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Abstract
The ever-growing size of modern space–time data sets, such as those collected by
remote sensing, requires new techniques for their efficient and automated processing,
including gap-filling of missing values. Compute Unified Device Architecture-based
parallelization on graphics processing units (GPUs) has become a popular way to
dramatically increase the computational efficiency of various approaches. Recently,
a computationally efficient and competitive yet simple spatial prediction approach
inspired by statistical physics models, called the modified planar rotator method, was
proposed. ItsGPU implementation allowedadditional impressive computational accel-
eration exceeding two orders of magnitude in comparison with central processing unit
calculations. In the current study, a rather general approach to modeling spatial hetero-
geneity in GPU-implemented spatial prediction methods for two-dimensional gridded
data is proposed by introducing spatial variability to model parameters. Predictions of
unknown values are obtained from non-equilibrium conditional simulations, assum-
ing “local” equilibrium conditions. It is demonstrated that the proposed method leads
to significant improvements in both prediction performance and computational effi-
ciency.

Keywords Spatial interpolation · Local-equilibrium simulation · Non-Gaussian
model · Heterogeneous data · GPU parallel computing · CUDA

1 Introduction

With the emergence and increasing frequency of massive spatiotemporal data sets,
such as those collected by remote sensing technologies, scalable numerical techniques
are required for their efficient processing. For example, such data often include gaps
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milan.zukovic@upjs.sk

1 Department of Theoretical Physics and Astrophysics, Institute of Physics, Faculty of Science, Pavol
Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-023-10092-8&domain=pdf
http://orcid.org/0000-0001-6241-299X


574 Mathematical Geosciences (2024) 56:573–603

that may occur as a result of sensor malfunctions, cloud, vegetation or snow cover-
age, dense precipitation or other barriers separating the sensed object and the remote
sensing device (Lehman et al. 2004; Coleman et al. 2011; Sun et al. 2017; Kadlec
and Ames 2017) and may have an unfavorable effect on the statistical assessment
of mean values and trends. Therefore, they need to be estimated to generate gapless
maps of observed variables and to facilitate prompt and informed decisions (Sickles
and Shadwick 2007). Most traditional interpolation methods, however, such as krig-
ing (Wackernagel 2003) are not directly applicable to such massive data due to their
computational demands. Consequently, several modifications of kriging-based meth-
ods have been developed (Furrer et al. 2006; Cressie and Johannesson 2018; Hartman
and Hössjer 2008; Kaufman et al. 2008; Ingram et al. 2008;Marcotte and Allard 2018)
in an effort to increase their computational efficiency.

Very recently, a geostatistics-informed machine learning model was proposed
by Bai and Tahmasebi (2021) to improve the computational performance of ordinary
kriging, and an inverse distance weighted regression method by Emmendorfer and
Dimuro (2021) to improve the performance of the standard inverse distance weighted
(IDW) method (Shepard 1968). Aiming at the same goal, a statistical physics-inspired
approach that employs models based on Boltzmann–Gibbs exponential joint densities
has also been proposed (Hristopulos 2003; Hristopulos and Elogne 2007; Hristopulos
2015; Žukovič and Hristopulos 2009a, b, 2018; Hristopulos et al. 2021). Within this
concept, spatial correlations are captured using short-range interactions instead of the
experimental variogram used in geostatistical methods, which renders the proposed
interpolation methods computationally very efficient. In particular, the recently intro-
duced method that employs the modified planar rotator (MPR) model (Žukovič and
Hristopulos 2018), due to its computational efficiency (roughly linear-time computa-
tion complexity) and ability to operate autonomously without user input, was shown
to be appropriate for the automated and efficient processing of massive gridded data,
typical in remote sensing.

Nevertheless, spatial simulation performed sequentially is still computationally
costly, particularly in the simulation of huge data sets (Mariethoz 2010; Nunes and
Almeida 2010; Peredo et al. 2015). With new developments in hardware architecture
and their availability in common PCs, in particular multi-core CPUs and general-
purpose graphics processing units (GPU), an increasingly popular way of overcoming
computational inefficiency is achieved by parallel implementations. Most standard
interpolation methods to date, including kriging and IDW, have been parallelized on
high-performance and distributed architectures (Kerry and Hawick 1988; Cheng et al.
2010; Guan et al. 2011; Pesquer et al. 2011; Hu and Shu 2015; Misra et al. 2020; Que
et al. 2021) and general-purpose computing GPUs (Xia et al. 2011; Tahmasebi et al.
2012; Cheng 2013; de Ravé et al. 2014; Mei 2014; Stojanovic and Stojanovic 2014;
Mei et al. 2017; Marcellino et al. 2017; Zhang et al. 2018). It has been shown that by
using parallelization, it is possible to achieve computational acceleration up to almost
two orders of magnitude compared to traditional single-CPU implementation.

Parallelization of spinmodel simulations is achievable due to the short-range nature
of interactions between the spin variables. Impressively, up to 1000-fold speedup can
be achieved (Weigel 2012) by employing a highly parallel architecture of GPUs. A
recent GPU implementation of the spin-model-based MPR method to massive data
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sets (Žukovič et al. 2020) led to almost 500-fold computational speedup when com-
pared to single-processor calculations. Thus, using an ordinary personal computer, data
sets involving several millions of points can be processed in a fraction of a second.

Most geostatistical methods assume spatial homogeneity/stationarity of data, even
though a kriging-based interpolation method for non-homogeneous data has recently
been proposed (Lajaunie et al. 2020). However, if one targets large spatial data, in
which anisotropy and non-stationarity are common, such an assumption is not jus-
tified. It is not reasonable to assume that one set of model parameters can capture
scale-dependent relationships between covariates and the outcome variable that vary
in space. The most common techniques for modeling such data are geographically
weighted regression (GWR) and spatially varying coefficient (SVC) methods (Fother-
ingham et al. 2003; Gelfand et al. 2003; Finley 2011). Some relatively efficient GWR
methods have been developed (Harris et al. 2010; Li et al. 2019), but the scalable linear-
time implementation required for the application to big data sets has been proposed
only very recently (Murakami et al. 2020). Their parallelization via the Message Pass-
ing Interface leads to a further increase in computational efficiency (Li et al. 2019).
Another recent approach to modeling large data with a non-stationary covariance
structure is based on efficient local likelihood estimation in moving windows to infer
spatially varying covariance parameters (Pardo-Igúzquiza et al. 2005; Wiens et al.
2020).

In the present paper, some modifications to the previously introduced GPU-
accelerated MPR method are implemented in an effort to enable modeling spatial
heterogeneity/non-stationarity, essential for analyzing massive spatial data. The
GPU-implemented version can conveniently achieve this by introducing spatial
dependence to the MPR model parameter (temperature) by the so-called double-
checkerboard decomposition. Then, predictions of unknown values are obtained from
non-equilibrium conditional situations, assuming “local” equilibrium conditions cor-
responding to local temperatures varying in space (MacGillivray et al. 1993).

The rest of the paper is structured as follows: In Sect. 2, an overview of the previ-
ously introducedMPRmodel and itsGPU implementationswith both spatially uniform
and spatially varying parameters is presented; more details are given in Žukovič and
Hristopulos (2018) and Žukovič et al. (2020). The statistical and computational per-
formance of the MPR-based models is investigated and compared to the standard
approach in Sect. 3. Lastly, in Sect. 4, the findings and present conclusions are sum-
marized.

2 MPRMethods

2.1 MPRMethod with Spatially Uniform Parameter

Let us consider a two-dimensional square grid G consisting of L × L nodes with
partially known values (samples). Let us denote locations of the samples of the spatial
process Z(s) on the grid nodes as GS = {sn}Nn=1, where N < L2 and their values as
Zs = (z1, . . . , zN )� (where � denotes the matrix transpose). The task is to estimate
themissing values Ẑp = (ẑ1, . . . , ẑ P )� of the process at the grid nodesGP = {s̃p}Pn=1.
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Thus, the intersection of the sets GP and GS is empty, and their union represents the
full grid G.

