
DOI 10.1007/s11005-014-0685-2
Lett Math Phys (2014) 104:771–810

Quantum Cohomology via Vicious and Osculating
Walkers

CHRISTIAN KORFF
School of Mathematics and Statistics, University of Glasgow, 15 University Gardens,
G12 8QW Glasgow, Scotland, UK. e-mail: christian.korff@glasgow.ac.uk

Received: 8 October 2013 / Accepted: 4 February 2014
Published online: 6 March 2014 – © The Author(s) 2014. This article is published with
open access at Springerlink.com

Abstract. We relate the counting of rational curves intersecting Schubert varieties of the
Grassmannian to the counting of certain non-intersecting lattice paths on the cylinder,
so-called vicious and osculating walkers. These lattice paths form exactly solvable statisti-
cal mechanics models and are obtained from solutions to the Yang–Baxter equation. The
eigenvectors of the transfer matrices of these models yield the idempotents of the Verlinde
algebra of the gauged û(n)k -WZNW model. The latter is known to be closely related to
the small quantum cohomology ring of the Grassmannian. We establish further that the
partition functions of the vicious and osculating walker model are given in terms of Post-
nikov’s toric Schur functions and can be interpreted as generating functions for Gromov–
Witten invariants. We reveal an underlying quantum group structure in terms of Yang–
Baxter algebras and use it to give a generating formula for toric Schur functions in terms
of divided difference operators which appear in known representations of the nil-Hecke
algebra.
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1. Introduction

Let Grn,n+k be the Grassmannian of n-planes in C
n+k and consider its small quan-

tum cohomology ring q H∗(Grn,n+k). The latter has the following presentation [36]

q H∗(Grn,n+k)∼=Z[q][e1, . . . , en,h1, . . . ,hk]/I, (1.1)

where the two-sided ideal I is generated by the coefficients of the following poly-
nomial in the auxiliary variable x ,

(
n∑

i=0

ei xi

)⎛
⎝ k∑

j=0

h j x j

⎞
⎠=1+ (−1)nqx N . (1.2)
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Denoting by (n, k) the set of all partitions whose Young diagram fits into the
n ×k bounding box, a vector space basis of q H∗(Grn,n+k) is given by the finite set
{sλ}λ∈(n,k) of Schubert classes sλ = det(hλi −i+ j )1≤i, j≤n = det(eλ′

i −i+ j )1≤i, j≤k , where
λ′ is the conjugate partition of λ. Note that this definition includes the special
cases s(r)=hr and s(1r )= er .

1.1. QUANTUM KOSTKA NUMBERS

Quantum Kostka numbers were originally introduced in [5] as the coefficients in
the following product expansion in (1.1),

sμ ∗ sλ1 ∗ · · · ∗ sλr =
∑

d≥0,ν∈(n,k)
qdsνKν/d/μ,λ, (1.3)

where μ∈(n, k) and λ=(λ1, . . . , λr ) are some non-negative integers ≤k. As explained
in [5,33] the quantum Kostka numbers count certain cylindric skew tableaux, a
combinatorial notion first introduced by Gessel and Krattenthaler [18]. Analo-
gously, one can define conjugate quantum Kostka numbers by considering the
product expansion

sμ ∗ s(1λ1 ) ∗ · · · ∗ s(1λr )=
∑

d≥0,ν∈(n,k)
qdsνKν′/d/μ′,λ, (1.4)

where 0≤λi ≤n. Due to level-rank duality, q H∗(Grn,n+k)∼=q H∗(Grk,n+k), one has
Kν′/d/μ′,λ = Kν/d/μ,λ. Nevertheless, both quantum product expansions give rise to
different combinatorics, so we will consider them separately.

Exploiting the quantum Giambelli formula [4], sλ= det(sλi −i+ j )1≤i, j≤n with λ∈
(n, k), one can then compute products between arbitrary Schubert classes

sμ ∗ sλ=
∑

d≥0,ν∈(n,k)
qdCν,d

λμ sν, (1.5)

where the expansion coefficients are the 3-point, genus 0 Gromov–Witten invari-
ants. The latter count rational curves of degree d = (|λ|+ |μ|− |ν|)/N intersecting
three Schubert varieties in general position; see, e.g. [2,4,5,10,11,16] for details.

1.2. TORIC SCHUR POLYNOMIALS AND FROBENIUS STRUCTURES

Quantum cohomology had its origin in mathematical physics and appeared first
in works of Gepner [17], Intriligator [23], Vafa [37] and Witten [38] in connec-
tion with the fusion ring Fn,k of the gauged û(n)k Wess–Zumino–Novikov–Witten
(WZNW) model. It has apparently been proved in the no longer publicly available
work [1] that Fn,k ∼= q H∗(Grn,n+k)/〈q − 1〉. FC

n,k =Fn,k ⊗Z C is referred to as Ver-
linde algebra in the literature.
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Denote by λ∨ the partition obtained by taking the complement of the Young
diagram of λ in the n ×k bounding box and recall the intersection pairing of Schu-
bert classes, η(sλ, sμ) :=

∫
Grn,n+k

sλ · sμ= δλ∨μ.

PROPOSITION 1.1. FC

n,k with bilinear form η is a commutative Frobenius algebra
and its coproduct is given by

�n,ksν =
∑

d≥0,μ∈(n,k)
qdsν/d/μ⊗ sμ, sν/d/μ :=

∑
λ∈(n,k)

Cν,d
λμ sλ . (1.6)

Setting er = ∑
1≤i1<···<ir ≤n xi1 · · · xir and hr = ∑

1≤i1≤···≤ir ≤n xi1 · · · xir where x =
(x1, . . . , xn) are some commuting indeterminates the Schubert classes can be iden-
tified with Schur functions. In light of (1.6) it is then natural to consider so-called
toric Schur functions [33]

sν/d/μ(x)=
∑

λ∈(n,k)
Cν,d
λμ sλ(x)=

∑
λ∈(n,k)

Kν/d/μ,λmλ(x) . (1.7)

The last identity can be seen as a combinatorial definition of sν/d/μ in terms of
monomial symmetric functions; it is the weighted sum over all toric skew tableaux,
which is the subset of the cylindric skew tableaux having at most k boxes in
each row. This generalises the notion of an ordinary skew Schur function, sν/μ=∑
λ Kν/μ,λmλ, where the sum is over all skew (semi-standard) tableaux and Kν/μ,λ

is the ordinary Kostka number; see, e.g. [29]. Since for vanishing degree d the
Gromov–Witten invariants equal the Littlewood–Richardson coefficients, one has
sν/0/μ= sν/μ when d =0. In the case of infinitely many variables one obtains cylin-
dric Schur functions which have been investigated in [18,31] and in [28] as special
case of affine Stanley symmetric functions; see also [7] for a formulation of a ran-
dom process on cylindric partitions. For a generalisation of cylindric or toric Schur
functions to special cases of Macdonald functions in the context of the ŝu(n)k
fusion ring, see [27].

1.3. EXACTLY SOLVABLE LATTICE MODELS: VICIOUS AND OSCULATING WALKERS

In this article, we identify the toric Schur polynomial (1.7) with the partition func-
tion of exactly solvable lattice models in statistical mechanics [3], the lock-step
vicious and osculating walker models which have appeared in connection with
problems such as percolation in physical systems [12] and the counting of alter-
nating sign matrices [8]. Both models can be formulated in terms of special non-
intersecting paths on a square lattice which in the present context we choose to
have dimensions n × (n +k) and k × (n +k); see Figure 1 for examples. Fixing start
and end positions of the walkers in terms of partitions μ,ν ∈ (n, k) and identify-
ing the left with the right lattice edge, we show that there is a bijection between
toric tableaux of shape ν/d/μ and non-intersecting paths of the mentioned mod-
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Figure 1. Examples of vicious and osculating walks on a square lattice with N =n +k =4+5=
9. The paths of two osculating walkers can touch but they do not intersect.

els on the cylinder. The degree d ∈ Z≥0 is the number of walkers crossing the
boundary, where the horizontal strip is glued together to obtain the cylinder. The
weight λ of a toric tableau fixes the number of horizontal path edges in each lat-
tice row.

Denote by H = (Hν,μ) and E = (Eν,μ) the transfer matrices whose elements are
the partition functions of a single lattice row for the vicious and osculating walker
models on the cylinder with fixed start and end configurations μ,ν ∈ (n, k). Then
the matrix elements of the powers Hn and Ek give the partition functions for the
lattices with n and k rows mentioned above.

Given a square s =〈i, j〉 in the Young diagram of a partition λ denote by c(s)=
j − i its content and by h(s)=λi +λ′

j − i − j +1 its hook length.

THEOREM 1.2. For fixed start and end points μ,ν ∈ (n, k), the number of vicious
and osculating walker configurations on the cylinder is given by

(Hn)ν,μ=
∑
d, λ

Kν/d/μ,λ= (En)ν′,μ′ (1.8)

or alternatively

(Hn)ν,μ=
∑
d, λ

Cν,d
λμ

∏
s∈λ

n + c(s)

h(s)
= (En)ν′,μ′ , (1.9)

where the sums run over all integers d ≥ 0 and λ∈ (n, k) such that |λ| + |μ| − |ν| =
d(n + k).

Note that (1.9) provides a linear system of equations for Gromov–Witten invari-
ants.
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It is not obvious from their definition, but we will show that the row-to-row
transfer matrices E and H commute and possess a common eigenbasis {êλ}λ∈(n,k),
the so-called Bethe vectors. They yield the idempotents of the Verlinde algebra
FC

n,k of the gauged û(n)k-WZNW model.

THEOREM 1.3 (idempotents of the Verlinde algebra). Let Vn,k be the complex lin-
ear span of the Bethe vectors {êλ}λ∈(n,k). The generalised matrix algebra (Vn,k, �)

obtained by setting êλ � êμ= δλμêλ is isomorphic to FC

n,k .

The same basis has been employed in [24, Thm 10.11] to provide an alterna-
tive derivation of the presentation (1.1). They are identical with the Bethe vectors
of the so-called XX-Heisenberg spin chain [24, Rm 10.3] and, thus, one can iden-
tify the ring (1.1) with the conserved quantities or “quantum integrals of motion”
of this quantum spin-chain. There are close parallels with recent developments
regarding the link between topological field theories and quantum integrable mod-
els [32] as well as the quantum cohomology of the cotangent bundles of Grassmann
varieties [19,35].

The new result in this article is the connection of the quantum cohomology
of the Grassmann varieties themselves with the mentioned statistical lattice mod-
els which allows one to relate the counting of lattice paths on the cylinder to
Gromov–Witten invariants and to reveal a deeper underlying algebraic structure
which we now explain.

