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Abstract. For a Borel measure on the unit interval and a sequence of scales that tend to
zero, we define a one-parameter family of zeta functions called multifractal zeta functions.
These functions are a first attempt to associate a zeta function to certain multifractal mea-
sures. However, we primarily show that they associate a new zeta function, the topological
zeta function, to a fractal string in order to take into account the topology of its fractal
boundary. This expands upon the geometric information garnered by the traditional geo-
metric zeta function of a fractal string in the theory of complex dimensions. In particular,
one can distinguish between a fractal string whose boundary is the classical Cantor set,
and one whose boundary has a single limit point but has the same sequence of lengths
as the complement of the Cantor set. Later work will address related, but somewhat dif-
ferent, approaches to multifractals themselves, via zeta functions, partly motivated by the
present paper.
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Secondary 28A75, 28A78, 28CI15.
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0. Introduction

Natural phenomena such as the distribution of ground water, the formation of
lightning and snowflakes, and the dissipation of kinetic energy in turbulence can
be modeled by multifractal measures. Such measures can be described as a mass
distribution whose concentrations of mass vary widely when spread out over their
given regions. As a result, the region may be separated into disjoint sets which
are described by their Hausdorff dimensions and are defined by their behavior
with respect to the distribution of mass. This distribution yields the multifractal
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spectrum: a function whose output values are Hausdorff dimensions of the sets
which correspond to the input values. The multifractal spectrum is a well-known
tool in multifractal analysis and is one of the key motivations for the multifrac-
tal zeta functions defined in Section 3. Multifractal zeta functions were initially
designed to create another kind of multifractal spectrum which could (poten-
tially) be used to more precisely describe the properties of multifractal measures.
Although this paper does not accomplish this feat, the main result is the gain of
topological information for a fractal subset of the real line: information which can-
not be obtained through use of the traditional geometric zeta function of the cor-
responding fractal string (open complement of said fractal subset) via the special
case of multifractal zeta functions called topological zeta functions. Further, multi-
fractal zeta functions provide the motivation for the zeta functions which appear
in [31,32,35,47] and are discussed in the epilogue of this paper, Section 8. Other
approaches to multifractal analysis can be found in [1,3,4,6-8,12-16,30-37,39—
45,47].

For a measure and a sequence of scales, we define a family of multifractal zeta
functions parameterized by the extended real numbers and investigate their prop-
erties. We restrict our view mostly to results on fractal strings, which are bounded
open subsets of the real line. For a given fractal string, we define a measure whose
support is contained in the boundary of the fractal string. This allows for the use
of the multifractal zeta functions in the investigation of the geometric and topo-
logical properties of fractal strings. The current theory of geometric zeta functions
of fractal strings (see [26,29]) provides a wealth of information about the geome-
try and spectrum of these strings, but the information is independent of the topo-
logical configuration of the open intervals that comprise the strings. Under very
mild conditions, we show that the parameter o« = oo yields the multifractal zeta
function which precisely recovers the geometric zeta function of the fractal string.
Other parameter values are investigated and, in particular, for certain measures
and under further conditions, the parameter « = —oo yields a multifractal zeta
function, called the topological zeta function, whose properties depend heavily on
the topological configuration of the fractal string in question.

This paper is organized as follows:

Section 1 provides a brief review of fractal strings and geometric zeta func-
tions, along with a description of a few examples which will be used throughout
the paper, including the Cantor String. Work on fractal strings can be found in
[2,10,11,17-20,24,25] and work on geometric zeta functions and complex dimen-
sions can be found in [26-29].

Section 2 provides a brief review of a tool and a relatively simple example from
multifractal analysis. The tool, regularity, is integral to this paper, but the exam-
ple, the binomial measure, merely provides motivation and is not considered again
until the epilogue, Section 8.

Section 3 contains the (lengthy) development and definition of the main object
of study, the multifractal zeta function.



FRACTAL STRINGS AND MULTIFRACTAL ZETA FUNCTIONS 103

Section 4 contains a theorem describing the recovery of the geometric zeta func-
tion of a fractal string for parameter value o = ooc.

Section 5 contains a theorem describing the topological configuration of a frac-
tal string for parameter value @ = —oco and the definition of topological zeta
function.

Section 6 investigates the properties of various multifractal zeta functions for the
Cantor String and a collection of fractal strings which are closely related to the
Cantor String.

Section 7 concludes with a summary of the results of this paper and points the
interested reader in the direction of other related topics such as higher-dimensional
fractals and multifractals as well as random fractal strings.

Section 8 is an epilogue which discusses a few of the results from [31,32,35,47]
concerning suitable modifications of the multifractal zeta functions introduced in
this paper, specifically with regard to the binomial measure and its multifractal
spectrum, both of which are discussed briefly in Section 2 below.

1. Fractal Strings and Geometric Zeta Functions

In this section we review the current results on fractal strings, geometric zeta func-
tions and complex dimensions (all of which we define below). Results on fractal
strings can be found in [2,10,11,17-20,24,25] and results on geometric zeta func-
tions and complex dimensions can be found in [26-29].

DEFINITION 1.1. A fractal string Q2 is a bounded open subset of the real line.

Unlike [26,29], it will be necessary to distinguish between a fractal string 2 and
its sequence of lengths £ (with multiplicities). That is, the sequence £={¢ j}‘]’.‘;l is
the nonincreasing sequence of lengths of the disjoint open intervals I; = (aj, b;)
where Q:U‘]?ill ;. (Hence, the intervals I; are the connected components of Q.)We
will need to consider the sequence of distinct lengths, denoted {I,}77 |, and their
multiplicities {m,};7 ;. Two useful examples of fractal strings are the a-String and
the Cantor String, both of which can be found in [26,29]. The lengths of the Can-
tor String appear in Figure 1.

Below we recall a generalization of Minkowski dimension called complex dimen-
sions which are used to study the properties of certain fractal subsets of R. For
instance, the boundary of a fractal string 2, denoted 02, can be studied using
complex dimensions.

