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Abstract
A geophysical Bayesian inversion problem may target the posterior distribution of
geological or hydrogeological parameters given geophysical data. To account for the
scatter in the petrophysical relationship linking the target parameters to the geophysical
properties, this study treats the intermediate geophysical properties as latent (unobserv-
able) variables. To perform inversion in such a latent variable model, the intractable
likelihood function of the (hydro)geological parameters given the geophysical data
needs to be estimated. This can be achieved by approximation with a Gaussian proba-
bility density function based on local linearization of the geophysical forward operator,
thereby, accounting for the noise in the petrophysical relationship by a correspond-
ing addition to the data covariance matrix. The new approximate method is compared
against the general correlated pseudo-marginalmethod, which estimates the likelihood
byMonteCarlo averagingover samples of the latent variable. First, the performances of
the two methods are tested on a synthetic test example, in which a multivariate Gaus-
sian porosity field is inferred using crosshole ground-penetrating radar first-arrival
travel times. For this example with rather small petrophysical uncertainty, the two
methods provide near-identical estimates, while an inversion that ignores petrophys-
ical uncertainty leads to biased estimates. The results of a sensitivity analysis are
then used to suggest that the linearized Gaussian approach, while attractive due to its
relative computational speed, suffers from a decreasing accuracy with increasing scat-
ter in the petrophysical relationship. The computationally more expensive correlated
pseudo-marginal method performs very well even for settings with high petrophysical
uncertainty.
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1 Introduction

This work targets a Bayesian inverse problem in which the posterior distribution of
target geological or hydrogeological parameters θ are inferred from geophysical data
y. Petrophysical relationships linking (hydro)geological variables (e.g., permeability,
clay fraction, salinity) to geophysical properties (e.g., dielectric permittivity, elec-
trical conductivity, magnetic susceptibility) must then be introduced (e.g., Hinnell
et al. 2010; Kowalsky et al. 2005). Such relationships are often inherently uncer-
tain (e.g., Mavko et al. 2009), however, in most hydrogeophysical inversion studies
targeting hydrogeological properties, the predictive power of the petrophysical rela-
tionship is assumed to be perfect provided that the right parameter values are used (e.g.,
Lochbühler et al. 2014; Kowalsky et al. 2005). Brunetti and Linde (2017) show that
this assumption may lead to bias, too narrow uncertainty bounds and overly variable
parameter estimates.

Brunetti and Linde (2017) distinguish three sources of uncertainty in the petro-
physical relationship: model, parameter and prediction uncertainty. While the first
two result from uncertainty related to the choice of the petrophysical model and its
parameter values, the latter arises from scatter and bias around the calibrated model.
As in Brunetti and Linde (2017), only petrophysical prediction uncertainty is consid-
ered here, using a latent variable model formulation which expresses the geophysical
properties as X = F(θ) + εP , with F(·) being the petrophysical relationship and εP
the petrophysical prediction error (PPE). The inclusion of the random effect of the
PPE in the latent variable X makes the likelihood function p(y|θ) intractable. In this
study, two alternative methods are investigated to approximate this likelihood function
in a Metropolis–Hastings algorithm (MH algorithm; Metropolis et al. 1953; Hastings
1970). The first approach is a Gaussian approximation based on local linearization of
the geophysical forward operator. Thereby, the effect of the noise in the petrophysical
relationship is included by a corresponding addition to the data covariancematrix. This
new approach which is similar to the so-called delta method (Van der Vaart 2000) was
suggested by Linde et al. (2017), but it has remained untested to date. This approxi-
mate method is compared against the correlated pseudo-marginal (CPM) method of
Deligiannidis et al. (2018), which is based on the pseudo-marginal (Beaumont 2003;
Andrieu and Roberts 2009,PM) method using Monte Carlo sampling of the latent
variable to estimate the likelihood. Friedli et al. (2022) introduced and adapted the
CPM method to a geophysical setting and demonstrated that in data-rich geophysical
settings with low noise levels, it is essential to both use a well-working importance
sampling strategy for the draws of latent variables and to correlate the latent samples
used in the proposed and current states of the Markov chain.

In Friedli et al. (2022), the CPM method is compared to the original formulation
of lithological tomography (Bosch 1999) and the so-called full inversion approach
of Brunetti and Linde (2017). This latter method avoids intractable likelihood func-
tions by targeting the joint posterior PDF (θ , x) �→ p(θ , x|y) of the hydrogeological
and geophysical parameters. Within the original lithological tomography method, first
the target variable is sampled using the proposal scheme of the MH and second, one
realization of the latent variable is drawn with conditional sampling. This actually
represents a simplified form of the PM method with only one latent variable sample
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and without importance sampling. The original form of lithological tomography leads
to high variability in the estimate of the likelihood function, with the consequence of
the algorithm often being highly inefficient (Brunetti and Linde 2017). Within the full
inversion of Brunetti and Linde (2017), the latent variables are treated as additional
target variables and an MH proposal scheme is used to draw new realizations of both.
Friedli et al. (2022) show that this approach becomes inefficientwith increasing dimen-
sionality of the target and latent space and suffers from strong (posterior) correlations
between the target and latent variables. Friedli et al. (2022) present a comparison of
CPM with the original lithological tomography and full inversion approaches in a
weakly non-linear setting showing that the CPM method outperforms the others by
greatly enhancing the posterior exploration. While the CPMmethod already has been
tested for geophysical inversion problems, the linearized Gaussian approach has not
been applied to far and in this present study, the focus is on comparing this approximate
approach against the general CPM method.