1.4. QUANTUM GROUP STRUCTURES

The combinatorial connection with the mentioned exactly solvable lattice models is
underpinned by an algebraic description known as the quantum inverse scattering
method which is the name of a general procedure based on the works of the Fad-
deev School; see, e.g. [6] and references therein. Here, we show that this method
can be applied to the quantum cohomology ring. Our starting point is a solution
to the Yang–Baxter equation

R12(x/y)M1(x)M2(y)= M2(y)M1(x)R12(x/y) (1.10)

where R(x/y) ∈ C(x/y)⊗ End(V ⊗ V ) with V a two-dimensional complex vector
space and

M(x)=
(

A(x) B(x)
C(x) D(x)

)
∈C[x]⊗End V ⊗End V ⊗N (1.11)

is the so-called monodromy matrix. The matrix entries of M(x) can be interpreted
as vertex-type operators whose commutation relations are encoded in the matrix
R. The latter generate the so-called Yang–Baxter algebra which has the structure
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of a graded bi-algebra. In particular, one can interpret (1.10), (1.11) as the defin-
ing relations of a “quantum group”; this is similar to the construction of a Yan-
gian symmetry on the quantum cohomologies of cotangent bundles of Nakajima
varieties in a recent preprint by Maulik and Okounkov [30].

Set N = n + k and for simplicity denote q H∗(Grn,k)⊗Z C by q H∗
n,k . Then there

exists a vector space isomorphism

V ⊗N ⊗C[q,q−1] ∼→
N⊕

n=0
q H∗

n,N−n (1.12)

which induces maps Ar , Dr : q H∗
n,k → q H∗

n,k and Br ,Cr : q H∗
n,k → q H∗

n±1,k∓1 where
Ar , Br ,Cr , Dr are the coefficients of xr in the vertex-type operators (1.11) and
q H∗

0,N ,q H∗
N ,0

∼=C. Exploiting level-rank duality, � :q H∗
n,k

∼→q H∗
k,n, one finds a sec-

ond, dual solution M ′ =� ◦ M ◦� of the Yang–Baxter equation. The following
result then links these two Yang–Baxter algebras with the Frobenius algebra q H∗

n,k
via (1.2).

THEOREM 1.4. Setting H(x)= A(x)+q D(x) and E(x)= A′(x)+q D′(x), the restric-
tions E(x)|q H∗

n,k
and H(x)|q H∗

n,k
under (1.12) are of polynomial degree n and k,

respectively and on each preimage of q H∗
n,k one has the functional identity

E(−x)H(x)=1+ (−1)nqx N . (1.13)

In particular, the map given by Ei = A′
i +q D′

i �→ei and Hj = A j +q D j �→h j with i =
1, . . . ,n and j =1, . . . , k yields an algebra isomorphism An,k

∼→q H∗
n,k , where An,k ⊂

End(q H∗
n,k) is the commutative subalgebra generated by the coefficients of the Yang–

Baxter algebra elements E(x) and H(x).

The combinatorial results (1.8) and (1.9) then follow from the fact that one
recovers the row-to-row vicious and osculating walker transfer matrices at x = 1,
i.e. H = H(1) and E = E(1). An alternative way to express the relation between the
Yang–Baxter algebras and q H∗

n,k is to use the coproduct of the Frobenius algebra.

PROPOSITION 1.5. Setting as before H(x)= A(x)+q D(x) one has for any 1≤n ≤
N −1 that

〈λ|H(yn) · · · H(y1)B(xn) · · · B(x1)|0〉= xδn�n,ksλ(y, x) (1.14)

where 〈λ| denotes the dual basis of the Schubert classes under the isomorphism
(1.12), |0〉 the unique basis vectors in q H∗

0,N , δn = (n,n − 1, . . . ,1) and �n,k is the
coproduct (1.6) of q H∗

n,k .

This last results implies in particular that one can use the commutation relations
of the Yang–Baxter algebra encoded in (1.10) to compute the toric Schur functions
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(1.7) by moving the H -operators past the B-operators. We will thus derive the fol-
lowing formula in terms of divided difference operators (also called Demazure or
Bernstein–Gelfand–Gelfand operators).

Set ∂i = (1 − xi+1/xi )
−1(si − 1) with si being the transposition which acts by

switching xi with xi+1 and define ∇i =∂n−1+i · · ·∂i+1∂i .

COROLLARY 1.6. Choose yi = xi+n in (1.14) and introduce the “generating func-
tion”

Fλ(x; y)= sλ(y)
n∏

i=1

(1+qx N
i ) . (1.15)

Then we have the following formula in terms of Demazure operators,∑
d≥0

qdsλ/d/μ(y)=
〈
sμ(x)||x−δn ∇1∇2 · · ·∇n yδn Fλ(x; y)

〉
(1.16)

where the notation
〈
sμ(x)|| · · ·

〉
denotes the coefficient of the Schur function sμ(x).

We will demonstrate on a simple example how toric Schur functions can be
explicitly computed by invoking the last formula in Section 6.

Another identity for toric Schur functions—which is a direct consequence of the
quantum group structure and does not seem to have appeared previously in the
literature—is the following sum rule.

COROLLARY 1.7. Let N =2n. Then we have the following identities for toric Schur
functions

er (x
N
1 , . . . , x N

n )=
∑

d+d ′=r
μ∈(n,n)

(−1)|λ|−|μ|sλ′/d ′/μ′(x1, . . . , xn)sμ/d/λ(x1, . . . , xn), (1.17)

where λ is any partition in the n ×n square.

This identity is a true “quantum relation” as it becomes trivial for q = 0, i.e.
there exists no analogue of this relation for skew Schur functions where d,d ′ = 0.
Similar identities hold also for N /∈ 2N but look more complicated. They will be
stated in Section 6.

1.5. OUTLINE OF THE ARTICLE

In Section 2, we introduce some preliminary combinatorial notions regarding 01-
words and partitions.

In Section 3, we discuss in detail the vicious and osculating walker models.
While these have been introduced in the literature previously, our conventions dif-
fer from the usual ones by rotating the lattice 45◦ and choosing a special set of
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weights. We also analyse in depth the related Yang–Baxter algebras and show that
both models are related via level-rank duality. We derive a matrix functional equa-
tion relating the transfer matrices of both models.

Section 4 contains the algebraic Bethe ansatz construction of the idempotents of
the Verlinde algebra. As a byproduct of this construction, we obtain novel expres-
sions for Schur functions as matrix elements of the above mentioned Yang–Baxter
algebras.

Section 5 states explicit bijections between vicious and osculating walker con-
figurations on the cylinder and toric tableaux, which can be interpreted as a spe-
cial subset of semi-standard tableau of skew shape. As a corollary, we obtain that
Postnikov’s toric Schur polynomials are the partition functions of the specialised
vicious and osculating walker models. The sum rule (1.9), relating Gromov–Witten
invariants to the counting of vicious and osculating walker configurations on the
cylinder, is then an immediate consequence.

We will conclude with stating the proofs of the various identities for toric Schur
functions arising from the quantum group structure.

2. Preliminaries

Throughout this article we consider non-negative integers N ,n, k ∈ Z≥0 such that
N = n + k and set I := {1, . . . , N }. Let V = Cv0 ⊕ Cv1 and denote by V ∗ its dual.
Consider the tensor product V ⊗N . We identify the standard basis B ={vw1 ⊗· · ·⊗
vwN :wi =0,1}⊂ V ⊗N with the set of 01-words of length N , W ={w=w1w2 . . .wN :
wi =0,1}, via the map

w �→ |w〉 :=vw1 ⊗· · ·⊗vwN . (2.1)

For convenience, we are employing the Dirac notation and denote by 〈w| the dual
basis with 〈w|w̃〉=∏N

i=1 δwi ,w̃i . Furthermore, we shall denote by Wn ={w∈W : |w|=∑N
i=1wi = n} the subset of all 01-words with n 1-letters, by Bn ⊂ V ⊗N its image

under the above map (2.1) and by Vn ⊂ V ⊗N the subspace spanned by the corre-
sponding basis elements in Bn . As (2.1) is a bijection, we can also introduce the
inverse map whose image we denote by w(b) with b ∈Bn .

There are alternative descriptions of the elements in Bn which will be useful for
our discussion. Namely, consider the set of partitions λ whose Young diagram fits
into a bounding box of height n and width k; we shall denote it by (n, k). Define
a bijection (n, k)→ Wn via

λ �→w(λ)=0 · · ·01
	1

0 · · ·01
	n

0 · · ·0, 	i (λ)=λn+1−i + i, (2.2)

where 	(λ)= (	1, . . . , 	n) with 1≤	1< · · ·<	n ≤ N denote the positions of 1-letters
in w(λ) from left to right. We assume the latter to be periodic, that is we set
	i+n(λ)= 	i (λ)+ N . We shall denote the image of the inverse of the map (2.2) by
λ(w) and by |λ〉 the corresponding ket vector in Bn . Note that the correspondence
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Figure 2. 01-words, partitions and single column tableaux. Depicted are the various transfor-
mations of 01-word defined in the text for N =2n =2k =8.

(2.2) can be easily understood graphically: the Young diagram of the partition λ

traces out a path in the n × k rectangle which is encoded in w. Starting from the
left bottom corner in the n × k rectangle go one box right for each letter 0 and
one box up for each letter 1; see Figure 2 for an example. For later purposes, we
introduce the notation

n	(λ)=
	∑

i=1

wi (λ) (2.3)

for 	∈ I and set n	+N (λ)=n	(λ)+n for any 	∈Z.
Exploiting the bijection (2.2) there are two operations on 01-words which are

induced by taking the complement of λ ∈ (n, k) in the bounding box, λ �→ λ∨ :=
(k − λn, . . . , k − λ2, k − λ1), and by considering the conjugate partition λ′ ∈ (k,n).
The corresponding 01-words w(λ∨),w(λ′) are obtained from w(λ) via the maps

w �→w∨ :=wN . . .w2w1 and w �→w′ = (1−wN ) · · · (1−w2)(1−w1), (2.4)

respectively. Note that these maps yield bijections Wn → Wn and Wn → Wk . We will
also make use of the combined map w �→w# := (w∨)′ = (w′)∨ which is simply the
exchange of 0 and 1-letters.

There is one additional map Rot : Wn → Wn which we require for our discussion:
set w �→Rot(w) :=w2w3 . . .wNw1 which translates via ( 2.2) to the action

Rot(λ) :=
{
(λ1 −1, . . . , λn −1), λn>0
(k, λ1, . . . , λn−1), else

. (2.5)

Exploiting the last expression one then derives the following formula with |λ| =∑
i λi ,

|Rot	(λ)|= |λ|−	n +n	(λ)N . (2.6)

Note that obviously we have RotN (λ)=λ. For obvious reasons we will refer to Rot
as the rotation operator. The maps (2.4) and (2.5) are significant for our discussion
as they constitute symmetries of Gromov–Witten invariants.
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3. Vicious and Osculating Walkers

We recall the definition of the lock step vicious walker model originally introduced
by Fisher [12] and show that this statistical mechanics model with the correct
choice of weights and boundary conditions is closely related to the small quantum
cohomology ring of the Grassmannian: its partition function can be interpreted as
generating function of 3-point, genus zero Gromov–Witten invariants.

There is another statistical model introduced by Brak [8], called osculating walk-
ers,1 which in our setting turns out to be dual or complementary to the vicious
walker model. Namely, we will show that the transfer matrices of the vicious and
osculating walker models are given in terms of analogues of complete and elemen-
tary symmetric functions in certain noncommutative variables: the generators of
the nil affine Temperley–Lieb algebra.

