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Abstract. We present a simple isomorphism between the algebra of one real chiral Fermi
field and the algebra of n real chiral Fermi fields. The isomorphism preserves the vac-
uum state. This is possible by a “change of localization”, and gives rise to new multilo-
cal symmetries generated by the corresponding multilocal current and stress–energy tensor.
The result gives a common underlying explanation of several remarkable recent results
on the representation of the free Bose field in terms of free Fermi fields (Anguelova,
arXiv:1112.3913, 2011; Anguelova, arXiv:1206.4026, 2012), and on the modular theory
of the free Fermi algebra in disjoint intervals (Casini and Huerta, Class Quant Grav
26:185005, 2009; Longo et al., Rev Math Phys 22:331–354, 2010)
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1. Introduction

It is well known that there is an algebraic isomorphism (the “split isomorphism”)
A(x)B(y) �→ A(x)⊗t B(y), x ∈ O1, y ∈ O2 between the fields of a given QFT local-
ized in two spacetime regions Oi , and two independent copies of the same fields
localized in the same regions, as long as the regions are sufficiently well space-like
separated from each other.1

Naively, this is true because A (anti)commute with B by graded locality, while
A ⊗t 1 (anti)commute with 1 ⊗t B by construction, so that all algebraic rela-
tions are preserved. However, this isomorphism does not preserve the vacuum
state, because it eliminates all correlations between fields in O1 and fields in O2:
ω(A(x) ⊗t B(y)) = ω(A(x)) · ω(B(y)) �= ω(A(x)B(y)), nor is it an isomorphism

1The graded tensor product A⊗t B is the true tensor product A⊗ B if A is a Bose field, and a
twisted tensor product A ⊗ (−1)F B if A is a Fermi field, such that 1⊗t B and A ⊗t 1 anticommute
when A and B are both Fermi fields.
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of topological algebras. Moreover, it cannot be defined globally, because the
restriction to space-like separated regions is essential in the argument.

We present here a new isomorphism between the algebra of one real chiral
Fermi field, and the algebra of a complex = two real chiral Fermi fields (or actu-
ally of any number n of real Fermi fields), which preserves the vacuum state and
is globally defined. The price to pay is a change of the notion of localization. This
means in particular, that the isomorphism does not intertwine the respective con-
formal transformations. We shall discuss the relation between the stress–energy ten-
sors of the real Fermi field and of the complex Fermi field, and features of the
“embedded” diffeomorphisms generated by either SET acting on the other field.
We shall also present the bilocal gauge transformations of the real Fermi field gen-
erated by the current of the complex Fermi field. This isomorphism provides a
very simple understanding of two recent remarkable results: The first is the fact [2]
that besides the standard fermionization formula j (x)= :φ∗(x)φ(x): of the free chi-
ral Bose current in terms of a complex Fermi field, one can obtain the same cur-
rent as a bilocal Wick product of a real Fermi field at two different points: j (x)∼
:ψ(x1)ψ(x2): , where x2 =−1/x1 are the two solutions of q(xi )≡ 2xi/(1 − x2

i )= x .
(The differential algebra underlying this relation was described much earlier in [8]
in the context of hierarchies of integrable systems.) The isomorphism generalizes
to an isomorphism of one real Fermi field with any number n of real Fermi fields
(at the price of an n-fold localization). Since non-abelian current algebras can be
constructed as certain subalgebras of n-free-Fermi quantum field theories, it would
be interesting to study the resulting multilocal embedding into the theory of a sin-
gle free Fermi field. The second remarkable recent result is the discovery [7] (see
also [15]) that the modular automorphism group of the local von Neumann alge-
bra of a free Fermi theory in a union of disjoint intervals in the vacuum state acts
“almost” geometric. The geometric part of the “modular dynamics” is given by the
pullback of the dilation group under a rational uniformizing function that maps
each of the intervals onto R+ and each component of the complement onto R−;
in addition, there occurs a “mixing” among the fields at related points in each of
the intervals. Under the present isomorphism, the n Fermi fields at a point X are
mapped to position-dependent linear combinations of a single Fermi field at the n
pre-images xk of X . Because the isomorphism preserves the vacuum state, it inter-
twines the respective modular automorphisms. Therefore, the modular mixing of
one Fermi field in n intervals is naturally explained from the well-known modular
automorphism group of n independent Fermi fields in a single interval, which is
just the subgroup of the Möbius group preserving the interval [5,11].

Remark. With the term “fermionization”, we refer to the representation of Bose
fields in terms of Fermi fields, as the opposite of “bosonization”, the representa-
tion of Fermi fields in terms of Bose fields [6,16,17].



MULTILOCAL FERMIONIZATION 21

2. The Starting Point

Let ψ be the real chiral Fermi field: ψ(x)∗ =ψ(x), with canonical anticommutation
relations (CAR)

{ψ(x),ψ(y)}=2π δ(x − y), (x, y ∈R) (2.1)

and vacuum two-point function

ω
(
ψ(x)ψ(y)

)= −i

x − y
≡ lim
ε↘0

−i

x − y − iε
.

