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Abstract
Missing data is a frequent problem in meteorological and hydrological temporal
observation data sets. Finding effective solutions to this problem is essential because
complete time series are required to conduct reliable analyses. This study used daily
rainfall data from 60 rain gauges spatially distributed within Portugal’s Guadiana
River basin over a 30-year reference period (1976–2005). Gap-filling approaches using
kriging-based interpolation methods (i.e. ordinary kriging and simple cokriging) are
presented and compared to a deterministic approach proposed by theFood andAgricul-
ture Organization (FAOmethod). The suggested procedure consists of fitting monthly
semi-variogram models using the average daily rainfall from all available meteoro-
logical stations for each month in a reference period. This approach makes it possible
to use only 12 monthly semi-variograms instead of one for each day of the gap period.
Ordinary kriging and simple cokriging are used to estimate the missing daily precip-
itation using the semi-variograms of the month of interest. The cokriging method is
applied considering the elevation data as the secondary variable. One year of data were
removed from some stations to assess the efficacy of the proposed approaches, and the
missing precipitation data were estimated using the three procedures. The methods
were validated through a cross-validation process and compared using different per-
formance metrics. The results showed that the geostatistical methods outperformed
the FAO method in daily estimation. In the investigated study area, cokriging did not
significantly improve the estimates compared to ordinary kriging, which was deemed
the best interpolation method for a large majority of the rainfall stations.
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1 Introduction

Understanding and quantifying spatial and temporal variability of precipitation in a
watershed are crucial tasks for hydrological modelling, climate analysis and climate
change predictions (Secci et al. 2021; Todaro et al. 2022a, b). Gaps in time series,
which can be caused by many circumstances (e.g. sensor malfunction, measurement
errors and faults in data acquisition fromoperators), are a common problem in hydrom-
eteorological data sets, and ignoring missing data can produce error-affected analysis.
Alternatively, the affected time series could be directly removed, but the stations under
study may be highly relevant for certain hydrometeorological processes in the investi-
gated area (Aguilera et al. 2020). For these reasons, it is fundamental to find efficient
methods to estimate the missing values in order to obtain complete time series.

Gap-filling procedures are usually specific to the nature of the variable under study.
Precipitation is one of themost difficult atmospheric variables to characterize, estimate
and forecast, especially on a daily scale, because of its high spatio-temporal variability
and the large number of interconnected variables involved (Portuguez-Maurtua et al.
2022). Several interpolation methods have been developed to estimate missing values
in precipitation time series. The most popular and simplest deterministic techniques
are the Thiessen polygon method (THI; Thiessen 1911) or its implementation known
as natural neighbour (NN; Sibson 1981), the nearest neighbour (NNb; Brandsma and
Buishand 1998) and the inverse distance weighting (IDW; U.S. National Weather
Service 1972). THI consists of assigning the precipitation of the area of influence con-
taining the unsampled location. The NN estimates values at the unsampled point by
computing the weighted average of the available data of its natural neighbours, where
the weights assigned to each neighbour are based on the area of overlap between their
areas of interest and the area of interest of the unsampled location. The NNb, rather
than calculating an average value based on a weighting criterion, simply determines
the closest point and assumes its value. Otherwise, the IDW assigns a value calculated
from the weighted average of the available data, where the weights depend on the
distance between the locations of the unknown and known data. Another approach
used is the linear regression method proposed by the Food and Agriculture Organiza-
tion (FAO) of the United Nations (Allen et al. 1998). The FAO method fills the gaps
in the rainfall time series using data collected on the gap time at available stations,
which presents a high correlation coefficient with the one of interest. This is a com-
mon gap-filling method in climate analysis (D’Oria et al. 2019; Huang et al. 2020).
Geostatistical modelling, which is based on the theory of regionalized variables, pro-
vides an option for the estimation of missing precipitation data. It is preferred to the
above-mentioned deterministic techniques because it incorporates the spatial correla-
tion of observations into data processing (Goovaerts 1997) and allows one to assess
the estimation uncertainty. Kriging represents the most used geostatistical method for
rainfall interpolation. Several authors (Tabios and Salas 1985; Bacchi and Kottegoda
1995; Campling et al. 2001; Bostan et al. 2012) have shown that it provides better
results than traditional gap-filling methods (as the above-mentioned ones) due to the
incorporation of a spatial continuity pattern in the predictions. Another advantage of
geostatistics is that there are numerous possibilities to incorporate one or more sec-
ondary variables to improve the estimation accuracy of the primary attributes (i.e. the
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variable of interest). Cokriging and kriging with an external drift (KED) are part of
the multivariate geostatistical methods. Due to the orographic effect of mountainous
terrain, precipitation tends to be related to elevation (Hevesi et al. 1992); hence it is
common to use the elevation, taken from the available digital elevationmodels (DEM),
as secondary variable to improve rainfall estimation (Hevesi et al. 1992; Daly et al.
1994; Prudhomme and Reed 1999; Goovaerts 2000; Lloyd 2005; Jacquin and Soto-
Sandoval 2013; Cheng et al. 2017). It has been demonstrated that using elevation as an
auxiliary variable could significantly enhance rainfall estimation (Carrera-Hernández
and Gaskin 2007; Adhikary et al. 2017).

