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Abstract. It is known that no length or time measurements are possible in sub-Planckian
regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of space-
time may therefore be assumed to be non-archimedean. In this letter, the consequences
of this hypothesis for the structure, classification, and conformal symmetry of elementary
particles, when spacetime is a flat space over a non-archimedean field such as the p-adic
numbers, is explored. Both the Poincaré and Galilean groups are treated. The results are
based on a new variant of the Mackey machine for projective unitary representations of
semidirect product groups which are locally compact and second countable. Conformal
spacetime is constructed over p-adic fields and the impossibility of conformal symmetry
of massive and eventually massive particles is proved.
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1. Introduction

In the 1970s many physicists, concerned about the divergences in quantum field
theories, started exploring the micro-structure of space–time itself as a possible
source of these problems. In particular, Beltrametti and his collaborators proposed
the idea in [3–5] that the geometry of space–time might be based on a non-
archimedean, or even a finite, field and examined some of the consequences of this
hypothesis. But the idea did not really take off until Volovich proposed in 1987
[20] that world geometry at sub-Planckian regimes might be non-archimedean. The
reasoning behind this hypothesis is that no measurements are possible at such
ultra-small distances and time scales, due to the interplay between general rela-
tivity and quantum theory. Indeed, the Planck scale emerges naturally when one
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identifies the Schwarzchild radius and the Compton wave length. Since impossi-
bility of measurements automatically forbids also comparisons between different
lengths and also different times, the Volovich hypothesis is very natural. Since no
single prime can be given distinguished status, it is even more natural to see if one
could really work with an adelic geometry as the basis for space–time. Such an
idea was first proposed by Manin [13]. A huge number of articles have appeared
since then, exploring these and related themes. For a definitive survey and a very
inclusive set of references see the very recent article by Dragovich et al. [7]. In this
letter we describe some results that have come out of our examination of the con-
sequences of the non-archimedean hypothesis for the structure and classification of
elementary particles. We consider both the Poincaré and the Galilean groups. Our
methods apply to both the local and adelic geometries but in this note the main
emphasis is on local non-archimedean geometry. Details will appear in a separate
publication. Our work is in the “Dirac mode” [15].

One knows that (see [18]) that the symmetry of a quantum system with respect
to a group G, locally compact and second countable (lcsc), may be expressed by a
projective unitary representation (PUR), either of G or of a subgroup of index 2
in G, in the Hilbert space of quantum states; this PUR may be lifted to an ordi-
nary unitary representation (UR) of a suitable topological central extension (TCE)
of the group by the circle group T . The PUIRs (=irreducible PURs) of G then
classify the elementary particles with G-symmetry, with or without selection rules
or sectors (real mass, positive energy, etc.). In the supersymmetric world, when G
is a real super Lie group and we consider only ordinary unitary representations,
the mathematical classification of superparticles, long understood by the physicists
heuristically, was carried out in [6] (see also [17]). The extension of supersymmetry
to non-archimedean or adelic world geometry is still an open problem.

Going beyond particle classification is the construction of quantum fields
over non-archimedean spacetime. The most penetrating work on these issues so far
is [9].

Returning to particle classification, Wigner [22], proved that all PURs of the
connected real Poincaré group P lift to URs of the simply connected covering
group P∗ =R1,3 ×′ Spin(R1,3) of P where ×′ denotes semidirect product. In other
words, P∗ is already the universal TCE of the Poincaré group. Thus particles with
P-symmetry are classified by UIRs of P∗. Now for any semidirect product the
Mackey machine is applicable; and for P∗ it just gives the Wigner theory.

The situation over a disconnected field is more complicated. To explain this we
need a little terminology. Let k be a field of arbitrary characteristic. If M is a lin-
ear algebraic group defined over k and r is an extension field of k, we write M(r)
for the group of r -points of M. If k is a locally compact field then M(k) is a lcsc
group and one can ask whether it has a universal TCE so that PURs of M(k)
can be treated as URs of this universal extension. However not all lcsc groups
have universal TCEs; it is necessary for example that their commutator subgroups
should be dense in them. Over a non-archimedean local field, the commutator sub-
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groups of M(k) are often open and closed subgroups of M(k), and it is generally a
very delicate procedure to verify whether they are equal to M(k). So it is preferable
to work with the PURs of M(k) itself, rather than look for TCEs of M(k). We
note that for k non-archimedean local, the groups M(k) are totally disconnected.

