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Abstract
With the emergence of the coronavirus disease 2019 (COVID-19) pandemic in Portu-
gal, a geostatistical tool was developed to model the spatial distribution of COVID-19
risk to support decision-making and policymakers. Based on a block direct sequential
simulation algorithm, themodel provides detailed disease risk estimates and associated
spatial uncertainty. However, uncertainty is difficult to visualize with the estimated
risk, and is usually overlooked as a tool to support decision-making. Ignoring uncer-
tainty can be misleading in evaluating risk, since the amount of uncertainty varies
throughout the spatial domain. The EpiGeostats R package was developed to solve
this problem, since it integrates the geostatistical model and visualization tools to
deliver a single map summarizing disease risk and spatial uncertainty. This paper
briefly describes the methodology and package functions implemented for interfacing
with the tools in question. The use of EpiGeostats is illustrated by applying it to real
data from COVID-19 incidence rates on mainland Portugal. EpiGeostats is a powerful
tool for supporting decision-making in the context of epidemics, since it combines a
well-established geostatistical model for disease risk mapping with simple and intu-
itive ways of visualizing results, which prevent fine-scale inference in regions with
high-risk uncertainty. The package may be used for similar problems such as mortality
risk, or applied to other fields such as ecology or environmental epidemiology.
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1 Introduction

Making decisions to mitigate the impact of the coronavirus disease 2019 (COVID-19)
pandemic is a highly difficult and complex task requiring policymakers to compile
and analyse relevant information in a timely and effective manner. Among the array of
information required, geographical distribution of disease plays a central role, since it
helps to understand the spatial clustering and transmission trends of ongoing COVID-
19 outbreaks (Ahasan and Hossain 2021).

A type of map frequently used for visualizing spatial distribution of COVID-19 risk
are choropleth maps, which use different colour and pattern combinations to represent
counts (or rates) of aggregated data by region or area (e.g. administrative boundaries).
At the national or local level, these types of maps helped health authorities to model
and predict the spread of COVID-19 disease (Giuliani et al. 2020), visualize the effects
of pandemic lockdowns (Carroll and Prentice 2021) and detect COVID-19 ‘hotspots’
(Guillette et al. 2020). At the same time, choropleth maps show constant risk per
region with sudden discontinuities at the region’s borders, disregarding that disease
risk varies continuously across spatial domains. For this reason, choropleth maps are
considered a relatively crude method of displaying disease data (Waller and Gotway
2004). Isopleth risk maps are an alternative way to visualize the spatial distribution of
a disease from aggregated data, since they provide a spatially continuous disease risk
over the spatial domain (Goovaerts 2005; Jaya and Folmer 2020).

Azevedo et al. (2020) proposed an isopleth COVID-19 risk map to inform and
support decision-makers in monitoring and evaluating spread dynamics on mainland
Portugal. The approach, based on geostatistical methods and stochastic simulation
algorithms, produces highly resolved disease maps and addresses the biased visual
perception produced with choropleth maps by imposing a spatially continuous vari-
ability with no sharp discontinuities at the boundaries of administrative regions. In
addition, the proposed approach accounts for the noise attached to risk estimated from
small population sizes and the spatial uncertainty associated with predicting risk at
unmonitored locations.

The model relies on the assumption that COVID-19 risk obtained from aggre-
gated data involves observations derived from an underlying latent, spatially varying
fine-spatial-resolution risk field, and a spatial covariance model inferred from coarse
administrative-level observed disease incidence data weighted by population size. It
is then incorporated into a flexible geostatistical simulation algorithm, block direct
sequential simulation (Rita et al. 2013) that considers the varying size and shape of
administrative regions to generate COVID-19 risk on a gridded surface from data
available only at areal level. In fact, the flexibility of this algorithm relies exactly on
the ability to deal with both point data (i.e. predicting disease risk at each grid node)
and areal data (i.e. disease rates observed in administrative regions) accommodating
the change in the size and shape of administrative regions across the spatial domain.
As any stochastic sequential simulation algorithm, each run (i.e. stochastic realization)
of the block direct sequential simulation produces a different map (see Fig. 1), since
the conditioning data at each location varies due to the random path used to simulate
each pixel sequentially (Deutsch and Journel 1992). Azevedo et al. (2020) present in
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Fig. 1 Two stochastic realizations obtained with block direct sequential simulation illustrate the variability
generated by the algorithm. Any of these maps captures the major patterns of spatial covariance and other
statistical parameters (e.g. the mean or variance) estimated from observed data

detail the description of the block direct sequential algorithm and its application to
model the spatial incidence risk for COVID-19 on mainland Portugal.