Except for the Carrera-Hernández and Gaskin (2007) study, none of the above-
cited articles has used geostatistical methods to estimate daily rainfall data. Only a
few studies have discussed this methodological approach. Beek et al. (1992) applied
kriging to interpolate precipitation data for only 4 days in 1984, which were selected
to investigate the spatial variability of daily precipitation in North-Western Europe.
Buytaert et al. (2006) analysed the spatio-temporal patterns of daily precipitation
series in the south of Ecuador in mountainous terrains. THI and universal kriging
(UK) were used to point out the difference in uncertainty assessment. Incorporating
external trends improved the accuracy of both methods, even though UK estimation
resulted closer to the true values than THI estimation. Carrera-Hernández and Gaskin
2007 compared five different kriging methods: ordinary kriging (OK), kriging with
external drift (KED), block kriging with external drift (BKED), ordinary kriging in a
local neighbourhood (OKl) and kriging with external drift in a local neighbourhood
(KEDl). Elevation was considered the second variable in the external drift. Their
work aimed to estimate three different daily climatological variables (rainfall and
minimum and maximum temperature) for a period between June 1978 and June 1985
in a Mexican basin. The results showed that the integration of elevation improved the
estimation of the daily events evenwhen the variables show low correlation. Chen et al.
(2010) focused on identifying an accurate interpolation method to produce gridded
daily precipitation in China. Five interpolation methods were compared: ordinary
nearest neighbour; local polynomial; radial basis function; IDW; and OK based on
seasonal semi-variograms. OK and IWDwere ranked highest in terms of interpolation
quality. Ly et al. (2011) compared two deterministic algorithms (IDW and THI) and
four geostatistical methods (OK, UK, KED and ordinary cokriging—OCK; the last
two techniques utilized elevation as the secondary variable) using a 30-year data set
in Ourthe and Ambleve catchments in Belgium. Seven semi-variogram models were
fitted for daily samples of different density. In terms of residual mean square error, the
study concluded that OK was considered the best and most robust method followed
by IDW. The estimation was not improved by the OCK and KED methods.

Alternative techniques have been proposed as gap-filling methodologies and com-
pared with the kriging-based method. Oriani et al. (2020) tested IDW, various models
based on OK and two pattern-based approaches (K-nearest neighbour and a new algo-
rithm called vector sampling) to find an automatic method that does not require a big
computational effort. The authors considered five case studies with different complex
terrain, climate regimes and sensitivity to the amount of data. The results turned out
to be related to the level of complexity of the associated precipitation patterns. Aguil-
era et al. (2020) dealt with this problem by comparing three different methodologies
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(spatio-temporal kriging [STK], multiple imputations by chained equations through
predictive mean matching [PMM], and the random forest [RF] machine learning algo-
rithm). Their work focused on the estimation of missing precipitation data considering
the percentage of gaps in the time series. The results show that STK and RF can both
deal with extreme lack, whereas PMM requires larger observed sample sizes. STK led
to the most reliable results but has large computational cost.

Few of the studies mentioned above have performed daily-scale estimation, and
most of those have typically focused on short periods or a limited number of days.
Furthermore, some studies have shown that for long periods of missing data, gap-
filling procedures require a high computational time. Typically, using geostatistical
modelling, a semi-variogram for the day under consideration is calculated, and then the
precipitation at the desired location is estimated (Beek et al. 1992; Carrera-Hernández
and Gaskin 2007; Ly et al. 2011). One of the main problems with daily-scale analysis
is that the number of data could be insufficient for the evaluation of semi-variograms.
Furthermore, it is necessary to compute as many semi-variograms as there are missing
data days, which results in high computational demand in case of long time series
analysis more prone to contain large amount of gaps. This study intends to find a
suitable and computationally efficient method to fill in daily gaps in precipitation time
series for a specific pilot site by comparing three different interpolation approaches,
since no single estimation method can work well everywhere (Daly 2006). The work
proposed herein aims to contribute to the advancement of gap-filling techniques and
improve the accuracy of precipitation time series analysis while keeping reasonable
computational cost. The proposed method presents an innovative approach based on
the use of monthly average semi-variograms, which overcomes the problems just
mentioned. All the available data over the entire time series are used to build the
monthly semi-variogram. Moreover, only 12 monthly semi-variograms (i.e. one semi-
variogram per month), rather than one semi-variogram for every day of the data set,
are used. The proposed methodology also allows seasonal variability to be taken into
account. Additionally, simple cokriging (SCK) is investigated to improve the results
using elevation as the second variable. The Portuguese case study of the InTheMED
project (Todaro et al. 2022a, b), located in the southern part of the country, is used to
analyse and compare the geostatistical approaches and the FAO method. The efficacy
of the methods is assessed by cross-validation processes and by comparing different
performance metrics.

The remainder of this paper is organized as follows. After a description of the
methods applied in Sect. 2, the study area and data analysis are presented in Sect. 3.
Subsequently, results and a discussion are reported in Sect. 4. Finally, the conclusions
are illustrated by examining the pros and cons of each method in Sect. 5.

2 Methods

The methodology adopted in this research includes a linear regression method (FAO)
and two kriging-based geostatistical techniques (OK and SCK). This section provides
a brief overview of the approaches used. The reader is referred to Goovaerts (1997)
and Kitanidis (1997) for extensive reviews of geostatistical theory.
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2.1 Linear Regression (FAO)

The linear regression approach (briefly referred as the FAO method) fills gaps using
the data collected at the gap time in another consistent station. Given a data set Y at
a certain station that has missing observations, its historical series is completed using
observations fromanother data setXof a nearbyhomogeneous stationwith comparable
characteristics. The estimation procedure operates by integrating the missing data
using a regression equation that is fitted based on the values simultaneously observed
at the two stations.