In the following, the basic idea of the MPR method, recently introduced for effi-
cient and automatic prediction of partially sampled non-Gaussian data on regular
grids (Žukovič andHristopulos 2018), is briefly outlined. It should be noted that, unlike
geostatistical methods, the MPR method makes no restrictive assumptions regard-
ing the probability distribution of the spatial process. Instead, inspired by statistical
physics, it assumes that the data represent a spatial random field realization and the
correlations are imposed by local (nearest-neighbor) “interactions” between the field
variables at the nodes of G. In statistical physics, the Boltzmann–Gibbs probability
density function of any random field X(s) governed by an energy functionalH[X(s)]
(also called Hamiltonian) takes the form

fx [X(s)] = Z−1 exp{−H[X(s)]/kBT }, (1)

where Z is the partition function (normalizing constant), T is the thermodynamic
temperature and kB is the Boltzmann constant. The Hamiltonian can incorporate vari-
ous terms resulting from different types of interactions between the field variables. In
magnetism, these variables, called spins, represent elementary magnetic moments of
atoms localized on a regular lattice (grid). They can be either discrete, for example,
binary with the spins only allowed to “point up” or “point down” (Ising model), or
continuous, for example, represented by two-dimensional unit vectors that can rotate
in a plane (planar rotator model). The Hamiltonian of the latter in its simplest form
can be expressed as H[X(s)] = −J

∑
i, j Si · S j = −J

∑
i, j cos(φi − φ j ), where

J > 0 is the interaction between neighboring spins Si and S j , with the respective turn
angles φi and φ j ∈ [0, 2π ].

The MPR method employs the modified planar rotator (MPR) spin model in
the framework of a Gibbs–Markov random field (GMRF), defined by means of the
Boltzmann–Gibbs distribution (Eq. 1). In the first step, the original data are linearly
transformed to continuously valued “spin” variables (or spin angle φ) space [0, 2π ],
using the transformation

Zs �→ �s = 2π(Zs − zs,min)

(zs,max − zs,min)
, (2)

where zs,min and zs,max are the minimum and maximum sample values and �s =
{φi }Ni=1 and φi ∈ [0, 2π ], for i = 1, . . . , N . Then, conditional Monte Carlo (MC)
simulations of the MPR Hamiltonian

H = −J
∑

〈i, j〉
cos[q(φi − φ j )], (3)

where J > 0 is the interaction between neighboring spins and q ≤ 1/2 is the modifi-
cation parameter, are performed at “temperature” T .

At this point, some comments on the relation between the original planar rotator,
used formodelingmagneticmaterials, and itsmodified version (MPR), used for spatial
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prediction, are in order. In the former, the parameters J , kB and T have physical
meaningwith the values given in physical units. In particular, kB is a universal constant,
J is a constant for a given system and the temperature T is a variable parameter
related to a degree of thermal fluctuations (disorder) in the system. Nevertheless, in
simulations, these parameters appear as the product kBT /J , and thus the constants
J and kB can be absorbed in T (by setting them to 1), and the temperature T is
then measured in dimensionless units. On the other hand, in the MPR model, T is
not real temperature but just a parameter called temperature. Nevertheless, it plays a
similar role as in the planar rotator spin model since its increasing (decreasing) value
increases (decreases) fluctuations in the simulated data and thus controls the degree
of the spatial correlations and smoothness of the resulting realizations. Finally, the
role of the modification factor q in the MPR model is to impose the desirable type of
short-range correlations characteristic of geostatistical data.

In the MPR method, T is estimated by matching the specific energy of the whole
grid (including sample and prediction points) with that calculated only from samples.
The former is calculated as e(T , L) = 〈H〉/NGP , where 〈H〉 is the expectation of
the MPR energy over all probable spin states on G, and NGP = 2L(L − 1) is the
number of nearest-neighbor pairs on the L × L grid with open boundary conditions.
The value of 〈H〉 is determined by running unconditionalMC simulations within some
temperature range. The latter takes the form

es = − 1

NSP

N∑

i=1

∑

j∈nn(i)

cos[q(φi − φ j )], (4)

where j ∈ nn(i) is the sum over the sample (non-missing) nearest neighbors of the site
si (i.e., s j ∈ GS), and NSP is the total number of the nearest-neighbor sample pairs.
Then the value of the parameter T is taken as the temperature at which the energies e
and es become equal. In thermodynamic equilibrium, the spin realizations follow the
GMRF distribution (Eq. 1), controlled by the parameter T . After reaching thermody-
namic equilibrium, the spin values at the prediction locations are back-transformed to
the original values, using Eq. (2). Finally, spatial prediction of missing data is based
on taking the mean of the respective conditional distribution at the target site given the
incomplete measurements. Its high computational efficiency makes the MPR method
applicable to massive data, such as remotely sensed images. Additional details about
the MPR algorithm can be found in the paper by Žukovič and Hristopulos (2018).

2.2 SV-MPRMethod with Spatially Varying Parameter

While theMPRmodel has proved to be competitive for non-Gaussian data, its reliance
on the single parameter—the reduced temperature T—for the whole data set naturally
restricts its applicability. In particular, since T is related to spatial variability, a single
parameter value cannot adequately capture the spatial variability of the data showing
some heterogeneity, a feature commonly present in massive data. For example, if the
studied data set includes domains of almost constant values as well as domains with
large spatial fluctuations, no single value of T can be optimal for both of these regimes.
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The sample-specific energy given by Eq. (4) in a subsystem with nearly constant
values will be very low, which will result in T taking values close to 0. Such values
would not be representative of a subsystem with high variability and vice versa. The
sample-specific energy calculated from all data (including domains with low and high
variability) and subsequently estimated temperature thus may not be characteristic for
either of the involved domains. As a result, the spatial variability of the predictions
in the domains with low (high) variability will be over- (under)estimated. Generally,
such a problem can be addressed by introducing a spatial dependence into the model
parameters, as is done in the GWR approach (Fotheringham et al. 2003; Gelfand et al.
2003). The current implementation in CUDA offers a very straightforward way to
implement this in the MPR method.

2.2.1 GPU Implementation in CUDA

NVIDIA’sComputeUnifiedDeviceArchitecture (CUDA) is a general-purposeparallel
computing platform and programming model that can be used to accelerate com-
plex computations by harnessing the massively parallel architecture of modern GPUs.
CUDA’s software environment extends the C programming language by introducing
additional syntax, keywords and application programming interface (API) functions
to enable the use of the computational resources of the GPU. Its compiler, nvcc, splits
the code into two parts—host code executed on the CPU (host) and the device code
executed on theGPU (device). In a typical CUDAprogramworkflow, the host accesses
the input computational data stored in memory (i.e., random access memory, RAM)
and copies it to the memory allocated on the device, which then performs computa-
tions using device functions called kernels. These kernels utilize the parallel features
of GPUs to efficiently solve the problem, and afterwards, the device copies the results
back to the host memory. The performance of a CUDA application depends on how
efficiently the kernels can utilize the GPU’s resources—its computational cores and
memory, of which there are multiple types with different properties.