As a synthetic test case, a similar setting as in Friedli et al. (2022) is considered
and multi-Gaussian porosity fields are inferred using crosshole ground-penetrating
radar (GPR) first-arrival travel times. As in Friedli et al. (2022), a high-dimensional
parameterization of the target porosity field is used. Subsequently, a sensitivity analysis
is made to explore the performances of the linearized Gaussian approach and the CPM
method as a function of increasing petrophysical prediction uncertainty. To avoid the
challenges of a very-high dimensional target space in this sensitivity analysis, the
complexity of the porosity field is reduced and it is assumed to be layered.

This contribution is a natural extension of the study by Friedli et al. (2022), which
only considered the CPM method. While the fundamental concepts of the considered
problem and the CPM method are repeated, the introduction and assessment of the
linearized Gaussian approach is completely new. The manuscript is structured as fol-
lows: Sect. 2 gives a methodological overview of the considered latent variable model,
Bayesian inference with intractable likelihoods, the linearized Gaussian approxima-
tion approach, the CPM method and the performance assessment metrics. Section3
presents the results of our synthetic case study inferringmulti-Gaussian porosity fields.
In Sect. 4, the sensitivity analysis is presented. Finally, the study finishes with a dis-
cussion and conclusions in Sects. 5 and 6.

2 Methodology

2.1 Latent Variable Model

In the considered setting, the data vector y = (y1, y2, . . . , yT ) (geophysical data) is
given by,

Y = G(X) + εO = G(F(θ) + εP ) + εO , (1)

with X = (X1, X2, . . . , XL) denoting the latent variable (geophysical property) and
θ = (θ1, θ2, . . . θd) the target parameters (hydrogeological parameters). The variable
X is referred to as a latent because it includes thePPEεP ,which is unobservable (latent)
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but affects the observations. G : RL → R
T with εO and F : Rd → R

L with εP
refer to the physical forward solver with the observational noise and the petrophysical
relationship with the PPE, respectively. In what follows, random variables and random
vectors are referred to with upper-case letters and realizations thereof with lower-case
letters. Assuming Gaussian errors, it holds,

p(x|θ) = ϕL(x;F(θ),�P ), p(y|θ , x) = ϕT (y;G(x),�Y), (2)

with ϕM (·;μ,�) denoting the PDF of a M-variate normal distribution with mean μ

and covariancematrix�. In the test example, the target parameters θ = (θ1, θ2, . . . θd)

describe a Gaussian random field parameterized on a grid of size D × D(d = D2). It
holds,

p(θ) = ϕD2(θ;μθ ,�θ ), (3)

and it is assumed that the mean μθ and the covariance matrix �θ of the target field are
known.

2.2 Bayesian Inference and Intractable Likelihoods

Bayesian inversion problems target the posterior probability density function (PDF)
p(θ |y) of the model parameters θ given the measurements y. In Bayes’ theorem, this
posterior PDF is given by,

p(θ |y) = p(θ)p(y|θ)

p(y)
, (4)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y|θ) and
the evidence p(y). As it is not possible to sample directly from the posterior, we use
the Metropolis–Hastings algorithm (MH algorithm; Metropolis et al. 1953; Hastings
1970). At iteration j , the MH algorithm proposes a new model realization using the
model proposal density q(·|θ ( j−1)), which is then accepted or rejected based on the
acceptance probability,

αMH

(
θ ( j−1), θ ( j)

)
= min

{
1,

q(θ ( j−1)|θ ( j))p(θ ( j))p(y|θ ( j))

q(θ ( j)|θ ( j−1))p(θ ( j−1))p(y|θ ( j−1))

}
. (5)

To implement the MH algorithm, the likelihood function θ �→ p(y|θ) has to be
evaluated,

p(y|θ) =
∫

p(y|θ , x)p(x|θ)dx. (6)

In a latent variable model, this integral has generally no analytical form, leading to an
intractable likelihood function.
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2.2.1 Proposal Scheme

When applying the MH algorithm to generate posterior samples, it is essential to
choose a well-working proposal density q(·|θ ( j−1)). Cotter et al. (2013) showed that
standard random walk MCMC algorithms entail highly inefficient performance and
strong dependence on the discretization when targeting high-dimensional Gaussian
random fields. As a solution, they suggest proposal schemes that preserve the prior
PDF, resulting in anMH algorithm for which the acceptance ratio only depends on the
likelihoods. In geophysics, this proposal scheme is known as the extended Metropolis
algorithm (Mosegaard and Tarantola 1995). If the target space is high-dimensional,
the prior-preserving proposal scheme still needs to be chosen carefully (Ruggeri et al.
2015). Therefore, Friedli et al. (2022) introduce a prior-preserving version of the adap-
tive multi-chain algorithm DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis
using an archive of past states; Laloy and Vrugt 2012).