Number theorists have long been interested in URs of groups M(k) for sim-
ple groups M. In physics groups with radical appear to be important and so it is
worthwhile to study URs of these groups as well.

Fix a non-archimedean local field k of characteristic �=2. Let V be an isotropic
quadratic vector space over k; this means that V has a non-degenerate quadratic
form defined over k which has null vectors over k. Then we have the algebraic
groups G = SO(V) and its two-fold cover Gspin = Spin(V). We thus have corre-
spondingly the Poincaré groups P =V ×′ G and Pspin =V ×′ Gspin. Write V,G and
Gspin for the groups of k-points of V,G, and Gspin respectively, and P, Pspin for
the respective groups of k-points of P,Pspin. Now Gspin and Pspin do have TCE’s;
for the spin groups this is a consequence of the work of Moore [14] and Prasad
and Raghunathan [16] and for the corresponding Poincaré groups, of the work of
Varadarajan [19]. Moreover, if G∗

spin is the universal TCE of Gspin, it is shown
in [19] that the universal TCE P∗

spin of Pspin is given by P∗
spin = V ×′ G∗

spin. So
all PURs of Pspin lift to URs of P∗

spin, and since P∗ is a semidirect product, the
Mackey-Wigner theory is applicable. We are thus in the same situation as in the
real case and there are no fundamental obstacles to the classification of the parti-
cles (=irreducible PURs) with Pspin-symmetry.

However the natural maps Gspin −→ G and Pspin −→ P are not surjective (even
though they are surjective over the algebraic closure of k), and so replacing the
orthogonal group G by the spin group Gspin leads to a loss of information. So
we work with the orthogonal group rather than the spin group. To illustrate this
point, let G = SL(2,Qp). The adjoint representation exhibits G as the spin group
corresponding to the quadratic vector space g which is the Lie algebra of G
equipped with the Killing form. The adjoint map G −→G1 =SO(g) is the spin cov-
ering for SO(g) but this is not surjective; in the standard basis

X =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)

the spin covering map is

(
a b
c d

)
�−→

⎛
⎝ a2 −2ab −b2

−ac ad +bc bd
−c2 2cd d2

⎞
⎠ .

The matrix⎛
⎝α 0 0

0 1 0
0 0 α−1

⎞
⎠
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is in SO(g); if it is the image of
(

a b
c d

)
, then b = c = 0, ad = 1, and α= a2, so that

unless α∈Q×
p

2, this will not happen.
The group P is still a semidirect product but we are now required to determine

its irreducible projective URs. This means that we must determine its multipliers
and then, to each multiplier m, find the irreducible m-representations. It turns out
that there is a very nice variant of the Mackey machine for m-representations of
a seimidirect product that allows us to do this. In this letter we describe this var-
iant, which appears not to have been noticed in the literature, and then apply it
to the Poincaré and Galilean groups over a non-archimedean local field. The var-
iant is formulated in the framework of locally compact groups and so is applica-
ble to adelic geometries as well, but here we restrict ourselves to the local case.
We assume that the reader is familiar with the basic ideas of PURs, multipliers,
and so on; see [12,18]. For any locally compact second countable (lcsc) group G
we write Z2(G) for the group of its multipliers and H2(G) the quotient of Z2(G)
by the subgroup of trivial multipliers. If G is totally disconnected, every multi-
plier is equivalent to a continuous one, and in fact, the Borel cohomology group is
canonically isomorphic to the continuous cohomology group, a well-known result
of Wigner [21] (see also [19]).

2. Multipliers and PURs for Semidirect Products

Let H = A ×′ G where A and G are lcsc groups and A is abelian. Let A∗ be the
character group of A. We define a 1-cocycle for G with coefficients in A∗ as a
Borel map f (G −→ A∗) such that

f (gg′)= f (g)+ g[ f (g′)] (g, g′ ∈ G)

or equivalently that g �→ ( f (g), g) is a Borel homomorphism of G into the semidi-
rect product A∗ ×′ G, so that all 1-cocycles are continuous. The abelian group of
continuous 1-cocycles is Z1(G, A∗) and the coboundaries are cocycles of the form
g �→ g[χ ]−χ for some χ ∈ A∗. These form a subgroup B1(G, A∗) of Z1(G, A∗) to
give the cohomology group H1(G, A∗)= Z1(G, A∗)/B1(G, A∗).