Let φ be a complex chiral Fermi field: φ(x)∗ =φ∗(x), with CAR

{φ(x), φ∗(y)}={φ∗(x), φ(y)}=2π δ(x − y), {φ,φ}={φ∗, φ∗}=0 (2.2)

and vacuum two-point function

ω
(
φ(x)φ∗(y)

)=ω(
φ∗(x)φ(y)

)= lim
ε↘0

−i

x − y − iε
, ω

(
φφ

)=ω(
φ∗φ∗)=0.

The complex Fermi field can be decomposed into two anti-commuting real Fermi
fields:

φ(x)= (
ψ(1)(x)+ iψ(2)(x)

)
/
√

2.

We write CAR and CARn for the algebras generated by one, resp. n real Fermi
fields.

Let us also introduce the “compact picture”, using the Cayley transformation

z = 1+ i x

1− i x
∈ S1\{−1} (2.3)

and the definition

ψ̂(z) :=
(

− i
d z

dx

)− 1
2
ψ(x)≡ 1− i x√

2
ψ(x) (2.4)

and likewise for all other Fermi fields.2 Then, for the real field, one has ψ̂(z)∗ =
zψ̂(z), and for the complex field φ̂(z)∗ = zφ̂∗(z). The non-vanishing two-point func-
tions are

ω
(
ψ̂(z)ψ̂(w)

)=ω(
φ̂(z)φ̂∗(w)

)=ω(
φ̂∗(z)φ̂(w)

)= 1
z −w ≡ lim

λ↗1

1
z −λw ,

and the CAR is given in terms of limλ↗1(
1

z−λw + 1
w−λz )= 2πδ(z,w)≡ 2π

z δ(ϕ−ϑ)
for z = eiϕ , w= eiϑ , ϕ,ϑ ∈ (−π,π).

The “compact picture” CAR algebras on the cut circle S1\{−1} are just
reparametrizations of the CAR algebras on R. Their extension to the full circle

2The present choice of the branch of the square root in the transformation law determines the
branch of similar square roots throughout.
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S1 depends on the representation. The CAR algebra on R possesses two faithful
representations: the vacuum (or Neveu–Schwarz) representation and the Ramond
representation [10]. The former extends periodically to S1, while the latter extends
anti-periodically to S1, i.e., it extends to the twofold covering of S1.

Our starting point (Proposition 1) is an isomorphism between the complex
Fermi algebra CAR2(S1) and the real Fermi algebra CAR(S1) in the vacuum rep-
resentation. We shall give two simple proofs. The simplest one is in the global set-
ting of the Fourier modes. We also give another, local proof, because our main
interest in the rest of the paper lies in the local properties of the resulting new
symmetries of the real Fermi field, which can be understood by this isomorphism.
These symmetries are in a controlled way non-local (“bilocal”), If they were com-
pletely non-local, there would be little interest; we believe, however, that the bilo-
cal symmetries are of some physical relevance. This will be elaborated in Section 4,
where contact with the modular theory of the real Fermi field is made.

Due to the different global behaviour, the following proposition holds only
in the vacuum representation. It entails bilocal fermionization formulae for the
current and the stress–energy tensor in the vacuum representation (Corollaries 1
and 3). An analogue of the proposition in the Ramond sector will be discussed in
Section 5.

PROPOSITION 1. Let φ and ψ stand for the complex and real Fermi fields in the
vacuum representation. The linear map

β : φ̂(z2) �→ 1
2

(
ψ̂(z)+ ψ̂(−z)

)
,

φ̂∗(z2) �→ 1
2z

(
ψ̂(z)− ψ̂(−z)

) (2.5)

for z ∈ S1, induces an isomorphism β :CAR2(S1)→CAR(S1) of CAR algebras, which
preserves the vacuum state.

Note that the map is well defined because the right-hand sides are invariant
under z ↔−z.

Proof. The simplest proof proceeds by looking at the Fourier modes of the real
and complex free Fermi fields,

ψ̂(z)=
∑

n∈Z+ 1
2

ψnz−n− 1
2 , φ̂(z)=

∑

n∈Z+ 1
2

φnz−n− 1
2 , φ̂∗(z)=

∑

n∈Z+ 1
2

(φ∗)nz−n− 1
2 ,

where ψn =(ψ−n)
∗ and (φ∗)n =(φ−n)

∗ satisfy the CAR {ψn,ψm}=δn+m,0, {φn, φ
∗
m}=

δn+m,0. In terms of these modes, the isomorphism is given by

β
(
φ̂(z2)

)=
∑

n∈Z+ 1
2

ψ2n+ 1
2
(z2)−n− 1

2 , β
(
φ̂∗(z2)

)=
∑

n∈Z+ 1
2

ψ2n− 1
2
(z2)−n− 1

2 .
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This is just a renumbering of the generators

φn �→ψ2n+ 1
2
, (φ∗)n �→ψ2n− 1

2

(
n ∈Z+ 1

2

)
, (2.6)

such that the conjugate complex fields β(φ̂), β(φ̂∗) involve the Fourier modes ψm

of the real Fermi field with m ∈2Z− 1
2 ,m ∈2Z+ 1

2 , respectively.
It is then obvious that the CAR and adjoint relations are preserved. The vac-

uum state is preserved because the vacuum is the unique state which is annihilated
by all ψn(n>0), and by all φn, φ

∗
n (n>0), respectively. This already proves the state-

ment.
We wish, however, to emphasize the local aspects of the isomorphism. Therefore,

we also indicate the proof in the setting of local quantum field theory.
One may directly compute the anti-commutators

{β(φ̂∗(z2)), β(φ̂(w2))}=2πδ(z2,w2)= π

z

(
δ(z,w)+ δ(z,−w)),

etc. It is, however, sufficient and in fact much easier, to verify the equality of the
vacuum two-point functions

ω
(
β(φ̂∗(z2))β(φ̂(w2))

)= 1
z2 −w2

,

etc, which is easily done by a direct computation. By Wick’s theorem, this equal-
ity then extends to all n-point functions. The CAR follow from these correlation
functions.