A CUDA kernel is a C function that is executed on many GPU threads in parallel.
Threads are virtual processors that can be mapped to hardware resources to perform
computations for individual (ormultiple) data points or spins. These threads all perform
the same instructions written in a single kernel function and are organized into blocks
consisting of up to 1,024 threads arranged in one, two or three dimensions (here,
square blocks are used). Thread blocks are in turn organized into a grid of up to three
dimensions. Block and grid dimensions must be specified at the launch of each kernel.
The blocks of threads are scheduled to run on the GPU cores organized into streaming
multiprocessors (SMs). A single SM can execute one ormore thread blocks. Individual
threads are executed in groups called warps. Each warp consists of 32 threads and is
scheduled to run on an SM automatically by the warp scheduler. The warp scheduler
ensures that as many warps as possible run concurrently by stalling warps waiting for
data or memory transactions and scheduling others in their place. If SMs are occupied
with a sufficiently large number of warps, this scheduler mechanism can effectively
hide the high latency of memory operations, which is crucial for a high-performing
CUDA application.
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The three main types of GPU memory are global memory, shared memory and
registers. Global memory is physically a part of the graphics card but is not a part
of the GPU chip itself. The information stored in it can be accessed by any thread
summoned by a kernel. It is both the largest and the slowest type of GPU memory. Its
size is typically in the tens of gigabytes and it takes about 500 clock cycles to read or
write data, compared to one clock cycle for an arithmetic operation. Shared memory
is located on the GPU chip and provides low-latency communication between threads
that belong to the same block. It is much faster than global memory and much smaller,
by default 48 KB per thread block. It is most often used as a cache for intermediate
results and computations. Registers facilitate the localmemory available to each thread
to store its local variables. It is the smallest and fastest memory type available. On
newer GPUs (2012 Kepler architecture and newer), threads that belong to the same
warp can access each other’s memory. It is important to utilize the faster memory
types as much as possible and try to maximize the arithmetic intensity—the number
of arithmetic operations per memory read/write.

2.2.2 Block-Specific Parameter Inference and Simulation

The energy of the system is calculated using the parallel reduction algorithm (Harris
2007). Each thread is mapped to a single spin and computes the energy of a bond
with two of its neighbors using the Hamiltonian (3) in such a way that all the bonds
present in the system are counted. Then, the results from each thread within a given
block are reduced (summed) to a single value representing the energy contribution of
that block. Since at this point the energy is known for each block, the same energy
matching procedure as described in Sect. 2.1 can be used to assign an individual value
of T to each block. Thus, one obtains multiple values of the simulation parameter
T for different regions of the system. In the extreme case, when a large percentage
of the block’s data are missing and there are no bonds between samples (no nearest
neighbors) for energy calculation and temperature estimation, such a block will be
assigned the temperature corresponding to the median value of the available block
temperatures.

Since during simulation threads representing individual spins are also grouped
into blocks, instead of a single global value of T , each thread can use the value that
corresponds to the block it belongs to. One must ensure that the same configuration of
thread blocks used for the energy computation is also used for the Metropolis update;
otherwise, spins from one part of a system may end up using a temperature based on a
different part of the system with different behavior. This approach is synergized with
an optimization technique called double-checkerboard (DC) decomposition (Weigel
2012), which is an extension of the single-checkerboard (SC) decomposition described
in our previous paper (Žukovič et al. 2020).

Assuming the data are localized on a two-dimensional square grid (generalization
to any regular grid is straightforward), they can be split into two sets sitting on two
interpenetrating sub-grids, A and B. The nearest neighbors of any node on sub-grid A
belong to sub-grid B, and vice versa. Therefore, the updating algorithm can be applied
to all the spins on the same sub-grid in parallel. In Fig. 1, the two sub-grids are depicted
using light and dark small squares. Each small square represents a grid node with its
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Fig. 1 Schematic representation
of a double-checkerboard
decomposition of the spin grid
with block-specific temperatures
Ti , i = 1, . . . , 16

associated spin variable. Each thread performs calculations for a single spin. Sub-grid
A comprises the dark nodes, while sub-grid B includes the light ones. The grid is
further decomposed into larger dark and light tiles corresponding to individual thread
blocks responsible for the numerical operations on the spins included within the tile.
Each tile can be simulated using a different temperature computed only from the spins
within the tile. The computation kernels call one thread for each sub-grid spin.

The DC decomposition further splits the grid into larger tiles, corresponding to
thread blocks. At eachMC step, at first, only the even (odd)-numbered tiles are updated
in parallel, and then only the odd (even) ones. Each tile can be loaded into the block’s
shared memory, which is orders of magnitude faster than the GPU’s global memory,
and one can perform multiple Metropolis updates in quick succession only within
the even-numbered blocks, before doing the same for the odd-numbered blocks. As
mentioned above, since the temperature is computed individually for each block, one
can assign a different value to each tile of the decomposed grid, as depicted in Fig. 1
using light and dark large squares. In the present case, this is the main reason for
using the DC decomposition, as the update procedure is not applied multiple times for
individual tiles. Nevertheless, because the tiles are first loaded into shared memory,
looking up the neighboring spins uses shared instead of global memory, and one still
gains a small performance benefit, as will be discussed below.

This version of the algorithm with the DC decomposition will be referred to as the
SV-MPR method with block-specific temperatures (BST). It is worth mentioning that
the greatest challenge in its implementation is related to the indexing of spins. For each
spin, it is necessary to compute the indices of their nearest neighbors and implement
boundary conditions for those at the edges. Due to performance considerations, one
should aim to coalesce global memory access whenever possible. This means storing
the two-dimensional spin grid as a one-dimensional array, which greatly complicates
index arithmetic. Furthermore, implementing the double-checkerboard decomposition
brings additional complexity and radically changes the Metropolis algorithm imple-
mentation. Spins within the block make use of shared memory, and the spins at the
boundary of each tile have to be treated specially. This requires careful testing of the
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indexing on smaller grids and its graphical visualization, before scaling up to larger
grids. It is perhaps the most important challenge, as the correct mapping of threads
onto spins is required in almost every implemented CUDA kernel.

2.2.3 Site-Specific Parameter Inference and Simulation

The second approach aims to eliminate the undesirable block boundary effect that
occurs in the above-described SV-MPR method with BST. It results from the fact
that the temperature varies on the grid discontinuously as a step function. Therefore,
neighboring blocks, assigned with significantly different temperatures, will be char-
acterized by significantly different spatial variations of the simulated values, which
can generate unnatural edges between blocks on the prediction map. Such an effect
can be partially reduced by decreasing the size of the blocks. However, this approach
has some limitations, since very small blocks may either completely lack samples or
their reduced numbers within blocks may lead to imprecise block-specific temperature
estimation. An alternative approach allows us to reduce the block size so that each of
them contains only one spin and thus to obtain a smooth variation of temperatures on
the grid. Assigning a value of T to each spin individually can be viewed as a limiting
case of decreasing the block size lb → 1. However, instead of actually decreasing the
block size, a simple smoothing algorithm is applied to the block temperatures. This
can be performed by starting from the BST state and recursively replacing the tem-
perature at each site with an average value of the surrounding area with some radius
rs . To reach the desired level of smoothness, it can be applied ns times in succession.
In the present tests, the radius is arbitrarily fixed to rs = 8, and the value of ns is
changed to achieve various degrees of smoothing. This version of the algorithm will
be referred to as the SV-MPR method with site-specific temperatures (SST).

The implementations of the MPR algorithm and its BST and SST variants on the
GPU are illustrated in Algorithms 1 and 2, as well as the flowchart shown in Fig. 2.
The differences between the respective approaches can be summarized as follows.
The main difference lies in the definition of the parameters a, T and es . While in the
MPR method they are constants, meaning that they are the same for all the prediction
points, in the BST implementation they are vectors of length equal to the number of
the blocks, that is, they are shared by all the prediction points in a given block, and in
the SST implementation, they are vectors of length equal to the number of prediction
points, that is, they have generally different values at each prediction point.

