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Abstract
With the rapid expansion in big data and artificial intelligence (AI), Earth sciences
are undergoing unprecedented advances in data processing and interpretation tech-
niques, as well as in facilitating data-driven discoveries of complex Earth systems.
This special collection explores scientific research related to data-driven discover-
ies in geosciences and provides a timely presentation of progress in developments
and/or applications of AI and big data approaches to multiple aspects of geosciences.
These include geohazards monitoring, mineral resource exploration, and environmen-
tal assessments. We hope this collection will inspire researchers and will transform
the work undertaken in the field of data-driven Earth science. While many challenges
remain, including the formidable tasks of transforming the deluge of geoscience data
into useable information and furthering knowledge via cutting-edge AI techniques, we
envision that data-driven discovery will revolutionize conventional methods of obser-
vation, analysis, modeling, and prediction in geosciences, and will further advance
scientific understanding of our complex Earth system.
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1 Introduction

The global community is presently facing considerable challenges in obtaining natural
resources (e.g., minerals, energy, water, foods, etc.) while risking unwanted environ-
mental effects of extreme events, such as global warming, loss of biodiversity, and
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natural/anthropogenic hazards (Sorkhabi 2022). When confronted with these chal-
lenges, the sustainable development of our world will require a deeper understanding
of how the Earth operates in order to better tackle or predict extreme events (which
must be better understood in terms of both the present and in deep-time Earth) (Cheng
2022). Progress in science and technology is a primary driving force in societal devel-
opment, as they help provide vital solutions to challenges. In the past decade, big data
and artificial intelligence (AI) have significantly altered the lifestyles and overall pros-
perity of society, while also influencing a fourth scientific paradigm—data-intensive or
data-driven science. This fourth paradigm follows the traditional paradigms of exper-
imental, theoretical, and computational sciences (Bell et al. 2009; Hey et al. 2009).
Driven by ever-expanding arrays of data and armed with digital technologies (e.g., AI,
big data analysis, and supercomputing), geoscientists are advancing the traditional
approaches of thinking in both industry and academia (Bergen et al. 2019; Sun et al.
2022).

Historically, geosciences have progressed using inductive, knowledge-driven (or
theory-guided) models by first generating a hypothesis and then collecting evidence
to prove or disprove these hypotheses (Agterberg 2020). In geosciences, knowledge-
drivenmodels rely on logical reasoningbasedonprior knowledgegainedbygeologists,
such as plate tectonics, evolutionary theory, and mineral deposit models. However,
constructing prior geoscience knowledge is subject to the paucity of (preserved or
exposed) rocks and limited observations, which hinder inferences and knowledge
discovery. Nonetheless, data-driven science, based on abduction with big data, offers
an opportunity for discovering new knowledge through AI techniques (e.g., machine
learning and knowledge graphs) without a specific hypothesis (or theory) in mind.
The advantages of data-driven discovery include transforming human learning by
itself into an integration of both human learning and machine learning, as well as
providing answers to known questions and formulating unknown answers to unknown
questions (Cheng and Zhao 2020).

In general, data-driven science consists of several basic activities, including data
capture, data curation, and data analysis (Hey et al. 2009). Data capture is the basis
of data-intense science. Over recent decades, the rapid development of remote and
in situ sensing techniques and the subsequent swift deployment of these technologies
have led to the explosive growth of geoscience data for both industry and academia.
Simultaneously, researchers have accumulated vast amounts of engineering and sci-
entific data; however, these legacy data, for example, might represent gold deposits
yet to be mined. Data curation, including data cleaning, data aligning, and convert-
ing meta-data, aims to build a data life cycle and form the data basis for conducting
data-driven discovery via AI techniques. Considerable efforts have already been ded-
icated to quantifying geosciences. Examples include Macrostrat, EarthChem, along
with many other data portals and databases. Data analysis and mining are key features
of the fourth paradigm of scientific research. These types of approaches are imper-
ative in tackling data deluge through cutting-edge AI techniques, including machine
learning, deep learning, and knowledge graphs.