The adjoint relation

β
(
φ̂(z2)

)∗ = z2β
(
φ̂∗(z2)

)

is immediate. Thus β is a *-homomorphism.
Finally, β is an isomorphism because it has an inverse:

β−1(ψ̂(z)
)= φ̂(z2)+ zφ̂∗(z2). (2.7)

This proves the proposition. ��
Going back to the non-compact picture, the isomorphism can be written as

φ(q(x)) �→ 1
q(x)

[
xψ(x)

1− i x
+ iψ(− 1

x )

1+ i x

]

,

φ∗(q(x)) �→ 1
q(x)

[
xψ(x)

1+ i x
− iψ(− 1

x )

1− i x

]

,

(2.8)

where q(x)= 2x
1−x2 is the map (−1,1)→R corresponding, under the Cayley trans-

formation, to the square map on z ∈ S1. The inverse reads

β−1(ψ(x))= 1+ i x

1− x2
φ(q(x))+ 1− i x

1− x2
φ∗(q(x)). (2.9)



24 KARL-HENNING REHREN AND GENNARO TEDESCO

Equipped with this isomorphism, we shall discuss several implications in the
sequel of this paper:

1. Under this isomorphism, the standard local fermionization formula for the
current in terms of the complex CAR algebra

ĵ(z)= :φ̂∗(z)φ̂(z): = i :ψ̂(1)(z)ψ̂(2)(z): (2.10)

turns into the new bilocal fermionization formula [2] embedding the current
into the real CAR algebra

2z ·β(
ĵ(z2)

)= :ψ̂(z)ψ̂(−z): , (2.11)

(and a similar formula for the stress–energy tensor). We shall present the
“bilocal gauge transformations” generated by this “embedded” current in
Section 3.

2. The embedded stress–energy tensor consists of two pieces: the stress–energy
tensor of the real Fermi theory, and an embedded current. Consequently, the
embedded diffeomorphisms consist of a geometric flow and a bilocal gauge
transformation. This is, in particular, true for the embedded Möbius trans-
formations, which are known to arise as modular automorphisms in the vac-
uum state [5,11]. Therefore, the “modular mixing” [7,15] of the Fermi field in
multiple intervals finds its explanation as embedded Möbius transformations.
Details of this will be presented in Section 4.

3. There is an analogous isomorphism between the real Fermi field in the Ra-
mond representation and a pair of real Fermi fields, one in the Ramond, one
in the vacuum representation. This yields another embedding of the current
algebra into the Ramond representation of the real Fermi field, which turns
out to be the “twisted” representation of the current [9]. The latter is defined
by the quasifree state3 with two-point function

ωt
(

ĵ(z) ĵ(w)
)= w+ z

2
√
wz

· 1
(w− z)2

ωt
(

j (x) j (y)
)= 1+ xy

√
(1+ x2)(1+ y2)

· −1
(x − y)2

,

(2.12)

in the compact and non-compact picture, respectively. The twisted representa-
tion has lowest conformal energy L0 = 1

16 . Some aspects of this bilocal current
will be discussed in Section 5.

To conclude this section, we notice that Proposition 1 generalizes to an isomor-
phism between one real Fermi field and any number n of real Fermi fields, exploit-
ing the map z �→ zn . Let us combine n real Fermi fields into complex Fermi fields
φ(k) (k =1, . . . ,n) such that (φ(k)(x))∗ =φ(n+1−k)(x). If n is odd, φ(

n+1
2 ) is real.

3A state on a CAR or CCR algebra is called quasifree if it obeys Wick’s theorem, i.e., all
higher correlation functions are sums of products of two-point functions.
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PROPOSITION 2. The linear map

β : φ̂(k)(zn) �→ z1−k

n

n−1∑

j=0

ω(1−k) j · ψ̂(ω j z) (z ∈ S1, k =1, . . . ,n), (2.13)

where ω=e
2π i

n , induces an isomorphism β :CARn(S1)→CAR(S1) of CAR algebras,
which preserves the vacuum state.

That this is a vacuum-preserving isomorphism, can again be verified as in the
proof of Proposition 1, either by a direct computation of the vacuum expectation
values, from which also the anti-commutation relations follow, or by noting that
β(ψ(k)(zn))=∑

ν∈Z+ 1
2
ψ 1

2 −k+(ν+ 1
2 )n
(zn)−ν−

1
2 .

In particular, since non-abelian current algebras can be embedded into free
Fermi theories with sufficiently many free Fermi fields, one obtains representations
of all these theories in the Fock space of a single free Fermi field.