3 Results

3.1 Data

To assess the effect of introducing spatial dependence into the model parameter, both
the prediction performance and the computational efficiency of the present SV-MPR
model are compared with the original MPR model. The comparison is performed
on several large real-world data sets showing a heterogeneous nature of their spatial
variability (see Fig. 3) and non-Gaussian (skewed, multimodal, etc.) distributions (see
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Algorithm 1 Parallel restricted Metropolis updating algorithm for the original MPR

method and its BST and SST implementations. �̂
old

is the initial spin state, and �̂
new

is the new spin state. �̂
old
−p is the initial spin state excluding the point labeled by p. u

denotes a set of random numbers from uniform probability distribution in [0, 1]. The
restriction parameter a and temperature T̂ in the MPR method are constants, that is,
the same for all the prediction points; in the BST implementation, vectors of length
equal to the number of blocks, that is, shared by the prediction points in a given block;
and in the SST implementation, vectors of length equal to the number of prediction
points, that is, generally different at each prediction point.

procedure Update(�̂
new

, �̂
old

, u, a, T̂)
for all p = 1, . . . , P in parallel do 	 Apply the update procedure to prediction sites in parallel

1: �̂′
p ← �̂old

p 	 Generate �̂′
p

if a �= 1 then
1.1: �̂′

p ← R{�̂old
p } 	 Over-relaxation step applied only in the non-equilibrium regime

else
1.2: �̂′

p ← �̂old
p 	 In the equilibrium regime keep the old state

end if
2: �̂′′

p ← �̂′
p + 2π(u p − 0.5)/ap (mod 2π) 	 Propose updated spin values

3: �H = H(�̂′′
p, �̂

old
−p) − H(�̂′

p, �̂
old
−p) 	 Evaluate change of energy

4: AP = min{1, exp(−�H/T̂p)} 	 Evaluate probability of acceptance

5: �̂
new
−p ← �̂

old
−p 	 Execute update according to Metropolis rule

if AP > r ← U (0, 1) then
5.1: �̂new

p ← �̂′′
p 	 Update the old state

else
5.2: �̂new

p ← �̂′
p 	 Keep the old state

end if
end for 	 End of parallel prediction process
6: return �̂

new 	 Return the “updated” new state
end procedure

Fig. 4). The first one represents the synthetic pollutant concentration data derived from
a digital elevation model of the Walker Lake area in Nevada (Isaaks and Srivastava
1989). Amap showing a two-dimensional projection of the pollution field is presented
in Fig. 3a alongwith the histogram on a semi-log scale in Fig. 4a. The units used for the
Z values are arbitrarily set to parts per million (ppm). The map shows the presence of
both larger dark regionswith values close to zero and almost no variability, and brighter
regions with very large values and relatively high variability. (Note the adjusted color
map, showing all the values Z � 4, 000 in yellow, to better visualize the extreme
data in the tail.) The histogram shows that the distribution is highly positively skewed,
indicating the predominance of very low concentrations, with just a small portion of
extremely large values.

Further, much larger data sets with linear grid sizes L = 2, 048 and L = 8, 192,
collected using airborne light detection and ranging (LiDAR) technology, are con-
sidered. They represent the canopy height (in meters) of the forests around Kaibab
Plateau, Arizona (US Forest Service 2019) (Figs. 3b, 4b), and the digital surfacemodel
of the Wasatch Front, Utah (State of Utah 2015) (Figs. 3c, 4c). These data sets include
values over extensive spatial domains with nontrivial distributions, as shown in the
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Fig. 2 Flowchart of the main computational steps and memory transactions performed on the GPU

Fig. 3 Spatial distributions of a Walker Lake, b Kaibab Plateau and c Wasatch Front data sets
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Algorithm 2 Simulation of MPR model and its BST and SST implementations. The
algorithm includes the parallel restrictedMetropolisUpdatepresented inAlgorithm1.
�s represents the vector of known spin angles at the sampling points. �̂ is the vector
of estimated spin angles at the prediction points. es and T̂ represent respectively the
vectors of the sample energies and the estimated temperatures with lengths equal to
either 1 (MPR), or to the number of blocks (BST) or the number of prediction points
(SST). G(·) represents the transformation from the field of the original data to the
spin angle field, and G−1(·) represents its inverse. Ẑ( j), j = 1, . . . , M is the j th
realization of the original data field.
1: Set simulation parameters with fixed values
1.1: Set the parameters: M - number of configurations in equilibrium for statistics assessment, n f -
frequency of equilibrium conditions verification, nfit - number of points involved in fitting of energy
evolution function, Atarg - desired acceptance ratio for the Metropolis update, ka - specifies variation
rate of the vector of perturbation control factors a, imax - maximum number of MC steps (optional). The
effect of these parameters on prediction performance was found to be marginal, and one can safely use
the default values set by Žukovič and Hristopulos (2018).
2: Original data to spin angle transformation
2.1: �s ← G(Zs ) applying (2) 	 Set sample spin angles
3: Initialize simulation parameters with varying values
3.1: i ← 0 	 Reset counter of simulated states
3.2: �̂(0) ← �̄s 	 Initialize missing spin values as per-block averages of sample points
3.3: k(0) ← −1 	 Initialize the energy evolution function slope
3.4: a(0) ← 1 	 Set control parameters for spin angle perturbation
4: Parameter inference
4.1: Evaluate es using (4) 	 Calculate sample energy
4.2: T̂ ← e−1(es|L) 	 Estimate temperature according to e(T̂, L) = es
4.3: T̂ ← S{T̂} 	 Only for SST: apply the smoothing algorithm to block-specific temperatures to obtain
site-specific values
5: Spin relaxation during non-equilibrium period
while [k(i) < 0] ∧ [i ≤ imax] do 	 Update spins with restricted Metropolis algorithm

5.1: u(i) ∈ U(0, 1) 	 Generate a set of uniform random numbers from [0, 1]
5.2: Update(�̂(i + 1), �̂(i), u(i), a(i), T̂)
if Ap < Ap

targ then 	 Check the acceptance ratio at each point in parallel
5.3: ap(i + 1) ← 1 + (i + 1)/ka 	 Update perturbation control parameters in parallel

end if
5.4: Calculate e(i + 1) ← H/NGP 	 Evaluate current value of specific energy
if [i ≥ nfit] ∧ [i ≡ 0 (mod n f )] then 	 Check whether slope of e should be updated

5.5: k(i + 1) ← SG 	 Perform updating of the slope by applying SG method with last nfit values
end if
5.6: i ← i + 1 	 Update counter of MC steps

end while
6. Simulation during equilibrium period
6.1: �̂

eq
(0) ← �̂(i) 	 Set the initial equilibrium state

for j = 0, . . . , M − 1 do
6.2: u( j) ∈ U(0, 1) 	 Generate a set of uniform random numbers from [0, 1]
6.3: Update(�̂

eq
( j + 1), �̂

eq
( j), u( j), 1, T̂) 	 Produce equilibrium realizations

6.4: Ẑ( j + 1) ← G−1
[
�̂
eq

( j + 1)
]

	 Back-transform spin states to original field representation

end for
7: return Statistics of M realizations Ẑ( j), j = 1, . . . , M

histograms in Fig. 4. The statistical properties of all the data sets are summarized in
Table 1.
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Fig. 4 Histograms of a Walker Lake, b Kaibab Plateau and c Wasatch Front data sets

Table 1 Summary statistics of the data sets used

Data set Number of points Range z̄ z0.50 σz Skewness Kurtosis

Walker Lake 65,535 (L = 256) 0–9,500 289 64 516 3.6 23.3

Kaibab Plateau 4, 194, 304 (L = 2, 048) 0–15 3.6 2.7 3.5 0.58 2

Wasatch Front 67, 108, 864 (L = 8, 192) 0–255 112 117 62 0.13 2.2

3.2 Prediction Validation

To evaluate the performance of the MPR-based prediction algorithms, missing values
are simulated by setting aside a portion of the complete data to be used as a validation
set. Typically, M = 100 different configurations are generated by randomly removing
p = 30% − 90% (or p = 0.3 − 0.9) of the data points. The MPR predictions are
based on the conditional mean as evaluated from the conditional MC simulation. The
reconstructions are compared with the true values, first by visually inspecting the
reconstructed data and then statistically, using two validation measures: the average
absolute error (AAE) defined as

AAE = 1

P

∑

rp∈Gp

|ε(rp)|, (5)

and the root average squared error (RASE)

RASE =
√
√
√
√

1

P

∑

rp∈Gp

ε2(rp), (6)

where ε(rp) = Z(rp) − Ẑ(rp) is the difference between the true value Z(rp) and
the predicted value Ẑ(rp) at the site rp, and P = pL2 is the number of prediction
sites. Both of these quantities are then averaged over the M = 100 different sam-
ple configurations to calculate the mean AAE (MAAE) and mean RASE (MRASE).
CUDA-based calculations are executed on a PC with NVIDIA GeForce RTX 2080
SUPER GPU, using CUDA version 10. The CPU host system is equipped with an
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8-core 3 GHz Intel(R) Core(TM) i7-9700F CPU with 32 GB RAM, running Ubuntu
20.04.3 long-term support (LTS) Linux.