2.3 Gaussian Approximation of the Intractable Likelihood

The new approach to approximate the intractable likelihood (Eq.6) relies on the
linearized Gaussian approximation proposed by Linde et al. (2017). Here, the data
covariance matrix given by the observational noise �Y (Eq. 2) is adjusted by adding
an additional contribution accounting for petrophysical prediction uncertainty. For
our latent variable model, a first-order Taylor expansion of x �→ G(x) around F(θ) is
used,

Y = G(F(θ) + εP ) + εO ≈ G(F(θ)) + JF(θ)εP + εO , (7)

with JF(θ) denoting the Jacobian (sensitivity) matrix of the forward solver corre-
sponding to F(θ). Due to its dependence on F(θ), the sensitivity matrix is evolving
between iterations (with changing θ ). Using Gaussian assumptions for p(εO) =
ϕT (εO; 0,�Y) and p(εP ) = ϕL(εP ; 0,�P ) (Eq. 2), the likelihood function (Eq. 6)
is approximated by,

p̂(y|θ) = ϕT (y;μY,
∼

�Y) with μY = G(F(θ)) and
∼

�Y = JTF(θ)
�PJF(θ) + �Y.

(8)

As the linearization is made around G(F(θ)) and not around G(F(θ)+ εP ), errors
arisewhen the resulting Jacobians differ. For a linear geophysical problem, there are no
approximation errors. Figure 1 shows a flow chart describing this approach at iteration
j ; in what follows, this method will be referred to as LinGau.

2.4 Correlated Pseudo-marginal Method

The pseudo-marginal method (Beaumont 2003; Andrieu and Roberts 2009) estimates
the intractable likelihood (Eq.6) by Monte Carlo averaging over samples of the latent
variable,
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Fig. 1 Flow chart illustrating the LinGau method at iteration j

p̂N (y|θ) = 1

N

N∑
n=1

w(y|Xn, θ), with w(y|Xn, θ) = p(y|θ ,Xn)p(Xn|θ)

m(Xn|θ)
, (9)

whereXn
i .i .d∼ m(·|θ) for n = 1, 2, . . . , N withm(·|θ) denoting an importance density

function. This implies that after proposing a new target parameter θ , different latent
variable realizations Xn with the same θ and different PPE εP are sampled. Then, the
likelihood of each realization can be calculated and the intractable likelihood function
is estimated by averaging over the obtained values. To account for the influence of
importance sampling on the draws of the latent variable, weighted averaging has to be
applied. Using this non-negative unbiased estimator of the likelihood leads to a MH
algorithm sampling the same posterior distribution as one using the true likelihood
(Beaumont 2003).

To obtain an efficient algorithm, it is crucial that the variance of the log-likelihood
ratio estimator used in each MH step is low enough (Doucet et al. 2015). This can be
ensured by choosing a well-working importance sampling density and by selecting a
number of latent variable samples N which is high enough. Following Friedli et al.
(2022), a Gaussian approximation x �→ ϕL(x;μI S,�I S) of x �→ p(x|θ , y) is used as
importance density, which implies the same linearization of the forward operator as
in the LinGau approach (Eq.7). An inappropriate linearization will lead to errors in
the LinGau estimates, while it will only affect the efficiency of the pseudo-marginal
method. To reduce the magnitude of N , Deligiannidis et al. (2018) introduced the
correlated pseudo-marginal (CPM) method by which the samples of latent variables
used in the likelihood ratio estimator are correlated. Assuming a standard-normal
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Fig. 2 Flow chart illustrating the CPM method with importance sampling at iteration j

distributed latent variable X, the CPM method correlates one draw of iteration j with
one of the former by,

X( j) = ρX( j−1) +
√
1 − ρ2ε, with ρ ∈ (−1, 1) and

ε = (ε1, ε2, . . . , εL), εi
i .i .d.∼ N (0, 1). (10)

The general applicability of the CPM method is not limited by the assumption that
the latent variable has a standard-normal distribution since numerous distributions can
be obtained by transformations from standard normal variates (e.g. Chen et al. 2018).
The procedure of the CPMmethod in iteration j is illustrated in Fig. 2. Further details
about the method can be found in Friedli et al. (2022).

2.5 Performance Assessment

The primarily focus of the assessment of the inversion results is on the exploration
of the posterior PDF. To declare convergence of the MCMC chains, the R̂-statistic of
Gelman and Rubin (1992) is used. Subsequently, the posterior samples obtained with
the considered methods are compared. For a numerical assessment of the posterior
estimates, the logarithmic score (logS; Good 1952) is employed. This is a so-called
scoring rule (Gneiting and Raftery 2007) evaluating the accuracy of a predictive PDF
θ �→ p̂(θ) with respect to a true value θ true. The logarithmic score is defined as
logS( p̂, θ true) = − log p̂(θ true) and kernel density estimates with manually-selected
bandwidths are applied to transform the posterior samples into a PDF. Furthermore,
the number of target parameters in which the true porosity value θtrue is in the range
of the posterior samples is considered, as well as the spread of the posterior samples
as quantified by their standard deviations.
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3 Case Study

The new linearized Gaussian approach is compared against the CPM method using
the first case study considered by Friedli et al. (2022).