As a result, two critical maps for pandemic response can be drawn from the set
of simulations (Fig. 2): one presenting the median COVID-19 incidence risk, derived
from the point-wise median computed from the set of simulations, from which it is
possible to identify areas where high disease risk is expected; and the other with the
associated spatial uncertainty as revealed by the point-wise variance or interquartile
range computed from the same set of simulations.

Presenting the pair of maps side by side (as shown in Fig. 2) provides policymakers
with critical data to identify areas of high/low risk with high spatial uncertainty and
areas of high/low risk with low spatial uncertainty. However, in practice, the two
are rarely combined, because uncertainty maps are usually relegated as a matter of
secondary importance or are simply ignored due to the difficulty of visual comparison
across multiple maps (Taylor et al. 2020).

To overcome this problem, Taylor et al. (2020) proposed pixelation to simulta-
neously visualize disease risk and uncertainty in a single map, and illustrated the
methodology to map 2017 Plasmodium falciparum incidence in central Africa as
proof of concept. The proposed solution provides disease risk maps with varying
pixel size so that areas of high average uncertainty have large pixels, while areas with
low average uncertainty have small pixels. This visualization approach is a valuable
tool to rapidly identify high risk in areas with high spatial uncertainty and high risk
in areas with low spatial uncertainty. Currently, an R package performing pixelation
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Fig. 2 Maps illustrating the median COVID-19 risk on mainland Portugal on 15 January 2021 (left); and
the interquartile distance (right) computed from a set of 100 simulations using the algorithm proposed by
Azevedo et al. (2020)

computations for map visualization is available online (https://github.com/artaylor85/
pixelate).

While the block direct sequential simulation algorithm is implemented as a stand-
alone software tool distributed free of charge, it is not open source, and it can be
cumbersome to use. Therefore, software solutions combining disease risk mapping
based on themodelling approach proposed byAzevedo et al. (2020)with the pixelation
approach to visualize disease risk and associated uncertainty in a single map are
not available, and require a considerable programming effort that is prone to human
error. To bridge this gap, we developed the EpiGeostats R package for the rapid
computation and visualization of disease risk and uncertainty in a single map, based
on the geostatistical disease modelling approach proposed by Azevedo et al. (2020)
and the visualization solution proposed by Taylor et al. (2020).

The target audiences of the EpiGeostats package are policymakers and researchers
interested in disease risk mapping, modelling and communication. The EpiGeostats
package is flexible, given that users may understand, modify or develop the code
for their own work, and can be adapted to other transmissible diseases and similar
problems such as mortality risk, or applied to other fields such as ecology, criminology
or environmental epidemiology.
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2 Implementation

The EpiGeostats package was developed with R software (R Core Team 2021), which
is a free, open-source environment for statistical and scientific computing. The pack-
age runs inWindows and is freely available to users from the GitHub platform (https://
github.com/maluicr/EpiGeostats). To use EpiGeostats, dss.c.64.exe software (https://
github.com/maluicr/dss) must be downloaded to perform the block direct sequen-
tial simulation algorithm and to install the pixelate R package (https://github.com/
aimeertaylor/pixelate) to enhance visualization of disease risk map results. To prop-
erly execute all of these steps, the annotated R code is available online at the GitHub
repository (https://github.com/maluicr/EpiGeostats) in the readme.md file (in the root
directory of the repository).

Throughout this section, the tools, methods, input data and functions available in
the package are described.

2.1 Stand-Alone Software dss.c.64.exe

The executable dss.c.64.exe is a free and open-source set of geostatistical simulation
methods for modelling natural and environmental phenomena. It was developed by
researchers at CERENA [Centro de Recursos Naturais e Ambiente] (https://cerena.pt/)
and is one of the few types of software that provides the block direct sequential simula-
tion algorithm.TheEpiGeostats packageprovides convenientwrappers to readdatasets
and write files in formats readable by dss.c.64.exe (Geo-EAS file format, Deutsch and
Journel 1992) and invokes dss.c.64.exe for running the block direct sequential simu-
lation algorithm.