3.1. VICIOUS WALKERS: VERTEX AND LATTICE CONFIGURATIONS

We start with the 5-vertex formulation of the vicious walker model. Fix two inte-
gers N >0 and 0≤n ≤ N and consider the square lattice

L := {〈i, j〉∈Z
2|0≤ i ≤n +1, 0≤ j ≤ N +1} . (3.1)

Denote by E={(p, p′)∈L
2 : p1 + 1 = p′

1, p2 = p′
2 or p1 = p′

1, p2 + 1 = p′
2} the set of

horizontal and vertical edges.

DEFINITION 3.1. A lattice configuration C :E→{0,1} is an assignment of values
0 or 1 to the lattice edges.

The weight of a configuration C is defined as the product over its vertex weights,

wt(C)=
∏

(i, j)∈L

wt(vi, j )∈Z[x1, . . . , xn] , (3.2)

where vi, j denotes the vertex obtained by intersecting the ith horizontal lattice
line with the jth vertical one. That is, a vertex configuration is a 4-tuple vi, j =
(a,b, c,d) where, respectively, a,b, c,d =0,1 are the values of the W, N, E, S edges
at the lattice point 〈i, j〉. There are five allowed vertex configurations which are
depicted in Figure 3 together with their weights. All other vertex configurations
are forbidden, i.e. they have weight zero. Some of the nonzero weights are given
in terms of a set of commutative indeterminates (x1, . . . , xn), one for each row.

Connecting the 1-letters in each vertex configuration as shown in Figure 3, it
is easy to see that each lattice configuration corresponds to a configuration of

1We note that Brak’s model is a six-vertex model, i.e. has different Boltzmann weights from the
one discussed here and in particular has one more allowed vertex configuration. However, the crucial
vertex configuration with two paths approaching each other arbitarily close is also present here and
we therefore adopt his nomenclature; see Figure 4.
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Figure 3. The five allowed vertex configurations and their corresponding vicious walk
sections.

n non-intersecting paths, where a path γ = (p1, . . . , pl) is a sequence of points
pr = (ir , jr )∈ L such that either pr+1 = (ir + 1, jr ) or (ir , jr + 1), i.e. a connected
sequence of horizontal and vertical edges as depicted in Figure 8.

3.2. TRANSFER MATRIX AND NIL TEMPERLEY–LIEB POLYNOMIALS

Define σ− =
(

0 1
0 0

)
, σ+ =

(
0 0
1 0

)
, σ z =

(
1 0
0 −1

)
to be the Pauli matrices acting on

V ∼= C
2 via σ−v1 = v0, σ+v0 = v1 and σ zvα = (−1)αvα, α= 0,1. We now interpret

the possible vertex configuration in the i th row and j th column as a map L(xi ) :
Vi (xi )⊗ Vj → Vi (xi )⊗ Vj with Vi (xi )= Vi ⊗C(xi ) and Vi ∼= Vj ∼= V for all 〈i, j〉∈L.
We will therefore drop the row and column labels and, in addition, often suppress
the dependence on the indeterminate xi in the notation. Thus, the values of the
horizontal edges label the basis vectors in Vi while the values of the vertical edges
label the basis vectors in Vj . The mapping is from the NW to the SE direction
through the vertex. That is, label with a,b, c,d =0,1 the values of the edges in Fig-
ure 3 in clockwise direction starting from the W edge. Interpret the corresponding
weight Lab

cd = wt(vi, j ) as the matrix element of the map L, where we set Lab
cd = 0

whenever the vertex configuration is not allowed. We then obtain

L(xi )va ⊗vb=
∑

c,d=0,1

Lab
cd (xi )vc ⊗vd=xa

i [v0 ⊗ (σ+)avb+v1 ⊗σ−(σ+)avb], (3.3)

which can be rewritten in the basis {v0 ⊗v0, v0 ⊗v1, v1 ⊗v0, v1 ⊗v1} as

L(xi )=

⎛
⎜⎜⎝

1 0 0 0
0 1 xi 0
0 1 xi 0
0 0 0 0

⎞
⎟⎟⎠ . (3.4)

PROPOSITION 3.2. The 5-vertex L-matrix satisfies the Yang–Baxter equation,

R12(x, y)L13(x)L23(y)= L23(y)L13(x)R12(x, y), (3.5)
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where the matrix R is given by

R(x, y)=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 y/x 1− y/x 0
0 0 0 y/x

⎞
⎟⎟⎠ . (3.6)

Proof. A straightforward computation.

Note that the matrix R(x, y) is non-singular for generic x, y, since det R(x, y)=
−y2/x2. The solution L to the Yang–Baxter equation can be used to define an
algebra in End(V )⊗N ∼= End(V ⊗N ), called the Yang–Baxter algebra which plays a
central role in the quantum inverse scattering method; see, e.g. [6] for a textbook
and references therein. In fact, the Yang–Baxter algebra comes naturally equipped
with a coproduct. First rewrite the L-matrix in the form

L(x)=
(

1 xσ+
σ− xσ−σ+

)
(3.7)

where the matrix elements are polynomials in the indeterminate x with coefficients
in End V . The following is a known result how to introduce a bi-algebra structure
on solutions of the Yang–Baxter equation; we therefore omit the proof.

PROPOSITION 3.3. Define implicitly a coproduct � : End(V )→ End(V )⊗ End(V )

by setting �L(x) := L13(x)L12(x) and a co-unit ε :End(V )→C by ε(L(x))=
(

1 0
0 1

)
.

Here the maps ε,� act on the coefficients when expanding with respect to the spec-
tral variable x . The set of solutions of (3.5) equipped with �,ε forms a bialgebra, so
in particular �L is again a solution of (3.5).

Note that we do not have a Hopf algebra structure as the L-operator is not
invertible.

Repeatedly applying � and the isomorphism End(V )⊗ End(W )∼= End(V ⊗ W ),
one is led to consider the so-called monodromy matrix in End(V (x))⊗End(V ⊗N )

T (x)= L0N (x) · · · L02(x)L01(x)=
(

A(x) B(x)
C(x) D(x)

)
. (3.8)

From the Yang–Baxter equation one then deduces—among others —the following
commutation relations for the entries of the monodromy matrix,

A(x)A(y)= A(y)A(x), D(x)D(y)= D(y)D(x),

B(x)B(y)= y

x
B(y)B(x), C(x)C(y)= x

y
C(y)C(x)

(3.9)
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and

x B(x)A(y)= x B(y)A(x)+ (x − y)A(y)B(x),

y B(x)D(y)+ (x − y)D(x)B(y)= y B(y)D(x).
(3.10)

We now describe these commutation relations in terms of divided difference oper-
ators. This will allow us in a subsequent section to derive the generating func-
tion (1.15) for toric Schur functions and formula (1.16) mentioned in the introduc-
tion. We will also use these relations below to construct eigenvectors of the vicious
walker transfer matrix.

Consider the polynomial ring Rm =Z[x1, . . . , xm] where the xi ’s are some com-
muting indeterminates. There is a natural action of the symmetric group Sm on
Rm by permuting the xi ’s where we denote by {si }m−1

i=1 the elementary transpo-
sitions which exchange xi and xi+1. Introduce the difference operators ∂i = (1 −
xi+1/xi )

−1(si − 1) for i = 1, . . . ,m. Despite first appearance, the latter map poly-
nomials into polynomials: because of linearity it suffices to consider the following
action on a monomial

∂i xa
i xb

i+1 =

⎧⎪⎨
⎪⎩

∑b−a−1
r=0 xb−r

i xa+r
i+1 , a<b

0, a =b

−∑a−b−1
r=0 xa−r

i xb+r
i+1 , a>b

. (3.11)

The difference operators yield a representation of the nil Hecke algebra Hm(0),
that is they obey the relations

∂2
i =−∂i and ∂i∂i+1∂i =∂i+1∂i∂i+1 . (3.12)

Remark 3.4. The action (3.11) of the difference operators ∂i is the familiar action
of the Hecke algebra Hm(q) on the ring of polynomials via Demazure or Bernstein–
Gelfand–Gelfand operators in the limit q→ 0. In this limit, the algebra Hm(0) is
known as the nil–Hecke algebra.

We now have the following simple but important lemma.

LEMMA 3.5. Let f ∈Rm ⊗ V ⊗N and suppose si f = f for all i =1, . . . ,m −1. Then
we have the commutation relations

A(xi+1)B(xi ) f =∂i B(xi+1)A(xi ) f

D(xi+1)B(xi ) f =−∂i B(xi+1)A(xi ) f (3.13)

C(xi+1)B(xi ) f =∂i D(xi+1)A(xi ) f.

Proof. This is a direct computation using (3.5), (3.6) and the definition (3.8).
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To describe the action of the matrix elements A, B,C, D in combinatorial terms
we now relate them to a particular representation of the affine nil Temperley–Lieb
algebra. The latter is the unital, associative algebra generated by {u1, . . . ,uN } and
relations

u2
i =ui ui+1ui =ui+1ui ui+1 =0, i ∈ZN

ui u j =u j ui , |i − j | mod N >1 .
(3.14)

We will refer to the subalgebra generated by {u1, . . . ,uN−1} as the finite nil Temper-
ley–Lieb algebra. Note that the latter is a quotient of the nil Hecke algebra.

PROPOSITION 3.6 hopping operators. The map

ui �→ fi :=σ+
i+1σ

−
i , i =1, . . . , N −1 (3.15)

yields a faithful representation of the finite nil Temperley–Lieb algebra over Vn . If we
further set

uN �→ fN :=qσ+
1 σ

−
N (3.16)

we obtain a faithful representation of the affine nil Temperley–Lieb algebra over
C[q,q−1]⊗ Vn .

Remark 3.7. In [24] a free fermion description of the small quantum cohomology
ring was presented. The relationship between the current description of the affine
nil Temperley–Lieb algebra and that in loc. cit. is given via the following formulae

ψi =σ−
i

∏
j<i

σ z
j and ψ∗

i =σ+
i

∏
j<i

σ z
j

In particular, one easily verifies that fi =ψ∗
i+1ψi =σ+

i+1σ
−
i with

ψi+N =−q−1ψi

N∏
j=1

σ z
j and ψ∗

i+N =−qψ∗
i

N∏
j=1

σ z
j .

The last proposition is then an obvious reformulation of [24, Prop 9.1] and we
therefore omit the proof.

The action (3.16) suggest to introduce the following quasi-periodic boundary
conditions, σ±

i+N = −q±1σ±
i and σ z

i+N = σ z
i . We also introduce the adjoint endo-

morphisms f ∗
i =σ−

i+1σ
+
i and f ∗

N =q∗σ−
1 σ

+
N , where q∗ =q−1. For ease of notation,

we will henceforth simply write Vn,q :=C[q,q−1]⊗Vn and V ⊗N
q :=C[q,q−1]⊗V ⊗N .

One easily deduces the following identities which we state without proof; com-
pare with [24, Section 8.2 and Lemma 9.3].
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LEMMA 3.8. Denote by � : b �→ b′, ∨ : b �→ b∨ and Rot : b �→ Rot b the endomor-
phisms V ⊗N → V ⊗N induced by the maps in (2.4) and (2.5). Then

∨◦ fi = f ∗
N−i ◦∨, �◦ fi = fN−i ◦�, Rot ◦ fi+1 = fi ◦Rot, (3.17)

where all indices are understood modulo N .

