂ = f |
tαN �→t (αi)N ei

, N ∈ Z≥0, α = 1, . . . ,m, i = 1, . . . , n. (3.2)

Then the functions

FA
g≥0 = ω

(F̂g≥0
)

and vector fields

SA = −
∑
N ,(αi)

t̃ (α,i)
N τN−1,(αi),

DA = −
∑
N ,(αi)

t̃ (α,i)
N τN ,(αi)

satisfy the axioms of a topological quantum field theory.

Proof Genus-zero topological recursion relation
By repeating the construction in Theorem 2.9 (essentially using (2.8)), one easily

obtains the equation

〈〈τM+1,(αi)τN ,(β j)τK ,(σk)〉〉0 = ω
(
〈〈τM+1,ατN ,βτK ,σ 〉〉̂

0
◦ ei ◦ e j ◦ ek

)
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(where we displace theˆsymbol for notational convenience, so f ˆ = f̂ ). On using the
topological recursion relation, this decomposes as

〈〈τM+1,(αi)τN ,(β j)τK ,(σk)〉〉0 = ημνω
(
〈〈τM,αγμ〉〉̂

0
◦ ei ◦ e j ◦ 〈〈γμτN ,βτK ,σ 〉〉̂

0
◦ ek

)

= ημνω
(
〈〈τM,αγμ〉〉̂

0
◦ ei ◦ er

)
ηrsω

(
es ◦ e j ◦ 〈〈γμτN ,βτK ,σ 〉〉̂

0
◦ ek

)

on using (2.7). Since

〈〈τM,(αi)γ(μr)〉〉0 = ω
(
〈〈τM,αγμ〉〉̂

0
◦ ei ◦ er

)
,

〈〈γ(μs)τN ,(β j)τK ,(σk)〉〉0 = ω
(
es ◦ 〈〈γμτN ,βτK ,σ 〉〉̂

0
◦ es ◦ e j ◦ ek

)
,

the result follows.

String equation
Again, on using (2.8) it follows that

〈〈SA〉〉g = −
∑

M,(αi)

t̃ (α,i)
M ω

[
∂̂Fg

∂tαM−1
◦ ei

]
,

= ω
(
〈〈S〉〉̂g

)
.

Since S satisfies the string equation,

〈〈SA〉〉g = 1

2
δg,0ω

⎡
⎣∑

α,β

ˆtα0 ◦ ˆ
tβ0

⎤
⎦ ,

= 1

2
δg,0

∑
(α,i),(β, j)

η(αi)(β j)t
(αi)
0 t (β j)0 ,

using the definition of the lifting map and the fundamental property ω(ei ◦ e j ) = ηi j .

Dilaton equation
Similarly, since D satisfies the Dilaton equation,

〈〈DA〉〉g = ω
(
〈〈D〉〉̂g

)
,

= (2g − 2)ω(F̂g) − 1

24
δg,1χ(V )ω(e1),

= (2g − 2)FA
g − 1

24
δg,1χ

A(V ),

where χA(V ) = χ(V )ω(e1). ��
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Remark 3.3 The above axioms do not include the big phase space counterpart to the
Euler vector field, but the same ideas may be applied if such a field exists on the
original TQFT.

The individual prepotentials may be combined into a single τ -function

τ(tαN ) = e
∑

h̄g−1Fg .

In the simplest case, when dimM = 1, this defines a specific solution of the KdV
hierarchy. The full connection between such τ -functions and corresponding integrable
hierarchies remains an important open problem.

Since each prepotentialFg lifts to prepotentialsFA
g , one may define a correspond-

ing τ -function

τA(tαN ) = e
∑

h̄g−1FA
g

and it is clear that τA = ω
[
τ̂
]
. It seems natural to conjecture that such a function

should define a solution to a corresponding A-valued dispersive integrable hierarchy.
However, this first requires the development of a theory of suchA-valued hierarchies.

3.3 The role of the Frobenius form ω

The Frobenius form ω plays a vital role in the above constructions; without it one only
has A-valued objects. However, one can dispense with it and deal directly with such
A-valued objects and derive relations satisfied by them. For example, using the lifting
map (3.2), one can define A-valued ‘correlators’:

〈〈τN ,(αi) . . . τM,(β j)〉〉Ag =
[

∂

∂tαN
. . .

∂

∂tβM
Fg

]̂
◦ ei ◦ . . . ◦ e j ,

= 〈〈τN ,α . . . τM,β〉〉̂g ◦ ei ◦ . . . ◦ e j .