Although the geoscience community has been slow in adopting AI and big data
techniques (relative to other disciplines), data-driven discovery is gaining popularity
amongst industry, government, and academia. This is reflected in the ever-increasing

123



Mathematical Geosciences (2023) 55:287–293 289

number of programs initiated, conferences andworkshops convened, and in the number
of related published research papers. For example, theUnited StatesGeological Survey
(USGS) proposed four innovation areas in their futurework, including big data, critical
mineral resources, ecological resources, and natural hazards. Furthermore, the USGS
suggested several potential directions for developing data-driven geosciences (Bristol
et al. 2012). In 2019, the Deep-Time Digital Earth (DDE) big science program was
initiated by the International Union of Geological Sciences (IUGS) with the intention
of reconstructing the co-evolution of life, geography, matter, and climate over the 4.6
billion years of Earth history using data-driven abductive discovery, as well as by
identifying the spatiotemporal distribution of global mineral and energy resources via
AI techniques (Cheng and Zhao 2020; Wang et al. 2021).

Over the past decade, the data-driven discovery paradigm has received consider-
able attention for solving a variety of geoscience questions and challenges (Sun et al.
2022). These solutions range from addressing fundamental questions of Earth science
to technical bottlenecks in engineering, such as the exploration of mineral and oil/gas
resources. As a practical application, data-driven techniques, such asmachine learning
and deep learning, have played crucial roles in improving data processingmethods and
approaches to interpreting data in the field of remote sensing (Zhu et al. 2017), applied
geophysics (Wang and Chen 2021; Yu and Ma 2021), and mineral prospectivity mod-
eling (Chen et al. 2022c; Cheng and Agterberg 1999). In addition to transforming
industries, data-driven science is also beginning to play an important role in advanc-
ing scientific discoveries of complex Earth systems, such as earthquake forecasting
(Mousavi and Beroza 2022), global climate change (Reichstein et al. 2019), plane-
tary interior structure (Wilding et al. 2022), the evolution of mass, life, and climate
in the early Earth (e.g., Chen et al. 2022b; Chiaradia 2014; Fan et al. 2020; Hazen
2014; Keller and Schoene 2012; Puetz et al. 2018), and the search for extraterres-
trial life (Ma et al. 2023). As yet another example, a high-resolution history of Earth’s
atmospheric oxygenation was reconstructed using machine learning and big data from
mafic igneous rocks for the past 4 billion years (Chen et al. 2022a).

The special collection on “Data-driven Discovery in Geosciences” gathers six
research papers that showcase newdevelopments and novel applications of data-driven
AI techniques in multiple aspects of geosciences. In Sect. 2, we summarize the high-
lights of these papers in addressing the specific challenges in different domains when
using data-driven AI techniques. In Sect. 3, we outline future challenges for facilitat-
ing data-driven Earth science and then speculate about possible directions for these
advances.

2 Summary of Articles in This Special Issue

The paper entitled “Geographically Optimal Similarity” by Song (2022) develops a
mathematical model of geographically optimal similarity (GOS) for accurate and reli-
able spatial prediction of geological variables (e.g., trace elements) based on the Third
Law of Geography—namely, the geographical similarity principle, which describes
the comprehensive degree of approximation of a geographical structure instead of
alternative explicit relationships between variables. GOS employs a small number of
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samples and then derives better spatial predictions compared to the traditional meth-
ods. An R package named “geosimilarity” was developed for GOS-based predictions
and uncertainty assessments. This work demonstrates the potential for applying the
GOS model to spatial predictions, such as geochemical mapping in environmental
assessments and mineral exploration.

The paper entitled “Revealing Geochemical Patterns Associated with Mineraliza-
tion Using t-Distributed Stochastic Neighbor Embedding and Random Forest” by
Shi et al. (2022) focuses on mineral prospectivity modeling using both unsupervised
and supervised learning algorithms. A hybrid model combining t-distributed stochas-
tic neighbor embedding (t-SNE) and the random forest (RF) method addresses data
redundancy and the curse of dimensionality in geochemicalmapping formineral explo-
ration. The application to the exploration of gold deposits in the northwestern Hubei
Province of China demonstrates that the hybrid model combining t-SNE and RF can
identify geochemical anomalies associated with gold mineralization efficiently. The
high agreement with known gold deposits suggests that the areas targeted by t-SNE
+ RF can guide future mineral exploration in this area of study.

The paper entitled “Robust Optimal Well Control using an Adaptive Multigrid
Reinforcement Learning Framework” byDixit andElsheikh (2022) focuses on optimal
control problems using cutting-edge data-driven deep learning techniques.An adaptive
multigrid reinforcement learning (RL) framework was introduced to address the com-
putational challenge of robust control policies for uncertain, partially observable well
control attributes.RL-based control policies are initially learnedusing computationally
efficient low-fidelity simulations with coarse grid discretization of the underlying par-
tial differential equations. The proposed RL frameworkwas demonstrated by using the
state-of-the-art Proximal Policy Optimization algorithm. Its application to two cases
of well control problems suggests significant gains in computational efficiency. The
improved efficiency is estimated to be between 60 and 70% when compared to single
fine-grid methods.