3.1 Synthetic Data Generation

The considered model domain is a water-saturated subsurface area of 7.2m × 7.2m.
As in Friedli et al. (2022), the target porosity field is assumed to be a Gaussian random
fieldwith knownmean (μθ = 0.39) and exponential covariance function. For the latter,
a sill of 2 × 10−4 is assumed such as geometric anisotropy with the main, horizontal
direction having an integral scale of 5.4m and the integral scale ratio between the
horizontal and vertical direction being 0.13. For the parameterization of the porosity
field, a regular (50 × 50)-dimensional grid (D2 = 2500) is used. The “true” porosity
field θtrue for this case study is depicted in Fig. 3a. Given the porosity θ , the dielectric
constant κ is predicted using the complex refractive index model (CRIM; Roth et al.
1990), from which the slowness field (our latent variable X) can be derived,

x =
√
c−2κ + εP = 1

c

(√
κs + (

√
κw − √

κs)θ
) + εP , (11)

with κw and κs denoting the dielectric constants of water [81] and mineral grains [5],
respectively, and c referring to the speed of light in vacuum [0.3m/ns]. A PPE εP
is added (Fig. 3b), which is a realization of a centred Gaussian random field over a
regular two dimensional grid of size 50× 50. Thereby, the same correlation structure
as for the porosity field is used with a sill of 7.11×10−2 ns2/m2. The “true” slowness
field is depicted in Fig. 3c while Fig. 3d shows a scatter plot depicting the influence of
the PPE on the slowness values.

The 625 first-arrival travel times are generated using 25 equidistant GPR transmit-
ters located on the left side and 25 receivers on the right side of the model domain
(the transmitter-receiver layout is shown in Fig. 3c). As forward solver y �→ G(y), the
non-linear (eikonal) solver time2D of Podvin and Lecomte (1991) is used. The obser-
vational noise εO is assumed to be i .i .d. centered normal with a standard deviation
of 1 ns. The noise-affected synthetic first-arrival traveltimes are depicted in Fig. 3e.

3.2 Inversion Setting and Prior Assumptions

As the considered target space is high-dimensional with 2500 unknown parameters, it
is crucial to choose a well-working proposal scheme for the MH algorithm. Due to its
convincing performance in Friedli et al. (2022), this study relies on prior-preserving
DREAM(ZS) proposals (Sect. 2.2.1) and four MH chains are run in parallel. For both
the LinGau and the CPM method, the linearization used to adjust the data covariance
matrix and the importance sampling, respectively, is updated every tenth MCMC
iteration. For the CPM method, a configuration of N = 10 and ρ = 0.95 is used as
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Fig. 3 The synthetic “true” model adapted from Friedli et al. (2022): (a) porosity field θtrue, (b) PPE field
εP true, (c) slowness field xtrue, (d) scatter plot of porosity and slowness values per grid cell, the line depicts
the petrophysical relationship (Eq.11) without considering PPE and (e) set of noise-affected first-arrival
travel times y

this choice guarantees an appropriate variance of the log-likelihood ratio estimator
(see, Friedli et al. 2022).

For the prior on porosity, a Gaussian PDF p(θ) = ϕ2500(θ;μθ ,�θ ) with known
mean μθ and covariance structure �θ (the same values as for the data genera-
tion) is assumed. Then, the 2500-dimensional vector Z defining the porosity by
θ = μθ + �θ

1/2Z is inferred, with Z having a multivariate standard-normal prior
PDF. For the PPE εP also a Gaussian prior PDF p(εP ) = ϕ2500(θ; 0,�P ) with
known covariance structure �P is used. For the likelihood function, centred indepen-
dent Gaussian measurement errors εO with a standard deviation of 1 ns as in the data
generation process are assumed.

The LinGau and CPMmethods are compared with an inversion ignoring the petro-
physical prediction uncertainty (NoPPE). In this case, the intractable likelihood p(y|θ)

is estimated by ϕT (y;G(F(θ)),�Y). As prior-preserving DREAM(ZS) proposals lead
to an unfeasible low acceptance rate in this case, standard DREAM(ZS) proposals are
employed.

3.3 Results

Figure 4a, b display the posterior mean estimates of the LinGau and the CPMmethod,
respectively. Both images look very similar and the structural resemblance to the true
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Fig. 4 Estimated posterior means of the porosity field θ obtained with (a) the LinGau method, (b) the CPM
method and (c) an inversion ignoring the petrophysical prediction uncertainty. Corresponding pixel-wise
logarithmic scores assessing the estimated posterior PDFs for (d) the LinGau method, (e) the CPMmethod
and (f) the inversion ignoring the petrophysical prediction uncertainty

porosity field in Fig. 3a is high. Both methods need about 100,000 MCMC iterations
to converge and have a very similar acceptance rate (AR) of 10%. They also lead to a
similar performance in terms of posterior exploration as both methods sample the true
porosity value in all of the pixels and have very similar median standard deviations
and logarithmic scores (Fig. 4d, e; Table 1). By comparing the estimated posterior
means of LinGau and CPM (Fig. 4a, b) with the one of the inversion ignoring the
petrophysical prediction uncertainty (Fig. 4c), it is found that the mean estimate of the
inversion ignoring the petrophysical prediction uncertainty has larger amplitudes even
if the mean estimates are structurally similar. Its posterior exploration is less exten-
sive, leading to a higher median logarithmic score (Fig. 4f), roughly half the median
posterior standard deviation and many pixels that never sample the corresponding true
porosity value (about one eighth of the pixels; Tab. 1). For this example exhibiting
weak non-linearity and rather small petrophysical prediction uncertainty, it is con-
cluded that the performance for LinGau and CPM are similar. On the other hand,
ignoring petrophysical prediction uncertainty leads to biased estimates and too small
uncertainty bounds.