It is straightforward to derive the following recursion relation:

� ◦ 〈〈τM+1,(αi)τN ,(β j)τK ,(σk)〉〉A0
= η(μr)(γ s)〈〈τM,(αi)τ0,(μr)〉〉A0 ◦ 〈〈τ0,(γ s)τN ,(β j)τK ,(σk)〉〉A0 ,

where � = ηrser ◦ es . If this element is invertible, then one can obtain a bona fide
A-valued recursion relation. We will not further develop such a theory here.

4 A-valued dispersionless integrable systems

It was shown by Dubrovin that, given a Frobenius manifold M, one can construct
an associated bi-Hamiltonian hierarchy of hydrodynamic type, known as the princi-
pal hierarchy, with the geometry of the manifold encoding the various components
required in its construction. This hierarchy may be written as
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∂tα

∂T (N ,σ )
= Pαβ

1
∂h(N ,σ )

∂tβ
,

= Pαβ
2

∂h(N−1,σ )

∂tβ

(4.1)

with (compatible) Hamiltonian operators

Pαβ
1 = ηαβ d

dX
, Pαβ

2 = gαβ d

dX
+ �αβ

γ tγX ,

where gαβ = cαβ
γ E

γ is the intersection form on M (and �
αβ
γ = −gαμ�

β
μγ ). The

Hamiltonian densities h(N ,σ ) come from the coefficients in the expansion of the
deformed flat coordinates for the Dubrovin connection,

tα(λ) =
∞∑
N=0

h(N ,α)λ
N , h(0,α) = ηαβ t

β,

and these satisfy the recursion relation

∂2h(N ,σ )

∂tα∂tβ
= c μ

αβ (t)
∂h(N−1,σ )

∂tμ
(4.2)

(together with certain normalization conditions).
The FrobeniusmanifoldMA will automatically inherit such a hierarchy by the very

nature of it being a Frobenius manifold. However, such a hierarchy is best written as
an A-valued system, with m-A-valued dependent fields rather than mn-scalar-valued
dependent fields.

We begin by showing how the deformed flat variables onMA may be constructed
from those onM. This is achieved by lifting and evaluation the Hamiltonian densities
forM.

Lemma 4.1 Let hN ,σ be the coefficients in the deformed flat connection onM. Then
the functions

h(N ,σ,r) = ω
(
ĥ(N ,σ ) ◦ er

)

satisfy the recursion relation

∂2h(N ,σ,r)

∂t (αi)∂t (β j)
= c (γ k)

(αi)(β j)
∂h(N−1,σ,r)

∂t (γ k)
.

and the initial conditions h(0,σ,r) = η(σr)(μs)t (μs) and hence define the deformed flat
coordinates onMA.
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Proof This is a straightforward calculation (we drop the σ -label on the various h’s for
clarity): We have

∂ ĥN

∂t (αi)
=
(̂

∂hN

∂tα

)
◦ ei

and hence

∂2ĥN

∂t (αi)∂t (β j)
=

̂
(

∂2hN

∂tα∂tβ

)
◦ ei ◦ e j ,

=
(̂
c γ
αβ

)
◦ ∂̂hN−1

∂tγ
◦ ei ◦ e j .

Thus, using ω to evaluate this A-valued expression gives

∂2h(N ,r)

∂t (αi)∂t (β j)
= ω

(
̂

(
∂2hN

∂tα∂tβ

)
◦ ei ◦ e j ◦ er

)
,

=
[
ĉ γ
αβ

]p
c q
i j ω

(
̂

(
∂hN−1

∂tγ

)
◦ ep ◦ eq ◦ er

)
,

=
[
ĉ γ
αβ

]p
c q
i j c

k
pq︸ ︷︷ ︸

c (γ k)
(αi)(β j)

ω

(
∂ ĥN−1

∂t (γ k)
◦ er

)
,

= c (γ k)
(αi)(β j)

∂h(N−1,r)

∂t (γ k)
.

If N = 0, then, since t̂μ = t (μs)es,

h(0,σ,r) = ω
(
ĥ(0,σ ) ◦ er

)
,

= ησμηrs t
(μs)ω (es ◦ er ) ,

= η(σr)(μs)t
(μs),

which is, as required, a Casimir function on MA. ��

In the obvious way, one can lift the operators P1,P2 to A-valued operators and
obtain the following theorem:

Theorem 4.2 The principal hierarchy on MA may be written in terms of A-valued
fields, densities and operators, as
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∂ t̂α

∂T (N ,σ,r)
= ̂Pαβ

1 ◦ ∂ ĥ(N ,σ )

∂t (βr)
,

= ̂Pαβ
2 ◦ ∂ ̂h(N−1,σ )

∂t (βr)
.