Let us now describe some preliminary notions. We take 2 to be a fractal string
and L its associated sequence of lengths. The one-sided volume of the tubular
neighborhood of radius ¢ of 0 is

Vie)=r({xeQ | dist(x, 0Q) <e}),
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Figure 1. The lengths of the Cantor String

where A(-) =|-| denotes the Lebesgue measure. The Minkowski dimension of L is

D=D/:=inf{a>0 | limsupV(e)e® " <oo}.
e—>0*t
Note that we refer directly to the sequence £, not the boundary of 2, due to the
translation invariance of the Minkowski dimension.

If lim,_ o+ V(e)e* ! exists and is positive and finite for some «, then o = D
and we say that £ is Minkowski measurable. The Minkowski content of L is then
defined by M(D, £) :=lim,_ o+ V(e)eP~1.

The Minkowski dimension is also known as the box-counting dimension because,
for a bounded subset F of R?, it can also be expressed in terms of

i Ne(F)
imsup

es0r —loge 7

where N, (F) is the smallest number of cubes with side length ¢ that cover F. In
[17], it is shown that if F =0 is the boundary of a bounded open set 2, then
d—1<dimg(F) <D <d where d is the dimension of the ambient space, dimgy (F)
is the Hausdorff dimension of F and D =dimy,(F) is the Minkowski dimension of
F (with “1” replaced by “d” in the above definition). In particular, in this paper,
we have d =1 and hence 0 <dimg(F)<D<1.

The following equality describes an interesting relationship between the
Minkowski dimension of a fractal string Q (really the Minkowski dimension of
0R2) and the sum of each of its lengths with exponent o € R. This was first
observed in [18] using a key result of Besicovitch and Taylor [2], and a direct proof
can be found in [29, pp. 17-18]:

o0
J— — g
D=Dr=inf {o>0 | > £5<o0
j=l1
We can consider Dy to be the abscissa of convergence of the Dirichlet series

Z?’;l £5%, where s € C. This Dirichlet series is the geometric zeta function of £ and
it is the function that we will generalize using notions from multifractal analysis.
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DEFINITION 1.2. The geometric zeta function of a fractal string Q with lengths
L is

o o
e(s)=D 05="> mul,
j=1 n=1

where Re(s) > D,.

We may consider lengths £; =0, in which case we use the convention that 0°=0
for all seC.

One can extend the notion of the dimension of a fractal string 2 to complex
values by considering the poles of . In general, {; may not have an analytic con-
tinuation to all of C. So we consider regions where ¢, has a meromorphic exten-
sion and collect the poles in these regions. Specifically, consider the screen S where

S=r(t)+it,

for some continuous function r:R — [—o0, D] and consider the window W which
are the complex numbers to the right of the screen. That is,

W={seC | Re(s)>r(Im(s))}.

Assume that ¢, has a meromorphic extension to an open neighborhood of W and
there is no pole of ¢z on S.

DEFINITION 1.3. The set of complex dimensions of a fractal string  with lengths
L is

Der(W)y={weW | ¢ has a pole at w}.

The following is a result characterizing Minkowski measurability which can be
found in [26,29].

THEOREM 1.4. If a fractal string Q with lengths L satisfies certain mild condi-
tions, the following are equivalent:

(1) D is the only complex dimension of Q with real part D, and it is simple.
(2) 09 is Minkowski measurable.

The above theorem applies to all self-similar strings, including the Cantor String
discussed below.
Earlier, the following criterion was obtained in [24].

THEOREM 1.5. Let @ be an arbitrary fractal string with lengths £ and 0 <D < 1.
The following are equivalent:



106 MICHEL L. LAPIDUS ET AL.

110,1]

) B & EE5559 060 EE8
HHHEEEa

Figure 2. The first four distinct lengths, with multiplicities, of the Cantor String 21 and the
fractal string Q.
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(1) L:=limj,¢; -jl/D exists in (0, 00).
(2) 092 is Minkowski measurable.

Remark 1.6. When one of the conditions of either theorem is satisfied, the Min-
kowski content of L is given by

21—DLD

MDD =——p~

Further, under the conditions of Theorem 1.4, we also have
M(D, L) =res(¢c; D).
EXAMPLE 1.7. (Cantor String) Let €| be the Cantor String, defined as the com-
plement in [0, 1] of the ternary Cantor Set, so that 02 is the Cantor Set itself.

(See Figure 2.) The distinct lengths are [, =3~" with multiplicities m, =2""! for
every n>1. Hence,

o0 o
Ce(s) = maly=2 2""137"
n=1 n=1
3= log?2
=————, forR —=,
(=23 lorRe@>qo3

Upon meromorphic continuation, we see that

)

gﬁ(s)zm, for all s eC,
and hence

pr=llo 3+2im7r | <7

L= 0% log3 " ’

Note that D, =log,3 is the Minkowski dimension, as well as the Hausdorff
dimension, of the Cantor Set 0€2;. Thus by Theorem 1.4, the Cantor Set is not
Minkowski measurable. The latter fact can also be deduced from Theorem 1.5, as
was first shown in [24].
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EXAMPLE 1.8. (A String with the Lengths of the Cantor String) Let Q; be the
fractal string that has the same lengths as the Cantor String, but with the lengths
arranged in non-increasing order from right to left. (See Figure 2.) This frac-
tal string has the same geometric zeta function as the Cantor String, and thus
the same Minkowski dimension, logs2; however, the Hausdorff dimension of the
boundary of 2, is zero, whereas that of Q; is logy2 (by the self-similarity of the
Cantor Set, see [8]). This follows immediately from the fact that the boundary is a
set of countably many points. The multifractal zeta functions defined in Section 3
below will illustrate this difference and hence allow us to distinguish between the
fractal strings 2; and 2.

The following key result, which can be found in [26,29], uses the complex dimen-
sions of a fractal string in a formula for the volume of the inner e-neighborhoods
of a fractal string.

THEOREM 1.9. Under mild hypotheses, the volume of the one-sided tubular neigh-
borhood of radius ¢ of the boundary of a fractal string Q (with lengths L) is given
by the following explicit formula with error term:

1—s
V(e)= Z res(M; a))+R(s),

weD - (W)U{0} s(1=s)
where the error term can be estimated by R(e)=O(e'~5%P") as ¢ — 0.