4 Sensitivity Analysis

In the previous synthetic test case, both the LinGau and the CPM method perform
comparably well. As the computational cost of the LinGau method is lower (no need
for N repeated sampling of the latent variable at each iteration), the use of the LinGau
methodwould be recommended in such a setting. However, the degree of non-linearity
in the geophysical forward operator is rather low for this test case. This is illustrated
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Table 1 Summary of the results for the Gaussian porosity field example: the acceptance rates (AR), the
convergence (Conv) showing the number of iterations needed for the 99th percentile of the parameter’s
R̂-statics to be below 1.2, the percentage of pixels in which the true porosity value θ true lies within the
range of posterior samples, the median logarithmic score (logS) and the median posterior standard deviation
(Post SD)

Method AR (%) Conv θ true (%) logS Post SD

LinGau 10 108,000 100.00 1.10 10.7 × 10−3

CPM 10 96,000 100.00 1.16 10.5 × 10−3

No PPE 15 104,000 87.24 2.45 5.2 × 10−3

Fig. 5 Exemplary GPR ray paths for (a) the true slowness field xtrue of the test case presented in Sect. 3
and (b) the slowness field resulting from the true porosity field θ true when ignoring the PPE εP

in Fig. 5 showing exemplary ray paths for the true slowness field xtrue (Fig. 5a) and the
slowness field based on the true porosity field θ true but ignoring the PPE (Fig. 5b): most
ray paths are close to linear and they are very similar for both fields. Since the LinGau
approximation of the likelihood (Eq. 8) relies on a first-order Taylor expansion of the
physical forward solver (Eq. 7), it deteriorates when adding PPE εP realizations lead
to different ray-paths than the field around which the linearization is made. For a linear
geophysical relationship, the first-order Taylor expansion is exact for any degree of
Gaussian petrophysical prediction uncertainty.

In practice, the question is how to decide, for a given setting, if the LinGau approxi-
mation of the likelihood is accurate enough. To shed light on this, a sensitivity analysis
exploring the performances of the LinGau and CPM methods for different levels
of petrophysical prediction uncertainty is performed. To make the comparison more
didactic and to avoid unrelated challenges associated with a very-high dimensional
target space, the porosity field is assumed to be layered. Generally, the same setup as
in Sect. 3 is considered, but only with 13 transmitters and receivers (169 data points).
The observational error is assumed to have a standard deviation of 1 ns.
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Fig. 6 Synthetic “true” models for the layered test cases with the (a) same porosity field θ true and different
PPE for (c) Setting 1 and (e) Setting 2. The right column shows the slowness fields with exemplary ray
paths for (b) the true porosity θ true without adding PPE, (d) Setting 1 and (f) Setting 2

4.1 Likelihood Estimation

The “true” porosity field θ true = (θ1, . . . , θ10) is generated by assuming 10 horizontal
layers of equal thickness and drawing independently from aGaussian distribution with
mean 0.3 and standard deviation 0.03 (Fig. 6a). The resulting slowness field (Eq.11)
is distorted with a layered PPE field having zero mean and independent layers with
standard deviation σP . For each of sixteen different standard deviation values σP
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Fig. 7 Estimators of log-likelihood p(y|θ true) of the true porosity field in the layered setting as a function
of petrophysical prediction uncertainty (σP ): (a) importance sampling estimate using 1000 samples of the
PPE, (b) LinGau estimate and (c) estimate ignoring the PPE. For each value of σP , the same underlying
porosity field θ true is used with 100 different realizations of the PPE, leading to 100 data sets each. The
crosses indicate the values for each data set and the solid lines their mean. (d) The mean absolute difference
between the values of (a) and (b) are shown in darkgrey triangles and (a) and (c) in lightgrey crosses. (e)
The RMSEs in the first-order Taylor expansion (Eq.7) of the data sets; the black horizontal line shows
the standard deviation of the observational noise (1ns). The red symbols in (a)–(e) indicate the errors of
the settings used in the subsequent inversion examples; thereby in (d), the red triangles refer to the errors
obtained when using LinGau and the red crosses refer to the errors obtained when ignoring PPE

ranging from 0.0 to 1.5, one hundred data sets are generated using the same porosity
field θ true (Fig. 6a) but different realizations of the PPE εP . Thereby, the true log-
likelihood value p(y|θ true) of θ true has a different value depending on the realization
of the PPE and the observational noise, even for the same σP . Two exemplary PPE
fields and resulting slowness fields with σP = 0.5 and σP = 1.0 are depicted in
Fig. 6c–f, respectively.