To use dss.c.64.exe with EpiGeostats, the following steps are required: (1) create a
folder named ‘input’ in the working directory, and (2) download dss.c.64.exe to that
folder.

2.2 The Pixelate R Package

The package pixelate proposes an elegant solution to the problem of visualizing spa-
tial uncertainty in geostatistical maps. Specifically, it provides a single function to
compute a map of varying pixel size, where areas with a higher density of pixels
(i.e. with small pixel size) represent lower average uncertainty areas, and areas with a
lower density of pixels (i.e. large pixel size) indicate higher average uncertainty areas,
using a rationale analogous to highly versus lowly resolved satellite images (Taylor
et al. 2020). Moreover, the function calls other functions from the ggplot2 package
(Wickham 2016) to allow the visualization of elegant output maps.

2.3 Geostatistical Framework

Block sequential simulation, implemented in dss.c.64.exe software, was developed
to make predictions and quantify their spatial uncertainty in cases where combining
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spatial data with different spatial units (also known as spatial support) is required.
Among geostatisticians, this is known as a ‘change-of-support problem’, and has been
described extensively in the literature (e.g. Emery 2009; Goovaerts 2005; Journel and
Huijbregts 1978; Kyriakidis 2004; Meng et al. 2019; Young et al. 2009; Young and
Gotway 2010; Zaytsev et al. 2016).

The EpiGeostats package focuses on the specific case of disease mapping as pre-
sented by Azevedo et al. (2020), where the goal is to provide a tool predicting disease
risk with high resolution in a spatially continuous domain (here, the spatial support
is point data) from data only available at an areal level with varying spatial sizes and
shapes (i.e. the spatial support is block data). Within this framework, point data are
represented by a rectangular grid of nodes with regular spacing partitioned into a finite
number of regions (i.e. municipalities), and block data refer tomeasurements observed
in those regions (i.e. aggregated number of disease cases per unit of time, assigned
to each municipality). The block direct sequential simulation algorithm provides the
means to generate stochastic realizations (or simulated maps) with high resolution,
reproducing disease incidence fluctuations observed in block data with similar statis-
tical properties (i.e. empirical histogram and spatial covariance) (Gómez-Hernández
and Srivastava 2021). The uncertainty of incidence rates derived from small popula-
tion sizes (a problem commonly known as the ‘small number problem’) is accounted
for using Poisson kriging (Goovaerts 2005, 2008).

In a nutshell, the block direct sequential simulation algorithm proceeds as follows:

1. It randomly defines a path over the entire spatial domain, passing through all ui
grid nodes to be simulated (i = 1, . . . , N ).

2. For node ui , it searches the conditioning data (neighbour point data, previously
simulated values and block data).

3. It uses the conditioning data to derive local covariance values: block-to-block,
block-to-point, point-to-block and point-to-point.

4. It builds and solves the block kriging system and obtains the local mean and
variance estimates at node ui .

5. It draws a simulated value from the global probability distribution function centred
on the local mean and delimited by the local variance obtained in step 4.

6. It adds the simulated value to the dataset and repeats steps 2 to 5 for ui+1 until all
grid nodes have been simulated for one geostatistical realization.

A set of realizations is obtained after repeating steps 1 to 6 until a given predefined
number of realizations are generated, representing a set of ‘images’ with a continuous
spatial surface reproducing (on average) the statistical properties of observed block
data as revealed by the spatial covariance and the empirical histogram. Two key maps
may be drawn from the set of simulations: a point-wise median map of the variable
of interest and the attached spatial uncertainty, which is quantified by the point-wise
interquartile range (IQR).

In the EpiGeostats package, the covariance of the disease risk, or equivalently
its semi-variogram, is required to derive the kriging weights and kriging variance
referred in step 4 of the algorithm. It is worth noting that the function implemented in
EpiGeostats to fit the semi-variogram is population-weighted, as presented inAzevedo
et al. (2020), consequently mitigating the impacts of having regions with varying
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population sizes in disease risk uncertainty (Goovaerts 2006; Young and Gotway
2010).