Computing the correlation coefficient between pairs of stations is a key part of the
method. It makes it possible to highlight the intensity of similarity between stations,
identifying the best-correlated ones. Pearson’s correlation coefficient r was used

r = Covxy
σxσy

=
∑n

i=1(xi − x)(yi − y)
(∑n

i=1(xi − x
)2 ∑n

i=1(yi − y)2)1/2
, (1)

where x and y are the means of the two data sets computed from the concurrent

observations, σ x and σ y are the standard deviations, Covxy =
∑n

i=1(xi ·yi )−n·x ·y
n−1 repre-

sents the covariance between the data sets X and Y at time i and n is the number of
simultaneous observations of the two time series.

The approach is characterized by a regression of Y on X performed for the periods
when the data from both data sets are present

yi = b + a · xi , (2)

where a and b are empirical regression parameters, and a = Covxy
σ 2
x

=
∑n

i=1(xi−x)(yi−y)
∑n

i=1(xi−x)2
.

TheFAOmethod can be applied only if the following three constraints are respected:

I. The station to be filled must have at least 70% of complete data.
II. The square of Pearson’s correlation coefficient (r2) between the station having

missing data and the twin station used to fill the gaps must be greater than or
equal to 0.7.

III. The regression coefficient (a) must be between 0.7 and 1.3.

When all three conditions are fulfilled, the regression equation (Eq. (2)) is used to
estimate themissing data at the station of interest using the parameters a and b obtained
from the best-correlated station.

2.2 Spatial Correlation Analysis

In geostatistics, the basic tool to account for the spatial distribution of natural phenom-
ena is the semi-variogram, which is the function that describes how the variance of
increments increases with distance. In the application example shown herein, instead
of deriving a semi-variogram for every day of the time series (Beek et al. 1992; Carrera-
Hernández and Gaskin 2007; Ly et al. 2011), an average monthly semi-variogram has
been considered. This is computed by taking, at each monitoring station and for each
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month, the mean of the daily precipitation observed in the specific month of interest in
all the years of the analysed period. The monthly averaged semi-variogram allows for
a faster calculation by reducing the number of semi-variograms to 12 instead of one
for each day of the missing period. Furthermore, it enables accounting for seasonal
variations when performing data interpolation.

The determination of the semi-variograms can be summarized as follows:

I. Compute the average daily precipitation of eachmonth at eachmonitoring station
over the entire time series.

II. Compute themonthly experimental semi-variogramusing data grouped bymonth
from all available gauge stations

γ ∗(h) = 1

2N (h)

N (h)∑

j=1

(
Z
(
u j

) − Z
(
u j + h

))2
, (3)

where N(h) is the number of pairs of locations separated by the vector h, and
Z(uj) is the observed variable at location uj of the monitoring station j.

III. Fit a theoretical semi-variogram model, γ (h), to the experimental variogram.
Exponential, Gaussian and spherical (Table 1) are themost commonly used semi-
variogram models for kriging applications in hydrology (Adhikary et al. 2017).
These can be combined with a nugget model (Table 1).

IV. To quantify the suitability of the theoretical semi-variogrammodels on the exper-
imental model, the sum of the residual square (RSS) is provided

RSS =
Nc∑

i=1

[
γ ∗(hi ) − γ (hi )

]2
, (4)

where Nc is the number of intervals into which the data pairs are classified.

To obtain the best-fitted model, the above procedure is repeated for different lag
sizes, with the parameters adjusted according to the least-square methodology until
the minimum of the RSS (Eq. (4)) is reached. The coefficients of this model can then
be used for kriging estimation.

Table 1 Theoretical
semi-variogram models. C0 is
the nugget effect, θ is the sill
value, l is the range and h is the
distance between pairs of point

Model Equation

Nugget γ (h) = C0

Exponential γ (h) = θ
[
1 − exp

(
− h

l

)]

Gaussian
γ (h) = θ

[

1 − exp
(
− h

l

)2
]

Spherical
γ (h) = θ

[
3
2
h
l − 1

2

(
h
l

)3
]
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2.3 Ordinary Kriging

Ordinary kriging (OK) is the most widely used kriging method. It estimates a value
at a point in a region, for which a semi-variogram is known, by using the neighbour
observations of the estimation location (Goovaerts 1997). OK accounts for local mean
fluctuations by restricting the domain of mean stationarity to the local neighbourhood.
The OK estimation is given by

Ẑ(u0) =
J∑

i=1

λi Z(ui ) with
J∑

i=1

λi = 1, (5)

where Ẑ(u0) is the estimated value at target location u0, λi are the kriging weights,
and Z(ui) is the observed value at J monitoring stations.

OK also gives a measure of uncertainty attached to the results to signify the relia-
bility of the estimation (Goovaerts 1997). This is done by calculating the estimation
variance, which expresses the quality of the interpolation: high estimation variance
means uncertain interpolation and low estimation variance indicates interpolation with
smaller spatial uncertainty. It is estimated as follows

σ 2
OK = E

[(
Ẑ(u) − Z(u)

)2
]

, (6)

where E is the mathematical expectation.
The OK weights can be obtained by solving the system

{∑J
i=1 λiγi j − μ = γi0∑J
i=1 λi = 1

for j = 1, . . . , J , (7)

where γ ij is the semi-variogram values between sampling locations ui and uj, γ i0 are
the semi-variogram values between sampling location ui and the target location u0,
and μ is the Lagrange multiplier parameter. The unbiased estimate is guaranteed by
the constraint of the sum of the weights to 1. The weights λi, obtained through the
system (Eq. (7)) are inserted into Eq. (5) to make the estimation.