Let MA(H) the group of multipliers on H that are trivial when restricted to
A × A. Let H2

A(H) denote its image in H2(H). Let M ′
A(H) be the group of multi-

pliers m for H with m|A×A =m|A×G =1.
From [11,19] we find that any element in MA(H) is equivalent to one in M ′

A(H).
If m ∈ M ′

A(H),mG = m|G×G , and θm(g−1)(a′)= m(g,a′), then θm ∈ Z1(G, A∗), and
m �→ (mG, θm) is an isomorphism M ′

A(H)� Z2(G)× Z1(G, A∗) which is well defined
in cohomology and gives the isomorphisms H2

A(H)� H2(G)× H1(G, A∗). It fol-
lows from this that if n ∈ Z2(G) and θ ∈ Z1(G, A∗) are given then one may
define m ∈ M ′

A(H) by m(ag,a′g′)= n(g, g′)θ(g−1)(a′). If n = 1 then m(ag,a′g′)=
θ(g−1)(a′). If H1(G, A∗)=0 every multiplier of H is equivalent to the lift to H of
a multiplier for G.
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Let G be a lcsc group. Let X be a G-space that is also a standard Borel
space. Let H be a separable Hilbert space and U the unitary group of H. An
m-representation of G is a Borel map U of G into the unitary group U of the
Hilbert space H such that U (e) = 1 and U (g)U (g′) = m(g, g′)U (gg′). An
m-system of imprimitivity based on X is a pair (U, P), where P(E → PE ) is a pro-
jection valued measure on the class of Borel subsets of X , the projections being
defined in H, and U is an m-representation of G in H such that

U (g)P(E)U (g)−1 = P(g[E])

for all g ∈ G and Borel E ⊂ X . Let X be a transitive G-space. We fix some x0 ∈
X and let G0 be the stabilizer of x0 in G, so that X � G/G0. We will also fix a
multiplier m for G and let mG0 = m|G0×G0 . Then Mackey’s technique of unitariz-
ing projective representations by going to a suitable TCE leads to a natural one
to one correspondence between the mG0 -representations µ of G0 and m-systems of
imprimitivity (U, P) of G based on X . Under this correspondence we have a ring
isomorphism of the commuting ring of µ with that of (U, P), so that irreducible
µ correspond to irreducible (U, P).

In order to use this point of view in determining PURs of semidirect products
we shall now introduce certain new actions of G on A∗ defined by cocycles in
Z(G, A∗). If θ : G → A∗ is a continuous map with θ(1)= 0, then, defining g{χ}=
g[χ ]+ θ(g), for g ∈ G, χ ∈ A∗, it is easy to see that g :χ �→ g{χ} defines an action
of G on A∗ if and only if θ ∈ Z1(G, A∗). This action depends on the choice of the
cocycle θ ∈ Z1(G, A∗), so we write it as gθ {χ}. The actions defined by θ and θ ′
are equivalent in the following sense: if θ ′(g)= θ(g)+ g[ξ ]− ξ where ξ ∈ A∗, then
gθ ′ = τ−1 ◦ gθ ◦ τ where τ is the translation by ξ in A∗. The action gθ :χ �→ gθ {χ}
is called the affine action of G on A∗ determined by θ .

The following theorem now shows how the m-representations of H correspond
to mG-systems of imprimitivity on A∗ where the action of G on A∗ is given by the
affine action.

THEOREM 2.1. Fix θ ∈ Z1(G, A∗) and m ∈ M ′
A(H), m � (mG, θ). Then there is a

natural bijection between m-representations V of H = A ×′ G and mG-systems of
imprimitivity (U, P) on A∗ for the affine action gθ :χ �→ g{χ}= gθ {χ} defined by θ .
The bijection is given by

V (ag)=U (a)U (g), U (a)=
∫
A∗

〈a, χ〉dP(χ).