The paper entitled “Ensemble and Self-supervised Learning for Improved Classi-
fication of Seismic Signals from the Åknes Rockslope” by Lee et al. (2022) focuses
on geohazard monitoring using data-driven deep learning techniques. The fast and
reliable identification of seismic events and their classification provide crucial infor-
mation for monitoring rock slopes and early warning systems for potential rock slides.
In this paper, a classifier for seismic geophone data was built to distinguish between
different types of microseismic events using deep convolutional neural networks.With
ensemble learning, the classification accuracy has been improved in comparison to the
aggregation for a form 1 single spectrogram. This work also demonstrates the value
of applying self-supervised learning. This is particularly relevant for datasets with
insufficient labeling.

The paper entitled “Random Noise Attenuation by Self-supervised Learning from
Single Seismic DatRandom Noise Attenuation” by Wang et al. (2022) focuses on
reflection seismic data denoising using deep learning algorithms in the field of oil/gas
exploration. A dropout-based self-supervised (DSS) deep learning method was intro-
duced for single seismic data randomnoise attenuation to address the challenges arising
from limited clean labels (i.e., noise-free) when using supervised algorithms in prac-
tice. Compared to the traditional f–x deconvolution and deep image prior methods,
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the DSS method achieves better denoising results for preserving details of synthetic
seismic data and field data. Moreover, numerical experiments indicate that the DSS
method is stable for seismic denoising and reduces the over-fitting phenomenon.

The paper entitled “Construction and Application of a Knowledge Graph for Iron
Deposits Using Text Mining Analytics and Deep Learning Algorithm” by Qiu et al.
(2023) explores one of the frontiers for applying AI techniques in geoscience, that
is, building a knowledge graph for facilitating knowledge discovery. A deep learning
modelwas introduced to automate the extraction of geological entity relations fromore
deposits, while creating a prototype question–answer system (Q&A) for ore-forming
circumstances. This approach establishes annotation specifications for iron ore deposit
entity relationships and a human-annotated corpus of geological entities of iron ore
deposits. The constructed geological knowledge graphs were applied to analyze the
mineralization characteristics of the Daye iron deposits in China.

3 Outlook

This special collection showcases a variety of data-driven research and/or applications
in geosciences including seismic data processing, mineral prospectivity modeling,
environmental pollution assessments, and geohazard monitoring, by using many
data-driven AI techniques, such as unsupervised, supervised, self-supervised, and
reinforcement learning. While recent advances in big data and AI approaches offer
wonderful new opportunities for accelerating scientific discoveries and predictions
via abductive, data-driven models and techniques, we face unique challenges specific
to the geoscience domain, in addition to common difficulties pertaining to data cap-
ture, storage, searching, sharing, and visualization. The first challenge arises from
transforming complex geoscience data into usable information because of the het-
erogeneity of the multivariate data as well as complex patterns obscured in data.
The second challenge stems from converting information into knowledge due to gaps
between predictions and the current understanding. Geoscience big data can be a gold
mine. Whether this gold mine can be discovered by geoscientists depends on how
effectively we overcome these challenges. Simply put, tackling the above challenges
calls for domain-specific mathematical (statistical) models, advanced machine learn-
ing algorithms capable of learning with limited, weak, or biased labels, as well as a
combination of data-driven and knowledge-driven models (Karniadakis et al. 2021).
Given that many AI techniques are deeply rooted in mathematical and computational
models (De Iaco et al. 2022; Dramsch 2020), it is an important mission for mathe-
matical geoscientists to seize the strategic opportunity of the ongoing data revolution
and bridge the gap between geoscientific data and AI models to further promote the
new paradigm of data-driven Earth science research. Overall, while the research and
development of data-driven discovery in geosciences are still in their infancy, we
envision this new science paradigm to play ever-greater roles in the future. Such roles
include but are not limited to protecting our society from various geohazards (e.g.,
major earthquakes, explosive volcanos, and landslides), providing resources for future
generations, tackling environmental degradation and climate change, and searching
for habitable planets.
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