2.4 Simple Cokriging

Cokriging is a multivariate extension of kriging, which incorporates secondary infor-
mation for improving the estimation of the primary variable. If the second variable is
highly correlated with the primary variable, then incorporating it into the estimation
process can lead to a reduction in prediction error variance compared to using kriging
alone (Goovaerts 2000). Simple cokriging (SCK) assumes that the means of both the
primary and secondary variables are known and constant within the study area. The
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method aims to estimate the primary variable as given by

Ẑ1(u0) =
(

J∑

i=1

λ1i [Z1(ui ) − m1] +
K∑

i=1

λ2i [Z2(wi ) − m2]

)

+ m1, (8)

where Ẑ1(u0) is the estimated value of the primary variable at the target location u0,
Z1(ui) are the observed values of the primary variable at locations ui, Z2(wi) are the
observed values of the secondary variable atK locationswi, λ1i and λ2i are the weights
of the first and second variables, andm1 andm2 are the stationarymeans of the primary
and secondary variables, respectively.

The weights are obtained by solving the following system

{ ∑J
i1=1 γz1

(
ui1 − u j1

)
λ1i + ∑K

i2=1 γz1z2
(
wi2 − u j1

)
λ2i = γz1

(
u j1 − u0

)
for j1 = 1, . . . , J

∑J
i1=1 γz2z1

(
ui1 − w j2

)
λ1i + ∑K

i2=1 γz2
(
wi2 − w j2

)
λ2i = γz1z2

(
w j2 − u0

)
for j2 = 1, . . . , K

,

(9)

where γz1 and γz2 are the theoretical semi-variograms of the first and second variable,
respectively, and γz1z2 = γz2z1 are the theoretical cross-variograms between the two
variables.

Unbiasedness is guaranteed by the subsequent equation whatever the cokriging
weights

E
[
Ẑ1(u) − Z1(u)

]
= 0. (10)

Tomake the prediction, the weights obtained through the system of equations (Eq. (9))
are entered into Eq. (8).

The first step of the method is to develop a suitable model for cross-continuity and
dependency between the two variables involved. This positive correlation is known as
cross-regionalization or coregionalization (Goovaerts 1997), and it can be computed
using the cross-variogram or cross-covariogram. In the cokriging methods, the cross-
variogram model between the primary and secondary variable is obtained by fitting
an experimental cross-variogram

γ ∗
z1z2(h) = γ ∗

z2z1(h) = 1

2N (h)

N (h)∑

j=1

{[Z1(u + h) − Z1(u)][Z2(u + h) − Z2(u)]},

(11)

where γ ∗
z1z2(h) = γ ∗

z2z1(h) are the experimental cross-variograms between the two
variables.

The semi-variogrammust satisfy the positive-definite condition (PDC). In a univari-
ate context, the condition is met by choosing a semi-variogram or covariogram from
the admissible models (Christakos 1984). In general, a linear combination of these
models can be considered to ensure that the matrix of kriging coefficients is invert-
ible and the variance positive (Matheron 1970). In multivariate geostatistics, and in
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this case, considering two variables, a cross-variogram and two semi-variograms are
needed. To have a valid model that respects the PDC, the linear model of coregional-
ization (LMC; Journel and Huijbregts 1978) can be used. The use of a combination
of permissible semi-variogram models, and each coregionalization matrix being pos-
itive semi-definite, are sufficient conditions for the so-called LMC to be allowable
(Goovaerts 1999). The cross-variogram is used tomodel the spatial correlationbetween
different variables at different locations. The shape of the cross-variogram is an impor-
tant consideration in the LMC, as it can affect the accuracy of the model. In general,
the shape of the cross-variogram should be the same for all variables included in the
LMC (Stein 2012). This is because the LMC assumes that the variables are correlated
with each other in a consistent manner across space, and a consistent cross-variogram
shape helps ensure that this assumption is met. However, it is possible to use different
cross-variogram shapes for different variables in the LMC. This can be useful when
there is prior knowledge that the spatial correlation structure differs between vari-
ables. In such cases, a separate cross-variogram model can be fitted for each variable
(Stein 2012). To make sure that the cross-variogram model is positive-definite, the
Cauchy–Schwarz inequality must be fulfilled for all values of h

γ ∗
z1z2(h) ≤ [

γ ∗
z1(h)γ ∗

z2(h)
] 1
2 , (12)

where γ ∗
z1 and γ ∗

z2 are the experimental semi-variograms.
A simpler graphical test of the PDC was suggested by Hevesi et al. (1992) by

graphing the proposed model with the PDC curve

PDC(h) = [
γ ∗
z1(h)γ ∗

z2(h)
] 1
2 . (13)

The test is passed if the value of γ ∗
z1z2 does not exceed the value of PDC for all

values of h, which also means that the cross-semi-variogram is under the PDC curve.
The cokriging methods fit semi-variogram and cross-variogram models as a linear
combination of the same set of basic models listed in Table 1. The same procedure
applied for OK in the previous section is applied to SCK respecting the conditions of
PDC as applied in the work of Adhikary et al. (2017).

Two situations can be distinguished based on the sampling density of primary
and secondary variables (Goovaerts 1999). The first one is the equally sampled or
isotopic case: all variables are recorded at every sampled location. The second one is
the heterotopic case: the primary variable is under-sampled relative to the secondary
variable. Measurements of the attribute of interest are usually supplemented by more
abundant data on attributes related to secondary variables, which generally require
less sampling effort. The second case is the recommended one.