We now obtain the basic theorem of irreducible m-representations of H .

THEOREM 2.2. Fix χ ∈ A∗, m � (mG, θ). Then there is a natural bijection between
irreducible m-representations V of H = A ×′ G with Spec(V )⊂ G{χ} (the orbit of
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χ under the affine action) and irreducible mG-representations of Gχ , the stabilizer
of χ in G for the affine action. If the affine action is regular, every irreducible
m-representation of H , up to unitary equivalence, is obtained by this procedure.

COROLLARY 2.3. Suppose H1(G, A∗) = 0. Then we can take θ(g) = 1 and
m(ag,a′g′)=mG(g, g′). In this case, the affine action reduces to the ordinary action.

Remark. It follows easily from the relationship between the affine actions defined
by two cocycles θ, θ ′ described earlier that the classes of PURs defined by θ and
θ ′ are equivalent.

3. The Poincaré Group over an Arbitrary Field and Particle Structure and
Classification over the p-Adic Numbers

Let V be a finite dimensional, isotropic quadratic vector space over a field k of
ch �=2. Let G = SO(V ) be the group of k-points of the corresponding orthogonal
group preserving the quadratic form. By the k-Poincaré group we shall mean the
group

Pk = V ×′ G.

It is the group of k-points of the corresponding algebraic group which is defined
over k.

From now on we assume that k is a non-archimedean local field. The require-
ment of Minkowki signature does not make sense over k. Instead we fix the Witt
class (see [10]). The results below do not depend on the Witt class. We write V ′ for
the algebraic dual of V . With its k-topology it becomes isomorphic with V ∗ as a
G-module.

Since V is isotropic, the cohomology H1(G,V ∗)= 0 [19]. Hence the PUIRs of
Pk can be obtained by the theorems of Section 2. They are classified by the orbits
of G in V ′. The orbits are: the level sets of the quadratic form when the value
of the quadratic form (called the mass) is non-zero; the level set of zero with the
origin deleted; and the singleton consisting of 0. These are referred to as massive,
massless, and trivial massless respectively. The orbit action is regular by a theorem
of Effros [8] since all orbits are either closed or open in their closure.

THEOREM 3.1. Let Pk = V ×′ G be the k-Poincaré group. Fix p ∈ V ′, m0 be a mul-
tiplier of G, and let m its lift to Pk . Then there is a natural bijection between irre-
ducible m-representations of Pk = V ×′ G with Spec(V )⊂ G[p], the orbit of p under
the natural action of G, and irreducible m0p-representations of G p, the stabilizer of
p in G, m0p being the restriction of m0 to G p. Every PUIR of Pk , up to unitary
equivalence, is obtained by this procedure.
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Remark 3.1. Let X = G[p], and let λ be a σ -finite quasi-invariant measure on X
for the action of G. Then, for any irreducible m0p-representation µ of G p in the
Hilbert space K, the corresponding m-representation U acts on L2(X,K, λ) and
has the following form:

(U (ag) f )(q)=ψ(〈a,q〉)ρg(g
−1[q])1/2)δ(g, g−1[q]) f (g−1[q]),

where δ is any strict m0p-cocyle for (G, X) with values in U , the unitary group of
K, such that δ(g,q)=µ(g), g ∈ G p.

Remark 3.2. This theorem shows that the elementary particles over k have a richer
structure than in the real case. The PUIRs are still classified by mass, but for a
given mass, by the PUIRs of the stabilizer in G of a point in that mass orbit.
Unlike the real case we cannot replace the PUIRs of the little groups by URs of
a single TCE of these groups. The determination of all the multipliers of the little
groups is not treated here.

4. Galilean Group and Galilean Particles

Here spacetime V = kr+1 has the decomposition into space and time: V = V0 ⊕ V1

where V0 = kr ,V1 = k. The Galilean group is the semi direct product G = V ×′ R
where R itself is the semi direct product of rotations and boosts. Thus V0 is a qua-
dratic vector space. We set R0 =SO(V0) at first and set R = V0 ×′ R0. The action of
G is defined by

r = ((u, η), (v,W )) : (x, t) �−→ (W x + tv+u, t +η).
We write (·, ·) for the bilinear form on V0. The dual V ′ consists of pairs (ξ, t) with
duality 〈(ξ, t), (u, η)〉 = (ξ,u)+ tη. The actions of the group R on V and V ′ are
given by

(v,W ) : (u, η) �−→ (W u +ηv, η), (v,W ) : (ξ, t) �−→ (Wξ, t − (Wξ, v)).