PROPOSITION 3.9. We have the following expressions for the Yang–Baxter algebra
in terms of the fi ’s:

A(x)= (1+ x fN−1) · · · (1+ x f1),

B(x)= x A(x)σ+
1 , C(x)=σ−

N A(x), D(x)= x σ−
N A(x)σ+

1 .
(3.18)

Proof. From the definition of the monodromy matrix one easily derives the
expression

Tb,a(x)=
∑
α

x |α|+a(σ−
N )

b f
αN−1
N−1 · · · f α1

1 (σ+
1 )

a, (3.19)

where the sum runs over all compositions α= (α1, . . . , αN−1) with αi = 0,1. The
assertion is now immediate.

The action of the operators Ar in Vn ⊂ V ⊗N is easily described using the well-
known bijections between 01-words and partitions explained in Section 2.

LEMMA 3.10 (horizontal strips). Let μ∈ (n, k), and A(x)=∑
r≥0 xr Ar . Then the

polynomials

Ar =
∑
α�r

f
αN−1
N−1 · · · f α1

1 (3.20)

act on the basis vector |μ〉 by adding all possible horizontal r -strips to the Young
diagram of μ such that the result λ lies within the n × k bounding box, Ar |μ〉 =∑
λ−μ=(r) |λ〉.

Remark 3.11. Polynomials in noncommutative variables such as (3.20) have been
considered in e.g. [13] and their affine extensions in [33] and [24,25]. Here the new
aspect is that we show that they are part of the Yang-Baxter algebra of the vicious
walker model.

Proof. Using the bijection (2.2) one readily verifies that either fi |μ〉= |λ〉, where
λ is obtained by adding a box in the (i −n)th diagonal of the Young diagram of μ,
or if this is not possible fi |μ〉=0. Consider now a consecutive string fi+r ′ · · · fi+1

fi |μ〉=|λ〉 with r ′ ≤r and suppose wi (μ)=1, w j (μ)=0 for i< j ≤ i +r ′; otherwise
the action is trivial. Then the 1-letter at position i in w(μ) is moved past r ′ 0-
letters whose position each decreases by one. Since μ′

k+1− j =	 j (μ
′)+ j , where N +
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1−	k+1− j (μ
′) are the positions of 0-letters in w(μ), we find λ′

k+1− j −μ′
k+1− j =1.

Thus, λ is obtained from μ by adding a horizontal strip of length r ′. This proves
the assertion.

From the last lemma, the action of the remaining Yang–Baxter algebra genera-
tors is obtained by observing that σ+

1 |λ〉=|λ1 −1, . . . , λn −1〉 if λn>0 or σ+
1 |λ〉=0

if λn =0. In contrast, σ−
N |λ〉=|μ〉 if μ can be obtained by adding a column of max-

imal height to the Young diagram of λ and then subtracting a boundary ribbon of
length N starting in the first row. Otherwise, we have σ−

N |λ〉=0.

LEMMA 3.12. (i) The operator Br acts by adding all possible horizontal strips of
length r −1 such that the result lies within the n ×k bounding box and removing the
leftmost column of the resulting Young diagram afterwards. (ii) In contrast, the oper-
ator Cr acts by adding all possible horizontal strips of length r and removing the top
row afterwards. (iii) Finally, the action of the operator Dr is to first add an horizon-
tal r -strip, preserving the height but not the width of the bounding box, and then sub-
tracting a boundary ribbon of length N starting from the first row.

From the commutation relations (3.9) of the Yang–Baxter algebra it now fol-
lows that certain polynomials in the noncommutative alphabets { f1, . . . , fN−1} and
{ f1, . . . , fN } commute.

COROLLARY 3.13 (integrability). (i) The finite nil Temperley–Lieb polynomials Ar

commute pairwise, that is Ar Ar ′ = Ar ′ Ar , ∀r, r ′ =0,1, . . . , N .
(ii) Let H(x)= A(x)+q D(x)∈End V ⊗N

q then one has the expansion

H(x)=
N∑

r=0

xr Hr , Hr :=
∑
α�r

qαN (σ−
N )

αN f
αN−1
N−1 · · · f α1

1 (σ+
1 )

αN (3.21)

Moreover, Hr Hr ′ = Hr ′ Hr for all r, r ′ =0,1, . . . , N .

Proof. The first assertion is immediate from the commutation relation (3.9 ). The
operator H : V ⊗N

q → V ⊗N
q is the so-called row-to-row transfer matrix of the vicious

walker model on the cylinder, i.e. its matrix elements are the partition functions
of one lattice row when imposing quasi-periodic boundary conditions in the hor-
izontal direction of the square lattice. The transfer matrix can be written as the
following partial trace,

H(x)=Tr0 q(σ
+σ−)0 L0N (x) · · · L01(x) , (3.22)

where the indices indicate in which factors of the tensor product V (x) ⊗ V ⊗N
q

the respective L-operators act. (The factors are labelled from left to right start-
ing with 0,1, . . . , N .) The additional operator qσ

+σ−
under the trace invokes quasi-

periodic boundary conditions, i.e. the powers of the indeterminate q count how
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many outer horizontal edges are occupied. It is now a consequence of the Yang–
Baxter equation that this model is integrable, i.e. the transfer matrices commute
pairwise, H(x)H(y)= H(y)H(x) for any x, y. The assertion then follows from the
expansion (3.19).

For completeness, we summarise our previous findings on the combinatorial
action of the Yang–Baxter algebra (3.18) in the following formula for each r =
0,1, . . . , N .

LEMMA 3.14. Let μ∈ (n, k) then

Hr |μ〉=
∑

λ−μ=(r)
|λ〉+q

∑
λ[1]−μ=(r)

|λ〉, (3.23)

where in the second sum λ[1] denotes the partition obtained from λ by adding a
boundary ribbon of length N starting in the first and ending in the nth row. For r>k,
we have Hr |μ〉=0.

Proof. We postpone a detailed proof to Section 5 where we discuss the bijection
between row configurations of the vicious walker model and toric tableaux; see the
proof of Proposition 5.8.

3.3. OSCULATING WALKERS: VERTEX AND LATTICE CONFIGURATIONS

Define another 5-vertex model but this time on a k × N lattice with k = N −n,

L
′ := {〈i, j〉∈Z

2|0≤ i ≤ k +1, 0≤ j ≤ N +1} . (3.24)

Denote by E
′ the set of its horizontal and vertical edges. As before, we define

the weight of a lattice configuration C : E′ → {0,1} as wt′(C)= ∏
(i, j)∈L′ wt′(vi, j )∈

Z[x1, . . . , xk], where the allowed vertex configurations and their weights wt′(vi, j )

are depicted in Figure 4. The weights of the allowed vertex configurations again
depend only on the row index of the square lattice via the commutative indeter-

Figure 4. The five allowed vertex configurations for the osculating walker model. Note that
this model differs from the vicious walker model in the last vertex configuration only.
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minates (x1, . . . , xk). The corresponding L ′-matrix reads

L ′va ⊗vb =
∑

c,d=0,1

L ′ab
cd vc ⊗vd = xa

i [v0 ⊗ (σ+)avb +v1 ⊗ (σ+)aσ−vb] , (3.25)

which can be rewritten in the basis {v0 ⊗v0, v0 ⊗v1, v1 ⊗v0, v1 ⊗v1} as

L ′(xi )=

⎛
⎜⎜⎝

1 0 0 0
0 1 xi 0
0 1 0 0
0 0 0 xi

⎞
⎟⎟⎠ .

Via a straightforward computation, which we omit, one arrives at the following
result.

PROPOSITION 3.15. We have the identity

R′
12(x/y)L ′

13(x)L
′
23(y)= L ′

23(y)L
′
13(x)R

′
12(x/y), (3.26)

where

R′(x/y)=

⎛
⎜⎜⎝

1 0 0 0
0 1− x/y x/y 0
0 1 0 0
0 0 0 x/y

⎞
⎟⎟⎠ . (3.27)

Note that the matrix R′(x/y) is non-singular for generic x, y.
In complete analogy with our previous discussion of the vicious walker model,

we can define also here a monodromy matrix

T ′(x)= L ′
0N (x) · · · L ′

02(x)L
′
01(x)=

(
A′(x) B ′(x)
C ′(x) D′(x)

)
(3.28)

and Yang–Baxter algebra.

PROPOSITION 3.16. The matrix elements in (3.28) are given by the following exp-
ressions in the hopping operators (3.15),

A′(x)= (1+ x f1) · · · (1+ x fN−1) (3.29)

B ′(x)= xσ+
1 A′(x), C ′(x)= A′(x)σ−

N , D′(x)= x σ+
1 A′(x)σ−

N (3.30)

and we have the commutation relations A′(x)A′(y)= A′(y)A′(x).

Proof. Exploiting (3.25) one derives from the definition (3.28) the expansion

T ′
b,a(x)=

∑
α

x |α|+a(σ+
1 )

a f α1
1 · · · f

αN−1
N−1 (σ

−
N )

b , (3.31)
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where the sum runs again over all compositions α= (α1, . . . , αN−1) with αi =0,1.

Similar like before, one now verifies the following combinatorial action of the
Yang–Baxter algebra.

LEMMA 3.17 (vertical strips). Let A′(x)=∑
r≥0 xr A′

r . The polynomials

A′
r =

∑
α�r

f α1
1 · · · f

αN−1
N−1 (3.32)

act on |μ〉 with μ∈ (n, k) a partition by adding all possible vertical r -strips to the
Young diagram of μ such that the resulting diagram lies still within the n ×k bound-
ing box, A′

r |μ〉=∑
λ/μ=(1r ) |λ〉.

Proof. Similar to the case of vicious walkers we consider fi fi+1 · · · fi+r |μ〉= |λ〉
which is non-trivial only if wi+r ′+1(μ)= 0 and w j (μ)= 1 with i ≤ j ≤ i + r ′, r ′ ≤ r .
Employing (2.2) we find that λn+1− j −μn+1− j = 1. Thus, λ is obtained by adding
a vertical strip of height r .

We now impose again quasi-periodic boundary conditions in the horizontal
direction of the square lattice and introduce the corresponding transfer matrix E :
V ⊗N

q → V ⊗N
q ,

E(xi ) := A′(xi )+q D′(xi )=Tr0 q(σ
+σ−)0 L ′

0N (xi ) · · · L ′
01(xi ) . (3.33)

As in the case of the vicious walkers model one now exploits the Yang–Baxter
equation to arrive at the following set of commuting polynomials in the fi ’s.

COROLLARY 3.18 (integrability). We have the expansion

E(x)=
N∑

r=0

xr Er , Er =
∑
α�r

qαN (σ+
1 )

αN f α1
1 · · · f

αN−1
N−1 (σ

−
N )

αN (3.34)

and the {Er }N
r=0 commute pairwise.

The following lemma shows that vicious and osculating walkers are related via
level-rank duality.

LEMMA 3.19 (level-rank duality). Let � : V ⊗N
q → V ⊗N

q be the involution induced
by sending each |w〉 ∈B to |w′〉; compare with (2.4). Then we have � ◦ Hr = Er ◦�
for all r =0,1, . . . , N .
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Proof. This is an easy consequence of the second relation in (3.17) and the for-
mulae (3.21), (3.34).