3 Study Area and Data Analysis

The study area is one of the pilot sites investigated within the InTheMED PRIMA
project. It involves the Portuguese portion of the Guadiana Hydrographic Basin. The
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Guadiana River basin is a cross-border basin located in Spain and Portugal. It drains
a total area of 67,133 km2, of which 55,528 km2 lies within Spain and 11,611 km2

within Portugal. The Guadiana River has a length of 820 km. According to Todaro
et al. (2022a, b), the average annual precipitation and temperature in the Portuguese
region for the period of 1986–2005 were 545 mm and 16.1 °C, respectively. These
findings are consistent with the study by Palop-Donat et al. (2020), which reported an
average precipitation of 566 mm and an average temperature of 16.3 °C for the period
of 1980/1981 to 2011/2012.

Daily precipitation data were collected from 96 rain gauges in the period
1970–2021. In this study, only the stations that present at least 70% of the data for
a 30-year reference period (1976–2005) were analysed. This resulted in a total of 60
rain gauges being considered. Station elevations were extracted from a DEM (https://
data.europa.eu/data). They range from 3 m above sea level (a.s.l.) to 499 m a.s.l. Table
2 summarizes the characteristics of the monitoring network (station ID, elevation and
percentage of data available in the control period 1976–2005). Figure 1 shows the
location of the rain gauges in the study area.

Table 2 Station ID, elevation, and available data percentage in the reference period

Station
ID

Elev (m
a.s.l.)

Data
(%)

Station
ID

Elev (m
a.s.l.)

Data
(%)

Station
ID

Elev (m
a.s.l.)

Data
(%)

1 302 97 32 180 99 71 185 100

2 133 88 33 269 81 72 239 87

8 34 98 35 341 82 73 195 86

9 173 98 38 212 81 74 328 83

10 32 100 42 295 85 75 254 81

12 449 83 43 223 98 76 145 84

14 286 99 44 198 96 77 208 90

15 204 100 45 253 85 78 308 97

16 195 84 46 294 100 79 271 100

17 257 94 47 392 99 82 209 100

18 270 97 48 143 85 83 223 83

21 217 85 57 236 75 84 450 100

22 467 97 60 29 83 85 155 74

23 265 91 61 128 98 86 499 82

24 201 82 62 273 83 87 190 99

25 3 83 64 250 100 88 182 100

26 217 100 66 302 97 90 172 100

28 142 87 67 300 78 93 203 100

29 163 71 68 218 100 95 417 99

31 185 73 70 247 81 96 158 86
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Fig. 1 Study area (UTM zone 29N-EPSG: 32629). Yellow dots are the location of the available precipitation
stations, and the diamonds are the selected stations that fit FAO criteria (Sect. 2.1); DEM represented in
colour scale
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3.1 Monitoring Station Selection

Since the FAO method is the most restrictive tested approach, the gap-filling
approaches were tested only on the stations that satisfied the three conditions of the
FAO method (see Sect. 2.1: I. data percentage ≥ 70%; II. r2 > 0.7; III. 0.7 ≤ a ≤
1.3). This means that for a specific station, there exists a twin station that satisfies the
three conditions. Table 3 summarizes for the 60 precipitation stations of the reference

Table 3 FAO approach constraint verification for each monitoring station

Station ID I II III Station ID I II III

1 x x x 48 x x

2 x x 57 x x x

8 x x 60 x x

9 x x 61 x x

10 x x 62 x x x

12 x x 64 x x

14 x x 66 x x

15 x x 67 x x x

16 x x x 68 x x x

17 x x 70 x x

18 x x 71 x x

21 x x x 72 x x

22 x x 73 x x

23 x x 74 x x

24 x x 75 x x

25 x x 76 x x

26 x x 77 x x

28 x x 78 x x x

29 x x 79 x x

31 x x 82 x x

32 x x 83 x x

33 x x x 84 x x

35 x x 85 x x

38 x x x 86 x

42 x x 87 x x

43 x x 88 x x

44 x x 90 x x

45 x x 93 x x

46 x x x 95 x x

47 x x 96 x x x
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Table 4 Square of Pearson’s
coefficient (r2) between the
selected monitoring stations and
the best-correlated ones

Station to be estimated r2 Best-correlated ID station

POR001 0.753 POR067

POR016 0.746 POR068

POR021 0.766 POR033

POR033 0.766 POR021

POR038 0.766 POR078

POR046 0.739 POR096

POR057 0.716 POR078

POR062 0.736 POR046

POR067 0.753 POR001

POR068 0.746 POR016

POR078 0.766 POR038

POR096 0.739 POR046

period whether the FAO criteria are met or not. Only 12 monitoring stations fulfilled
the three constraints (in bold in Table 3 and represented by the diamonds in Fig. 1).

Table 4 lists the selected stations and the square of Pearson’s correlation coefficient
(r2) computed with the best-correlated one.

3.2 Semi-variogram Computation

Themonthlymeans of the available daily rainfall collected at themonitoring stations in
the reference period and elevations are considered as primary and secondary variables,
respectively, for computing the semi-variograms and the cross-semi-variograms. In lit-
erature, the estimation of spatial anisotropy to model natural phenomena is a common
point of discussion (e.g. Bernardi et al. 2018; Agou et al. 2019). A reliable deter-
mination of the existence and characteristics of anisotropy requires a large data set
with sufficient variants in all possible directions. In many cases, including the present
study, the available data are sparse or unevenly distributed, making it challenging to
reliably perform anisotropy estimation. Therefore, spatial homogeneity is assumed,
and anisotropy is neglected, as applied in the works of Goovaerts (2000) and Ly et al.
(2011). For these reasons, in this work, omnidirectional semi-variograms are consid-
ered, which may be more reliable in case of limited or sparse data, as it simplifies the
modelling process and reduces the risk of overfitting the data.