3.3 Visual Inspection of Reconstructions

3.3.1 Standard MPRMethod

Let us first demonstrate the performance of the original MPR algorithm with a single
(spatially uniform) parameter T and its weak point, particularly when applied to the
data with highly heterogeneous spatial variability, such as the Walker Lake data set.
The gappy data along with their reconstructions using theMPR algorithm are depicted
in Fig. 5 for three values of the thinning ratio p = 30%, 60% and 85%. The MPR
algorithm performs fairly well for small values of p, thanks to the abundance of the
conditioning sample data. However, with increasing sparsity of samples, the prediction
performance quickly deteriorates. In particular, the predicted values in the regions cor-
responding to very low or zero concentrations (dark regions) noticeably overestimate
the true values, which is reflected in the appearance of speckles with lighter colors.
On the other hand, the extremely large values are greatly underestimated, although
it is less conspicuous in the reconstructed map due to the scarcity of such data. This
phenomenon becomesmuchmore pronounced at larger concentrations ofmissing data
(lack of conditioning sample data), such as for p = 85% presented in Fig. 5f. This
problem is not conspicuous on the large scale but it is evident if one zooms in on a
small area, as shown in the inset. In this particular area, the true values are Z(rp) = 0,
nevertheless, the predictions Ẑ(rp) ∈ [0, 100]. Because theMPRmodel includes only
one parameter, this averaging effect is not surprising. The temperature T̂ is estimated
based on all the samples, involving regions with different degrees of spatial variability,
and thus the resulting mean value of T̂ cannot be representative in all these areas and
consequently cannot reflect the local conditions.

3.3.2 SV-MPRMethod-BST Implementation

To best demonstrate the beneficial effects of implementing spatial variability of the
parameter in the SV-MPR versions of the algorithm introduced herein, the high sample
sparsity case of p = 0.85 (85%) is chosen. The MPR reconstruction is depicted in
Fig. 5f, and the corresponding (spatially uniform) parameter value, estimated from
the specific energy matching principle based on all samples, is T̂ = 0.0672. By using
the double-checkerboard decomposition in the SV-MPR implementation, the spatial
distribution of the estimated block-specific temperatures (BST) with square blocks of
linear size lb = 32 is shown in Fig. 6a. One can observe great variability in BST,
the values of which correlate with the sample variation in the respective blocks. In
particular, the blocks with almost constant sample values close to zero are assigned
very low values of T̂ ≈ 0, while those with spatially highly variable samples are
assigned much higher values of up to T̂ ≈ 0.5. It is worth noting that the mean value

of ¯̂T = 0.0693, calculated over all blocks, coincides rather well with theMPR estimate
T̂ . Consequently, one can expect that the spatially variable parameter can better model
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Fig. 5 Original Walker Lake data with a p = 30%, c p = 60% and e p = 85% of the data (white color)
randomly removed and the corresponding MPR-based reconstructions obtained at the (spatially uniform)
temperatures b T̂ = 0.0378, d T̂ = 0.0378 and f T̂ = 0.0672, respectively

the local data variability than the spatially uniformone. Indeed, performing simulations
using the SV-MPR (BST) implementation with the block-specific temperatures yields
a reconstruction which suffers much less from the averaging effect than the MPR
method, as demonstrated in Fig. 6b. Visually, the reconstruction is much closer to
the original data than that of the original MPR algorithm, especially in the (dark)
regions with low spatial variability. For comparison, the inset shows the SV-MPR
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Fig. 6 a Distribution of block-specific temperatures and bmap of reconstructed data using the BST imple-
mentation of the SV-MPRmethod for lb = 32. The red ellipse encloses an example of the edge-like artifact,
and the square encloses the same as in Fig. 5f

predictions in the same area as for the MPR method in the inset of Fig. 5f, for which
Ẑ(rp) ∈ [0, 20].

On the other hand, undesirable artifacts resulting from the presence of boundaries
between blocks with different parameters appear (see, e.g., the area marked by the
red ellipse in Fig. 6b). Such unnatural edge-like effects are likely to emerge between
blocks which include sample data with distinct degrees of variability. It is noted that
the edges are partially smeared because the spins at the shared boundaries of the
neighboring blocks interact with each other and thus propagate fluctuations from their
blocks to the surrounding blocks. Nevertheless, such a diffusion has a local character
with a rather limited range and cannot eliminate the edge-like effects completely.

To further eliminate these undesirable artifacts, two approaches were tried. The
first one consists of gradually decreasing the linear block size lb from 32 to 16 and to
8. The block temperatures (left column) and the corresponding data reconstructions
(right column) are shown in Fig. 7 for lb = 16 (top row) and lb = 8 (bottom row).
Decreasing the block size leads to the partial elimination of the conspicuous edges
between blocks and also allows greater flexibility in capturing the local variability.
On the other hand, the decreasing block size also reduces the number of neighboring
sample pairs (bonds) available for the calculation of the block-specific sample energies
and thus inhibits a reliable estimation of the block-specific temperatures. In particular
for very sparse samples with high values of p, this may cause insufficient statistics for
a reliable estimation of the block-specific temperatures. This leads to the second type
of artifacts in the form of misestimation of the data variability due to the erroneous
parameter estimation (see, e.g., the bright square in the lower right corner of Fig. 7d
showing unexpectedly large variability including extremely large values due to the
overestimation of T̂ ). Nevertheless, these results also demonstrate that decreasing
granularity of the blocks results in a smoother spatial variation of the parameter and
suppresses the block boundary effects considerably.
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Fig. 7 Distributions of block-specific temperatures (left column) and the corresponding data reconstructions
(right column) using the SV-MPR (BST) implementation for lb = 16 (upper row) and lb = 8 (bottom row).
The red ellipses highlight the area of the misestimated parameter (c) and consequent data variability (d)
due to the lack of samples

3.3.3 SV-MPRMethod-SST Implementation

The second implementation of the SV-MPR model attempts to eliminate the artifacts
associated with the BST approach by applying a smoothing algorithm to the block-
specific temperatures to obtain a smooth variation of the temperature values over the
entire grid. Consequently, each site is assigned an individual value of the reduced
temperature, and thus this implementation will be referred to as the SV-MPR method
with site-specific temperatures (SST). The block-specific temperatures for Walker
Lake data with lb = 32 (see Fig. 6a) after smoothing are shown in Fig. 8a. Using
these local temperatures in the conditional simulations, the data reconstruction for
the Walker Lake data is obtained, shown in Fig. 8b. Note that the unnatural boundary
effects from the BST implementation are now completely eliminated, while the spatial
variability in different regions is reproduced much better than in the original MPR
method (compare to Fig. 5f). In principle, in this SV-MPR (SST) implementation,
both the standard single and the double-checkerboard decomposition can be used, but
for simplicity, the former was chosen. Applying the SV-MPR approach in Fig. 9, the
results of the reconstruction of the Kaibab Plateau and Wasatch Front data sets after
randomly removing p = 85% of pixels are visually presented.
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Fig. 8 a Temperature map after applying the smoothing algorithm with ns = 5 to block temperatures with
lb = 32. bWalker Lake data reconstruction for p = 0.85 by using the single-checkerboard implementation
with site-specific temperatures (SST)