(4.3)

Proof First Hamiltonian structure
By definition, and on using previous results,

∂t (αi)

∂T (N ,σ,r)
= η(αi)(β j) d

dX

∂h(N ,σ,r)

∂t (β j)
,

= ηαβηi j
d

dX

[
∂̂h(N ,σ )

∂tβ

]k
ω(ek ◦ e j ◦ er ).

Since t̂α = t (αi)ei by definition, one obtains

∂ t̂α

∂T (N ,σ,r)
= ηαβ d

dX

[
∂̂h(N ,σ )

∂tβ

]k
ηi jω(ek ◦ e j ◦ er )ei ,

= ηαβ d

dX

{
∂̂h(N ,σ )

∂tβ
◦ er

}
,

= η̂αβ ◦ d

dX

∂̂h(N ,σ )

∂t (βr)
,

since as the components of η are constants, η̂αβ = ηαβe1.

Second Hamiltonian structure
The second Hamiltonian operator Pαβ

2 onM takes the form2

Pαβ
2 = gαβ rmd

dX
+
(
d + 1

2
− qβ

)
cαβ

γ t
γ

X

and hence on MA,

∂t (αi)

∂T (N ,σ,r)
=
[
g(αi)(β j) d

dX
+
(
d + 1

2
− qβ

)
c(αi)(β j)

(γ k)t
(γ k)
X

]
∂h(N−1,σ,r)

∂t (β j)
.

(4.4)

Note, since the Euler vector field on A is trivial (qi = ri = dA = 0), it follows that
q(β j) = qβ and d is the same on both M and MA. Also, by definition,

2 We ignore the precise normalization of the second Hamiltonian structure. We also assume here that the
manifoldM is non-resonant. It is easy to show that ifM is non-resonant, then so is MA.
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g(αi)(β j) = c(αi)(β j)
(γ k)E

(γ k),

= ηβμη js
[
̂c α
μγ

]p
c q
sk c i

pq (1 − qγ )t (γ k).

For simplicity, we will consider the first term in (4.4) only, and the corresponding
proof of the second term follows practically verbatim the proof of the first. Thus,

g(αi)(β j) d

dX

∂h(N−1,σ,r)

∂t (β j)

=
[
cαβ

γ

]p
c q
pk (1 − qγ )t (γ k)

d

dX

[
̂∂h(N−1,σ )

∂tβ

]d
ω(ed ◦ e j ◦ er ),

=
[
ĝαβ

]q
c i j
q

d

dX

[
̂∂h(N−1,σ )

∂tβ

]d
c s
dr ηs j ,

since ĝαβ = ̂
cαβ

γ ◦ (1− qγ )t (γ q)eq . On using the associative and commutative prop-
erties of the multiplication, and on contracting with ei , one obtains

g(αi)(β j) d

dX

∂h(N−1,σ,r)

∂t (β j)
ei =

[
ĝαβ

]q
c i
qs

d

dX

[
̂∂h(N−1,σ )

∂tβ
◦ er

]s
ei ,

= ĝαβ ◦ d

dX

[
̂∂h(N−1,σ )

∂tβ
◦ er

]
,

= ĝαβ ◦ d

dX

̂∂h(N−1,σ )

∂t (βr)
.

Note that these flows on MA simplify if r = 1. ��
Example 4.3 If dimM = 1 and r = 1, one obtains the bi-Hamiltonian structures
from the A-valued Mongé equation

UT = U ◦ UX

with conserved densities

hN = 1

(N + 1)!ω(U ◦ · · · ◦ U︸ ︷︷ ︸
N+1 terms

).

The form of the flows in Theorem 4.2 is somewhat hybrid in nature, and to rewrite
them as a genuineA-valued bi-Hamiltonian system one must introduce the variational
derivative with respect to an A-valued field. Such a derivative was introduced in [19]
and is defined by the equation

〈δH; v〉 = d

dε
H [

ûα + εv̂α
]∣∣∣∣

ε=0
, (4.5)
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where

H =
∫

ω(̂h) dX.

With this the flows may be written as an A-valued bi-Hamiltonian system.