3.2.1 Precipitation

The semi-variogram of each month was defined by fitting the average daily precipita-
tion of the 60 available rainfall stations for that specific month over the entire period.
Isotropic semi-variograms were estimated by assuming identical spatial correlation
in all directions. Under this assumption, the semi-variogram construction followed
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the procedure outlined in Sect. 2.2 using the models in Table 1. The monthly semi-
variograms obtained are shown in Fig. 2.

The adopted semi-variogrammodels fit the data satisfactorily. It was decided to esti-
mate all 12 monthly semi-variograms using the parameters of a combined exponential

Fig. 2 Experimental and fitted semi-variogram models from the daily average rainfall of the 60 stations
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Fig. 3 Bar chart of the mean daily precipitation over 1976–2005 for each month in the whole study area

and nugget semi-variogram model. The parameters of the adopted semi-variograms
are listed in Table 1(S) in the supplementary material.

Figure 3 shows for each month the average daily rainfall computed over the refer-
ence period. It is noteworthy that the semi-variograms reflect the precipitation regime
of the study area depicted in Fig. 1. In fact, autumn and winter months (from October
to February) are the wettest months, and this is reflected in the high variability of the
semi-variograms (i.e. higher spatial variability). In spring months (i.e. March, April
and May), precipitation is lower than in winter everywhere, implying less variability
in the semi-variograms. The summer months (from June to September) are the driest,
involving semivariance tending toward zero.

3.2.2 Elevation

The experimental semi-variogram on the second variable was computed using approx-
imately 180,000 elevation data extracted on a regular grid from the DEM. This was
carried out in order to avoid the isotopic case, that is, the use of elevation data only
in the location of the precipitation stations, and to represent more extensive spatial
variability.

The same assumptions as for the precipitation semi-variograms were applied. The
experimental semi-variogram on the elevation and the theoretical ones (Table 1) are
shown in Fig. 4.

To comply with the PDC conditions, the estimates using SCK were made using the
parameters of the semi-variogram with an exponential model (parameters reported in
Table 2(S)).
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Fig. 4 Experimental and fitted semi-variogram models for the elevation DEM

3.3 Cross-Variograms

The cokriging analysis requires the estimation of the semi-variogram and cross-
variogram models for precipitation and elevation at the same time. Table 5 shows
the correlation coefficients between the two variables.

According toAsli andMarcotte (1995), the use of secondary information is justified
only for correlations greater than 0.4. Because the correlations between rainfall and
elevation range from 0.4 to 0.77, it is considered worthwhile to carry out precipitation
estimation by the SCK.

As for the precipitation, isotropic experimental cross-variograms were computed.
Figure 5 shows the cross-variograms between precipitation and elevation for each
month. To meet the PDC condition, the same model of precipitation was chosen for
all the cross-variograms (parameters listed in Table 3(S)). The PDC curve based on
Eq. (13) is also shown in Fig. 5 to graphically examine the criteria.

Table 5 Average correlation coefficients between the primary variable (precipitation) and secondary variable
(elevation) for each month

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

r 0.75 0.75 0.75 0.71 0.76 0.45 0.40 0.53 0.73 0.77 0.62 0.63
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Fig. 5 Experimental cross-variograms (black dots) with the fitted cross-variogram models (solid line) and
positive-definite condition curve (dashed line) based on the rainfall and elevation data

4 Results and Discussion

The performance of the proposed approaches was assessed for each of the 12 selected
precipitation stations that fit the FAO criteria (Sect. 3.1; Table 4) for a chosen year, as
follows:

I. Removing the precipitation values of the selected year from the observation.
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II. Estimating the 365-day precipitation using the available data (highest corre-
lated station for FAO method and 59 remaining station data for kriging-based
approaches).

III. Computation of the error statistics.

To test themethods, the year 1985was chosen, since none of the 12 selected stations
presented gaps in the time series.

The estimation through kriging-based approaches was carried out considering 60
rainfall stations and 110 elevation values as the primary and secondary variables,
respectively. The number of elevation data points was reduced to 110 to limit the
computational time. The mGstat tool implemented in MATLAB (Hansen 2022) was
used for the application of the geostatistical methods. The computation time varied
from 2 min for the OK to 2 h for the SCK for each precipitation station. The FAO
method was implemented by a MATLAB (2022) code that takes a few seconds for the
estimation of each station.

The goodness of the estimation of the three gap-filling methods (FAO, OK and
SCK) was evaluated through a cross-validation process and a comparison of the error
statistics. In addition, the monthly cumulative values derived from the daily interpo-
lations (Fig. 6) were examined to provide further insight on how well each method
performed.

The performance evaluation was carried out computing the mean error (ME), the
mean absolute error (MAE) and the root mean square error (RMSE). The ME is the
average of all errors and quantifies the error in terms of underestimation if the result is
negative, and overestimation if the result is positive. TheMAEmeasures themagnitude
of the errors.

TheRMSE is a common accuracy performancemeasurement that is frequently used
as a magnitude error evaluation. RMSE is never negative, and a value of 0 indicates a
perfect fit with the data.

Themetrics of the gap-fillingmethods used to estimate the daily andmonthly cumu-
lative precipitation in the year 1985 at the chosen stations are summarized in Tables 6
and 7, and are depicted in graphical form in Figs. 1(S) to 3(S) in the supplementary
material.