An immediate consequence is the following combinatorial action of the Er ’s
which simply follows from the combinatorial action of the vicious walker transfer
matrix discussed previously.

LEMMA 3.20. Let μ∈ (n, k) then

Er |μ〉=
∑

λ−μ=(1r )

|λ〉+q
∑

λ[1]−μ=(1r )

|λ〉, (3.35)

where in the second sum λ[1] again denotes the partition obtained from λ by adding
a boundary ribbon of length n +k starting in the first and ending in the nth row. For
r >n, we have Er |μ〉=0.

We can also determine the commutation relations between the Yang–Baxter alge-
bras of the vicious and osculating walker models via a third and final Yang–Baxter
relation, which—again—is obtained by a tedious but direct computation which we
omit.

PROPOSITION 3.21. We have the additional identity

R′′
12(x/y)L1(x)L

′
2(y)= L ′

2(y)L1(x)R
′′
12(x/y) (3.36)

where R′′ is the singular matrix

R′′(x/y)=

⎛
⎜⎜⎝

1+ x/y 0 0 0
0 1 x/y 0
0 1 x/y 0
0 0 0 0

⎞
⎟⎟⎠ . (3.37)

Exploiting this last result one now proves in a similar manner as before that the
transfer matrices H(x) and E(y) commute for arbitrary x, y.

COROLLARY 3.22. We have the following commutation relations

A(x)A′(y)= A′(y)A(x),
(x + y)A′(y)σ−

N A(x)= xσ−
N A(x)A′(y)+ y A(x)A′(y)σ−

N , (3.38)

(x + y)A(x)σ+
1 A′(y)= x A(x)A′(y)σ+

1 + yσ+
1 A(x)A′(y),

and

y A(x)σ+
1 A′(y)σ−

N +xσ−
N A(x)σ+

1 A′(y)=yσ+
1 A′(y)σ−

N A(x)+ x A′(y)σ−
N A(x)σ+

1 . (3.39)

In particular, finite and affine nil Temperley–Lieb polynomials Hr , Er pairwise com-
mute, i.e. Hr Er ′ = Er ′ Hr for all r, r ′ =0,1, . . . , N .
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We have the following functional relation between the transfer matrices H, E
which generalises the known relation of the generating functions for elementary
and complete symmetric polynomials in the ring of symmetric functions.

PROPOSITION 3.23. We have the operator identity

H(x)E(−x)=1+qx N
N∏

j=1

σ z
j . (3.40)

Proof. Decompose V ⊗ V into W ⊕ W ⊥ with W = ker R′′(−1). Namely, W is
spanned by w1 = v0 ⊗ v0 , w2 = v0 ⊗ v1 + v1 ⊗ v0, w3 = v1 ⊗ v1, while W ⊥ = C{w4}
with w4 = 1

2 (v1 ⊗ v0 − v0 ⊗ v1). From the Yang–Baxter equation (3.36) for y = −x
one deduces that L13(x)L ′

23(−x)W ⊗ V ⊂ W ⊗ V . Thus, we can block decompose

L13(x)L ′
23(−x)=

(
M ∗
0 M ′

)
with respect to W ⊕ W ⊥ and one only needs to verify

that M,M ′ yield the asserted terms on the right hand side of (3.40) using that

L13(x)L
′
23(−x)w1 ⊗v0 =w1 ⊗v0, L13(x)L

′
23(−x)w1 ⊗v1 =w1 ⊗v1 +w2 ⊗v0

and

L13(x)L
′
23(−x)w2 ⊗v0,1 = L13(x)L

′
23(−x)w3 ⊗v0,1 =0 .

We leave the details of this last step to the reader since it is a simple computation.

COROLLARY 3.24. Let An,k ⊂End(Vn,q) be the commutative algebra generated by
{Hj }k

j=0 and {Ei }n
i=0. The map Ei �→ ei and Hj �→ h j provides a canonical algebra

isomorphism An,k ∼=q H∗(Grn,n+k)⊗Z C.

Proof. This is clear from our previous results: the combinatorial actions (3.23)
and (3.35). In particular, one has that Hr |Vn,q =0 for r>k and Er |Vn,q =0 for r>
n. The Yang–Baxter relations (3.5), (3.26), (3.36) provided us with a proof that the
Ei ’s and Hj ’s commute among themselves and with each other. Finally, the last
result (3.40) gives the desired algebraic dependence expressed in (1.2).

4. Algebraic Bethe Ansatz and Idempotents

We show in this section that the eigenvectors of the transfer matrices H, E for the
vicious and osculating walker models are the idempotents of the fusion ring of the
gauged WZNW model. The eigenbasis of the affine nil Temperley–Lieb polyno-
mials Hλ := Hλ1 Hλ2 . . . and Eλ := Eλ1 Eλ2 . . . with λi < N has been previously con-
structed in [24, Section 10] using the free fermion formalism mentioned earlier.
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Here, we obtain a new result: we show that the same eigenbasis can be obtained
from the Yang–Baxter algebras (3.18), (3.30) of the vicious and osculating walker
models by a procedure known as algebraic Bethe ansatz; see, e.g. [6] for a textbook
reference. In particular, this construction will furnish us with the vertex-type oper-
ator formulae ( 4.3), (4.4) for Schur functions which differ from the known expres-
sions; see, e.g. [29, Chapter I, Section 5, Ex 29] and references therein.

4.1. BETHE VECTORS

We assume that q±1/N exist and define eλ= e(y1(λ), . . . , yn(λ)) where

e(y1, . . . , yn) :=
∑

λ∈(n,k)
sλ(y

−1
1 , . . . , y−1

n )|λ〉 (4.1)

and y j (λ)=q
1
N exp[ 2π i

N J j (λ)] with J j (λ)=− n+1
2 +λ j + j and λ∈ (n, k) . We recall

from [24, Section 10] the following results.

THEOREM 4.1 (Korff–Stroppel).

(i) The vectors {eλ}λ∈(n,k) form an orthogonal basis of Vn , and we have that

||eλ||2 :=
∑
μ

sμ(y1, . . . , yn)sμ(y
−1
1 , . . . , y−1

n )= 2
n(1−n)

2 k(n + k)k∏
i< j sin2 π

n+k (λi −λ j + i − j)
.

(4.2)

(ii) The basis {eλ}λ∈(n,k) diagonalises the Hμ’s and Eμ’s; one has Hμeλ=hμ(y(λ))eλ
and Eμeλ= eμ(y(λ))eλ for all compositions μ with μi < N .

The following identities which connect the eigenvectors with the Yang–Baxter
algebras are new and are not contained in [24, Section 10].

LEMMA 4.2. Let |0〉, |N 〉 be the basis vectors in the one-dimensional spaces V0 and
VN . We have the following expansions,

B(x1) · · · B(xn)|0〉= xδn
∑

λ∈(n,k)
sλ(x)|λ〉 (4.3)

with δn = (n,n −1, . . . ,1) and

C ′(x1) · · ·C ′(xk)|N 〉= xρk
∑

λ∈(n,k)
sλ′(x)|λ〉 , (4.4)

where ρk = (k, . . . ,2,1).
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Figure 5. Vicious walker configurations for the B-operator (left) and the A-operator
(right).

So, in particular, we have the following identities between matrix elements and
Schur functions,

sλ(x1, . . . , xn)= x−δ〈λ|B(x1) · · · B(xn)|0〉= x−ρn 〈λ′|C ′(x1) · · ·C ′(xn)|N 〉 . (4.5)

Proof. The proof is graphical. Draw a diagonal line across the square lattice as
indicated in Figure 5.

Claim 4.3. The vicious walker configurations shown on the right in Figure 5 are in
bijection with semi-standard tableaux T of shape λ∈ (n, k) where 	i (λ), i =1, . . .n
defined in (2.2) are the end positions of the walkers and the corresponding weight
of such configurations is xα , where α∈Z

n
≥0 is the weight of the tableau.

We postpone the proof of this claim to the next section where we establish a
bijection between non-intersecting paths on the cylinder and toric Young tableaux.
The claim will then follow as a special case by considering only those vertex
weights which lie below the dotted line and noting that the vertices above the line
contribute the total weight factor xn

1 xn−1
2 · · · xn . Thus, redrawing the lattice paths

as indicated in Figure 5 and using the known sum formula sλ(x)=∑
|T |=λ xT (see,

e.g. [29, Chapter I]), we arrive at the desired expression

B(xn) · · · B(x1)|0〉= xn
1 xn−1

2 · · · xn

∑
λ∈(n,k)

sλ(x)|λ〉 .

The second identity simply uses the fact that �σ+
i �=σ−

N−i , which is easily ver-
ified. Thus, from �A(x)�= A′(x) (see Lemma 3.19 for q =0) and (3.18), (3.30) it
follows that �B(x)�= xC ′(x). Applying the involution � on both sides of the pre-
vious identity and swapping n and k afterwards, the second assertion is proved.

PROPOSITION 4.4. Fix 0≤n<N . For each λ∈ (n, k), the vector eλ is an eigenvec-
tor of H = A +q D and E = A′ +q D′ with
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H(x)eλ= (1+ (−1)nqx N )

n∏
i=1

1
1− xyi (λ)

eλ , (4.6)

E(x)eλ=
n∏

i=1

(1+ xyi (λ)) eλ. (4.7)

For n = N the eigenvalue equations simplify to H(x)|N 〉 = |N 〉 and E(x)|N 〉 = (1 +
qx N )|N 〉.

Proof. Start with n = 1. Note that A(x)|0〉= |0〉 and D(x)|0〉= x N |0〉. According
to (3.10), we then find that

B(y)|0〉=
∑
r>0

yr |0 · · ·01
r
0 · · ·0〉

is an eigenvector of H(x) with eigenvalue (1+qx N )/(1− x/y) provided that yN q =
1. This computation generalises to n> 1, using an induction argument one finds
with the help of the equations (3.10),

A(x)B(yn) · · · B(y1)= B(yn) · · · B(y1)A(x)
n∏

i=1

yi

yi − x

−
n∑

i=1

B(yn) · · · B(x)
i

· · · B(y1)A(yi )
yi

yi − x

∏
j �=i

yi y j

y j − yi

and

D(x)B(yn) · · · B(y1)= B(yn) · · · B(y1)D(x)
n∏

i=1

yi

x − yi

−
n∑

i=1

B(yn) · · · B(x)
i

· · · B(y1)D(yi )
yi

x − yi

∏
j �=i

yi y j

yi − y j
,

Employing these identities, one deduces that for e(y) to be an eigenvector the so-
called Bethe roots yi have to satisfy the following set of constraints,

yN
1 =· · ·= yN

n = (−1)n−1q . (4.8)

The explicit solution to these equations is easily obtained and can be found in [24,
Prop 10.4].

To arrive at the eigenvalue equation for E one can either perform a similar com-
putation using the operators C ′ introduced earlier and employing level-rank duality
or employ Proposition 3.23.

The statement for n = N is obvious and follows from the definition of H, E .