Remark 1.10. In particular, in Theorem 1.9, if all the poles of ¢ are simple and
0¢ D, (W), then

21—a)
V= > mres(;ﬁ, w)e T+ R(e).
weDp (W)

Remark 1.11. If L is a self-similar string (e.g., if its boundary is a self-similar sub-
set of R), then the conclusion of Theorem 1.9 holds with R(¢) =0. This is the
case, in particular, for the Cantor String Q; and for €, discussed in Examples 1.7
and 1.8.

2. Multifractal Analysis

Multifractal analysis is the study of measures which can be described as mass dis-
tributions whose concentrations of mass vary widely. In this section and throughout
this text, we restrict our view to measures on the unit interval [0, 1]. Example 2.1
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Figure 3. a Construction of the binomial measure B. b The multifractal spectrum f(«) of the
measure f.

below briefly discusses the construction of a multifractal measure on the Cantor set,
with Figure 3 providing a few steps of the construction and the resulting multifractal
spectrum, as found in Chapter 17 of [8].

EXAMPLE 2.1. (A multifractal measure on the Cantor set) A simple example of
a multifractal measure is the binomial measure § constructed on the classical Can-
tor set. To construct B, a mass distribution is added to the construction of the
Cantor set which consists of a countable intersection of a nonincreasing sequence
of closed intervals whose lengths tend to zero. Specifically, in addition to removing
open middle thirds, weight is added at each stage. On the remaining closed inter-
vals of each stage of the construction, place 1/3 of the weight on the left interval
and 2/3 on the right, ad infinitum (see Figure 3). The measure found in the limit,
denoted B, is a multifractal measure.

A notion which is key to the development of the multifractal zeta functions and
is part of Example 2.1 is regularity. Regularity connects the size of a set with its
mass. Specifically, let X([0, 1]) denote the space of closed subintervals of [0, 1]. The
following definition can be found in [38] and is motivated by the large deviation
spectrum and one of the continuous large deviation spectra in that paper.

DEFINITION 2.2. The regularity A(U) of a Borel measure u on U € X([0,1]) is

log u(U)
A =
) log|U| °

where |-|=X(-) is the Lebesgue measure on R.

Regularity A(U) is also known as the coarse Hélder exponent a which satisfies
U =pnU).
We will consider regularity values « in the extended real numbers [—o0, co], where

a=c0=AU)<& pnlU)=0 and |U|>0,
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and
a=—00=AU)s ulU)=oc0 and |U]|>0.

The original motivation for using the regularity values was to develop a fam-
ily of zeta functions which would be parameterized by these values and would, in
turn, generate a family of complex dimensions such as those from Section I, but
now indexed by the regularity exponent « € [—o0,00]. A new kind of multifrac-
tal spectrum was to then be developed where the function values f(«) would be
the real-valued dimensions (of some sort) corresponding to the regularity values «.
However, the multifractal zeta functions defined and discussed in the following sec-
tions are quite complicated and their application to examples such as Example 2.1
has yet to be thoroughly examined. Our view is restricted to measures that can be
characterized as a collection of point-masses on the boundary of a fractal string.
The results, therefore, are not rich enough to generate a full spectrum of dimension
for the measures we consider. Nevertheless, multifractal zeta functions do regener-
ate the classical geometric zeta functions and reveal new topological zeta functions
for fractal strings when examined via our restricted collection of measures. Anal-
ysis of multinomial measures using other families of zeta functions, whose defini-
tions were motivated in part by those defined in the next section, has been done
in [31,32,35,47]. For other approaches to multifractal analysis, consider [1,3,4,6—
8,12-16,30-34,36,37,39-45].

3. Multifractal Zeta Functions

In order to define multifractal zeta functions, we must understand the behavior of
the measures with respect to their regularity values in significant detail. As such,
more tools are provided below before the definition is given.

Let the collection of closed intervals with length 5 € (0, 1) and regularity « be
denoted by R,(«). Namely,

Ry(a)={U eX([0,1]) | |[U|=n and A(U)=qa}.

Consider the union of the sets in R, (),

Uuv= U v

Ry(a) UeRy(a)

Given a €[—00,00] and 1€ (0, 1), let

R (o) = U U.

Rr] ()

For a scale n >0, R"7(x) is a disjoint union of a finite number of intervals, each
of which may be open, closed or neither and are of length at least n when R, («)
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is non-empty. We will consider only discrete sequences of scales N'={,}*° |, with

n, >0 for all n>1 and the sequence strictly decreasing to zero. So for n €N, let

R™(a) = R" ().

We have
()
R' ()= | Ry,
p=1

where r,(«) is the number of connected components R;’,(oc) of R"(a). We denote
the left and right endpoints of each interval Rg(oz) by ak(a, p) and bi(a, p),
respectively.

Given a sequence of positive real numbers N ={,}°°, that tend to zero and a
Borel measure p on [0,1], we wish to examine the way u changes with respect to
a fixed regularity o between stages n — 1 and n. Thus we consider the symmetric
difference (©) between R"'(a) and R"(x). Let J!(a)=R'(«), and for n>2, let

J" (@) =R"V(@)o R"(a).

For all neN, J"(«) is also a disjoint union of intervals Jy(a), each of which may
be open, closed, or neither. We have

Jn(@)
I"@)=J Iy .

p=1

where j, (@) is the number of connected components Jy (@) of J"(«). The left
and right endpoints of each interval J} () are denoted by a’j(e, p) and (e, p),
respectively.

For a given regularity o € [—00, 0o] and a measure p, the sequence N determines
another sequence of lengths corresponding to the lengths of the connected compo-
nents of the J"(«). That is, the J"(«) describe the way u behaves between scales
n,—1 and 1, with respect to «. However, there is some redundancy with this set-
up. Indeed, a particular regularity value may occur at all scales below a certain
fixed scale in the same location. The desire to eliminate this redundancy will be
clarified with some examples below. The next step is introduced to carry out this
elimination.