For each of the one hundred data sets per value of σP , p(y|θ true) is approximated by
using the LinGau approach. The corresponding values and their mean for the different
σP are shown in Fig. 7b. Those values are compared with the log-likelihood estimates
obtained under the assumption of no PPE (Fig. 7c). Eventually, the aim is to assess
these estimates by comparing them to the true log-likelihood values p(y|θ true) of the
corresponding data set. Due to the intractability inherited by the latent variable model,
the analytical solution remains elusive and the unbiased importance sampling estimate
of Eq.9 employing 1000 realizations of the PPE (Fig. 7a) is applied. Due to the high
number of samples, a well-specified importance density and the low dimensionality of
the problemat hand, this estimator is close to the true log-likelihood value. To show that
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this assumption is valid, the standard deviation of the importance sampling estimator
of p(y|θ true) for both the exemplary settings with σP = 0.5 and σP = 1.0 of Fig. 6
is evaluated (indicated with red symbols in Fig. 7). For both σP = 0.5 and σP = 1.0,
the standard deviation is below one for log-likelihood values around -260. With the
underlying assumption of the estimators in Fig. 7a being close to the true value, they
are compared with the ones of the LinGau method (Fig. 7d, darkgrey triangles). The
absolute errors in the log-likelihood estimation of LinGau increase with increasing σP .
While the mean absolute error in the log-likelihood estimator for σP = 0.5 is around
30, it grows to 150 for σP = 1.0 and to 400 for σP = 1.5. However, in comparison to
the errors of the method ignoring the PPE (Fig. 7d, lightgrey crosses), the errors of the
LinGau approach are comparably small.When ignoring the PPE completely, the mean
absolute error for σP = 0.5 is about 400, for σP = 1.0 it is 1700 and for σP = 1.5 even
5000. Thereby, themethod ignoring the PPE almost always underestimates the true log
likelihood values p(y|θ true) as it cannot account for the true PPE and therefore gives
reduced likelihood to the true porosity field θ true. The same holds true for the LinGau
approach with increasing σP as the method accounts for an increasingly wrong PPE.

The LinGau approximation relies on a first-order Taylor expansion of the physical
forward solver (Eq.7). This approximation deteriorates with increasing degree of PPE
as can be seen in Fig. 7e depicting the root mean square errors (RMSE) of the Taylor
expansions for the data sets with increasing σP . While the mean of the RMSEs is
comparable to the observational noise for σP = 0.5, it is twice as large for σP = 1.0.
To establish the influence of the discussed errors on the inversion results, the setups
introduced in Fig. 6 that are indicated with red symbols in Fig. 7 are considered: The
first with σP = 0.5 employs rather small errors, however, the standard deviation of
the PPE is twice as high as in the case-study in Sect. 3. In the second setting with
σP = 1.0 the errors are doubled and a realization is targeted where the error in the
LinGau likelihood approximation is especially high (about 460 while the mean error
for σP = 1.0 is 150).

4.2 Inversion

Using the two layered synthetic data sets (Fig. 6), the MH algorithms are run with
three chains in parallel. Due to the simplicity of the problem, a basic Gaussian random
walk is used as proposal scheme, within which, for comparison purposes, a step width
(standard deviation) of 0.005 is applied for allmethods. Furthermore, the linearizations
used in the LinGau and CPMmethods are updated at everyMCMC iteration to prevent
any errors resulting from less frequent updates. For the CPM method, importance
sampling and a configuration of N = 3, ρ = 0.9 for the first and N = 50, ρ =
0.975 for the second setting is used. For the layers of the porosity field, independent
Gaussian prior PDFs with mean 0.3 and standard deviation 0.03 and for the PPE
layers, independent centredGaussian priorswith a standard deviation of 0.5 and 1.0 are
assumed, respectively. Finally, for the likelihoods uncorrelatedGaussian observational
noise with a standard deviation of 1 ns is assumed.

The estimatedmarginal posterior PDFs for both settings are shown in Fig. 8 for three
of the ten layers. These results are representative of the other layers, but a summary
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Fig. 8 Estimates of the marginal posterior PDFs for the layered test cases: Setting 1 for (a) layer 2, (b)
layer 5 and (c) layer 8. Setting 2 for (d) layer 2, (e) layer 5 and (f) layer 8. The solid vertical lines indicate
the true porosity values

of the performance for all layers is for completeness provided in Table 2. For the
first setting (Fig. 8a–c), the modes of all considered methods are located around rather
similar values. While the method ignoring the PPE generates samples that do not
include the true value of the porosity in half of the layers, both LinGau and CPM
capture the true value in all of the ten layers (Table 2). However, while the LinGau
method already doubles the standard deviation of the posterior samples compared to
the method ignoring the PPE, the CPM method leads to a further doubling compared
to LinGau (Table 2). Compared to the method ignoring the PPE, the LinGau method
reduces themedian logarithmic score from3.53 to−2.37 and theCPMmethod reduces
it even further to −2.71. For the second setting (Fig. 8d–f), rather different posterior
estimates are obtained for the three methods. The method ignoring the PPE generates
posterior samples which are far from the true porosity values and with a small standard
deviation (Table 2). The realizations obtained with the LinGau method have a twice
as high standard deviation but are also centered far from the true values. The CPM
method yields posteriors three times wider than those obtained with LinGau. Thereby,
while the posterior samples obtained with the CPM method include the true values
of the porosity in all layers, the LinGau method misses them for two layers and the
method ignoring the PPE in seven layers. The median logarithmic score of the CPM
method (−2.00) is distinctly lower than the one of the LinGau method (−1.35), which
in turn is dramatically lower than for the method ignoring the PPE (378.77).