Corollary 4.4 The flows given in Theorem 4.2 may be written as

∂ t̂α

∂T (N ,σ,r)
= ̂Pαβ

1 ◦ δH(N ,σ,r)

δt̂β
,

= ̂Pαβ
2 ◦ δH(N−1,σ,r)

δt̂β
,

(4.6)

where

H(N ,σ,r) =
∫

ω
(
ĥ(N ,σ,r)

)
dX.

Proof From (4.5),

〈δH(N ,σ,r); v̂β〉 =
∫

ω

(
∂ ĥ(N ,σ,r)

∂t (β j)
v(β j) ◦ er

)
dX,

=
∫

ω

⎛
⎜⎝ ̂∂h(N ,σ,r)

∂tβ
◦ er ◦ v(β j)e j︸ ︷︷ ︸

v̂β

⎞
⎟⎠ dX,

and hence

δH(N ,σ,r)

δt̂β
= ∂ ĥ(N ,σ )

∂tβ
◦ er .

With this, the result follows immediately. ��

4.1 Polynomial (inverse)-metrics and bi-Hamiltonian structures

Since all one-dimensional metrics are flat, it follows immediately from the Dubrovin-
Novikov [7] Theorem that the operator

P = f (u)
d

dX
+ 1

2
f ′(u)

is Hamiltonian. In this section, we study the case where f is a polynomial.
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Example 4.5 Applying the lifting procedures to the operator P defined by the linear
function f (u) = u + λ results in the linear operator

P i j =
{
ci jk u

k d

dX
+ 1

2
ci jk u

k
X

}
+ λ

d

dX
(4.7)

defined on the Frobenius algebra A.

This is the Hamiltonian operator first constructed by Balinski and Novikov [2]. Sim-
ilarly, more complicated examples may be obtained by starting with more general
polynomials and applying the same procedure.

These more general examples appear to be in contradiction to an alternative method
of constructing Hamiltonian operators via bi-Hamiltonian recursion. The recursion
operator constructed from the bi-Hamiltonian pencil (4.7) takes the form

Ri
j = cijku

k + 1

2
cijku

k
X

(
d

dX

)−1

.

Suppose one has a (local) Hamiltonian operator

Pn = gi j(n)(u)
d

dX
+ �

i j
(n)k(u)ukX

with gi j(0) = ηi j , �
i j
(0)k = 0. Applying the operator R gives

(RP(n)

)i j =
{
gi j(n+1)(u)

d

dX
+ �

i j
(n+1)k(u)ukX

}
+ non-local terms

and we now define P(n+1) to be the local-term in the above expression. This gives the
recursion scheme:

gi j(n+1) = 2cipr urηpqg
q j
(n),

�
i j
(n+1)k = 2cipr urηpq�

q j
(n)k + cipk ηpqg

q j
(n).

It is a tedious, through straightforward exercise to show that if the pair {g(n), �(n)}
defines a flat metric, then so does {g(n+1), �(n+1)}, and hence P(n) is a local Hamil-
tonian operator for all n. The above lifting procedure circumvents such a direct
computational approach. The fact that the local (if the metric defining the local part
is flat) and non-local parts of the Hamiltonian operator define separate, compatible,
Hamiltonian operator is of course, well known (see, for example, [10]).

5 A-valued dispersive integrable systems

In this section, the above ideas are extended to include dispersive, higher-order, dis-
persive systems.
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1020 I. A. B. Strachan, D. Zuo

5.1 A-valued dispersive integrable systems

The main result of this section is the following theorem:

Theorem 5.1 Let u = {uα(x, t)|α = 1, . . . , n}. Let

uα
t = K α(u, ux , . . .) (5.1)

be aHamiltonian systemwith theHamiltonian H [u], then the correspondingA-valued
system

ûα
t = ̂K α(u, ux , . . .) (5.2)

is also Hamiltonian with the Hamiltonian H[̂u] = ω
(
Ĥ [u]

)
.