Fig. 9 a, c Samples of the Kaibab Plateau and Wasatch Front, obtained by removing p = 85% of pixels,
and b, d their reconstructions obtained by the SV-MPR SST method
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Fig. 10 Evolution of the specific
energy during equilibration
process in the respective
MPR-based methods for the
Wasatch Front data with
p = 0.3 averaged over 100
realizations. es represents the
average of the sample energy

It can be noted that in both theBSTand the SST implementations, due to the splitting
of the simulations on a large grid into several parallel simulations in much smaller
blocks (including at most hundreds of sites), the equilibration is even faster than in the
originalMPRmethod. To demonstrate the impact of the domain spitting used in the SV-
MPRmethods, in Fig. 10 the equilibration process in the largestWasatch Front data set
with p = 0.3 is illustrated. In particular, it shows the evolution of the specific energy
e, calculated for the whole grid, in the respective MPR-based methods, averaged over
100 realizations. One can observe that even though a random initialization in theMPR
method results in the initial value of e far from the equilibrium value, the relaxation
process is relatively fast even for such a large data set, requiring only about 30 MC
sweeps. Nevertheless, the SV-MPR BST and SST implementations can shorten it
even more due to the initialization by the per-block averages, corresponding to the
specific energies much closer to equilibrium values. It is also interesting to compare
the equilibrium energy values eeq resulting from different approaches among each
other as well as with the sample-estimated value es (see Eq. (4)). One can see that
while the MPR method gives eeq close to es , the BST and SST implementations give
the values of eeq respectively higher and lower than es . The increased BST value can
be explained by the presence of boundaries between different blocks, which create
unnatural domain walls and thus increase the total energy. On the other hand, the
smoothing of the temperatures in the SST implementation leads to partial elimination
of the domain walls, not only those unnaturally created by the BST approach but also
those substantiated by the data.

3.4 Statistical Validation

The results for theWalker Lake data set obtained by the standardMPRmethod and the
SV-MPRBSTandSST implementations are shown inTable 2 in terms of the prediction
errors and computational times for different degrees of sample sparsity. As expected,
both MAAE and MRASE errors increase with higher ratios of the missing data p for
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Table 2 Validation measures for the three implementations of the MPR-based prediction algorithm for
various missing data ratios p applied to the Walker Lake pollution data set

MPR SV-MPR (BST) SV-MPR (SST)

p MAAE MRASE t (ms) MAAE MRASE t (ms) MAAE MRASE t (ms)

0.1 177 352 7.3 163 331 6.2 167 333 6.4

0.2 180 359 7.5 165 336 6.3 168 336 6.9

0.3 186 367 7.5 168 340 6.5 169 338 6.6

0.4 190 378 7.8 171 347 5.3 172 342 6.3

0.5 196 391 7.6 176 355 5.3 175 348 5.7

0.6 203 405 7.5 181 364 5.2 180 354 5.4

0.7 212 423 7.5 189 376 5.2 188 363 5.3

0.8 221 443 8.0 202 390 5.3 204 378 5.3

0.85 225 451 7.5 217 401 5.3 221 392 5.4

All implementations use single precision (FP32) arithmetic with hardware intrinsic CUDA functions, lb =
32 and for the SST implementation ns = 5

all implementations. Nevertheless, it is clear that implementing a spatial dependence
in the simulation temperature has a significant positive effect on the prediction accu-
racy. Compared to the MPR approach with a single global temperature, the values of
both MAAE and MRASE in the SV-MPR implementations are considerably smaller
for all p. The relative improvements achieved by the present implementations are
demonstrated in Fig. 11, in which error ratios of the respective methods are presented
as a function of the data thinning. Not surprisingly, the benefits of the parameter spatial
variability increase with the increase in the sample sparseness, that is, the decrease in
the amount of the local conditioning data. The relativeMAE (MRASE) errors decrease
up to p ≈ 0.7 (p ≈ 0.8), where the SV-MPR accuracy outperforms that of the MPR
by up to 11% (15%), and then they start increasing. Their increase for very large p
is related to the above-discussed artifacts of the second kind—misestimation of the
local (block-specific) parameters due to insufficient statistics within the respective
blocks. By comparing the BST and SST implementations of the SV-MPR approach,
the former appears to be more accurate for smaller p, while the benefits of the latter
appear more at intermediate and larger p.

As already demonstrated by Žukovič et al. (2020), the GPU implementation of the
MPR model resulted in a computationally very efficient prediction method. In the
Walker Lake data set, the MPR prediction of an arbitrarily large portion of missing
data takes no more than 8 ms, with no apparent dependence on p. Both the BST
and SST implementations of the SV-MPR algorithm, besides the above-demonstrated
increase of the prediction accuracy, also further decrease the computational burden
with the computational time compressed to 5–7 ms. The computational complexity of
the SV-MPR algorithm will be discussed in more detail below.

The results for the remaining (much larger) data sets are summarized in Table 3 for
themissing data ratio p = 0.85. The expected degree of improvement in the prediction
performance resulting from the introduction of spatial dependence in the parameter
can be judged from the nature of the data under consideration. The Walker Lake data
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Fig. 11 Errors of the SV-MPR
implementations (BST and
SST), errSV−MPR, relative to
those obtained from the simple
MPR method, errMPR, as
functions of the data thinning p,
for the Walker Lake data set

Table 3 Validation measures for the three implementations of the MPR-based prediction algorithm for the
Kaibab Plateau and Wasatch Front data sets with missing data ratio p = 0.85

MPR SV-MPR (BST) SV-MPR (SST)

Data set MAAE MRASE t (s) MAAE MRASE t (s) MAAE MRASE t (s)

Kaibab Plateau 5.00 7.05 0.175 4.81 6.53 0.161 4.98 6.68 0.193

Wasatch Front 26.14 35.60 2.64 23.36 32.58 2.44 24.22 33.37 3.02

The implementations use single precision (FP32) arithmetic with hardware intrinsic CUDA functions. The
linear sizes of these data sets are L = 2, 048 for the Kaibab Plateau and L = 8, 192 for the Wasatch Front
data sets

set with the extensive areas corresponding to (almost) constant values is an example of
the spatial distribution that can greatly benefit from spatially variable parameters. To
a certain extent similar features, with some larger areas of constant values, can also be
observed in the remaining data sets. Therefore, the SV-MPR implementations can also
be expected to deliver better prediction performance than the MPR method. Indeed,
the SV-MPR implementations reduce the MPR MAAE errors by 4–11% (BST) and
0.4−7.4% (SST) and the MRASE errors by 7.4−8.5% (BST) and 5.3−6.3% (SST).