123



70 Mathematical Geosciences (2024) 56:55–75

Table 2 Summary of the results obtained for the study targeting a layered porosity field: the acceptance
rates (AR), convergence with respect to the R̂-statics (Conv), the number of layers in which the true porosity
value lies within the range of posterior samples (θ true), the median logarithmic score (logS) and the median
posterior standard deviation (Post SD)

Method Setting AR (%) Conv θ true logS Post SD

LinGau 40 2500 10/10 −2.37 11.8 × 10−3

CPM 1 (σP = 0.5) 40 12,000 10/10 −2.71 21.9 × 10−3

No PPE 2 13,000 5/10 3.53 4.2 × 10−3

LinGau 40 6000 8/10 −1.35 15.0 × 10−3

CPM 2 (σP = 1.0) 30 51,000 10/10 −2.00 46.4 ×10−3

No PPE 2 20,000 3/10 378.77 7.2 × 10−3

5 Discussion

In this work, non-linear geophysical inversion problems involving uncertain petro-
physical relationships are targeted. Two different approaches to account for the
corresponding intractable likelihood function are explored: a linearized Gaussian
approximation (LinGau) and the correlated pseudo-marginal (CPM) method. The per-
formance of these two methods for examples with increasing petrophysical prediction
uncertainty is assessed. This work is a continuation of Friedli et al. (2022) as it is the
first time the LinGaumethod is employed and comparedwith the CPMmethod. A syn-
thetic crosshole travel-time tomography is first considered, with the aim of inferring
a water-saturated multivariate Gaussian porosity field in a situation of only moder-
ate non-linearity and petrophysical prediction uncertainty (adapted from Friedli et al.
2022). The results obtained with the LinGau and the CPM methods are very similar
(Fig. 4; Table 1), thereby, indicating that the approximate LinGau method works well
in this setting. The LinGau method is then to be preferred as it only necessitates one
forward simulation for each MCMC chain and iteration, while CPM with N = 10
(number of latent variable samples) uses ten times as many forward simulations. If
parallelization with N = 10 more processors are employed, then the computational
time can still bemade similar to the LinGau approach even if the overall computational
cost is significantly higher. For this test case, one iteration for one MCMC chain on
a standard laptop takes about 0.3 s for LinGau and 2.1 s for CPM (N = 10 and no
parallelization). Importantly, this example demonstrated that an inversion that ignores
petrophysical prediction uncertainty (the most common case in the literature) leads
to biased estimates and underestimations of the widths of the posterior estimates by a
factor of two.

In Sect. 4, the effect of the degree of petrophysical prediction uncertainty on the
likelihood estimation and inversion results is studied for the different methods. To
simplify the comparison, layered porosity and PPE fields are used. By comparing log-
likelihood estimates, it is shown that the errors in the LinGau method increase with
increasing degree of petrophysical prediction uncertainty, even if these errors aremuch
smaller than for the method ignoring petrophysical prediction uncertainty (Fig. 7). By
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selecting one data set with twice as high petrophysical prediction uncertainty as in the
previous multivariate Gaussian example (σP = 0.5, Fig. 6c) and one with four times
as high uncertainty (σP = 1.0, Fig. 6e), the influence of the likelihood estimation
errors on the inversion results is investigated. For the first setting (moderate degree of
PPE), the LinGau method performs less well than CPM (underestimation of posterior
uncertainty by a factor of two; higher logS scores). However, employing the LinGau
method still enables a reasonable approximation of the posterior modes of the layers.
Although the true log-likelihood value p(y|θ true) is underestimated by about 30 with
LinGau (Fig. 7d), the RMSE of the Taylor approximation is roughly on the same
order of magnitude as the observational error (Fig. 7e). That is different in the second
setting with a higher degree of PPE, where the true log-likelihood value p(y|θ true)
is underestimated by about 460 and the RMSE of the Taylor approximation is four
times as high as the observational noise. The resulting deterioration in performance
for the LinGau method is drastic: underestimation of the posterior uncertainty by a
factor of three and twice as high difference in the logS score to CPM than for the first
setting. The growing error in the LinGau estimate is due to the Jacobian JF(θ) being
increasingly different when considering or not considering the PPE (Fig. 6b, f). For
the CPMmethod, the growing petrophysical prediction uncertainty is accompanied by
a very important increase in the posterior standard deviation of the samples (Fig. 8d–
f), guaranteeing that the method samples the true porosity values even if the mode
of the posterior may be located at the wrong place. Even if the LinGau method still
provides much better results than the common approach of ignoring PPE altogether,
the linearization on which this method is based (Eq.7) is unable to account for non-
linear effects associated with specific PPE realizations. In contrast, the CPM method
only relies on the linearization to derive an importance sampling distribution and errors
in this distribution will only lead to slower convergence of the CPMmethod while still
targeting the true posterior distribution.