Let

θτ (v,W )= (2τv,−τ(v, v)) (τ ∈ k, (v,W )∈ R).

The θτ are in Z1(R,V ′) and τ �−→[θτ ] is an isomorphism of k with H1(R,V ′). Let
n0 be a multiplier for R0 and let n be the lift to G of n0 via the composition of
the maps G −→ R and R −→ R0. Define mn0,τ by

mn0,τ (r, r
′)=n0((v,W ), (v′,W ′))ψ(−2τ(v,W u′)− τη′(v, v))

for r = ((u, η), (v,W )), r ′ = ((u′, η′), (v′,W ′))∈ G. Then it follows from [19] that

(n0, τ ) �−→nmn0,τ

gives an isomorphism of H2(R0)× k with H2(G).
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From this we can determine the Galilean particles. The analysis is somewhat
involved and we just give the highlights. First of all the representations corre-
sponding to τ = 0 are ordinary UIRs and are rejected as in [18]. Fix now τ �= 0.
The affine action corresponding to the cocycle θτ is given by

(v,W ) : (ξ, t) �−→ (Wξ +2τv, t − (Wξ, v)− τ(v, v)).
It is an easy calculation that the function

M : (ξ, t) �−→ (ξ, ξ)+4τ t

is invariant under the affine action and maps onto k, since M((0,a/4τ))= a. If
M((ξ, t))= a the element (ξ/2τ, I ) of R sends (0,a/4τ) to (ξ, t). Hence the sets
Ma where M takes the value a are orbits for the affine action. The stabilizer in R
of (0,a/4τ) is just R0. Hence for a given a the mn0,τ -representations are parame-
trized by the n0-representations of R0.

However a little more analysis as in [18] reveals that for different a all these rep-
resentations are projectively the same. The projection map

(ξ, t) �−→ ξ

is a bijection of the orbit Ma with V ′
0. The action of R on Ma becomes the action

ξ �−→ Wξ +2τv

under this bijection and so Lebesgue measure is invariant. The parameter a has dis-
appeared in the action. In the Hilbert space of the corresponding representation,
the spacetime translation (u, η) acts as multiplication by

ψ

(
(u, ξ)+ η(a − (ξ, ξ))

4τ

)
.

The factor

ψ
(ηa

4τ

)

pulls out and is independent of the variable ξ . Hence it is a phase factor and can
be omitted. The resulting projective representation is thus independent of a. Hence
all these representations represent a single particle. The true parameters are τ( �=0)
and the projective representations µ of R0. We interpret τ as the Schrödinger mass,
and µ as the spin.

5. Conformal Compactification of p-Adic Spacetime and Conformal
Symmetry of p-Adic Poincaré Particles

Over the reals the Poincaré group of the Minkowski space R1,n can be imbedded
in the conformal group SO(2,n +1) in such a way that the space–time is dense and
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open in a compact homogeneous space for the conformal group. This can be done
over any field k of characteristic �=2.

Let k be a field of characteristic �=2 with algebraic closure k̄, V a quadratic vec-
tor space over k, V̄ = k̄ ⊗ V , and Pk (resp. Pk̄) the k-Poincarǵroup of V (resp. the
k̄-Poincaré group of V̄ ). Let V0 =V ⊕U where U is a quadratic vector space with a
basis p,q such that (p, p)= (q,q)=0, (p,q)=1. We define V̄0 = k̄ ⊗ V0, Ū = k̄ ⊗U .
Then H =SO(V̄0) is an algebraic group defined over k. We write H(k) for its group
of k-points.

THEOREM 5.1. The group Pk̄ is isomorphic, as an algebraic group over k to the
stabilizer Hp of p in H . The isomorphism is defined over k and gives an isomorphism
of Pk with Hp(k), the stabilizer of p in H(k). If dim(V )≥ 5, then all k-imbeddings
of Pk̄ in H are conjugate over H(k).