Let K'(a)=J' (@) =R'(«). For n>2, let K"(«) be the union of the subcollec-
tion of intervals in J"(«) comprised of the intervals that have left and right end-
points distinct from, respectively, the left and right endpoints of the intervals in
R"Y(a). We have

kn ()
K"@)= | Kj@)cJ" @),
p=1
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where k,(«) is the number of connected components K (@) of K™(«). That is, the
K} () are the JJ () such that aj(e, p1) ;ﬁa%ﬁl(a, p2) and b’} («, p1) #b’,’{l(a, Dp2)
for all pye{l,..., ju(@)} and prefl,...,r,(a)}. Collecting the lengths of the inter-
vals K I’}(a) allows one to define a generalization of the geometric zeta function of
a fractal string by considering a family of geometric zeta functions parameterized
by the regularity values of the measure pu.

DEFINITION 3.1. The multifractal zeta function of a measure i, sequence A and
with associated regularity value a €[—o00, 00] is

oo ky(a)

Il s)=>" > |Kn@)l*,

n=1 p=1

for Re(s) large enough.

If we assume that, as a function of s €C, {K/(a, s) admits a meromorphic con-
tinuation to an open neighborhood of a window W, then we may also consider
the poles of these zeta functions, as in the case of the complex dimensions of a
fractal string (see Section 1).

DEFINITION 3.2. For a measure u, sequence A/ which tends to zero and regu-
larity value «, the set of complex dimensions with parameter « is given by

Dif(a, W)={weW | ¢\ (a,s) has a pole at w}.

When W =C, we simply write D) (a).

The following sections consider two specific regularity values. In Section 4, the
value oo generates the geometric zeta function for the complement of the support
of the measure in question. In Section 5, the value —oco generates the topological
zeta function which detects some topological properties of fractal strings that are
ignored by the geometric zeta functions when certain measures are considered.

4. Regularity Value co and Geometric Zeta Functions

The geometric zeta function is recovered as a special case of multifractal zeta func-
tions. Specifically, regularity value o« = oo yields the geometric zeta function of the
complement of the support of a given positive Borel measure p on [0, 1].

To see how this is done, let E¢ denote the complement of E in [0, 1] and con-
sider the fractal string (supp(u))¢ =, whose lengths £, are those of the disjoint
intervals (aj, bj) where €, =U7Z(a;, bj). Let {£;}32, be the lengths of £,. Thus,

Y521 =laj. bj)l=bj—aj.

Further, let {/,}7 | be the distinct lengths of £, with multiplicities {m,} 2 .
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String — approximate complement of the support of the measure.
D R™0) — closure of intervals at stage n with regularity o.
@ J™(o) — symmetric difference of R™ (o) and R ().

- K"(0) — intervals whose lengths generate the multifractal zeta function.

Redundant — J" (o)\ K (o).

Figure 4. Key for the construction of the lengths used to define the multifractal zeta
Sfunctions.

L] | L | L]
H H H
= = =
[] []

i I
BB B B B B BB
I I

| OCI0 |

I 11 I 1«

Figure 5. Construction of the multifractal zeta function gkf(oo,s) as in the proof of
Theorem 4.2.

The following technical lemma is used in the proof of the theorem below which
shows the recovery of the geometric zeta function as the multifractal zeta function
with regularity co. See Figures 4 and 5 for an illustration of the construction of a
multifractal zeta function with regularity co for a measure which is supported on
the Cantor set.
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LEMMA 4.1. Suppose {x}=supp(u)NU for some U eX([0,1]). Then

A(U) =00 & p({x}) =0.
Proof. n({x}) Z0< uU)>|U|< A(U) #oco. O

The lemma helps deal with the subtle interactions between the closed intervals
U of size n, and the support of u, essentially allowing us to prove a single case
of the following theorem without loss of generality.

THEOREM 4.2. The multifractal zeta function of a positive Borel measure n, any
sequence N such that n, \JO and regularity o =00 is the geometric zeta function of

(supp(w))€. That is,

tpr(00,8)=tr,(s).

Proof. Recall the notation introduced at the beginning of Section 3. For all
neNlN,

log(1(U)) _

U &Ry, (00) & AU) ==

and |U|=n,.
Therefore, Vn eN, U € R,;, (00) only if pu(U)=0.

The sets R, (c0) depend further upon whether any of the endpoints of the inter-
vals I; = (aj, b;) which comprise €, = (supp(i))¢ contain mass as singletons. If
n({a;j}) #0 and u({b;}) #0 for all jeN, then Rn(OO)ZU(Z;wm I; CQyu.

Lemma 4.1 implies that, without loss of generality, we need only consider the
case where every endpoint contains mass. Suppose u({a;}) #0 and n({b;}) #0 for
all jeN. Then R"(co)= U€/>nn I; implies that, for n>2,

I"eo=| U el U )=

Li>np—1 Lj>nn
={UJu]\[ U 1=
Lj>ny Lj>np—1

= U 1

Nn—1 Zej >Mn

Since R"~!(0c0) C R"(00) for all n > 2, the intervals J"(co) have no redundant
lengths. That is, as(co, p1) #aly ' (00, p2) and b' (oo, p1) #b% " (00, pa) for all n>2
and p1, prpe{l,..., j,(co0)}. This implies

K'(co)=J"(c0)= | J I,

nnflzzj>'7n
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Furthermore,
kp (00)
[K"(00)|= D IKp(o0)| =D ¢},
p=1

where the last sum is taken over all j such that n,_; >¢; >n,. Since 1, \ 0, each
length ¢; is eventually picked up. Therefore,

00 ky(00)
(00, 5)=D" D |Kj(oo)|" = ZZES
n=1 p=1
=D muly=tr,(s).
n=1

O

COROLLARY 4.3. Under the assumptions of Theorem 4.2, the complex dimensions
of the fractal string Q, = (supp())° coincide with the poles of the multifractal zeta
function g‘ff/(oo,s). That is,

D (00, W)=Dg, (W)

for every window W.

The key in Figure 4 will be used for the examples that analyze the fractal strings
below. Figure 5 shows the first four steps in the construction of a multifractal zeta
function with regularity oo for a measure supported on the Cantor set.