Proof The proof is very similar to those done in Sect. 4. Without loss of generality,
we assume that the system (5.1) can be written as

uα
t = {uα, H [u]} = Pαβ δh

δuβ
, H [u] =

∫
h(u)dx, (5.3)

where Pαβ is a Hamiltonian operator. So the system (5.2) reads

ûα
t = P̂αβ ◦ δ̂h

δuβ
. (5.4)

Let

H[̂u] =
∫

h(̂u)dx, h(̂u) = ω
(
ĥ(u)

)
. (5.5)

With respect to an A-valued field, the variational derivative
δh

δûβ
is defined by the

formula, essentially due to [19],

ω

∫ (
δh

δûβ
◦ δ̂uβ

)
dx = d

dε

∣∣∣∣
ε=0

H
[
ûβ + εδ̂uβ

]
. (5.6)

Observe that

d

dε
H
[
ûβ + εδ̂uβ

]∣∣∣∣
ε=0

= d

dε

∣∣∣∣
ε=0

ω

(∫
h(ûβ + εδ̂uβ)dx

)
,

= ω

(
̂d

dε

∣∣∣∣
ε=0

H [uβ + εδuβ ]
)

= ω

(∫ (
δ̂h

δuβ
◦ δ̂uβ

)
dx

)
(5.7)
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from which follows

δh

δûβ
= δ̂h

δuβ
. (5.8)

For two functionals

F [̂u] =
∫

f(̂u)dx, G [̂u] =
∫

g(̂u)dx, (5.9)

with f(̂u) = ω
(
f̂ (u)

)
and g(̂u) = ω

(
ĝ(u)

)
, we define a bilinear bracket as

{F [̂u],G [̂u]}A = ω

(∫
δg

δûα
◦ P̂αβ ◦ δg

δûβ
dx

)
. (5.10)

By using the definition of the hat map and (5.8), we rewrite the bracket (5.10) as

{F [̂u],G [̂u]}A = ω ̂{F[u],G[u]}, (5.11)

where F[u] = ∫
f (u)dx and G[u] = ∫

g(u)dx . Consequently, we conclude that the
bracket { , }A is also a Poisson bracket. Furthermore using (5.8), the system (5.4)
could be written as

u(α,i)
t = {u(α,i),H[̂u]}A, H[̂u] =

∫
ω
(
ĥ(u)

)
dx .

We thus complete the proof of the theorem. ��

Corollary 5.2 The A-valued version of the Hamiltonian system uα
t = {uα, H [u]} is

also Hamiltonian and given by

u(α,i)
t = {u(α,i),H[̂u]}A, H[̂u] = ω

(
Ĥ [u]

)
.

These results extend naturally to the lifts of bi-Hamiltonian structures, yielding
A-valued bi-Hamiltonian operators.

5.2 mKdV and (modified)-Camassa–Holm bi-Hamiltonian structures

The celebrated Miura transformation maps the second Hamiltonian operator of the
KdV hierarchy to constant form. Explicitly, if

HKdV
1 = −D, HKdV

2 = −D3 + 2uD + uX
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(in this section we write D in place of d
dX ). Then applying the Miura map u =

−vX + 1
2v

2 gives

HKdV
2 = HmKdV

1 = D,

and the second mKdV structure is then obtained by applying the same map to the third
KdV Hamiltonian structure defined by bi-Hamiltonian recursion (H3 = H2H−1H2),
yielding the non-local operator

HmKdV
2 = D3 − DvD−1vD.

Just as the Balinski–Novikov structures on the Frobenius algebra A may be obtained
by lifting, so A-valued non-local operators may be found by using the above results.

Proposition 5.3 The A-valued operators, defined by lifting HmKdV
1 and HmKdV

2 to
the Frobenius algebra A are:

(
HmKdV

1

)i j = ηi j D,

(
HmKdV

2

)i j = ηi j D3 − ci jp c
p
mnDvmD−1vnD.

These may also be obtained using the A-valued Miura map

u = −vx + 1

2
v ◦ v.

Proof These results follow directly by applying the results in Sect. 5.1. They may also
be obtained by direct (but tedious) calculation. The form of the A-valued Miura map
is obvious and again can be verified by direct calculations. While not developed here,
one should be able to applying lifting results directly to scalar-Miura maps, with all
the actions commuting. ��
A-valued KdV and mKdV equations can now easily be constructed, the KdV exam-
ples coinciding with the examples constructed in [21]. Here we construct A-valued
modified Camassa–Holm equations.

Example 5.4 One may apply the standard tri-Hamiltonian ‘tricks’[9] to obtain the
A-valued bi-Hamiltonian pair:

Ci j1 = ηi j (D3 + D),

Ci j2 = ci jp c
p
mnDvmD−1vnD.

Starting with the lifted Casimir of the scalar operator C1, one obtains the multi-
component modified Camassa–Holm equation

123



Frobenius manifolds and Frobenius algebra-valued... 1023

vT + vXXT = 1

2
vXXX ◦ vX ◦ vX + vXX ◦ vXX ◦ vx

+1

2
vXXX ◦ v ◦ v + 2vXX ◦ vX ◦ v + 1

2
vX ◦ vX ◦ vX

+3

2
vX ◦ v ◦ v.