As for the computational efficiency, some comments are in order. Compared to the
original MPR approach, one can observe overall only a small reduction of t (if any)
achieved by the BST implementation, and even some increase by applying the SST
implementation. Thismight appear as a contradictionwith the above results forWalker
Lake data presented in Table 2, but it has a simple explanation. The total execution time
largely depends on the speed of the convergence to equilibrium, as the rest is dictated
only by the number of samples needed for averaging and is almost independent of
the chosen method. However, as explained above and demonstrated in Fig. 10, the
SV-MPR implementations are indeed either faster in reaching the equilibrium state
(BST) ormore efficient in finding states with energy levels lower than those achievable
by the MPR method (SST). The reason that the shorter BST equilibration time is not
more apparently reflected in the values of t is that, for simplicity, the same (default)
values of the parameter nfit = 20, which defines the memory length of the energy
time series employed in testing the onset of equilibrium, and the parameter n f = 5,
which defines the frequency of verification of equilibrium conditions, are used in all
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Fig. 12 a Errors of the SV-MPR method, errSV−MPR, relative to those obtained from the simple MPR
method, errMPR, as functions of a the block size lb in the BST implementation and b the smoothing
parameter ns in the SST implementation

the methods. (For a detailed description of n f it and n f , see also the paper by Žukovič
et al. (2020).) Thus, in all the approaches used, the first check of the equilibrium
conditions is only performed after the first nfit + n f = 25 MC sweeps, even though
in some cases the equilibrium is reached much faster. For example, from Fig. 10
one can see that the equilibrium conditions of the BST implementation are already
reached at about 20 MC sweeps even for data as large as that for Wasatch Front. On
the other hand, the SST implementation requires more (about 25) MC sweeps but
it reaches lower energy levels. Additional contribution, which further increases the
total SST execution time, comes from the temperature smoothing procedure. Thus,
the execution time of the SV-MPR implementations can in principle be shortened by
resetting the concerned parameters. However, considering the superior efficiency of all
theMPR-basedmethods compared to some other approaches (e.g., see the comparison
with IDW in Fig. 15), at present it is not considered essential.

3.5 Effect of SV-MPR Parameters

In the above study, the SV-MPR methods were used with the fixed block size lb = 32,
and in the SST implementation the fixed smoothing parameter ns = 5. In the following,
the effects of these parameters are demonstrated on the prediction performance of the
respectivemethods. The latter is demonstrated in Fig. 12, inwhich the prediction errors
of the SV-MPR method, errSV−MPR, are presented relative to those obtained from the
simple MPR method, errMPR, for two cases of a relatively small (p = 0.3) and large
(p = 0.8) degree of thinning. In Fig. 12a they are shown for the BST implementation
considering different block sizes lb, and in Fig. 12b for the SST implementation with
the fixed lb = 32 and a varying parameter ns .

As one can see from Fig. 12a, the above-used block size lb = 32may not be optimal
in terms of minimizing prediction errors. As discussed in the previous section, its
decrease allows greater flexibility in capturing the local variability, which may result
in an improvement in the prediction performance. On the other hand, smaller values
of lb in combination with larger values of p suffer from a lack of sampling points
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within the blocks, which may lead to the block-specific parameter misestimation and
consequently deterioration of prediction accuracy.

Figure 12b shows that the smoothing parameter ns not only suppresses the edge-
like visual artifacts, but its choice can also affect the prediction performance of the
SST implementation. In particular, the gradual smoothing tends to increase MAAE
and decrease (to a smaller extent) MRASE, and its effect is more pronounced in data
with greater sparsity. Therefore, relatively small values of the smoothing parameter,
such as ns ≈ 5, which to some degree suppress the visual artifacts but still do not
excessively increase MAAE, may be considered an acceptable compromise. In any
case, compared to the standardMPRmethod, the SST implementation of the SV-MPR
method appears to deliver superior prediction performance for arbitrary choice of the
parameter ns .

3.6 Performance for Large Data Sets

To demonstrate the prediction and computational performance of the proposed meth-
ods on large data sets, the largest tested Wasatch Front data were selected, and
experiments with the density of samples on the grid as well as the grid size were car-
ried out. More specifically, the complete data set on the grid of linear size L = 8, 192
(consisting of L2 = 67, 108, 864 data points) was consideredwith gradually randomly
removed p = 10-85% (or p = 0.1 − 0.85) of points to be predicted based on the
remaining N = (1 − p)L2 sampling points. To perform configurational averaging,
100 random realizations were generated for each value of p. In Fig. 13a, the evolution
of the MAAE and MRASE errors are presented with the increasing N (or decreasing
p) for all three MPR-based methods. One can observe that for this data set, in terms
of predictive accuracy, the SV-MPR methods outperform the MPR method within a
wide range of sampling densities, except for the cases with rather sparse distribution
of the missing data, that is, for p � 0.2. In particular, the BST implementation gives
the smallest errors for p � 0.2; however, its performance seems to deteriorate at
higher sampling densities. This might be because the high density of samples pro-
vides sufficiently robust local constraints, and the global constraints in the form of
the block-specific simulation temperatures are not as beneficial as in the cases with
sparser sample distribution. On the other hand, the artificially created block edges
increase the overall errors. It can be noted that such tendency was also observed in the
Walker Lake data set, shown in Fig. 11 (except the region of very sparse samples with
p � 0.8), although the SV-MPR methods still outperformed the MPR approach even
for very small p.

The corresponding execution times are presented in Fig. 13b. The dependence on
the number of samples appears not so straightforward, but it can be described and
interpreted as follows. As was already observed in the MPRmethod and as one would
intuitively expect, the execution time increased slightly with the increasing number
of prediction points, that is, with the increasing p (see, e.g., Fig.3 in Žukovič et al.
(2020)). However, at very large p � 0.8 it suddenly dropped and remained almost
constant with a further increase of p. This occurred due to a decrease in the number of
MC sweeps needed to bring the system to equilibrium, which significantly determines

123



596 Mathematical Geosciences (2024) 56:573–603

the overall execution time, to its minimum value set to n f it + n f = 25 MC sweeps
(see the above discussion at the end of Sect. 3.4). The relaxation at large p is greatly
accelerated by the uniform initialization of the spins at the prediction locations by the
sample mean value. (The MPR method does not seem to be sensitive to the choice of
the initial state; nevertheless, opting for more thoughtful choices than a random state
can speed up the relaxation process.) A similar phenomenon can also be observed
in the remaining SV-MPR methods, but due to the initialization by the sample mean
values within each block, the conditions for the fastest relaxation corresponding to
25 MC sweeps are fulfilled even at much smaller values of p (see also discussion in
Sect. 3.4).

Finally, for the selected value of p = 0.85, the data sets with gradually increasing
L (from 32 up to 8, 192) are generated by cutting out squares of size L × L from
the center of the original Wasatch Front data set. Thus, in this experiment the ratio of
the number of the sampling and the prediction points remains the same in each data
set, but the number of both increases with L . Here, the scalability of the proposed
methods is of interest. Figure13c shows that in all three methods, the execution time
displays at most a linear (sublinear for smaller grids) increase with the grid size. All
data represent mean values based on 100 realizations of the sampling distributions.

3.7 Comparison with Established IDWApproach

The prediction performance and computational efficiency of the originalMPRmethod
have been compared with several established interpolation methods (Žukovič and
Hristopulos 2018). Among them, the inverse distance weighted (IDW) (Shepard 1968)
and the ordinary kriging (OK) Wackernagel (2003) were the methods that yielded
prediction performance comparable to the MPR approach. However, the high compu-
tational complexity of OK prevents it from being applied to huge data sets. Therefore,
for comparison of the present GPU-implemented MPR-based methods, the GPU-
implemented IDWmethod (Marcellino et al. 2017) was chosen using the CUDA code
available at GitHub (Ruggieri and Marcellino 2017) and described in Algorithm 3.

The implementation of IDW involves choosing twoparameters,which can influence
both the prediction performance and computational efficiency. They both determine
how much weight one wants to assign to more distant sampling points. In particular,
the power parameter α controls the influence of sample data on the interpolated values
depending on their distance from the output point, and by setting the search radius R,
one can limit the number of points used for interpolation. Giving more (less) influence
to distant points generally results in a smoother (rougher) interpolated surface. In
principle, the significance of more distant points increases with the increasing spatial
correlation range, and in such cases it makes sense to choose larger R to involve those
points in the prediction. The problem is that one usually does not know the spatial
correlation structure of the data. Thus, one often opts for default values offered by
different software (typically α = 2 and R is left unrestricted), which may result in an
increase in prediction errors as well as computational time. Optimal values of these
parameters can be considered that minimize error function, for example, the mean
absolute error. However, this would involve considerable extra computational effort.
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Fig. 13 a MAAE and MRASE errors and b the execution time of the MPR-based methods as functions
of the number of sampling points N = (1 − p)L2, for the Wasatch Front data. In c the execution time is
presented as a function of the increasing linear grid size L for p = 0.85 and the dashed line, as the guide
to the eye, shows the linear dependence on the number of grid nodes L2

In the present analysis, the power parameter α was set to a default value of 2, and
the search radius R was varied from the minimum for which every prediction point
has some sample points within the radius up to the maximum involving practically all
points on the grid. It is noted that even after fixing α, an optimal choice of R is not so
obvious. It can be set to some fixed value equal for all points, which can result in the
problem of some prediction points not having any samples in the search radius, or it
can be made variable, which would make the IDW implementation more involved.