Remark 4.4. Assume supp(u) has empty interior, as is the case, for example, if
supp(u) is a Cantor set. It then follows from Theorem 4.2 that Dg,, the abscissa
of convergence of ;j\‘/(oo, s), is the Minkowski dimension of 02, =supp(n). Note
that as long as the sequence decreases to zero, the choice of sequence of scales N/
does not affect the result of Theorem 4.2. This is not the case, however, for other
regularity values. (See [5] for the definition of supp(w).)

The following section describes a measure which is designed to illuminate prop-
erties of a given fractal string and justifies calling the multifractal zeta function
with regularity —oo the topological zeta function.

5. Regularity Value —oo and Topological Zeta Functions

The remainder of this paper deals with fractal strings that have a countably infinite
number of lengths. If there are only a finite number of lengths, it can be easily verified
that all of the corresponding zeta functions are entire because the measures taken into
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consideration are then comprised of a finite number of unit point-masses. Thus we con-
sider certain measures that have infinitely many unit point-masses. More specifically, in
this section we consider a fractal string €2 to be a subset of [0, 1] comprised of count-
ably many open intervals (a;, b;) such that |2| =1 and 02 = [0, 1]\ (or equivalently,
Q¢ =10, 17\2) has empty interior. We also associate to Q2 = U;‘;l (aj, bj) its sequence of
lengths £. For such €, the endpoints of the intervals (a;, b;) are dense in 9R2. Indeed, if
there were a point in 92 away from any endpoint, then it would be away from € itself,
meaning it would not be in 92. This allows us to define, in a natural way, measures with
a countable number of point-masses contained in the boundary of Q. Let

o0
e =Y (8a; +5p,).
j=1

where, as above, the (aj,b;) are the open intervals whose disjoint union is €.

Let us determine the nontrivial regularity values «. For a« =00, R;,(c0) is the
collection of closed intervals of length 5, which contain no point-masses. For o =
—00, R,,(—00) is the collection of closed intervals of length n, which contain
infinitely many point-masses. In other words, R,,(—o0) is the collection of closed
intervals of length 7, that contain a neighborhood of an accumulation point of the
endpoints of Q. This connection motivates the following definition.

DEFINITION 5.1. Let  be a fractal string and consider the corresponding mea-
sure g :Z?il(éaj +3b;). The topological zeta function of Q with respect to the
sequence N is {j\tfﬂ(—oo, s), the multifractal zeta function of ug with respect to N
and regularity —oo.

When the open set Q has a perfect boundary, there is a relatively simple break-
down of all the possible multifractal zeta functions for the measure pg. Recall
that a set is perfect if it is equal to its set of accumulation points. For example,
the Cantor set is perfect; more generally, all self-similar sets are perfect (see, e.g.,
[8]). The boundary of a fractal string is closed; hence, it is perfect if and only if
it does not have any isolated point. The simplicity of the breakdown is due to the
fact that every point-mass is a limit point of other point-masses. Consequently, the
only parameters « that do not yield identically zero multifractal zeta functions are
00, —oo and those which correspond to each length of A/ and one or two point-
masses.

THEOREM 5.2. For a fractal string Q= U?‘;l(aj, b;) with sequence of lengths L
and perfect boundary, consider g =Z?i1(5a_,~ +3p,). Suppose that N is a sequence
such that 1, >ny, > 1,41 and 1, >2n,, for all neN. Then

Epf (00, 8) =Cc(s)
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and

AP (=00, ) =h(s)+ D mu(ly —2n,)°,

n=2

where h(s) is the entire function given by h(s):Z];':(Too) |K11,(—oo)|s. Moreover, for

every real number « (i.e., for o #00, —00), {kfﬂ (o, 5) is entire.

Proof. C/’\J/Q (00, 5) =¢,(s) holds by Theorem 4.2. Since [, > 2n,, we have

c

R"(—00)={ | laj+nu.bj—nal

Li>ny

For n>2, J"(—o0) is made up of m, intervals of length [, — 27, and 222;11 mp
intervals of length n,_1 —n,. That is, at each stage n>2, we pick up two n,_1 —n,
terms for each ¢; >1,_; from the previous stage and one [, —2n, term for each
£; =1,. By construction, the sets K" (—o0) do not include the redundant n,_; —n,
terms. Therefore,

ki (—00) o0
OF (=00, )= D Ky (=00)* + D mu(ly —2n,)".
p=1 n=2

To prove the last statement in the theorem, note that any given interval U €
X([0,1]) may contain 0, 1, 2 or infinitely many endpoints, each of which has a unit
point-mass. Indeed, if U contained an open neighborhood of a point in a perfect
set it would necessarily contain an infinite number of points. If an interval U con-
tains 1 or 2 endpoints, the corresponding regularity would appear only at the stage
corresponding to the scale n which generated U and perhaps one more stage. Thus,
there are at most two stages contributing lengths to the multifractal zeta function
with the same regularity. It follows that the multifractal zeta function has finitely
many terms of the form ¢° where ¢ € [0, 1], and hence is entire. O

Remark 5.3. 1f one were to envision a kind of multifractal spectrum for the mea-
sures g which satisfy the conditions of Theorem 5.2 in terms of a function f(«)
whose output values are abscissae of convergence of multifractal zeta functions,
the spectrum would be very simple: only regularity values o« =+o00 could generate
positive values for f(«). If the weights of the point-masses for some g were not
all the not same, as in the measure p from [38, p. 36], other values of @ may be
shown to yield positive f(«) and thus p may have a more interesting multifractal
spectrum. See [47] for further elaboration on this perspective.

For certain fractal strings with perfect boundaries and a naturally chosen
sequence, Theorem 5.2 has the following corollary.
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COROLLARY 5.4. Assume that Q is a fractal string with perfect boundary, total
length 1, and distinct lengths L given by I, =ca™ with multiplicities m,, for some
a>2 and ¢ >0. Further, assume that N is a sequence of scales where n, =1, =
ca "\ Then

ENF (=00, 8) = fo(s) + f1(5)¢c(s),

where fo(s) and f1(s) are entire.