3. Symmetries

Throughout this section, we shall work exclusively in the compact picture, which
drastically simplifies most formulae. The passage to the non-compact picture can
always be made by the transformation laws A(x) = (

√
2

1−i x )
2d Â(z) for fields of

dimension d. We also suppress the symbol ·̂ in this section.

3.1. GAUGE TRANSFORMATIONS

The complex free Fermi field algebra is invariant under gauge transformations. The
latter can be implemented by unitary Weyl operators:

α f
(
φ(z)

)≡ e−i f (z)φ(z)= W ( f )φ(z)W ( f )∗,
α f

(
φ∗(z)

)≡ ei f (z)φ∗(z)= W ( f )φ∗(z)W ( f )∗,

where f : S1 → R is a smooth periodic function. In the vacuum representation,
the Weyl operators are given by W ( f )=ei j ( f ), j ( f )=∮

f (z) j (z)dz/ i . The current
j (z) is contained in the Wick algebra of the complex Fermi field as

j (z)= :φ∗(z)φ(z): = i :ψ(1)(z)ψ(2)(z): . (3.1)

It satisfies the CCR algebra

[ j ( f ), j (g)]=2π i
∮

f (z)∂zg(z)dz, (3.2)

and its vacuum two-point function is

ω
(

j (z) j (w)
)= 1

(z −w)2 .
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The current algebra defines a free Bose quantum field of its own. The CCR alge-
bra possesses automorphisms

ρλ( j (z))= j (z)+λ(z),
where zλ(z) is a smooth real function. It is well known, that states ωλ=ω0 ◦ρλ are
charged states of charge q = 1

2π

∫
λ(z)dz, and these states are ground states for the

conformal Hamiltonian L0 if λ(z)= q
z . In this case, we denote ρλ=ρq :

ρq( j (z))= j (z)+ q

z
. (3.3)

Because the Wick product is defined by the subtraction of vacuum expectation
values, and the isomorphism β respects the vacuum state, the latter extends to the
Wick algebra of the complex Fermi field. In particular, we can “embed” the cur-
rent into the real Fermi algebra. A straightforward computation gives rise to

COROLLARY 1. The embedded current is

β
(

j (z2)
)= 1

2z
:ψ(z)ψ(−z): . (3.4)

We may also write this in terms of Fourier modes

j (z)=
∑

n∈Z

jnz−n−1,

where j∗n = j−n satisfy the CCR [ jm, jn]=mδm+n,0. Then

β
(

j (z2)
)= 1

2z

∑

m,k∈Z+ 1
2

:ψmψk : (−1)−k− 1
2 z−m−k−1.

If N ∈ Z is odd, the sum
∑

k∈Z+ 1
2

:ψN−kψk : (−1)−k− 1
2 = ∑

k∈Z+ 1
2

:ψkψN−k :
(−1)k−N− 1

2 vanishes by virtue of the CAR, because (−1)k−N− 1
2 = (−1)−k− 1

2 . Thus,
the sum contains only odd powers z−N−1 = z−2n−1, and the expansion in z2 yields

β( jn)=
∞∑

ν=0

(−1)n+ν+1ψn−ν− 1
2
ψn+ν+ 1

2
.

The following corollary gives the action of the embedded gauge transformations
on the real free Fermi field:

COROLLARY 2. The embedded gauge transformations β(W ( f ))Aβ(W ( f ))∗ = β ◦
α f ◦β−1(A) act on the real Fermi field by

β(W ( f ))ψ(z)β(W ( f ))∗ = cos f (z2) ·ψ(z)+ sin f (z2) ·ψ(−z).

The characteristic feature is the bilocal “mixing” of ψ(z) and ψ(−z), reflecting
the non-locality of the isomorphism β.
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3.2. DIFFEOMORPHISMS

The real and complex Fermi field algebras are invariant under diffeomorphisms γ :
S1 → S1, implemented by unitary operators

V (γ )ψ(z)V (γ )∗ =√
γ ′(z) ·ψ(γ (z)).

The unitary implementers of one-parameter groups of diffeomorphisms are given
by

V (γt )= eitT ( f )≡ eit
∮

f (z)T (z)dz

where i f (z)/z ∈R. The infinitesimal diffeomorphisms given by derivations

δ f (ψ(z))≡ i[T ( f ),ψ(z)]=
(

− f (z)∂z − 1
2

f ′(z)
)
ψ(z)

integrate to one-parameter groups of finite diffeomorphisms via ∂tγt (z)=− f (γt (z)).
The stress–energy tensor of the real Fermi field is

T c= 1
2 (z)= −1

4π
:ψ∂ψ : (z)= −1

8π
:ψ↔

∂ ψ : (z),

the one of the complex Fermi field is

T c=1(z)= −1
4π

:ψ(1)∂ψ(1): (z)+ −1
4π

:ψ(2)∂ψ(2): (z)= −1
4π

:φ∗ ↔
∂ φ: (z).