The kriging-based methods (OK and SCK) performed better than the deterministic
method (FAO) in the daily estimation of the precipitation in almost all cases.ME (Table
6; Fig. 1(S) above) indicateswhether the variables are under- or overestimated. In terms
of daily MAE (Table 6; Fig. 2(S) above), the SCK outperforms six out of 12 stations.
OK provides the best estimates in three cases, despite being similar to SCK estimates.
The FAO approach performs slightly better at three precipitation stations (POR046,
POR062 and POR096). The RMSE analysis (Table 6; Fig. 3(S) above) shows that the
kriging-based approaches provide better estimates than the FAO, except for POR046.
Among the evaluated methods, POR057 displays the best daily statistics with MAE of
0.423 mm/day and RMSE of 1.186 mm/day for the OK method. In contrast, POR062
shows the poorest performance. Moreover, POR046 yields better results for the FAO
method (MAEof 0.597mm/day andRMSEof 1.919mm/day) compared to the kriging-
based approaches (MAE of 0.726 mm/day and RMSE of 2.095 mm/day for OK;MAE
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Fig. 6 Cumulative monthly rainfall for the year 1985 observed and estimated following the FAO, OK and
SCK methods at 12 precipitation stations
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Table 6 Evaluation metrics of the proposed methods for the estimation of the daily rainfall of the year 1985
at the 12 monitoring stations

ME (mm/day) MAE (mm/day) RMSE (mm/day)

FAO OK SCK FAO OK SCK FAO OK SCK

POR001 −0.336 −0.246 −0.252 0.824 0.544 0.542 2.369 1.598 1.605

POR016 −0.091 0.006 −0.014 0.685 0.495 0.484 2.225 1.655 1.611

POR021 −0.084 0.111 0.111 0.622 0.528 0.525 2.088 1.789 1.776

POR033 −0.199 0.012 −0.007 0.706 0.704 0.707 2.261 2.170 2.163

POR038 0.021 0.203 0.193 0.723 0.593 0.586 2.410 1.869 1.842

POR046 −0.275 0.061 0.063 0.597 0.726 0.724 1.919 2.095 2.094

POR057 −0.067 0.081 0.077 0.591 0.423 0.425 2.148 1.186 1.199

POR062 −0.154 −0.049 −0.045 0.689 0.736 0.727 2.306 2.187 2.174

POR067 −0.030 0.147 0.127 0.615 0.553 0.544 1.844 1.633 1.583

POR068 −0.230 0.041 0.027 0.727 0.503 0.497 2.315 1.529 1.528

POR078 −0.356 −0.243 −0.196 0.854 0.697 0.719 2.855 2.303 2.026

POR096 0.042 0.098 0.104 0.450 0.466 0.470 1.499 1.488 1.488

The minimum values for MAE and RMSE are highlighted in bold

Table 7 Evaluation metrics of FAO, OK and SCK methods for the computation of the monthly cumulative
rainfall of the year 1985 at the 12 monitoring stations

ME (mm/month) MAE (mm/month) RMSE (mm/month)

FAO OK SCK FAO OK SCK FAO OK SCK

POR001 −10.234 −7.474 −7.661 15.282 9.562 9.740 19.694 12.165 12.464

POR016 −2.753 0.186 −0.419 6.624 6.429 6.166 10.141 8.904 8.465

POR021 −2.566 3.384 3.705 4.846 4.908 4.895 7.071 7.217 7.231

POR033 −6.066 0.364 −0.088 6.712 3.725 3.715 9.670 5.368 5.271

POR038 0.631 6.187 5.867 10.201 7.848 7.586 13.431 10.890 10.517

POR046 −8.360 1.869 1.913 9.855 5.435 5.437 16.167 8.466 8.512

POR057 −2.049 2.475 2.338 8.941 5.045 5.144 12.434 6.677 6.748

POR062 −4.697 −1.502 −1.362 6.974 4.727 4.573 10.307 7.339 7.288

POR067 −0.923 4.474 3.878 8.398 7.182 6.836 10.546 9.859 9.321

POR068 −7.007 1.244 0.819 7.906 5.442 5.264 17.716 8.067 8.303

POR078 −10.831 −7.390 −5.966 12.492 9.648 7.598 18.517 14.783 12.500

POR096 1.281 2.988 3.186 4.380 6.488 6.488 6.837 9.106 9.228

The minimum values for MAE and RMSE are highlighted in bold
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of 0.724 mm/day and RMSE of 2.094 mm/day for SCK); however, the station presents
ME of−0.275 mm/day, which suggested an average underestimation of precipitation.

The actual cumulative monthly rainfall was compared with that obtained from
daily estimations (Fig. 6), and subsequently, error statistics were calculated (Table 7;
Figs. 1(S) to 3(S) bottom). This approach makes it possible to evaluate the accuracy
of the daily estimates over an extended period and helps to identify any systematic
errors present in the estimates. According to Table 7 and Fig. 2(S) bottom, kriging-
based methods are comparable, although SCK showed better performance on MAE,
outperforming the othermethods at seven out of 12 stations,whileOKperformedbetter
at three stations. The FAO approach yielded slightly better results in two precipitation
stations (POR02 and POR096). In terms of RMSE (Table 7; Fig. 3(S) bottom), SCK
achieved higher results in six out of 12 stations, with OK performing better in four
stations and FAO resulting in the same precipitation stations as MAE.

The error metrics for daily and cumulative monthly precipitation can differ because
they consider different aspects. Daily rainfall provides information on the amount of
precipitation that falls on a specific day. Cumulative monthly precipitation data, on the
other hand, provide information on the total amount of precipitation that falls in a given
month. The differences in the error metrics reflect the fact that daily precipitation can
exhibit high variability, while monthly precipitation is generally smoother and more
consistent.