2.4 Tool Development

The EpiGeostats package requires two input data files, where one contains geographic
information about the partition of the spatial domain into regions (e.g. municipalities
or counties), and the other contains data on the aggregated number of disease cases
observed in each region. Then, using EpiGeostats function calls, users must set param-
eters required for geostatistical simulations and write the input files in readable format
for dss.c.64.exe, after which the block direct sequential simulation algorithm can be
executed. The results include a set of simulated disease risk maps, a median disease
risk map, a spatial risk uncertainty map and a pixelated map representing both disease
risk and spatial risk uncertainty in a single map, which can then be extracted and/or
plotted in R. Figure 3 represents a schematic overview of the EpiGeostats R package.

The package is accompanied by detailed documentation (see Sect. 2.5) and exam-
ples for easy replication.

2.4.1 Input Data

The input required for the EpiGeostats R package is comprised of two data frames:
(i) block data, a data frame with an aggregated number of incidence cases per area
or subregion, and (ii) point data, a data frame representing a regular grid dataset with
id subregion values at each grid node. The data frame structure should follow these
specifications:

(i) Block data are a data frame with geographic coordinates x, y, region id, number
of disease cases and size of population (i.e. population at risk). A z-coordinate
column filled in with a constant integer (e.g. 1) should also be included, only to
match the file structure required for dss.c.64.exe. No blank values are allowed.

(ii) Point data refer to a rectangular grid of nodes with regular spacing covering the
entire aerial extent to be modelled. The data frame needs to include region id
values at all simulation x, y coordinates (i.e. grid nodes). All regions represented
in disease (block) data should be represented by one or more grid nodes in point
data.

2.4.2 Functions

The EpiGeostats package includes nine functions that are briefly summarized in Table
1. Additional details about the functions can be found in the package vignette or by
accessing their documentation pages with the help() function (or ? operator) inside
the R session.
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Fig. 3 Schematic overview of the
features of the EpiGeostats
package. The red box represents
the input data; the green box
represents output results that can
be plotted; the blue boxes
represent results extracted with
EpiGeostats functions,
represented by grey boxes; and
the arrow lines represent
relations between features

The collection of files read and created by dss.c.64.exe follows the filename con-
vention [YYYYMMDD]_[dataset].[*], where [YYYYMMDD] is the date specified
in argument ‘day’ of irates(), [dataset] refers to the object printed to the file and [*]
refers to the filename extension.

As an example, consider the COVID-19 incidence on mainland Portugal on 15
January 2021 (see example in Sect. 3). Table 2 presents the names of the files generated
in this example with EpiGeostats functions.

All files are written and stored in the ‘input’ folder.
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Table 1 Brief description of R functions implemented in the EpiGeostats package

Function Description

irates() Reads block data frame, computes disease rates and writes a file with results in a
format readable by dss.c.64.exe software

grdfile() Reads gridded data—a SpatialPixelDataFrame()—and writes a file in a format
readable by dss.c.64.exe

maskfile() Reads the output of grdfile() and writes a file with mask data in a format readable by
dss.c.64.exe software

ssdpars() Writes the parameters file and invokes dss.c.64.exe to run block direct sequential
simulation. Generates simulated maps in native file format

varexp() Computes population-weighted experimental semi-variograms from irates() output.
For now, only the omnidirectional case is implemented

varmodel() Fits (manually) a theoretical semi-variogram. For now, only spherical and exponential
models are available

outraster() Reads simulation files returned by ssdpars(), and returns a list with simulated maps,
median e-type and uncertainty maps. Writes grid files (.gri/.grd) with the results

spmap() Wraps functions from the ggplot2 package to plot more elegant simulation maps, a
median risk map or a spatial risk uncertainty map

pxmap() Wrapper function calling pixelate package to plot a disease risk map with a visual
representation of spatial risk uncertainty, as a function of pixel size

Table 2 Example of filenames created with the EpiGeostats package

Function call R object created Filename

irates() Incidence rates 20210115_rate.out

maskfile() Grid mask 20210115_mask.out

grdfile() Regular grid 20210115_grid.out

ssdpars() Parameters file 20210115_ssdr.par

ssdpars() Set of simulations 20210115_sim_89.out (e.g. simulation #89)

outraster() Median map 20210115_medn.gri (or. grd)

outraster() Uncertainty map 20210115_uncr.gri (or. grd)

2.5 Available Documentation

After the EpiGeostats package has been installed, a tutorial to demonstrate its func-
tionalities can be found in the package vignette. The vignette, which can be found by
typing help(package = ‘EpiGeostats’) in the console, provides information through
examples, with fully annotated code, on how to put together several functions in order
to obtain a specific result.