Let P be the linear operator V ⊗N → V ⊗N defined by P|λ〉=|λ∨〉 and T the lin-
ear operator defined by T |λ〉 = |λ〉 and T q = q−1T for each λ ∈ (n, k) with N =
n + k. We introduce the operators
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H∗(x)=PT H(x) PT and E∗(x)=PT E(x) PT . (4.9)

Note that it follows from the definition that we have the identity H∗(x)= A∗(x)+
q−1 D∗(x) with

L01(x)L02(x) · · · L0N (x)=
(

A∗(x) B∗(x)
C∗(x) D∗(x)

)
.

An analogous formula holds for E∗(x).

LEMMA 4.5. We have the dual affine Pieri rules

H∗
r |μ〉=

∑
μ−λ=(r)

|λ〉 +q−1
∑

μ[1]−λ=(r)
|λ〉 (4.10)

and

E∗
r |μ〉=

∑
μ−λ=(1r )

|λ〉 +q−1
∑

μ[1]−λ=(1r )

|λ〉 , (4.11)

where the notation μ[1] in the second sum in both formulae stands for the partition
obtained by adding a boundary rim hook of length n + k to μ.

Proof. Simply note that Pσ+
i σ

−
i+1 =σ−

N−iσ
+
N+1−iP . The rest is then a straightfor-

ward computation which follows along similar lines as in the case of Hr and Er

using the explicit polynomial expressions in the fi ’s given in (3.21), (3.34).

The last result motivates us to define an isomorphism (V ⊗N
q )∗ → V ⊗N

q by iden-
tifying the dual basis vector 〈λ| with P|λ〉 = |λ∨〉, and more generally any vector
v∗ = ∑

λ cλ(q)〈λ| ∈ (V ⊗N
q )∗ with v = ∑

λ cλ(q−1)|λ∨〉 ∈ V ⊗N
q . In other words, the

pairing 〈v|w〉 between the vector space and its dual is given by the bilinear form
η(v,w) := (v,PT w), where (|λ〉, |μ〉)= δλμ.

LEMMA 4.6. The left or dual eigenvectors e∗
λ defined by 〈e∗

λ|eμ〉= δλμ are given by
the expansion

e∗
λ=

∑
μ∈(n,k)

sμ(y(λ))

||eλ||2 〈μ| . (4.12)

Proof. This is a direct consequence of our previous discussion, applying PT to
(4.3) and then using part (i) of Theorem 4.1 .

Remark 4.7. In [24] the operator ĤN =−q
∏N

j=1 σ
z
j was defined, which differs from

HN =q|0〉〈0|, which simply is the projection onto the unique basis vector in V0,q .
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In loc. cit. the decomposition V ⊗N
q = ⊕N

n=0 Vn,q has been employed to define via
the eigenbasis {eλ}λ∈(n,k) the following set of operators

Ĥr |Vn,q =
∑

λ∈(n,k)
hr (y(λ))

eλ⊗ e∗
λ

||eλ||2 , r ≥0 .

Clearly, we have Hr = Ĥr for 0≤r<N . The new insight here is that these operators
originate from a Yang–Baxter algebra which has a local description in terms of a
statistical vertex model on a square lattice.

4.2. THE VERLINDE ALGEBRA

Since the q-dependence can be removed via a simple rescaling of the Bethe roots,
y →q− 1

N y (compare with (4.8)) we now set for simplicity q =1. Interpret the eigen-
basis {eλ}λ∈(n,k) as a complete set of orthogonal idempotents of an associative, uni-
tal and commutative algebra. Next, we show that the resulting generalised matrix
algebra is isomorphic to the Verlinde algebra FC

n,k , where we recall from the intro-
duction that Fn,k ∼=q H∗(Grn,n+k)/〈q −1〉.

THEOREM 4.8 (idempotents of the Verlinde algebra). Endow Vn with the follow-
ing product, eλ � eμ := δλμ||eλ||2eλ and bilinear form η(|λ〉, |μ〉)= δλ∨μ. Then

(1) (Vn, �, η) is a commutative Frobenius algebra.
(2) The map |λ〉 �→ sλ is an algebra isomorphism (Vn, �)∼=FC

n,k .

Remark 4.9. An analogous statement holds true for the ŝu(n)k-WZNW fusion ring
using so-called ∞-friendly walkers; see [24]. In [26, Section 5] the role of the Bethe
vectors as idempotents has been highlighted and Section 7 of loc. cit. explains how
the construction might generalise to other integrable models.

Proof. We compute the product expansion in the basis {|λ〉}. Exploiting (4.1), we
find that

|λ〉� |μ〉=
∑

α,β∈(n,k)
〈e∗
α|λ〉〈e∗

β |μ〉eα � eβ

=
∑

α∈(n,k)

sλ(y(α))sμ(y(α))

||eα||2 eα =
∑

ν∈(n,k)
Cν,d
λμ |ν〉, (4.13)

where in the last step we have used, again, the definition (4.1) and the Bertram–
Vafa–Intriligator formula for Gromov–Witten invariants (see, e.g. [34, Cor 6.2, Eqn
(6.1)]),

Cν,d
λμ =

∑
α∈(n,k)

sλ(y(α))sμ(y(α))sν(y(α)−1)

||eα||2 . (4.14)
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From this equality it is obvious that |∅〉 is the identity with respect to the product
� and using (4.1), we find

|∅〉=
∑

α∈(n,k)
êα, êα = eα/||eα||2 . (4.15)

We now turn to the Frobenius structure. That η is non-degenerate follows from the
observation that |λ〉 �→|λ∨〉 simply permutes the basis elements in Vn . Compatibil-
ity of η with the product amounts to the identity

η(|λ〉� |μ〉, |ν〉)=Cλμν =Cμνλ=η(|λ〉, |μ〉� |ν〉), (4.16)

where Cλμν :=Cν∨,d
λμ and we have used the known S3-invariance of Gromov–Witten

invariants, Cλμν = Cπ(λ)π(μ)π(ν) for all π ∈ S3, which is immediate from their geo-
metric definition; see, e.g. [5].

Our main motivation to emphasise the Frobenius structure is the connection
with the toric Schur polynomials mentioned after Proposition 1.1 in the introduc-
tion.

Proof of Proposition 1.1. Let m :Fn,k ⊗Fn,k →Fn,k be the regular representation
or multiplication map, m(sμ⊗ sν)= sμ � sν , and m∗ :F∗

n,k →F∗
n,k ⊗F∗

n,k its dual map
with the Frobenius isomorphism � :Fn,k →F∗

n,k given by � :sλ �→η(sλ,•). Then, we
recall that the coproduct �n,k is obtained via the following commutative diagram,

Fn,k
�n,k−−−−→ Fn,k ⊗Fn,k⏐⏐�� ⏐⏐��⊗�

F∗
n,k

m∗−−−−→ F∗
n,k ⊗F∗

n,k

. (4.17)

Thus, we compute m∗ ◦�(sλ)(sμ ⊗ sν)=�(sλ)(sμ � sν)= Cλμν . Assuming on the
other hand that �n,ksλ=∑

d,α sλ/d/α ⊗ sα with sλ/d/α =∑
β Cλ,d

αβ sβ , we find

(�⊗�)�n,k(sλ)(sμ⊗ sν)=
∑

d,α,β

Cλ,d
αβ (�(sβ)⊗�(sα))(sμ⊗ sν)=Cλ∨μ∨ν∨ .

Exploiting invariance under Poincaré duality (see, e.g. [5]), Cλ∨μ∨ν∨ = Cλμν , the
assertion now follows.

5. Bijections Between Walks and Toric Tableaux

In this section, we prove that the lattice configurations of the vicious and osculat-
ing walker models are in bijection with toric tableaux which were used in [5,33].
This will provide a combinatorial link between these statistical mechanics models
and the quantum cohomology ring: the partition functions of vicious and osculat-
ing walkers on the cylinder are toric Schur functions.
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Figure 6. Example of a cylindric loop.

To keep this article self-contained we start by recalling the definition of toric
tableaux following [33]. As mentioned earlier, toric tableaux are a particular subset
of cylindric tableaux; see [18] for the original definition of cylindric (plane) parti-
tions, lattice paths and cylindric Schur functions.

DEFINITION 5.1 (cylindric loops). Let λ= (λ1, . . . , λn)∈ (n, k) and define the fol-
lowing associated cylindric loops λ[r ] for any r ∈Z,

λ[r ] := (. . . , λn + r + k
r

, λ1 + r
r+1

, . . . , λn + r
r+n

, λ1 + r − k
r+n+1

, . . .).

For r =0, the cylindric loop can be visualised as a path in Z×Z determined by
the outline of the Young diagram of λ which is periodically continued with respect
to the vector (n,−k) . For r �=0, this line is shifted r times in the direction of the
lattice vector (1,1); see Figure 6 for an illustration.

DEFINITION 5.2 (cylindric skew diagrams). Given two partitions λ,μ ∈ (n, k)
denote by λ/d/μ the set of squares between the two lines λ[d] and μ[0] modulo
integer shifts by (n,−k),

λ/d/μ := {〈i, j〉∈Z×Z/(n,−k)Z | λ[d]i ≥ j >μ[0]i }.
We shall refer to λ/d/μ as a cylindric skew diagram of degree d.

A cylindric skew diagram ν/d/μ which has at most one box in each column
will be called a (cylindric) horizontal strip and one which has at most one box in
each row a (cylindric) vertical strip. The length of such strips will be the number
of boxes within the skew diagram.
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Figure 7. Example of a toric tableau. On the left it is indicated how the toric skew diagram
is constructed from the cylindric loops of λ and μ. The right picture shows how the squares
outside the bounding box are moved to the inside.

DEFINITION 5.3 (toric skew diagrams). A cylindric skew diagram is called toric
if it has at most k squares in each row.

See Figure 7 for an example of a toric skew diagram. Note that for d = 0, we
recover the familiar skew diagram of two partitions, i.e. λ/0/μ=λ/μ.

DEFINITION 5.4 (cylindric tableaux). A (semi-standard) tableau T of cylindric
shape λ/d/μ is a mapping T :λ/d/μ �→N of the squares of the associated diagram
such that in each row and column of connected squares the numbers are, respec-
tively, weakly increasing (left to right) and strictly increasing (top to bottom).

See Figure 7 for an example. As for ordinary skew diagrams, we define the
weight vector α(T )= (α1, α2, . . .) by setting αi to be the number of i-entries in T .

DEFINITION 5.5 (Quantum Kostka numbers). The cardinality of the set of all
cylindric tableaux T of shape ν/d/μ and weight α is denoted by Kν/d/μ,α.

As already pointed out in the introduction the quantum Kostka number Kν/d/μ,α
in (1.3) equals the number of semi-standard cylindric tableaux of weight α, and
specialises for d =0 to the ordinary Kostka number Kν/μ,α.

We will also make use of Kν′/d/μ′,α , the number of conjugate cylindric and toric
diagrams ν′/d/μ′, which are obtained by interchanging n and k. Here, ν′,μ′ ∈ (k,n)
denote the conjugate partitions of ν,μ.

DEFINITION 5.6 (Cylindric Schur functions). Introduce the following generalisa-
tion of a skew Schur function,
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sν/d/μ(x1, x2, . . .) :=
∑

|T |=ν/d/μ
xT =

∑
α

Kν/d/μ,αmα(x1, x2, . . .) , (5.1)

where mα are the monomial symmetric functions in an infinite set of variables xi

and the sum runs over all cylindric tableaux of fixed shape ν/d/μ.

