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Abstract
We briefly review the state-of-the-art machine learning (ML) algorithms for mineral
exploration, which mainly include random forest (RF), convolutional neural network
(CNN), and graph convolutional network (GCN). In recent years, RF, a representa-
tive shallow machine learning algorithm, and CNN, a representative deep learning
approach, have been proved to be powerful tools for ML-based mapping for mineral
exploration. In the future, GCN deserves more attention for ML-based mapping for
mineral exploration because of its ability to capture the spatial anisotropy of miner-
alization and its applicability within irregular study areas. Finally, we summarize the
original contributions of the six papers comprising this special issue.
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Over the past 40 years and more, various methods have been successfully employed in
GIS-based mapping for mineral exploration (Bonham-Carter 1994; Porwal and Car-
ranza 2015; Carranza 2008; Zuo 2020). In more recent years, machine learning (ML)
algorithms have been increasingly applied in computer-based mapping for mineral
exploration. Among these ML algorithms, random forest (RF) and convolutional neu-
ral network (CNN) are two of the most frequently used methods. RF is an ensemble
ML algorithm that aggregates several weak tree classifiers in order to create a single
strong classifier (Breiman 2001). It does not require input data conforming to any
parameterized distribution or any preprocessing to account for different data types.
On the one hand, RF continues to receive much attention in ML-based mapping for
mineral exploration because of its strong ability to capture the complex and nonlinear
spatial associations between locations of discovered mineral deposits and evidential
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geological features in order to predict locations where undiscovered mineral deposits
likely exist (Rodriguez-Galiano et al. 2014; Carranza and Laborte 2015a, b, 2016). The
RF model typically yields high accuracy and generalization performance because its
“random” aspect enables it to resist over-fitting, and its “forest” aspect of aggregated
decision trees increases its accuracy. On the other hand, CNN is a classical deep learn-
ing algorithm that incorporates information about the invariance of two-dimensional
shapes using schemes of local area connection, weight sharing, and downsampling
(LeCun et al. 1998). CNN takes fixed-size images (pixel-patches) as inputs, accounts
for the connectivity of neighboring pixels, and extracts rich spatial information within
a local region by applying convolutional layers and pooling layers. By considering
the spatial structure and interrelationships of neighboring prediction units, CNN can
effectively capture the spatial coupling relationship between locations of discovered
mineral deposits and evidential geological features (Zhang et al. 2021; Li et al. 2021a,
b, 2022).

In contrast to RF and CNN, the graph convolutional network (GCN) is an emerg-
ing network architecture that it is drawing substantial interest, particularly in fields in
which the effective handling of graph-structured data is required to model relation-
ships between samples (or vertexes) (Kipf and Welling 2017). The GCN aggregates
neighbor information and updates vertex information across network layers based on
graph structure. In the field of computer-based mapping for mineral exploration, the
flexibility of the graph structure enables a full accounting of the spatial anisotropy
of mineralization. In addition, the GCN feeds all data and a graph containing con-
nectivity information into the network; this allows for the modeling of middle- and
long-range spatial relationships between samples (i.e., locations of discovered min-
eral deposits and evidential geological features) (Zuo and Xu 2023). Therefore, GCN
warrants more attention in future computer-based mapping for mineral exploration
because it can capture the spatial anisotropy of mineralization and it can be applied
within irregularly shaped (in contrast to typically rectangular) study areas (Zuo and
Xu 2023; Xu et al. 2023; Xu and Zuo 2023; Zuo et al. 2023).

This special issue was developed from a session on “Machine learning-based
mineral prospectivity mapping (MPM)” chaired by Prof. Renguang Zuo and Prof.
Emmanuel John M. Carranza at the 21st Annual Conference of the International
Association for Mathematical Geosciences, held in Nancy, France, from August 29
to September 3, 2022. This special issue documents case studies and current research
demonstrating the progress ofML-basedmapping inmineral exploration. A total of 15
manuscripts were received, among which six manuscripts were accepted and included
in this special issue. Two manuscripts are still under review and will be published in
a regular issue if accepted, and the remaining seven manuscripts were rejected.

This first paper by Mao et al. (2023) presents an interpretable nonlinear Bayesian
decomposition modeling approach for MPM. To attain both nonlinear modeling
ability and interpretability, the Bayesian decomposition modeling adopted a divide-
and-conquer strategy to decompose the model into parts with respect to individual
predictor variables. The individual predictor variables were transformed through non-
linear mapping functions and then linearly integrated to generate an interpretative
mineral prospectivity model.
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In the second paper, Parsa et al. (2022) use a dataset of orogenic goldmineralization
in the Sturgeon Lake transect of Ontario, Canada, and carry out two experiments to
answer two questions pertaining to MPM: (1) whether using additional geologically
significant labeled samples can further improve the generalizability of MPM models,
and (2) whether simply using binary variables, instead of multiclass and continu-
ous variables, can mitigate the severity of poor generalization in MPM. Their results
provide insights into factors controlling the generalization of prospectivity models.

The third paper by Chen and Xiao (2023) applies a projection pursuit random forest
(PPRF) to model prospectivity for porphyry Cu-Mo deposits in the Eastern Tianshan
orogenic belt, northwestern China. Their results indicate that the PPRF method not
only outperforms the ordinary RF method in terms of the overall MPM accuracy,
but also exhibits lower sensitivity to unbalanced data. Therefore, the PPRF method
represents a data-driven alternative for MPM.

In the fourth paper, Zhang et al. (2023) provide a novel class-balanced focal loss
function to address the issue of data imbalance inMPM.This loss function incorporates
both a class-balanced loss function and a focal loss function. The former addresses
the information imbalance within the feature space, while the latter focuses on dealing
with class imbalance. In addition, the authors introduceBayesian hyperparameter opti-
mization as an effective approach to automatically tune the intricate hyperparameters
of deep learning models for MPM.

The fifth paper by Chen and Lu (2023) presents a comparative study of anomaly
detector, semi-supervised classifier, and supervised classifier based on the K-nearest
neighbor (KNN) algorithm for detecting mineralization-related geochemical anoma-
lies. This comparative study suggests that supervised and semi-supervised classifi-
cation models are more adept at identifying mineralization-related anomalies in the
presence of discovered mineral deposits, as compared with anomaly detection models.

In the sixth paper, Wang et al. (2022) propose a novel framework for geological
mapping based on geochemical survey data. This framework uses a direct sampling
multiple-point statistics technique to produce spatially continuous and adequate sam-
ples by reconstructing geochemical values at unsampled locations based on sparse
geochemical survey data. It applies the CNN to automatically learn the lithological
features and further conduct classifications based on multilevel convolutional opera-
tions that consider the spatial information within neighboring samples.
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