Proof. By Theorem 5.2,

I (=00, 8) =h(s) + D my(ly —2py1)’ =
n=2

a N
=h(s)+c’ (T) ((g(s) —mla_s) .

Therefore, the result holds with

fo(s):zh(s)—mlcs(¥) and fl(s):ch(“_z).
a a

O

Remark 5.5. Corollary 5.4 clearly shows that, in general, the topological zeta func-
tions of the form ;K/Q(—oo, s) may have poles. Indeed, since fj(s) has no zeros, we
have that D), (—oo, W)=D,(W) for any window W.

Remark 5.6. There are a few key differences between the result of Theorem 4.2
and the results in this section. For regularity «=o00, the form of the multifrac-
tal zeta function is independent of the choice of the sequence of scales N and
the topological configuration of the fractal string in question. For other regularity
values, however, this is not the case. In particular, regularity value « = —oo sheds
some light on the topological properties of the fractal string in a way that depends
on N. This dependence on the choice of scales is a very common feature in mul-
tifractal analysis.

We now define a special sequence that describes the collection of accumulation
points of the boundary of a fractal string 2.

DEFINITION 5.7. The sequence of effective lengths of a fractal string Q with
respect to the sequence N is

Kh\F (=00):={IKp(=00)| | neN, pe(l,... ku(—00)}},

where o= Z?i] (8a; +3b;).
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This definition is motivated by a key property of the Hausdorff dimension

dimy: it is countably stable, that is,

dimpy (U2 | Ay) =supdimpy (A,).

n>1

(For this and other properties of dimg, see [8].) Consequently, countable sets have
Hausdorff dimension zero. As such, countable collections of isolated points do not
contribute to the Hausdorff dimension of a given set. Regularity —oco picks up
closed intervals of all sizes n, € N that contain an open neighborhood of an accu-
mulation point of the boundary of the fractal string 2. The effective sequence (and
hence its multifractal zeta function) describes the gaps between these accumulation
points as detected at all scales n, € N, which we now define.

The distinct gap lengths are the distinct sums g := > ¢; where k € N and the
sums are taken over all j’s such that the disjoint subintervals I; =(a;, b;) of Q are
adjacent and have rightmost and/or leftmost endpoints (or limits thereof) which
are 0, 1 or accumulation points of 0%2. The effective lengths have the following
description: For the scale 51, K'(—o0) is the union of the collection of connected
components of R!(—oco). For 5, such that n>2, |K;’,(—oo)| =gr — nn 1f 1, 1s the
scale that first detects the gap g, that is, if n, is the unique first scale n,f such
that 21,1 > gk > 2n.

Under appropriate re-indexing, the effective lengths with multiplicities mg
(other than K!(—00)) are {Ig i}x>2, given by Ip i :=gr —2nF, where the gaps g
are those such that 2n; > g and the nf € Ny C N are the effective scales with
respect to N that detect these gaps. The result is summarized in the next theorem,
which gives a formula for the multifractal zeta function of the measure pug with
sequence of scales A at regularity —oo. The second formula in Theorem 5.2 above
can be viewed as a corollary to this theorem. Note that the assumption of a per-
fect boundary is not needed in the following result.

THEOREM 5.8. For a fractal string Q with sequence of lengths L and for a
sequence of scales N such that n, \J0, the topological zeta function is given by

k1 (—00) 00
(=00, )= D K (=00)l + D mp iy,

for Re(s) large enough.

The next section investigates the application of the results of Sections 4 and 5
to the Cantor String, as defined in Section 1, and the variants thereof.

6. Variants of the Cantor String

Let £ be the sequence of lengths in the complement of the Cantor set, which
is also known as the Cantor String 1. (See Example 1.7 and Figure 2.) Then
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Figure 6. The first three stages in the construction of the topological zeta function of i,
{j’ffl (—o00,s), where N is the set of distinct lengths of the Cantor String beginning with 1/9.

l,=3"" and m, =2""" for all n. We will discuss three examples of fractal strings
involving this sequence of lengths, but for now consider the following one.

Let Q) be the open subset of [0, 1] whose lengths are also £ but arranged in
non-increasing order from right to left, as in Example 1.8. That is, the only accu-
mulation point of 92, is 0 (see Figures 4, 6, 7). In each figure, portions of the
approximation of the string that appear adjacent are actually separated by a sin-
gle point in the support of the measure. Gaps between the different portions and
the points 0 and 1 contain the smaller portions of the string, isolated endpoints
and accumulation points of endpoints.

Consider the following measures which have singularities on a portion of the
boundary of € and €, respectively: u, = pq,, with g =1 or 2, where ngq, is
defined as in Section 5. These measures have a unit point-mass at every endpoint
of the intervals which comprise ©; and 2, respectively.

Let NV be such that [, >, >1,41 and [, > 2n,. Such sequences exist for the Can-
tor String. For instance, Vn €N, let n, =1, =371 Theorem 4.2 yields

LN (00, 8) =57 (00, 8) =Les(s).

When o = —o0 the topological zeta functions for ©; and Q, are, respectively,

o
Nt (=00, ) =2(L + ) + D 2" Uy = 200)°
n=2
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Figure 7. The first three stages in the construction of the topological zeta function of 0,
{K/Z(foo,s), where N is the set of distinct lengths of the Cantor String beginning with 1/9.

and
é‘_/‘(/’z(_ooa S) == ni

In either case,

Zaj,bjeUl

—00=AU)=
o= A= 0]

if and only if
#j | ajeU)+#{j | bjeU}=o00.

In the case of wj, the only closed interval of length 7, that contains infinitely
many unit point-masses is [0, n,]. So,

R"(=00)=[0, n,]
which means

! (=00) =K' (—00) = [0, 1]
and for n>2,

J"(=00) = (n, Nu—1].
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All of the terms from J"(—o0)=(n,, n,—1] are redundant. Therefore,

K"(—o0)=0
and
EAF (=00, 8) =1,
The case of u; for regularity @ = —oo is more complicated and is a result of

Theorem 5.2. This is due to the fact that every point-mass is a limit point of other
point-masses. That is, the Cantor set is a perfect set, thus Corollary 5.4 applies
when A is chosen so that 7, =3"""1 for all neN.