Remark 5.1. Writing V0 as kp ⊕ kq ⊕ V the imbedding is given (in block matrix
form) by

(t, R) �−→
⎛
⎝ 1 − (t,t)

2 e(t, R)
0 1 0
0 t R

⎞
⎠ ,

where e(t, R)∈Hom(V, kp) is the map v �−→ (t, Rv)p and R ∈SO(V ).

Remark 5.2. The conjugacy of the imbeddings can be proved using the theory of
parabolic subgroups of H . But a direct proof using only the basics of the theory
of linear algebraic groups is possible.

Let � be the cone of null vectors in V0 and [�] its image in projective space. Let
Ap ={a ∈�|(p,a) �=0}. Then a =αp +βq +w, where w∈V , and β �=0. Taking β=1
does not change the image [a] of a in projective space, and then α=−(w,w)/2 so
that [a] is given by [−(w,w)/2 :1 :w]. Thus [a] is entirely determined by w. Thus
J :w �→ [−(w,w)/2 :1 :w] is a bijection of V with the image [Ap] of Ap in projec-
tive space. Then we have the following theorem.

THEOREM 5.2. There is a natural conformal structure on [�], and the group H(k)
acts transitively on [�]. Moreover [Ap] is a Zariski open dense subset of [�] stable
under Hp, and the imbedding J intertwines the action of the Poincaré group Pk with
that of Hp on [�].

When k is a local field, [�] is compact and so we have a compactification
of space–time into [�]. For this reason it is natural to call [�] the conformal
space–time over k.
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Partial conformal group. The partial conformal group is defined as the stabilizer of
A[p] in the conformal group. We denote it by P̃(W, k). We have

P(W, k)� Hp ⊂ P̃(W, k).

It can be shown that P̃(W, k) is the stabilizer of the line kp in the conformal
group. It is isomorphic to the subgroup of SO(V, k) of matrices of the form

⎛
⎜⎝

c −c(t,t)
2 ce(t, R)

0 c−1 0
0 t R

⎞
⎟⎠ (c ∈ k×, t ∈ W, R ∈SO(W, k)).

In particular

P̃(W, k)� P(W, k)×′ k×,

where c ∈ k× commutes with SO(W, k) and acts as a dilatation, namely, multipli-
cation by c on W .

The conformal group in general will move points of spacetime into the infinite
part [�] \ A[p]. It is only the Poincaré group extended by the dilatations that will
leave spacetime invariant.

Partial and full conformal symmetry. An elementary particle or the corresponding
UIR has partial conformal symmetry if it extends to a UR of P̃(W, k). An elemen-
tary particle or the corresponding UIR has full conformal symmetry if it extends to
a UR of SO(V, k). It is natural to ask which particles, if any, have partial or full
conformal symmetry.

Over R this question is completely answered. For dimension 4 and Minkowski
signature (see [1] and the references therein) where it is shown that the only par-
ticles with full conformal symmetry are the massless particles with finite helici-
ty. For arbitrary dimension but Minkowski signature it was completely solved by
Angelopoulos and Laoues [2]. We wish to examine this question when R is
replaced by a non-archimedean local field k of characteristic �=2.

THEOREM 5.3. Massive particles in V do not have conformal symmetry.

If r ∈ V is a null vector and we consider a massless PUIR π of P = Pk , the
stabilizer of r is the Poincaré group associated to V1 where V1 is Witt equivalent
to V and dim(V )− dim(V1)= 2. The PUIR π is then associated to a PUIR π1

of the k-Poincaré group P1 of V1. It can be shown that if π has partial confor-
mal symmetry, then π1 has the same property. If π1 is massive we stop this pro-
cess of dimensional reduction and conclude that π , though massless, has no partial
conformal symmetry. Otherwise we continue. This process can be continued till it
comes to a stop either at a massive particle or when the correspondingquadratic
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vector space is anisotropic. In the former case we say the particle is eventually
massive.

THEOREM 5.4. Eventually massive particles do not have conformal symmetry.

Remark. If all the particles defined by the above inductive process are massless we
do not know if the original particle has conformal symmetry.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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