The current algebra is also diffeomorphism invariant,

V (γ ) j (z)V (γ )∗ =γ ′(z) · j (γ (z)),

with the stress–energy tensor given by

T curr(z)= 1
4π

: j2: (z). (3.5)

If the current is expressed by the complex Fermi field as above, then this coincides
with T c=1:

1
4π

: j2: (z)= −1
4π

:φ∗ ↔
∂ φ: (z). (3.6)

Our isomorphism β embeds the stress–energy tensor T c=1 into the real free
Fermi theory. Again, the computation is straightforward. The result is

COROLLARY 3. The embedded complex stress–energy tensor is

β
(
T c=1(z2)

)=− 1
8π z2

β
(

j (z2)
)+ 1

4z2

(
T c= 1

2 (z)+ T c= 1
2 (−z)

)
. (3.7)
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The embedded infinitesimal diffeomorphisms i[β(T c=1( f )), A] = β ◦ δ f ◦ β−1(A) act
on the real Fermi field by

i
[
β
(
T c=1( f )

)
,ψ(z)

]=
(

− 1
2z

f (z2)∂z − 1
2

f ′(z2)
)
ψ(z)

+ 1
4z2

f (z2)
(
ψ(z)−ψ(−z)

)
. (3.8)

Again, we have a mixing of ψ(z) and ψ(−z), due to the first contribution in
(3.7), on top of a geometric flow due to the second term.

The contribution from the current in (3.7) can be removed by composition with
a charged automorphism of the current algebra. Thus, the relation (3.7) may also
be written as

β ◦ρ 1
4
(
T c=1(z2)

)= 1
4z2

(
T c= 1

2 (z)+ T c= 1
2 (−z)

)
+ 1

64π z4
. (3.9)

One may embed conversely the stress–energy tensor of the real Fermi field into
the algebra of the complex Fermi field. Because of the form (2.7) of the inverse
isomorphism β−1, this will involve terms :φ∂φ : and its conjugate, so that the
embedded diffeomorphisms of the real Fermi field will generate transformations
involving the charge conjugation φ↔φ∗.

COROLLARY 4. The embedded real stress–energy tensor is

β−1(T c= 1
2 (z)

)=−2z2T c=1(z2)+ 1
4π

j (z2)− z

2π

( :φ∂φ: (z2)+ z2 :φ∗∂φ∗: (z2)
)
.

(3.10)

The embedded infinitesimal diffeomorphisms i[β−1(T c= 1
2 ( f )), A] = β−1 ◦ δ f ◦ β(A)

act on the complex Fermi field by

i
[
β−1(T c= 1

2 ( f )
)
, φ(z2)

]=− f−(z2)φ′(z2)− 1
2

f ′−(z2)φ(z2)+ 1
4z2

f−(z2)φ(z2)

−z2 f+(z2)φ∗′(z2)− z2

2
f ′+(z2)φ∗(z2)− 1

2
f+(z2)φ∗(z2)

(3.11)

where f−(z2)= z( f (z)− f (−z)), f+(z2)= f (z)+ f (−z).

Let us also introduce the Fourier modes, T̂ (z)= ∑
n∈Z

Tnz−n−2. The standard
Virasoro generators are related to the Fourier modes Tn by Ln = 2πTn . Then the
relations (3.7) and (3.9) are equivalent to

β(Lc=1
n )=−1

4
β( jn)+ 1

2
L

c= 1
2

2n , β ◦ρ 1
4 (Lc=1

n )= 1
2

L
c= 1

2
2n + 1

32
δn,0, (3.12)

where ρq is the charged automorphism (3.3) extended to the stress–energy tensor
contained in the Wick algebra of the current.
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The latter expression is well known as the embedding of the infinitesimal “two-
diffeomorphisms” (i.e., the diffeomorphisms of z induced from those of the var-
iable z2) as a subalgebra of the Virasoro algebra. Note that the application of
ρ

1
4 to the embedded current (3.4) exactly “undoes” the subtraction of the vac-

uum expectation in the definition as a Wick product. Indeed, the subtraction is
not necessary in order to obtain a well-defined current, because the points are split
anyway. But the “unsubtracted” current has a non-vanishing vacuum expectation
value, i.e., the corresponding state is a state of charge q = 1

4 .
In contrast, the first expression in (3.12) involves also the modes of the current,

which may in turn be expressed as before by the real Fermi modes. The present
form emphasizes that the embedded diffeomorphisms come along with embedded
gauge transformation, i.e., a mixing of ψ(z) and ψ(−z), as described by Corol-
lary 2.

4. Modular Theory

This brings us to the second issue, which finds a simple explanation by Proposi-
tion 1.

“Modular automorphisms” are a one-parameter group of automorphisms of a
von Neumann algebra M in a faithful normal state ω, canonically associated with
the pair (M,ω). It is of particular interest in quantum physics, because the state is
automatically a thermal equilibrium state for the time evolution given by the mod-
ular automorphisms (“modular dynamics”) [13], and because the modular auto-
morphisms of local algebras for certain simple spacetime regions coincide with
Lorentz or conformal transformations [3,5,11]. The latter fact has been exploited
[4,12,14] to show that the full content of a quantum field theory can be encoded in
the vacuum state and a small finite number of von Neumann algebras “in suitable
modular position”, such that their modular groups generate all spacetime symme-
tries, and all local algebras can be identified as intersections of the transforms of
the initial algebras.