The approximation error of the first-order Taylor expansion used in the LinGau
method (Eq.7) growswith increasing non-linear effects related to the PPE. By compar-
ing the forward operators for latent variableswith (F(θ)+εP ) andwithout considering
the PPE εP (F(θ)), this relation can be established (as in Figs. 5 and 6). It is seen that
high standard deviations in the εP have an adverse effect on the approximation accu-
racy by highly influencing the forward operator. If the PPE εP strongly influences the
Jacobian (as in Fig. 6e), caution is advisedwhen applying the LinGaumethod (Fig. 7d).
To choose between the LinGau and the CPMmethod, this study recommends to inves-
tigate the RMSE of the first-order Taylor expansion (Fig. 7e) and to compare it with
the observational noise. For a setting when the RMSE is significantly lower than the
observational error (as for σP = 0.25 in Sect. 3), the recommendation is to use the
LinGau method due to its lower computational cost (the effect of the petrophysical
prediction uncertainty is incorporated into the likelihood function and no importance
sampling of latent variables is needed). If the RMSE is in the same order of magnitude
as the observational error (as for σP = 0.5 in Sect. 4), the LinGau method can be
applied if moderate errors in the posterior estimation are acceptable. If the RMSE is
clearly higher than the observational error (as for σP = 1.5 in Sect. 4), the exact CPM
method should be used. If this is computationally too expensive, one could consider
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accounting for the approximation error in the LinGau method by treating it as a model
error term (see e.g. Hansen et al. 2014).

The approximation underlying the LinGau approach could easily be incorporated in
deterministic inversion methods (using gradients), while this is impossible for CPM.
On the other hand, while the LinGau method requires Gaussian assumptions for the
PPE, the CPMmethod can sample the latent variables from a variety of possible distri-
butions. But in practice the CPM method needs a well-working importance sampling
strategy to be efficient. For the presented test cases, a decreasing acceptance rate for the
CPM method is observed with increasing petrophysical prediction uncertainty if the
number of latent variables N and correlation ρ are fixed. This occurs as our importance
sampling scheme gets more and more inaccurate, which can be compensated by using
larger N or ρ. Although the efficiency is reduced, the accuracy of the posterior samples
remains the same as the importance sampling is only used to decrease the variance of
the likelihood estimator. In contrast, the LinGaumethod does not only loose efficiency
with increasing non-linearity, but also leads to overconfident and biased estimates of
the target parameters as the approximation of the likelihood is getting increasingly
inaccurate (Fig. 8).

In the presented test cases, the mean and the covariance structure of the target and
petrophysical prediction error fields are assumed to be known. In a setting where they
are unknown, hierarchical Bayes could be employed (as e.g. in Laloy et al. 2015;
Brunetti and Linde 2017). A recent study by Friedli et al. (2023) targets a setting
where the problem is formulated differently: only the posterior mean and the covari-
ance structure are derived, while the small-scale variations in the model domain are
accounted for but not inferred. In this study, a crosshole ray-based setting that is only
weakly non-linear is considered. More non-linear problems such as electrical resis-
tivity tomography or surface-based seismic refraction tomography might exhibit an
even stronger sensitivity to petrophysical prediction uncertainty and the applicability
of the LinGau might be reduced compared with the present study. Indeed, the errors in
the LinGau approximation are not due to the petrophysical predication uncertainty as
such, but rather how individual realizations of it affects the sensitivity patterns com-
pared to the Taylor expansion that is performed in absence of petrophysical prediction
uncertainty. Even if the focus herein is on how to account for petrophysical prediction
uncertainty, both the LinGau and the CPM methods could be adapted to, for instance,
account for 3-D effects in 2-D inversions, variations in porosity in tracer-test tomogra-
phy targeting the permeability field, or to account for hydraulic storativity fluctuations
in hydraulic tomography studies. Indeed, this type of latent variable problem arises as
soon as the measured data do not only depend on the main parameters of interest but
also on some other variables influencing the response.

6 Conclusions

This work focus on geophysical inversion problems targeting the posterior distribu-
tion of (hydro)geological parameters while accounting for uncertain petrophysical
relationships and non-linear physics. The resulting intractable likelihood function is
accounted for by either the linearized Gaussian approximation (LinGau) method or
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the correlated pseudo-marginal (CPM) method. The LinGau method, so far untested
in geophysical inversion, is an approximate method that is computationally cheaper
than CPM as it does not necessitate a Monte Carlo estimation of the likelihood at
each MCMC iteration. In a first case study, a water-saturated multivariate Gaussian
porosity field is considered for which the scatter in the petrophysical relationship
and the non-linearity is comparatively small. In this setting involving crosshole first-
arrival travel times, the LinGau method succeeds equally well as CPM in exploring
the posterior distribution. For comparison, an inversion ignoring petrophysical uncer-
tainty provides biased results and too narrow uncertainty estimates. In a subsequent
sensitivity analysis considering layered fields, the degree of petrophysical prediction
uncertainty is increased, thereby introducing increasing inaccuracies associated with
the Taylor expansion on which the LinGau method is based. Consequently, the Lin-
Gau method produces increasingly inaccurate results as the petrophysical prediction
uncertainty grows such that the true values aremore andmore often unsampled and the
logarithmic scores are high. In contrast, the CPM method performs very well for all
settings and accommodate the growing uncertainty in the petrophysical uncertainty,
while this is only partially achieved by the LinGau method. The computationally less
intensive LinGau method is attractive when the impact of the scatter of petrophysical
prediction uncertainty is small compared to the observational noise. In comparison,
the computationally more costly CPM method is an exact and much more general
method that clearly outperforms the LinGau method when the petrophysical uncer-
tainty grows in magnitude, but it needs an efficient importance sampling distribution
to work well in practice. If the CPM method is computationally too expensive for
a given application and if petrophysical uncertainty is significant, it is still better to
use the LinGau method than inversions ignoring petrophysical prediction errors as the
resulting results are less biased and the underestimation of posterior uncertainty is less
pronounced.
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