Considering all performance metrics (Tables 6 and 7; Figs. 1(S) to 3(S)), the results
of the OK and SCK are comparable. Differences between estimates increase as sec-
ondary data become more numerous than primary data. On the downside, a large data
set on elevation implies an extremely long time for the SCK estimation. Furthermore,
there is no significant improvement in using the SCK even though the correlations
between the two variables are good (Table 5).

The cross-validation values of observed and estimated daily rainfall for 1985 values
for the 12 chosen stations are plotted in Fig. 7. The 45° line indicates a perfect fit
between the observed and estimated values.

Taking into consideration daily estimation across methods, kriging-based estimates
are weighted on spatially distributed observations at the same time (Eq. (5)), which
implies that dry days are well identified, while localized intense rainfall events may
be smoother than actual ones; the FAO method relies heavily on the best-correlated
station, which means that all weather events (both dry and intense) are replicated
across the regression line (Eq. (2)).

One of the advantages of the kriging-based approaches over the FAOmethod is that
they can also provide the evaluation of the uncertainty associated with the estimation.
Figure 8 shows an example of error variance estimation for January computedwithOK
(a) and SCK (b) and the difference between them (c). The OK variance was calculated
based on information from the 60 precipitation stations. In contrast, in addition to
the precipitation data, 110 elevation data points, including 60 elevation data points
collected at monitoring stations and 50 elevation data points retrieved from the DEM
on a regular grid with a side length of 15 km, were used for the SCK.

The error variance is zero at the data positions and increases away from them. The
hot spots in the OK variance map (Fig. 8a) denote the areas where the estimation
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Fig. 7 Cross-validation for the selected stations for the year 1985
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Fig. 8 Error variance estimation of daily precipitation for January according to OK (a), SCK (b) and dif-
ference between OK and SCK variances (c). The cross represents the location of the rainfall data, and the
circle shows the location of the elevation information (second variable in cokriging)

becomes more uncertain, resulting in higher error variance, due to the lack of infor-
mation in those areas. The use of the auxiliary information (SCK method) can help in
reducing the estimation variance (Fig. 8b). By incorporating additional information
from the secondary variable, SCK provides a more accurate estimate of the primary
variable, especially in areas where there are no primary data points available. Figure 8c
shows the difference between the error variances of OK and SCK. The areas where
the difference is the greatest are the areas where the SCK method shows the great-
est improvement over OK. These areas are likely to be where there are few primary
data points available, and the SCK method incorporates additional information from
secondary variables.

Overall, the results shown inFig. 8 suggest that the use of SCKcan lead to significant
improvements in the accuracy of spatial interpolation, particularly in areaswith limited
primary data and where auxiliary information can be incorporated to improve the
estimation. The SCK estimator is theoretically better because its error variance is
always less than or equal to the error variance of kriging (Goovaerts 1997).

5 Conclusion

In this study, an alternative gap-filling approach using kriging-basedmethods (OK and
SCK) is presented and comparedwith a determinist technique (FAOmethod). The case
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study involves estimatingmissingdaily precipitation data at certainmonitoring stations
located in the Portuguese portion of the Guadiana River basin. The proposed approach
involves fitting kriging and cokriging semi-variograms to the monthly averages of the
daily rainfall data over the entire time series of each station. This results in the creation
of 12 semi-variograms, one for each month.

According to the outcomes obtained, the geostatistical techniques (OK and SCK)
outperformed the deterministic method (FAO).

Even though it is highly dependent on the constraints imposed, the FAO is the
least computationally demanding method to use because it is based on a simple linear
regression between two correlated stations. As long as the imposed restrictions are
met, the FAO method can be a viable approach to perform gap filling. However,
unlike geostatistical approaches, it does not account for spatial correlation and does
not provide a measure of the uncertainty associated with the results.

On the other hand, geostatistical estimation requires a sufficient number of reli-
able observations to ensure the accuracy of the estimates and the computation of
the semi-variograms, which govern the spatial variability. Cokriging is much more
computationally demanding than kriging because semi-variograms (for each variable)
and cross semi-variograms must be inferred and jointly modelled, resulting in a large
cokriging system to be solved.

The use of monthly semi-variograms in kriging-based methods proposed in this
study leads to satisfactory results and to a significant reduction of the computation
time when compared to the standard kriging-based approach that involves computing
variograms for each day. However, the disadvantage of using this procedure is that
it may smooth the local extreme rainfall events. In fact, the monthly averaged semi-
variograms may not accurately estimate the intensity and the extent of such events.
With the FAO approach, on the other hand, the impact of extreme events depends on
the correlation between the monitoring stations and available data. An extreme event
is estimated in a monitoring station only if a highly correlated monitoring station, in
which the extreme event is detected, exists.

Although SCK is expected to provide better results than OK, it did not signifi-
cantly improve the estimates in this study. Although the monthly correlations between
precipitation and elevations are above 0.4, the SCK shows slight improvements in esti-
mation at both daily and monthly scales. In conclusion, OK provides a good balance
of computational effort and estimation accuracy, and it is considered the best estimator
for the area under study.

To speed up the cokriging process and take advantage of the availability of densely
sampled secondary variable (i.e. high-resolution digital elevation models), colocated
cokriging can be applied as a forthcoming development. It avoids instability caused
by highly redundant secondary data; furthermore, it is faster, since it calls for a smaller
cokriging system (Goovaerts 1997).

Future works will deal with the application of the proposed method to the temper-
ature. In particular, the application of cokriging could be very promising due to the
high dependency of temperature on the elevation.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11004-023-10078-6.
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