In the case of chiral conformal theories, the modular automorphisms for the
algebras of observables in an interval I coincide with the one-parameter subgroup
of Möbius transformations that preserve the interval [5,11], namely the dilations
λ−2π t : x �→ e−2π t x if I =R+ in the non-compact picture:

σt
(
ψ(x)

)=U (λ−2π t )ψ(x)U (λ−2π t )
∗ = e−π tψ(e−2π t x) (I =R+). (4.1)

For every other interval, the modular automorphisms are obtained by conjugation
with a Möbius transformation that maps I onto R+. Note that Möbius transfor-
mations intertwine the modular automorphisms, because they preserve the vacuum
state.

The modular automorphisms of the von Neumann algebra of the Fermi field in
multiple intervals in the vacuum state was found in [7], and elaborated in [15]. It
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is given by a combination of a geometric flow and a “mixing” of field operators
in the different intervals, which we describe in the following.

An n-interval is the union Ê = ∪k Îk of n open intervals with disjoint closure
in S1. It is called “symmetric” if Îk are the nth roots of an interval Î ⊂ S1. We
may assume that the point z =−1 is not in the closure of Ê , i.e., the Cayley pre-
image E ⊂R is bounded. Otherwise, we may first apply a Möbius transformation.
Because Möbius transformations intertwine the modular automorphisms, the mod-
ular flow would be a Möbius conjugate of the following.

Let the intervals be given by Îk = (uk, vk)⊂ S1, and define the function X by

X (z) :=−
∏

k

x −ak

x −bk
≡−

∏

k

1+vk

1+uk
·
∏

k

z −uk

z −vk
. (4.2)

Here, x,ak,bk ∈R are the Cayley pre-images of z,uk, vk ∈ S1.
This function maps each of the intervals monotonously onto R+, so that every

X ∈ R+ has exactly n pre-images zk(X), one in each interval. Then the geometric
flow is

δt (zk(X))= zk(e
−2π t X).

The modular automorphism group acts on the Fermi field by
√

z′
k(X) ·σt

(
ψ̂(zk)

)=
∑

j

Ok j (t, X)
√

z′
j (e

−2π t X) · ψ̂(δt (z j )) (4.3)

where z′
k ≡ dzk(X)/dX . The orthogonal mixing matrix O(t, X)∈ SO(n) is a cocyle

O(t + s, X)= O(t, X)O(s, e−2π t X), solving the differential equation4

∂t O(t, X)= O(t, X)K (e−2π t X) (4.4)

where

K (X)k j =2π

√
z′

k(X)z
′
j (X)

zk(X)− z j (X)
(k �= j), K (x)kk =0.

The solution is a coboundary

O(t, X)= O(X)T · O(e−2π t X)

where O(X) is the anti-path-ordered exponential

O(X)= P exp

⎛

⎜
⎝− 1

2π

X∫

X0

K (X ′)dX ′

⎞

⎟
⎠ . (4.5)

4This equation is incorrectly displayed in [15] as ∂t O(t)= K (t)O(t). The error is due to a
change of notation between [7] and [15]. Namely, [7] write σt (ψ(e+2π t X))= OCH(t, X)ψ(X), so that
by comparison with (4.3), O(t, X)= OCH(t, e

−2π t X)= OCH(−t, X)−1. The confusion arises because
both articles suppress the X -dependence of their mixing matrices. By [7], the differential equation
∂t OCH(t, X)= K (e+2π t X)OCH(t, X) holds. This implies the correct equation (4.4).
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It follows that the modular mixing is “diagonalized” by the position-dependent
orthogonal matrix O(X): Let

χk(X) :=
∑

j

Ok j (X)
√

z′
j (X) · ψ̂(z j (X)). (4.6)

Then (4.3) becomes

σt
(
χk(X)

)= e−π tχk(e
−2π t X). (4.7)

That is, by diagonalizing the modular mixing and reparametrizing zk = zk(X), one
recovers the modular automorphisms of n independent Fermi fields in R+.

To make the connection with Proposition 2, let us specialize to symmetric
n-intervals. In this case, the related points in Îk are given by zk =ωk z, where ω=
e

2π i
n . It follows that − 1

2π K (X)dX = K
z dz, where z =eiϕ and K is the constant anti-

symmetric matrix with non-diagonal entries

Kkj =− ω
k+ j

2

ωk −ω j
,

hence

O(X)= exp

⎛

⎝K

z∫

1

dw
w

⎞

⎠= zK .

LEMMA. The matrix K has integer-spaced spectrum 1−n
2 , . . . , n−1

2 . It is diagonal-

ized by the unitary matrix 1√
n

B, Bkj =ω( 1
2 −k) j , i.e., BK = M B where M is the diag-

onal matrix with entries mkk = n+1
2 − k(k =1, . . . ,n).