Note we use the adjective ‘modified’ in the original, strict, sense of equations obtained
from an original, unmodified, equation via the action of a Miura map, rather than in
the looser sense of just modifying ‘by-hand’ the terms that appear in the equation.
Two-component examples may easily be found using one of the algebras constructed
in Example 2.2.

6 Conclusions

Central to the results of this paper is the use of a distinguished coordinate system,
namely the flat coordinates of the Frobenius manifold M. But the lifting procedure
may be applied to any geometric structure which is analytic in some fixed coordinate
system. However, such results loose some of their coordinate free character: one is
using a specific coordinate system to define new objects then relying in their tensorial
properties to define then properly in an arbitrary system of coordinates. As an example
of this, one can apply the idea to F-manifolds defined by Hertling and Manin [12].

Proposition 6.1 Consider an F-manifold with structure functions c γ
αβ (t) analytic

in the coordinates {tα}. Let A be an arbitrary Frobenius algebra. Then the structure
functions defined by the lifted multiplication (2.9)

c (γ k)
(αi)(β j) =

[̂
c γ
αβ

]p
c q
i j c

k
pq

define an F-manifold.

The proof is straightforward and will be omitted. The link between F-manifolds and
equations of hydrodynamic type has been explored by a number of authors [18,22],
so one should be able to apply the idea of this paper to construct their A-valued
counterparts.

In quantum cohomology, the tensor product of Frobenius manifolds generalizes
the classical Künneth product formula. In singularity theory it corresponds to the
direct sum of singularities. If one of the manifolds is trivial, then this descriptions
degenerates—there is no parameter space of versal deformations. However, one could
try to construct anA-valued singularity theory. This is purely speculative, but Arnold
has constructed a theory of versal deformations of matrices [1] but it remains to see if
this is what would be required.

As remarked earlier, since MA is a Frobenius manifold in its own right, one can
apply the deformation theory developed by Dubrovin and Zhang [8] directly to the
hydrodynamic flows given in Theorem 4.2. But central to this approach is the existence
of a single τ -function. However, the deformations/dispersive systems constructed in
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Sects. 4 and 5 have A-valued τ -functions. Thus, we have two distinct deformation
procedures, unless they are connected by some set of transformations. It may be
possible to construct a deformation theory along the lines of [8] but with anA-valued
τ -function.

This paper has concentrated on Frobenius algebra-valued integrable systems, via
their Hamiltonian structure. Other approaches to integrability—the structure of A-
valuedLax equations, for example, have not been considered here. Part of such a theory
have been constructed by the authors in [23] where anA-valued KP hierarchy is con-
structed via suchA-valued Lax equations and operators. In a different direction, there
are many other algebra-valued generalizations of KdV equation, from Jordan alge-
bra to Novikov algebra-valued systems [20,21,24,25]. Whether such algebra-valued
systems can be combined with the theory of Frobenius manifolds remains an open
question. Developing a theory which encompasses the non-commutative/non-local
hierarchies, such as the original matrix KdV equation (1.1), would be of considerable
interest and would encompass the theory developed in this paper.
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Appendix

The lifting operation (Definition 2.7)was defined only for analytic functions.However,
this may be extended to a wider class of functions, in particular rational functions.
This observation is based on the following:

Lemma 6.2 A generic element κ ∈ A is invertible.

Proof By a similar argument laid out in [6], the Frobenius algebraA is isomorphic to
orthogonal direct sum of a semisimple and a nilpotent algebra,

A = As ⊕ An

with As having a basis π1, . . . , πs, with π j ◦ πl = δ jlπ j . Suppose the unity element
of the algebra takes the form

e =
s∑

i=1

aiπi + n

where n ∈ An and so nN = 0. Then n ◦ πi = (1− ai )πi and hence (1− ai )Nπi = 0.
Thus, ai = 1 and n ◦ πi = 0. Since e = eN it follows that the unity element takes the
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form

e =
s∑

i=1

πi .

Writing a generic element κ ∈ A as κ = π + μ (with π ∈ As, μ ∈ An) then
(κ − π)N = 0 for some N . Expanding this yields

πN = κ ◦ �(κ, π)

for some function � ∈ A. Since πN ∈ As is invertible (generically) it follow that

κ ◦
{
�(κ, π) ◦ π−N

}
= e.

Hence the result. ��
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