The vignette can also be used as a tutorial to show the role of each function and
may serve as a starting point for users to customize different setup choices. Technical
documentationwith details about the functions is available in the documentation pages
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accessible using the help() function or ? operator (e.g. ?irates) in the R console.
The details include a short description of the underlying function, the calling syntax,
function arguments, returned values and other outputs.

3 Results

As an example of application, we next show how the EpiGeostats package can perform
disease mapping of COVID-19 incidence on mainland Portugal on 15 January 2021.
The COVID-19 dataset ptdata and the regular grid ptgrid comes with the EpiGeostats
package. The coordinate reference system is ETRS89/Portugal TM06 (EPSG: 3763)
and coordinates are in metres.

3.1 Running irates(), varexp() and varmodel()

Computing incidence rates and fitting the semi-variogrammodel requires several man-
ual steps that can be achieved with little R code effort and simple syntax. In Fig. 4, the
R code uses the EpiGeostats functions irates() to compute COVID-19 incidence rates

Fig. 4 Example of workflow script for the calculations of incidence rates, estimation of semi-variogram and
the fit of theoretical semi-variogram
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Fig. 5 Transforming grid data into SpatialPixelsDataFrame and generating point and mask data files using
grdfile() and maskfile() functions

and varexp() and varmodel() to estimate the population’s weighted semi-variograms
and fit the theoretical semi-variogram model, respectively.

The function irates() also writes a file with incidence results in a format readable
by dss.c.64.exe software. The arguments for the variogram model—varmod()—are
set manually by the user in EpiGeostats. These can be obtained by a visual inspection
of the semi-variogram estimates. The plot of semi-variogram results (experimental
and/or theoretical) can be visualized using the generic R function plot(), as shown in
Fig. 4.

3.2 Running grdfile() andmaskfile()

These two functions are designed to convert point data into the native file structure
of dss.c.64.exe—grdfile()—and to generate a mask data file—maskfile(). The output
files are required by the executable to run block direct sequential simulation.

Running grdfile() requires a data object with spatial attributes that have spatial loca-
tions on a grid with regular spacing (point data) and a disease rates object (block data).
Users may create a SpatialPixelsDataFrame object using R package gstat (Pebesma
and Wesseling 1998) to form a grid with the specified requirements (Fig. 5). The
maskfile() function is applied to the object output of the function grdfile().

3.3 Running ssdpars() and outraster()

Users must call ssdpars() to run a block direct sequential simulation. This function
provides functionalities to write a parameters file to be read by dss.c.64.exe and a shell
command invoking the executable to compute block simulations. The parameters file
includes the required information to set search grid parameters, variogram model
parameters and kriging estimator specifications (Fig. 6). Upon execution, the output
data (stochastic simulations) are written to text files in native format (.out) and stored
inside the ‘input’ data directory.
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Fig. 6 In the R code example, the function ssdpars() runs the block direct sequential simulation algorithm
and generates 100 grid simulations. The function outraster() is specified to return the median e-type disease
risk map and the spatial risk uncertainty map in raster format

The function outraster() reads output files (grid simulations in .out file format)
and writes files in native raster file format (.grd and .gri). Depending on argument
specifications, outraster() may return, in raster format, all simulated maps and/or the
median e-type disease risk map and the spatial risk uncertainty map.

3.4 Running spmap() and pxmap()

The functions spmap() and pxmap() are used to plot stochastic simulations, themedian
disease risk map, the spatial risk uncertainty map and the single-map version (a pix-
elated version) combining disease risk with spatial uncertainty as a function of pixel
size (Fig. 7).