In Fig. 14, errors of theMPR (indicated in blue) and SV-MPRBST (in red)methods,
relative to those obtained from the IDWmethod, errMPR/errIDW and errBST/errIDW,
are presented as functions of the search radius R, for (a) Walker Lake and (b) Wasatch
Front data sets. Therefore, the values larger than 1 indicate superior performance of
IDW. One can see that IDW shows the best prediction performance for the smallest
search radius (the optimal value might be close to R = 5 grid units), where it outper-
forms both MPR and SV-MPR BST methods. However, with the increase in R, the
IDW errors increase, and in most cases (except MAAE error for Walker Lake data),
starting from some value of R, both MPR-based methods become superior. Owing to
the improved prediction performance of the present SV-MPR BST implementation,
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Algorithm 3GPU implemented IDW algorithm (Marcellino et al. 2017). Each thread
interpolates a different value computing the weight for each known value and updating
the weighted mean at the same time. Block threads are synchronized to store data set
points in sharedmemory before the interpolation phase. For data sets that are too large,
the points are stored in shared memory in different chunks
Require: known locations p(i), known values z(i), query locations q( j), power parameter α, search radius
R, weights defined by Euclidean distance λ, number t id to uniquely identify each thread, the number of
data set points which each thread in a block loads into shared memory stride, subscript c to indicate a
location or value belonging to the cth chunk.

Ensure: unknown values z∗(i)
1: initialize α and R
2: loc_q ← q(tid)

for each chunk c do
3: i ← 0
4: start_ind ← tid ∗ stride
while (i < stride) and (i + start_ind) < si ze(c) do

5: put pc(start_ind + i) into shared memory
6: i ← i + 1

end while
7: synchronize threads
for i = 1, . . . , si ze(c) do

8: loc_p ← pc(i) from shared memory
9: d ← dist(loc_p, loc_q)

if d �= 0 then
if di j < R then

10: λ ← d−α; z∗(t id) ← z∗(tid) + λzc(i); wsum ← wsum + λ

end if
else

11: z∗(tid) ← zc(i); wsum ← 1
12: break and skip this cycle for the next chunks

end if
end for
13: synchronize threads

end for
14: put z∗(tid)/wsum into global memory

the latter outperforms IDW starting from much smaller R than the standard MPR
method. Even for the optimal IDW performance at small R, the errors of the SV-MPR
BST method do not exceed those from IDW by more than 5–7%. Thus, IDW would
outperform the present methods if the parameters were set sufficiently close to the
optimal values. However, this would require either a priori knowledge of the spatial
correlation structure of the data or some time-consuming cross-validation analysis,
while the MPR methods need no such information or extra analysis.

On the other hand, the computational efficiency of the MPR-based methods clearly
dominates over the IDW performance, regardless of the parameters. Due to the favor-
able scaling properties of the MPR method (computational time scales approximately
linearlywith system size), its dominance over IDW further increases with the data size.
As presented in Fig. 15, the ratio of theGPU execution times of theMPR-based to IDW
methods is of the order of 10−3 for the relatively smallWalker Lake data set (L = 256)
and of the order of 10−5 for the much larger Kaibab Plateau data set (L = 2, 048).
It is noted that for data as massive as those for Wasatch Front (L = 8, 192), the
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Fig. 14 MAAE (open circles) and MRASE (filled squares) errors of the MPR (blue) and SV-MPR BST
(red) methods, relative to those obtained from the IDW method, as functions of the search radius, R, for a
Walker Lake and b Wasatch Front data sets

Fig. 15 GPU time of the MPR (blue color) and SV-MPR BST (red) methods, relative to those required by
the IDW method, as functions of the IDW search radius R, for a the Walker Lake and b Kaibab Plateau
data sets

IDW calculations could not be executed on a standard GPU-equipped PC within some
reasonable time at all. (The calculations were terminated after about 2 weeks of run-
ning, and the errors presented in Fig. 14b were obtained by executing the code on
the supercomputer Govorun at the Joint Institute for Nuclear Research in Dubna.)
The curves presented in Fig. 15 also show that the relative computational efficiency
of the MPR-based methods, as expected, increases with the search radius R due to
the decreasing efficiency of IDW. Furthermore, by comparing the results for the two
MPR-based approaches one can see that the SV-MPR BSTmethod is somewhat faster
than the original MPR approach, again in line with the expectations discussed above.
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4 Conclusions

In the current study, a rather general approach to modeling spatial heterogeneity,
a feature often present in massive spatial data, was proposed in GPU-implemented
spatial prediction methods for gridded data. In particular, two approaches to intro-
ducing spatial dependence to the model parameter (temperature) were presented by
the so-called double-checkerboard (DC) decomposition to the previously introduced
GPU-acceleratedMPRmethod, and thus two SV-MPRmethods with spatially varying
temperatures were obtained. In the BST variation, separate values of the temperature
are obtained for each block of the DC-decomposed grid, and in the SST variation,
even each individual prediction point is modeled using its own temperature. Then,
similar to the MPR method, predictions of unknown values are obtained from con-
ditional simulations. However, in the present methods, the conditional situations are
non-equilibrium but assume “local” equilibrium conditions corresponding to the local
temperatures.

Using various types of large heterogeneous real data, such as remote sensing
images, it has been demonstrated that the proposed SV-MPR methods significantly
improve prediction performance and even computational efficiency of the original
MPR method. Their prediction performance is competitive with some established
prediction methods, such as IDW, but their execution times are by several orders of
magnitude faster. It is noted that the presented approach to modeling spatial hetero-
geneity was demonstrated on the MPR method but in fact it is rather general and
its application to other GPU-implemented methods is rather straightforward. One can
consider various extensions of the presented models to further increase their flexibility
and ability to capture various relevant features present in real data, such as geomet-
ric anisotropy or non-Gaussianity. It is noted that the MPR method was shown to be
able to model non-Gaussianity to a certain extent; nevertheless, the model is still very
simple, with only one parameter, and non-Gaussian spatial data can follow various
types of distributions. Therefore, such extensionsmay involve the introduction ofmore
parameters in addition to the temperature, while still keeping their local nature (within
blocks) and spatial variability. For example, geometric anisotropy could be introduced
by distinguishing the exchange interactions in different directions, namely, by intro-
ducing a directional exchange interaction anisotropy parameter. The non-Gaussianity
could be incorporated by including higher-order interactions and/or applying some
suitable form of an external “magnetic” (bias) field to the Hamiltonian. Another possi-
bility to consider is the inclusion of further-neighbor pairwise interactions that would,
for example, control data smoothness. Tests on such a CPU-implemented general-
ized MPR model suggested that for some types of data, significant benefits can be
obtained (Žukovič and Hristopulos 2023). The impressive computational efficiency of
themodels offers the possibility to extend them to three dimensions (three-dimensional
space or two-dimensional space + time), where there is still a lack of efficient methods
that would enable modeling of massive data (Wang et al. 2012). The generalization
of the GPU code from two to three dimensions is straightforward. The GPU time in
three dimensions is expected to increase by a factor of 3/2, but the relative efficiency
of the CPU and GPU implementations should be preserved (Weigel 2012).
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