Proof. By direct computation (using ωn =1)

∑

j=1,...,n; j �=l

Bk j K jl =−
n+l−1∑

j=l+1

ω(
1
2 −k) jω

j+l
2

ω j −ωl
=−ω( 1

2 −k)l
n−1∑

j=1

ω(
1
2 −k) jω

j+2l
2

(ω j −1)ωl

≡−Bkl

n−1∑

j=1

ω(1−k) j

(ω j −1)
=−Bkl · 1

2

n−1∑

j=1

(
ω(1−k) j

(ω j −1)
+ ω(1−k)(n− j)

(ωn− j −1)

)

≡−Bkl · 1
2

n−1∑

j=1

ω(1−k) j −ωk j

(ω j −1)
= Bkl · 1

2

n−1∑

j=1

k−1∑

ν=1−k

ω jν

= Bkl · 1
2

k−1∑

ν=1−k

(
nδν,0 −1

)= Bkl · 1
2
(n −2k +1)=mkk · Bkl .

In the first line, we have used the invariance under j → j +n and shifted the sum-
mation index by l. In the second line, we have symmetrized the sum w.r.t. j ↔
n − j . In the third line, we have cancelled the denominator, and in the last line,
we have used

∑n
j=0ω

jν =nδν,0. ��
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PROPOSITION 3. The isomorphism given in Proposition 2 intertwines the modular
group of n free Fermi fields in an interval Î ⊂ S1 with the modular group of a single
free Fermi field in the symmetric n-interval Ê = n√

Î .

Proof. By virtue of the lemma, (4.6) can be written as

∑

j

Bk j χ j (X)= z1−k

n

∑

j

ω(1−k) j ψ̂(ω j z). (4.8)

The right-hand side is precisely β(φ̂(k)(zn)) according to Proposition 2. We claim
that X (zn) is the composition of the Cayley transform zn �→ zn−1

i(zn+1) that maps Î
onto I , with a Möbius transformation that maps I onto R+. Both Möbius trans-
formations and the isomorphism β preserve the vacuum state and hence intertwine
the respective modular automorphisms. Knowing the modular automorphisms of
φ̂(k)(zn) for zn ∈ Î , it follows that the modular automorphisms of χ j (X) are given
by the dilations X → e−2π t X on R+. This explains the modular automorphisms
(4.7) and hence also (4.3). It only remains to verify the claim that the function X
given by (4.2) is indeed of the said form. But, in the symmetric case one may use
identities like

∏
k(z −wk)= zn −wn to find

X =− (−1)n −vn

(−1)n −un
· zn −un

zn −vn

which is indeed a Möbius transform of zn−1
i(zn+1) . ��

It should be noted that by what has been said, (4.6) diagonalizes the modular
flow only inside the n-interval (zk ∈ Îk, zn ∈ Î ), whereas the isomorphism β mani-
festly extends to the entire circle. This reflects the fact that the graded commutant
(denoted by ·c) of the Fermi field algebra in an n-interval equals the Fermi field
algebra in the complement of the n-interval:

π0
(
CAR(Ê)

)c =π0
(
CAR(S1\Ê)

)′′
, π0

(
CARn( Î )

)c =π0
(
CARn(S1\ Î )

)′′
.

By Modular Theory, the modular flow of the graded commutant is given by the
inverse of the modular flow of the original algebra. Thus, the same orthogonal
matrix O(X) also diagonalizes the modular flow on the complements.

Finally, our result answers a question raised by M. Bischoff and Y. Tanimoto: If
Ê is a symmetric n-interval, and F̂ ⊂ Ê is a symmetric subinterval with common
upper limits of the intervals, let M :=π0(CAR(Ê))′′ and N :=π0(CAR(F̂))′′. Then,
the data (N0, N1, N2,�) with N0 = Mc, N1 = N , N2 = N c ∩ M form a “+half-sided
modular factorization” in the sense of [12, Thm. 1.2] (actually, a graded general-
ization thereof: one has Ni ⊂ N c

i+1 mod 3, and the modular automorphisms σ−t of
the larger algebra map the smaller algebra into itself for t ≥0). By the main theo-
rem of [12], they therefore define a (graded local) conformal quantum field theory
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such that its local algebras are given by A(R+)= M , A(R+ +1)= N , and the Möbi-
us transformations are generated by the modular groups of the three algebras.

COROLLARY 5. The conformal QFT obtained from the graded +-hsm factoriza-
tion (N ,Mc, N c ∩ M,�) is isomorphic to the free Fermi theory CARn(S1) of n free
Fermi fields.

Namely, the isomorphism is just given by β−1, which maps M onto π0(CARn( Î ))′′
and N onto π0(CARn( Ĵ ))′′ (where Ê = n√

Î , F̂ = n√
Ĵ ), combined with a Möbius

transformation which maps I onto R+ and J onto R+ + 1. Both isomorphisms
intertwine the respective vacuum modular groups.

5. The Ramond Case

The real free Fermi field possesses another faithful representation of positive
energy: the Ramond representation induced (by the GNS construction) from the
quasifree ground state with two-point function

ωR
(
ψ(x)ψ(y)

)= 1+ xy
√

1+ x2
√

1+ y2
· −i

x − y − iε
.

In the compact picture on S1\{−1}, this is

ωR
(
ψ̂(z)ψ̂(w)

)= z +w
2
√

zw
· 1

z −w.

Obviously, in the Ramond representation, πR(ψ̂(z)) has a cut at z = −1 and
extends anti-periodically to S1. It is therefore convenient to introduce the Ramond
field

ψR(z) :=√
z ·πR

(
ψ̂(z)

)

which extends periodically to S1 with Fourier representation

ψR(z)=
∑

n∈Z

ψR,nz−n,

where ψ∗
R,n =ψR,−n satisfy the CAR {ψR,n,ψR,m}= δn+m,0. In particular, this field

has a zero mode with 2ψR,0
2 =1.