Note that the cylindric Schur function (5.1) specialises to an ordinary skew
Schur function for d =0.

DEFINITION 5.7 (Toric Schur functions). Specialising xr =0, r >n the cylindric
Schur functions are called toric Schur functions, i.e. the sum in (5.1) runs only
over toric tableaux.

We recall from [33, Lemma 5.2] that toric Schur functions are nonzero if and
only if ν/d/μ is a toric skew diagram.

5.1. LATTICE CONFIGURATIONS AND QUANTUM KOSTKA NUMBERS

Throughout this section, we assume ν,μ∈ (n, k). Denote by �ν,μ,�′
ν,μ the sets of

all allowed lattice configurations C, C′ on the cylinder for the vicious and osculat-
ing walker models where the values of the lower and upper vertical lattice edges
are fixed by the 01-words w(ν) and w(μ), respectively. It will also be convenient to
consider the subsets �ν/d/μ⊂�ν,μ of configurations which do have a fixed number
of 2d outer horizontal edges with value one (they come in pairs due to the quasi-
periodic boundary conditions in the horizontal direction), including in particular
the special case of d = 0 (q = 0) when there are no outer horizontal edges �ν/0/μ.
Finally, we introduce for each α= (α1, . . . , αn)∈Z

n
≥0 the subsets

�ν/d/μ(α) := {C ∈�ν/d/μ :wt(C)= xα} . (5.2)

Analogously, we define for β = (β1, . . . , βk) ∈ Z
k
≥0 the set �′

ν/d/μ(β) as the lattice
configurations C′ of the osculating walker model which have weight wt′(C′)= xβ .

PROPOSITION 5.8. The set of allowed lattice configurations �ν/d/μ and �′
ν/d/μ are

in bijection with the sets of toric skew tableaux of shape ν/d/μ and ν′/d/μ′, respec-
tively. In particular,

Kν/d/μ,α =|�ν/d/μ(α)|= |�′
ν′/d/μ′(α)| , (5.3)

where α= (α1, . . . , αn) is some weight vector with non-negative integer entries.

Note that for d = 0 and μ=∅ the statement specialises to Claim 4.3 which we
used earlier to prove Lemma 4.2.
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Figure 8. Example for constructing a toric tableau from the vicious walker configuration con-
sidered in the introduction with N =9=n +k =4+5 and λ= (5,5,3,2)=μ, ν= (5,4,2,1). The
shaded boxes on the right show the Young diagram of μ and removing from the toric skew
diagram the two (d = 2) framed N -ribbons, one obtains the Young diagram of ν. The boxes
below belong to the periodic continuation of the tableau.

Proof. We concentrate on the vicious walker model, the generalisation to the
osculating walker model will then be obvious. First, we state the bijection. Recall
from Figure 3 that each lattice configuration C ∈�ν/d/μ defines an n-tuple of non-
intersecting paths γ = (γ1, . . . , γn) of which d cross the boundary. Draw the Young
diagram Y (μ) of μ in the bounding box (n, k). Reading the 01-word of μ from
left to right take the path which originates at 	1(μ), that is from the first 1-letter
in w(μ), and note down the lattice rows of each of its horizontal edges starting
from the top, say i1 ≤ · · · ≤ ir . Add a corresponding row of boxes with entries
i1 ≤ · · · ≤ ir to the bottom row of Y (μ). If the path has no horizontal edges do
not add any boxes. Continue with the path originating from the second 1-letter in
w(μ) at 	2(μ) and write the corresponding filled boxes in the row above the bot-
tom row of Y (μ) starting at the first square which does not lie in μ. Continue until
you have reached the last 1-letter in w(μ); see Figure 8 for an example.

That the described map is indeed a bijection follows from the following lemma.

LEMMA 5.9. Each toric skew tableau T of shape ν/d/μ can be written as a seque-
nce of toric horizontal strips, i.e. there is a unique sequence of cylindric loops (μ[0]=
ν(0)[d0], ν(1)[d1], . . . , ν(n)[dn]= ν[d]) such that ν(i+1)/(di+1 − di )/ν

(i) is a horizontal
strip and

∑
i di =d with di =0,1.

Since toric tableaux can be seen as a special subset of ordinary (semi-standard)
tableaux of shape ν[d]/μ the proof of this lemma follows along very similar lines
as in the case of ordinary tableaux (see, e.g. [29, Chap I]) and we therefore omit it.

Thus, it suffices to derive the assertion for n =1 in which case d =0 or 1. Then
we have the following generalisation of (2.2) to cylindric loops

μ[0]n+1−i =	i (μ)− i and λ[1]n+1−i =	i+1(λ)− i ,
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Figure 9. Example for constructing a conjugate toric tableau from the osculating walker con-
figuration considered in the introduction. The shaded boxes on the right now show the Young
diagram of μ′ and removing from the toric skew diagram the two N -ribbons (d =2) framed
in blue, one obtains the Young diagram ν′.

where 	i+n(μ)=	i (μ)+ N , 	i+n(λ)=	i (λ)+ N . Analogously, one finds for the con-
jugate loops,

μ[0]′k+1−i =μ′[0]k+1−i =	i (μ
′)− i, λ[1]′k+1−i =λ′[1]k+1−i =	i+1(λ

′)− i

with 	i+k(μ
′)=	i (μ

′)+ N , 	i+k(λ
′)=	i (λ

′)+ N . Using these formulae together with
the action (3.15), (3.16), one now easily verifies that an allowed row configuration
of the vicious walker model, i.e. a non-vanishing matrix element of a monomial in
the hopping operators fi appearing in (3.21), defines a toric horizontal strip ν/d/μ
with d = 0,1 and vice versa. In particular, the action of a consecutive string such
as fi · · · f2 f1 fN · · · f j bμ=bλ can only be nonzero if there are as many consecutive
0-letters in w(μ) starting at j and ending at i as there are hopping operators fl

in the string. Thus, the horizontal strip has at most length k.
The bijection for the osculating walkers is analogous. Start with the leftmost

path originating at 	1(μ) and for each horizontal path edge in lattice row i add
a box labelled i in the rightmost column of the k × n bounding box beneath the
Young diagram of μ′. Continue with the second path placing the boxes now in the
second column from the right and so forth. The result is a conjugate toric tableau
of shape ν′/d/μ′; see Figure 9 for an example.

The proof that the described map is indeed a bijection employs the expansion
(3.34) and follows closely along similar lines as in the previous case of vicious
walkers. We therefore omit it.

Number the lattice columns of L ( L
′) from left to right. That is, the ith column

is the collection of horizontal lattice edges (p, p′)∈ E ( E
′) such that p1 = i and

p′
1 = i + 1. Let C : E →{0,1} (C′ : E′ → {0,1}) be a vicious (osculating) walker con-

figuration with start and end positions 	(ν) and 	(μ), ν,μ∈ (n, k) . The number
of horizontal path edges in column i is the sum over the values of the horizontal
lattice edges in column i in configuration C (C′).
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LEMMA 5.10. The number of horizontal path edges in lattice column i is

θi (ν,μ,d)=d +ni (μ)−ni (ν), 1≤ i ≤ N . (5.4)

In particular, we have that d ≥dmin(ν,μ) :=maxi∈I {ni (ν)−ni (μ)}.

Remark 5.11. The integer dmin(ν
∨,μ) is the minimal power appearing in the quan-

tum product sμ ∗ sν ; see [16]. In fact, there exists an interval of integers [dmin,dmax]
describing all powers occurring in this product. This was first conjectured in [39]
and proved in [33].

Proof. Denote by w( j)
i , v

( j)
i ∈{0,1) the values of the, respectively, horizontal and

vertical lattice edges in column i and row j in the configuration C or C′. Since
the argument is completely analogous for both, vicious and osculating walkers,
we only consider the former for the rest of the proof. By construction, we have
v
(0)
i =wi (μ) and v

(n)
i =wi (ν). Note that the allowed configurations shown in Fig-

ure 3 preserve the sum of values on the N and W edge and the E and S edge, that
is w( j)

i−1 +v( j−1)
i =v( j)

i +w( j)
i . Hence, we compute

θi =w(1)i +w(2)i +· · ·+w(n)i

=v(0)i +w(1)i−1 −v(1)i +v(1)i +w(2)i−1 −v(2)i +· · ·+v(n−1)
i +w(n)i−1 −v(n)i

= θi−1 +v(0)i −v(n)i = θi−1 +wi (μ)−wi (ν) .

The assertion now follows by observing that θN =d, the number of horizontal path
edges on the boundary.

LEMMA 5.12 Let λ∈ (n, k). Kν/d/μ,λ=0 unless |λ|+ |μ|− |ν|=d N .

Proof. Since θN (ν,μ,d) = d and the vicious and osculating paths are non-
intersecting we must have that the paths starting at 	N+1−d(μ), . . . , 	N (μ) end at
	1(ν), . . . , 	d(ν), respectively. Thus, the paths starting at 	1(μ), . . . , 	N−d(μ) end at
	d+1(ν), . . . , 	N (ν).

Therefore, |λ|=∑n
i=1(	i+d(ν)−	i (μ))=|ν|− |μ|+d N .

5.2. PATH COUNTING AND GROMOV–WITTEN INVARIANTS

We now compute the weighted sums over lattice configurations of the vicious and
osculating walker models; these are called partition functions. Consider the fol-
lowing operator products H(x1) · · · H(xn)∈Z[x1, . . . , xn]⊗End(V ⊗N

q ) and E(x1) · · ·
E(xk)∈ Z[x1, . . . , xk] ⊗ End(V ⊗N

q ). Then by construction, we have for the vicious
walker model

〈ν|H(x1) · · · H(xn)|μ〉=
∑

C∈�ν,μ

∏
〈i, j〉∈L

wt(vi, j )∈Z[x1, . . . , xn], (5.5)
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and for the osculating walker model,

〈ν|E(x1) · · · E(xk)|μ〉=
∑

C′∈�′
ν,μ

∏
〈i, j〉∈L′

wt′(vi, j )∈Z[x1, . . . , xk], (5.6)

where 〈ν|X |μ〉 is shorthand for 〈b(ν), Xb(μ)〉 and wt(vi, j ), wt′(vi, j ) denote the ver-
tex weights of the vicious and osculating walker models in Figures 3, 4.

COROLLARY 5.13 The partition function (5.5) has the following expansion in toric
Schur polynomials

〈ν|H(x1) · · · H(xn)|μ〉=
∑
d≥0

qdsν/d/μ(x1, . . . , xn) . (5.7)

The analogous expansion of the partition function (5.6) for the osculating walker
model reads

〈ν|E(x1) · · · E(xk)|μ〉=
∑
d≥0

qdsν′/d/μ′(x1, . . . , xk) . (5.8)

In particular, for λ∈ (n, k) the quantum Kostka numbers are given by the matrix ele-
ments

qd Kν/d/μ,λ=〈ν|Hλ|μ〉=〈ν′|Eλ|μ′〉 , (5.9)

where Hλ= Hλ1 · · · Hλn , Eλ= Eλ1 · · · Eλn and d = (|λ|+ |μ|− |ν|)/N .