Remark 6.1. Clearly, for every A chosen as above in the discussion of u»,
Dj‘\%(—oo) is empty. In contrast, it follows from the above discussion that it is
easy to find a sequence N such that D/’i}(—oo) is non-empty and even countably
infinite.

Shortly we will consider another fractal string, Q3, in addition to the Cantor
String @) and the string ;. All of these fractal strings have the same sequence
of lengths. As such, these strings all have the same Minkowski dimension, namely
log; 2. However, their respective Hausdorff dimensions do not coincide, a fact that
is detected by the topological zeta functions but the theory of fractal strings devel-
oped in [26,29] does not describe. For a certain, natural choice of sequence of
scales AV, the topological zeta functions of the fractal strings €, (as above) have
poles on a discrete line above and below the Hausdorff dimension of the bound-
aries of these fractal strings (see Figures 4, 6, 7, 8). In [26,29] it is shown that the
complex dimensions of the fractal strings ,, for g=1,2,3 are

2
Dces = 10g32+ﬂ | meZy.
log3

These are the poles of
1—2.3-5"

(See Section 1 above.) As noted earlier, the geometric zeta function of the Can-
tor String does not see any difference between the open sets ,, for g =1,2,3.
However, the multifractal zeta functions of the measures p, with the same such
N and regularity @ = —oco are quite different. For the remainder of this section,
unless explicitly stated otherwise, we choose N ={3_”_1}2°:1.

We now consider more specifically the fractal string €23 mentioned above. This
fractal string is comprised of a Cantor-like string and an isolated accumulation
point at 1. The lengths comprising the Cantor-like string are constructed by con-
necting two intervals with consecutive lengths. The remaining lengths are arranged

Eaf (00, 8) =Ccs(s) =
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Figure 8. The first three stages in the construction of the topological zeta function of 3,
{j\lf} (—00,s), where N is the set of distinct lengths of the Cantor String beginning with 1/9.

in non-increasing order from left to right, accumulating at 1. That is, for n > 1,
the gap lengths are 3= 2"t! 432" =4.3-2" with multiplicities 2"~ and therefore
the effective lengths are 2-3~2" with multiplicities 2"~!. (See Figure 8.)

The Hausdorff dimension of the boundary of each fractal string Q, (¢ =1, 2, 3)
is easily determined. For a set F, denote the Hausdorff dimension by dimpg (F)
and the Minkowski dimension by dimy,(F). We have, for ¢ =1, 2, 3:

dim g (0€21) =dimy (022,) =logs; 2,
dim g (092,) =0,
dimy (023) =logg 2.

The first line in the displayed equation above holds since the Minkowski dimension
depends only on the lengths of the fractal strings and, furthermore, the Cantor set
0 is a strictly self-similar set whose similarity transformations satisfy the open
set condition, as defined, for example, in [8]. Thus, the Minkowski and Hausdorff
dimensions coincide for 92;. The second equality holds because 02, is a count-
able set. The third holds because 023 is the disjoint union of a strictly self-similar
set and a countable set, and Hausdorft dimension is (countably) stable. We justify
further below.

Theorem 5.2, Corollary 5.4, and Theorem 5.8 will be used to generate the fol-
lowing closed forms of the zeta functions ;K/" (—00, ).

For the Cantor String Q; and the corresponding measure pj, we have by
Corollary 5.4,
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1 1\ & 1 2\
1 _ n—1 _
§N(—oo,s)_2(§+§) +Z;2 (37_3n+1) =
n=

_ 4 S+ 2 1
7\ 275 \1-2.3—5 )"

The poles of {j\lfl(—oo, s) are the same as the poles of the geometric zeta function
of the Cantor String. They are given by

2iTm
Dhl(—o0)={log, 2+ —— Zt=7Dcs.
' (—00) [og3 + log3 | me ] cs

Remark 6.2. Note that the above computation of C/’\‘/‘ (—o0,s) is justified, «
priori, for Re(s) >logs 2. However, by analytic continuation, it clearly follows that
;j\‘}(—oo, s) has a meromorphic continuation to all of C and is given by the same
resulting expression for every s € C. Analogous comments apply to similar compu-
tations elsewhere in the paper.

Since 02, has only one accumulation point, there is only one term in the cor-
responding topological zeta function for ;. We immediately have

1

;/l\t/'z (_OO, S) = 9_S’

which, of course, is entire and has no poles.
For Q3, we have

o0
O (=00, ) =h3(s)+ D my (lan—1+low — 2m201)" =
n=2

2s+1 1
=hO+\ g (1—2-9-&)’

where h3(s) is entire. Therefore, the poles of ;j\‘; (—o00, s) are given by

Dﬁ(—oo):[log92+% | mEZ].

Let us summarize the results of this section. We chose the sequence of scales
N to be {3_”_1};’021. For ¢ =1, 2,3, the multifractal zeta function of each mea-
sure u, with regularity o =o0 is equal to the geometric zeta function of the Can-
tor String, as follows from Theorem 4.2. Thus, obviously, the collections of poles
Dﬁ (o0) each coincide with the complex dimensions of the Cantor String.

For regularity « = —oo, the multifractal zeta functions are the topological zeta
functions for the fractal strings €2,. The respective sets of complex dimensions
Djt}’(—oo) differ for each ¢ =1, 2, 3. Specifically, Djt}(—oo) is exactly the same
set of poles as Dj‘\}(oo) (and Dcg), corresponding to the fact that 92| has equal
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Minkowski and Hausdorff dimensions. Furthermore, since {j\‘/?(—oo, s) 1s an entire
function, Dj’f/%(—oo) is the empty set. Additionally, 922, has Hausdorff dimension
equal to zero. Finally, Dﬁ (—o0) is a discrete line of poles above and below the
Hausdorff dimension of 023, which is logg 2. In all of these cases, the multifractal
zeta functions with regularity —oo and their corresponding poles depend heavily
on the choice of sequence of scales N.