Assuming that the median disease risk and the spatial risk uncertainty maps are
extracted from simulations with the outraster() function (emaps argument must be set
to TRUE), they can be plotted using the spmap() call, a wrapper around ggplot() from
the package ggplot2 (Wickham 2016). The pixelated version combining both maps is
performed with the R package pixelate (Taylor et al. 2020) and can be plotted with
the pxmap() call.

3.5 Output Plots

Figure 8 shows fourmaps generatedwith the plotting function calls presented in Fig. 7.
The arguments specified by the pxmap() function to generate the pixelated map can

be modified to adjust map visualization to user preferences. Please refer to relevant
discussions on map visualization interpretations (Lucchesi and Wikle 2017; Taylor
et al. 2020).
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Fig. 7 The functions used to plot the maps require minimum user input of R code with a simple syntax.
The function spmap() calls ggplot2 functions to plot simulations, median risk and spatial uncertainty risk
maps, while pxmap() adds the function pixelate() to the call. Additional arguments are available for map
visualization and pixelation

4 Discussion

The EpiGeostats R package resulted from the need to develop a simple tool for rapid
computation and visualization of disease risk and spatial uncertainty in a single map,
based on the COVID-19 geostatistical modelling approach proposed by Azevedo et al.
(2020). To the best of our knowledge, no R implementation of block direct sequential
simulation applied to spatial epidemiology yet exists.

The new tool extends the scope of models available in R to map disease risk and
support decision-making in the context of epidemics. First of all, the model imple-
mented not only addresses the need of discrete Poisson distribution to map disease
counts (or rates) associated to areal regions, but also considers their different geo-
metric sizes, shapes and orientations. This is achieved by discretizing the areal data
into a highly resolved and regularly spaced grid of nodes and solving the block krig-
ing equation system for each node. Secondly, the model incorporates an uncertainty
analysis derived from an ensemble of maps (stochastic simulations), from which a
probability distribution of disease risk values on each grid node is drawn. Finally, to
present the results, EpiGeostats borrows the concept of pixelation to simultaneously
visualize uncertainty and disease risk in a single map, allowing policy makers to make
better use of spatial uncertainty when evaluating risk. Figure 8 (bottom right) illus-
trates the results of integration, and shows how this package can contribute to more
informed decision-making, since it proposes an adequate geostatistical model in the
spatial epidemiology context, and rapidly identifies high risk in areas with high spatial
uncertainty, and high risk in areas with low spatial uncertainty, thereby preventing
fine-scale inference in regions with high-risk uncertainty.
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Fig. 8 One block direct sequential simulation (top left), median cumulative disease risk map (top right),
spatial risk uncertainty map (bottom left) and pixelated map (bottom right) generated with EpiGeostats
functions spmap() and pxmap()
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One limitation of EpiGeostats is that it requires computationally intensive calcula-
tions due to inverse matrix operation in solving the block kriging system, which can
significantly limit its application if the number of nodes and number of simulations
specified is large (e.g. executing 100 simulations on a regular grid with 141 × 288
nodes takes 133 s on an AMD Ryzen 5 5600X 6-core processor 3.70 GHz). While
ready on the user end, and parallelized at the CPU thread level, the efficiency of the
code will be improved in future versions. Another consideration is related to the fact
that experimental population-weighted semi-variograms implemented are the simplest
ones, since they are a scalar function of lag (they are omnidirectional). While these
capture the main spatial covariance features present in disease data, further devel-
opments will provide directional semi-variograms to capture variations in different
directions. In addition, only two admissible semi-variogram models have been imple-
mented. They are, however, frequently applied, since they cover the major spatial
covariance shapes observed in spatial epidemiology (Goovaerts et al. 2005; Ribeiro
and Pereira 2018).

5 Conclusions

EpiGeostats is an R package for disease risk mapping that allows for an uncertainty
analysis. The target audiences are policy makers and researchers interested in spatial
modelling of disease and data visualization. The package allows for more informed
decision-making in the context of epidemics. Package functions require minimum
user input of R code and are accompanied by detailed documentation and workflow
examples. Future extensions may include the development of a user-friendly, web-
based Shiny app or the implementation of more flexible geostatistical models (e.g.
adding potential covariates). Moreover, EpiGeostats can be easily extended to other
fields, such as ecology or environmental epidemiology.
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