Proof. Let mλ be the monomial symmetric function. We have the identities

〈ν|H(x1) · · · H(xn)|μ〉=
∑

λ∈(n,k)
〈ν|Hλ|μ〉mλ(x1, . . . , xn) (5.10)

=
∑

λ∈(n,k)
qd(λ)Kν/d/μ,λmλ(x1, . . . , xn), (5.11)

where (5.10) is a direct consequence of the expansion (3.21) and the fact that
the partition function (5.5) must be symmetric in the xi ’s due to H(x)H(y) =
H(y)H(x). The asserted identity (5.11) with d(λ)N =|λ|+|μ|−|ν| follows from the
bijection described in the proof of Proposition 5.8 and Lemma 5.12. Recalling that
the monomial symmetric functions form a basis in the ring of symmetric functions
the last equality is proved. The argument is completely analogous for the osculat-
ing walkers.

We now recover the following result from [33, Thm 5.3] and [24, Thm 10.8].

COROLLARY 5.14. Let n �= 0, N . One has the following expansion of toric Schur
functions,
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sν/d/μ(x1, . . . , xn)=
∑

|λ|+|μ|−|ν|=d N

Cν,d
λμ sλ(x1, . . . , xn) , (5.12)

where Cν,d
λμ =〈ν|Sλ|μ〉 and Sλ=det(Hλi −i+ j )1≤i, j≤n .

Proof. Recall from the ring of symmetric functions the familiar expansion mα=∑
λ Lαλsλ, where Lαλ=∑′

w(−1)w with the sum ranging over all permutations w∈
Sn such that w(λ+ ρ)− ρ ∈ Snα. Here ρ = (n − 1, . . . ,2,1,0) is the Weyl vector.
Employing this identity together with Sλ = ∑

w(−1)wHw(λ+ρ)−ρ , one proves that
the expansion coefficients of the partition function (5.7) into Schur functions are
the matrix elements 〈ν|Sλ|μ〉. That the latter equal the Gromov–Witten invariants
can be derived from Cor 3.24 and is a consequence of (4.13), (4.14) together with
the eigenvalue equations (4.6), (4.7) and Theorem 4.1.

Let c(s)= j − i be the content and h(s)=λi +λ′
j − i − j +1 the hook-length of a

square s = (i, j)∈λ. As a special case of the last corollary we obtain the following
solution to the counting problem of non-intersecting paths on the cylinder which
is a refinement of the one stated in the introduction.

COROLLARY 5.15 Setting x1 =· · ·= xn =1 we have that

|�ν/d/μ|=
∑

λ∈(n,k)
|λ|+|μ|−|ν|=d N

Cν,d
λμ

∏
s∈λ

n + c(s)

h(s)
=|�′

ν′/d/μ′ | . (5.13)

Proof. Trivial consequence of the known identity sλ(1, . . . ,1)= ∏
s∈λ

n+c(s)
h(s) for

Schur functions, see, e.g. [29, Chapter I, Ex 1(a), page 26]. The above result then
simply states that setting q =1, we have

|�ν,μ|= 〈ν|Hn|μ〉=
∑
d≥0

sν/d/μ(1, . . . ,1)=〈ν′|Ek |μ′〉= |�′
ν′,μ′ | (5.14)

where H = H(1) and E = E(1).

Remark 5.16 For q =0, we recover the result for configurations on the finite open
strip by applying the Gessel–Viennot Theorem; see, e.g. [9,14,15,20–22]. This yields
the familiar determinant (Jacobi–Trudi) formula for skew Schur functions. For gen-
eral q the only known expressions involve sums of determinants; see [31, Equation
(6.4), page 299] and [18, Prop 1].

6. Toric Schur Function Identities

We are now in the position to derive the formula (1.16) and the generating func-
tion (1.15) stated in the introduction. We start with proving the identity (1.14).
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Proof of Proposition 1.5. It follows from our previous results (5.7) and (4.3 ) that
we have the following expansion,

〈λ|H(yn) · · · H(y1)B(xn) · · · B(x1)|0〉= xδn
∑

μ∈(n,k)
d≥0

qdsλ/d/μ(y)sμ(x) .

But according to Proposition 1.1 the right hand side—apart from the monomial
factor xδn —is the image of the Schubert class sλ under the coproduct of the Ver-
linde algebra. The analogous result holds true for osculating walkers using Lemma
3.19.

We now invoke the commutation relations of the Yang–Baxter algebra (3.18) to
provide a closed formula for the above matrix element in terms of the divided dif-
ference operators (3.11).

Proof of Corollary 1.6. Recall Lemma 3.5, then it follows from the definition
H(x;q)= A(x)+ q D(x) that H(xi+1;q)B(xi ) f =∂i B(xi+1)H(xi ;−q) f for any f ∈
C[xi , xi+1,q] ⊗ V ⊗N which is symmetric in xi , xi+1. For our purposes it suffices
to make the stronger assumption that f does not depend on xi , xi+1 and, thus,
we simply write H(xi+1;q)B(xi )=∂i B(xi+1)H(xi ;−q) as an operator identity. We
prove the following formula by induction,

H(xn;q)B(xn−1) · · · B(x1)=∂n−1 · · ·∂2∂1 B(xn) · · · B(x2)H(x1; (−1)n−1q) .

As just discussed Lemma 3.5 tells us that the assertion is true for n =2 by setting
i =1. Assume it holds true for some n ≥2. Then it follows from Lemma 3.5 that

H(xn+1;q)B(xn)B(xn−1) · · · B(x1)

=∂n B(xn+1)H(xn;−q)B(xn−1) · · · B(x1)

=∂n∂n−1 · · ·∂1 B(xn)B(xn−1) · · · B(x2)H(x1; (−1)nq)

which completes the proof by induction.
Setting yi = xi+n and ∇i =∂n−1+i · · ·∂i+1∂i one now computes

H(yn;q) · · · H(y1;q)B(xn) · · · B(x1)

= H(x2n;q) · · · H(xn+2;q)∇1 B(xn+1) · · · B(x2)H(x1; (−1)nq)

=∇1 H(x2n;q) · · · H(xn+2;q)B(xn+1) · · · B(x2)H(x1; (−1)nq)

=· · ·
=∇1 · · ·∇n B(x2n) · · · B(xn+1)H(xn; (−1)nq) · · · H(x1; (−1)nq) .

Taking the matrix element 〈λ| . . . |0〉 on both sides of the last identity and exploit-
ing that H(xi ; (−1)nq)|0〉 = (1 + qx N

i )|0〉 we find the asserted generating function
(1.15) and the identity (1.16).



QUANTUM COHOMOLOGY VIA VICIOUS AND OSCULATING WALKERS 807

EXAMPLE 6.1. Consider q H∗(Gr2,4). There are six basis elements each corre-
sponding to a partition in the 2 × 2 bounding box. Pick any λ with Young dia-
gram inside the 2×2 bounding box. Invoking (1.15) and (1.16) one first computes
x−δ2 D1 D2 · · · Dn yδ2 Fλ(x; y) via (3.11) before expanding the result into Schur func-
tions in the x-variables,

λ ∅ (1,0) (1,1) (2,0) (2,1) (2,2)

sλ 1 x1 + x2 x1x2
2
1 + x1x2 + x2

2 x2
1 x2 + x1x2

2 x2
1 x2

2

.

Since the latter form a basis this amounts to solving a linear system of equations.
These steps can be readily implemented on a computer using one’s favourite sym-
bolic computation package such as Mathematica or Maple. The solution yields
the toric Schur functions in the y-variables on the left hand side of (1.16) which
in a similar manner can be expanded into Schur functions. The table below lists
the expansion of the toric Schur functions

∑
d≥0 qdsλ/d/μ(y) for the given values

of λ and μ.

∣∣∣∣∣∣ λ\μ
∣∣∣ (1,0)

∣∣∣ (1,1)
∣∣∣ (2,0)

∣∣∣ (2,1)
∣∣∣ (2,2)

∣∣∣∣∣∣∣∣∣ ∅
∣∣∣∣∣∣ qs2,1

∣∣∣ qs2,0

∣∣∣ qs1,1

∣∣∣ qs1,0

∣∣∣ q2s2,2

∣∣∣∣∣∣∣∣∣ (1,0)
∣∣∣∣∣∣ 1+qs2,2

∣∣∣ qs2,1

∣∣∣ qs2,1

∣∣∣ qs2,0 +qs1,1

∣∣∣ qs1,0

∣∣∣∣∣∣∣∣∣ (1,1)
∣∣∣∣∣∣ s1,0

∣∣∣ 1
∣∣∣ qs2,2

∣∣∣ qs2,1

∣∣∣ qs2,0

∣∣∣∣∣∣∣∣∣ (2,0)
∣∣∣∣∣∣ s1,0

∣∣∣ qs2,2

∣∣∣ 1
∣∣∣ qs2,1

∣∣∣ qs1,1

∣∣∣∣∣∣∣∣∣ (2,1)
∣∣∣∣∣∣ s2,0 + s1,1

∣∣∣ s1,0

∣∣∣ s1,0

∣∣∣ 1+qs2,2

∣∣∣ qs2,1

∣∣∣∣∣∣∣∣∣ (2,2)
∣∣∣∣∣∣ s2,1

∣∣∣ s1,1

∣∣∣ s2,0

∣∣∣ s1,0

∣∣∣ 1
∣∣∣

Since sλ/d/μ = ∑
ν∈(n,k)Cλ,d

μν sν one can easily read off the Gromov–Witten invari-
ants and the above table contains the complete multiplication table for q H∗(Gr2,4).
For instance, the table entry λ= (1,0) and μ= (2,1) reads qs2,0 +qs1,1 from which
we infer C (1,0),1

(2,1),(2,0) = 1 and C (1,0),1
(2,1),(1,1) = 1. For more complicated examples with

n + k>4 Gromov–Witten invariants greater than one will occur.

COROLLARY 6.2. Assume N =n +k with k ≥n and 0<r ≤n. For any λ,μ∈ (n, k)
we have the following identities for toric Schur functions∑

d+d ′=r
μ∈(n,k)

sλ/d/μ(x1, . . . , xn)sμ′/d ′/ν′(−x1, . . . ,−xn, xn+1, . . . , xk)

=
r∑

d=0

(−1)n(r−d)er−d(x
N
1 , . . . , x N

n )sλ′/d ′/ν′(xn+1, . . . , xk,0, . . . ,0)

which for n = k specialise to the statement in the introduction.
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Proof. Consider the matrix element 〈λ|H(x1) · · · H(xn)E(y1) · · · E(yk)|ν〉. Then
according to (5.7) and (5.8), we have

〈λ|H(x1) · · · H(xn)E(y1) · · · E(yk)|ν〉=
∑

μ∈(n,k)
d,d ′≥0

qd+d ′
sλ/d/μ(x)sμ′/d ′/ν′(y) .

On the other hand setting yi =−xi for i =1,2, . . . ,n we obtain from the functional
relation (3.40) that

〈λ|H(x1) · · · H(xn)E(y1) · · · E(yk)|ν〉=〈λ|E(yn+1) · · · E(yk)|ν〉
n∏

i=1

(1+(−1)nqx N
i ) .

Equating powers of q on both sides, we find the claimed identities.
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