This section further illustrates the dependence of the multifractal zeta function
with regularity « = —oco on the topological configuration of the fractal string in
question as well as the choice of scales A used to examine the fractal string. As
before, following Theorem 4.2, regularity o =00 corresponds to a multifractal zeta
function that depends only on the lengths of the fractal string in question.

7. Concluding Comments

The main object defined in this paper, the multifractal zeta function, was originally
designed to provide a new approach to multifractal analysis of measures which
exhibit fractal structure in a variety of ways. In the search for examples with which
to work, the authors found that the multifractal zeta functions can be used to
describe some aspects of fractal strings that extend the existing notions garnered
from the theory of geometric zeta functions and complex dimensions of fractal
strings developed in [26,29].

Regularity value @ =oo has been shown to precisely recover the geometric zeta
function of the complement in [0,1] of the support of a measure which is singular
with respect to the Lebesgue measure. This recovery is independent of the topolog-
ical configuration of the fractal string that is the complement of the support and
occurs under the mild condition that the sequence of scales N decreases to zero.
The fact that the recovery does not depend on the choice of sequence N (as long
as it decreases to zero) is unusual in multifractal analysis.

Regularity value o = —oo has been shown to reveal more topological informa-
tion about a given fractal string by using a specific type of measure whose sup-
port lies on the boundary of the fractal string. The results depend on the choice
of sequence of scales A (as is generally the case in multifractal analysis) and the
topological structure inherent to the fractal string. Moreover, the topological con-
figuration of the fractal string is illuminated in a way which goes unnoticed in the
existing theories of fractal strings, geometric zeta functions and complex dimen-
sions, such as the connection to the Hausdorff dimension.

We next point out several directions for future research, some of which will be
investigated in later papers:

Currently, examination of the families of multifractal zeta functions for truly
multifractal measures on the real line is in progress, measures such as the binomial
measure and mass distributions which are supported on the boundaries of frac-
tal strings. Preliminary investigation of several examples suggests that the present
definition of the multifractal zeta functions may need to be modified in order to
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handle such measures. Such changes take place in [31,32,35,47] and are discussed
briefly in the next section.

In the longer term, it would also be interesting to significantly modify our
present definitions of multifractal zeta functions in order to undertake a study
of higher-dimensional fractals and multifractals. A useful guide in this endeavor
should be provided by the recent work of Lapidus and Pearse on the complex
dimensions of the Koch snowflake curve (see [21], as summarized in [29, Sec-
tion 12.3.1]) and more generally but from a different point of view, on the zeta
functions and complex dimensions of self-similar fractals and tilings in R? (see
[22,23] and [46], as briefly described in [29, Section 12.3.2], along with the asso-
ciated tube formulas).

In [10], the beginning of a theory of complex dimensions and random zeta func-
tions was developed in the setting of random fractal strings. It would be worth
extending the present work to study random multifractal zeta functions, first in the
same setting as [10], and later on, in the broader framework of random fractals
and multifractals considered, for example, in [1,8,9,14,35,41,42].

These are difficult problems, both conceptually and technically, and they will
doubtless require several different approaches before being successfully tackled. We
hope, nevertheless, that the concepts introduced and results obtained in the present
paper can be helpful to explore these and related directions of research.

8. Epilogue

This epilogue focuses on some of the recent results presented in [31,32,35,47], much
of which was motivated by this paper and established concurrently or subsequently.
In particular, we discuss results on the multifractal analysis of the binomial measure
B mentioned in Section 2, specifically the reformulation of the classical multifractal
spectrum f(«) as described in [§], for instance.

In [31,32,47], a new family of zeta functions parameterized by a countable collec-
tion of regularity values called partition zeta functions are defined and considered.
These functions were inspired by both the multifractal and the geometric zeta func-
tions. Partition zeta functions are easier to define than multifractal zeta functions
and produce the desired result of reformulating the multifractal spectrum f(«) for
the binomial measure 8, for instance. (See Example 2.1 along with Figure 9 for a
description of B and its multifractal spectrum.) The partition zeta functions of B
with respect to the family of weighted partitions ‘B3 used to help define S are of the
following form:

o0
B _ § nks —kons
Cm(a(klikz)vs)_ 1 (nk1)3 2 3
n=

where the regularity o =w(ky, kp) is parameterized by scale and weight in terms of
nonnegative integers k; and kp, s is in C accordingly, and (Z]g) are binomial coeffi-

cients. See Figure 9 for the construction in the case of regularity « =«(1, 2) which
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Figure 9. The first stages in the construction of the partition zeta function 553 (a(1,2),s) whose

regularity o =a(1,2) yields the maximum value of the multifractal spectrum f(a) of the bino-
mial measure B. The solid black bars contribute their lengths to the series formula of the par-
tition zeta function.

yields the maximum value of the spectrum (which is also the Minkowski dimen-
sion of the support of 8). The value of the function f(w), in this case, is defined
as the abscissa of convergence of gg(o:,s). Various generalizations of the present
example can be treated in a similar manner.

In [35], the modified multifractal zeta function (among other zeta functions) is
defined and its properties are investigated. As with the partition zeta function, the
definition depends on a given measure pu and a sequence of partitions P,, which
corresponds to a natural family of partitions in the case of the binomial measure g
(a similar comment applies to the more general multinomial measures). This zeta
function has the following form:

((g.5)=>_ > wU)UJ.

n=1U€eP,

When p is a self-similar probability measure with weights p; and scales r; (for j=

1,...,J), the modified multifractal zeta function becomes:
¢(q,s) :
q.59)=——7 7
1= pjr)

For fixed ¢ € R, the negative of the abscissa of convergence o(q) of ¢(g,s) is the
Legendre transform of the multifractal spectrum of u. Additionally, in the spirit of
the theory of complex dimensions of [26,29], the poles of the modified multifractal
zeta function allow for the detection and measurement of the possible oscillatory
behavior of the so-called continuous partition function in the self-similar case.
Overall, the use of a zeta function or families of zeta functions to extrapolate infor-
mation regarding multifractal measures appears to be quite a promising prospect.
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The study of the geometric and topological zeta functions of fractal strings has
shown what may lay ahead for similar investigations in multifractal analysis.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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