Because we are going to consider the field both in the vacuum and in the
Ramond representation, we shall below write the field in the vacuum representa-
tion as ψ0(z) :=π0(ψ̂(z)), and write no subscript when the field is understood alge-
braically.

The modular theory of the Ramond field is not known. We therefore lack a
rationale to expect a similar isomorphism as in Proposition 1, which would explain
a modular mixing as in Proposition 3.
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Nevertheless, one can prove along the same lines as in Proposition 1 the follow-
ing

PROPOSITION 4. The linear map

βR :ψ(1)R (z2)≡ψR(z
2)⊗t 1 �→ 1

2

(
ψR(z)+ψR(−z)

)
,

ψ
(2)
0 (z2)≡1⊗t ψ0(z

2) �→ 1
2z

(
ψR(z)−ψR(−z)

) (5.1)

for z ∈ S1, induces an isomorphism of CAR algebras β :πR
(
CAR(S1)

)⊗t π0
(
CAR(S1)

)

→πR
(
CAR(S1)

)
, such that ωR ◦βR =ωR ⊗ω0.

Namely, in terms of the Fourier modes, the right-hand-sides equal, respectively,∑
n∈Z

ψR,2nz−2n and
∑

n∈Z
ψR,2n+1z−2n−2, from which the correct commutation

relations and two-point functions follow.
The fact that the current (3.1) j (x)= i :ψ(1)(x)ψ(2)(x): satisfies the CCR (3.2)

is purely algebraic, and therefore independent of the representation. Taking ψ(1)

in the Ramond representation and ψ(2) in the vacuum representation, the isomor-
phism (5.1) embeds the resulting current into the Ramond algebra πR(CAR(S1)).
The result is (in the compact picture)

βR
(

ĵ(z2)
)= 1

2i z2
· :ψR(z)ψR(−z):R (5.2)

where : · : R stands for the Wick product defined with the subtraction of the
Ramond expectation value (which is zero in the case at hand). The right-hand side
is the formula given in [1]. The new aspect here is that it arises from an underlying
isomorphism of CAR algebras.

The embedded current (5.2) changes sign under z �→−z, hence is anti-periodic in
the variable z2. In other words, we find the current in a representation that extends
anti-periodically to the circle. Indeed, this representation of the current is known
as the “twisted” representation [1,9] obtained from the quasifree state with two-
point function given by (2.12). This can be established by evaluating the embedded
current in the Ramond state. We find by direct computation

ωR
(
βR( ĵ(z2))

)=0, ωR
(
βR( ĵ(z2))βR( ĵ(w2))

)= z2 +w2

2zw(z2 −w2)2
.

The state ωR ◦βR restricted to the current is again quasifree. Thus, the embedding
of the current via the isomorphism (5.1) produces the twisted representation of the
CCR algebra:

ωR ◦βR =ωt .
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Finally, we have computed the stress–energy tensor using the bosonic formula
T curr(x)= 1

4π : j (x)2: . We find the same formula as (3.9):

βR
(
T curr(z2)

)= 1
4z2

(
πR

(
T c= 1

2 (z)
)+πR

(
T c= 1

2 (−z)
))+ 1

64π z4
.

(In deriving this equation, care must be taken of the fact that due to the different

subtractions, one has :ψ̂(z)∂zψ̂(z):R = :ψ̂(z)∂zψ̂(z):0 + 1
8z2 .) Since L

c= 1
2

0 has eigen-

value h R = 1
16 in the Ramond state, we conclude that ωR(βR(Lcurr

0 ))= 1
16 , in agree-

ment with the ground state energy in the twisted sector of the current.

6. Conclusion

We have described a multilocal isomorphism of the CAR algebra of a real chiral
Fermi field with the CAR algebra of any number n of such fields. The isomor-
phism preserves the vacuum state. This has two consequences:

(1) The isomorphism extends to Wick products, and therefore allows to “embed”
the generators of local symmetries (gauge transformations or diffeomor-
phisms) of one theory into the other. We have explicitly displayed the
“embedded” symmetries and their multilocal features in the case n = 2. A
characteristic feature is that the gauge transformations of the complex Fermi
field, embedded into the algebra of the real Fermi field, generate a mixing
of Fermi fields at different points; and that the embedded diffeomorphisms
consist of a mixing on top of a geometric transformation.

(2) A similar mixing was found earlier to occur in the modular automorphisms
of the chiral Fermi algebra in multiple intervals. We have demonstrated that
this modular mixing is a special case of the mixing going with the embed-
ded diffeomorphisms, when the latter arise as modular automorphisms for a
single interval, i.e., certain one-parameter groups of Möbius transformations.
However, as stated in (1), the embedded diffeomorphisms are not restricted
to Möbius transformations, and, in view of the fact that the vacuum state is
not diffeomorphism invariant, are not necessarily related to modular theory.

Finally, we observed that a similar isomorphism exists in the Ramond represen-
tation, and we have computed its restriction to the subalgebra of the current and
the stress–energy tensor.
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