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Abstract
Simple object- or pixel-based facies models use facies proportions as the constraining
input parameter to be honored in the output model. The resultant interconnectiv-
ity of the facies bodies is an unconstrained output property of the modelling, and
if the objects being modelled are geometrically representative in three dimensions,
commonly-available methods will produce well-connected facies when the model
net:gross ratio exceeds about 30%. Geological processes have more degrees of free-
dom, and facies in high net:gross natural systems often have much lower connectivity
than can be achieved by object-based or common implementations of pixel-based for-
ward modelling. The compression method decouples facies proportion from facies
connectivity in the modelling process and allows systems to be generated in which
both are defined independently at input. The two-step method first generates a model
with the correct connectivity but incorrect facies proportions using a conventional
method, and then applies a geometrical transform to scale the model to the correct
facies proportions while retaining the connectivity of the original model. The method,
and underlying parameters, are described and illustrated using examples representative
of low and high connectivity geological systems.
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1 Introduction

Facies modelling algorithms are often conceptualized on a chart which compares their
ability to generate geologically realistic systems with their ability to honor observa-
tional data recorded at wells (e.g., Fig. 1a, after Pyrcz et al. (2015)). Hence, Sequential
Indicator Simulation (SIS) is generally considered less geologically realistic than
other pixel-based methods such as Truncated Gaussian (TGS), Plurigaussian, or the
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Fig. 1 Conceptual schemes for rationalizing the ability of different facies modelling approaches to honor
geological details. See text for discussion
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SNESIM Multiple-Point Statistics method, but all can include conditioning well data
easily. Pattern-basedMPS andObject BasedModelling (OBM) algorithms are consid-
ered to be able to produce more realistic models than the pixel-based methods, since
geologically realistic shapes are defined at input either directly or through inclusion
in the traning image. However, these methods are harder to condition to well data,
and computationally demanding optimization methods are required to do so (Rongier
et al. 2017; Wang et al. 2018). Process-based and rule-based methods are approaches
in which depositional objects are placed in a stratigraphic order according to geo-
metrical or physical rules and governed by the evolving topography of the system
(Pyrcz et al. 2015; Alpak and Xue 2022). Since it is straightforward to couple facies
in this approach (for example, by placing a shale drape over a sand body as part of the
same depositional event) these methods can generate extremely realistic systems, but
like object-based models, models generated using these methods require complicated
optimization schemes for conditioning to well data (Jo et al. 2020).

In this paper, geological realism is expressed using a criterion related to facies
connectivity. Section 2 discusses facies connectivity in natural geological systems
and within object-based, pixel-based and rule-based facies models. With respect to
honouring connectivity, the discussion concludes that it is inappropriate to consider
within commonly available software implementations a gradual increase in geological
realism from pixel-based to process-based methods, as indicated by the grey line
in Fig. 1a. Instead, there are two classes of commonly available forward modelling
algorithm: those in which a geologically realistic user-defined facies connectivity
can be reproduced in the output model, and those in which it cannot (Fig. 1b). It
appears that rule-based methods have an extra degree of freedom relative to object-
based or commonly available pixel-based methods which allows them a diverse range
of connectivity behavior that cannot be created with conventional object-based or
pixel-based methods.

Connectivity in geological systems can be conceptualized and measured in many
different ways (Renard and Allard 2013), and this study is concerned with the con-
nectivity of geological elements within representative, stationary models containing
many hundreds of elements. We are not interested in the connectivity between any
two specific elements in the model, but rather on the connectivity of all the elements
in a statistical sense. Model optimization and inversion methods similar to those used
to condition object-based models to hard well data are able to perturb models towards
specific connectivity observations contained in training images or observed between
pairs or groups of conditioning wells (Laloy et al. 2017; Razak and Jafarpour 2020).
This paper, however, addresses connectivity as part of the forwardmodellingworkflow
using Compression Based Modelling (CBM) rather than as an inverse optimization
step. In the CBM method, a geometrical transformation is applied to a conventional
facies model allowing the connectivity of the facies to be defined as a user-defined
input variable (Manzocchi et al. 2007). The assumption of stationarity is central to
the CBM approach, since the transformation is defined on the basis that individual
vertical sections through the model have the model average properties. However, nat-
ural depositional systems may seldom be stationary and gradual depositional trends
or abrupt facies transitions are likely to be present over the length-scales required
for defining representative properties. For example, deep-water channel systems often
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contain sand-rich channel axes bounded by more shale-prone margins, and Soni et al.
(2020) compared different transformations for these regions when applying CBM to
this kind of system. A form of non-stationarity addressed in the current paper is the
presence of hierarchical depositional elements (Prélat et al. 2009; Cullis et al. 2018),
with different transformations applied in the different hierarchical objects.

The CBM method was originally devised for use with OBM, and with facies con-
nectivity measured using the Amalgamation Ratio (AR). The objectives of the current
paper are to illustrate the CBM method using: (1) different underlying geostatistical
methods (TGS as well as OBM); (2) different measures of connectivity (a percolation
threshold-based criterion as well as AR); (3) different conceptual geological models
(low connectivity sedimentary deposits, high connectivity veins) and (4) conditioning
to well data. Section 2 discusses connectivity in models and natural systems and, fol-
lowingWalsh and Manzocchi (2021a), describes the relationship between AR and the
proximity of the system to its percolation threshold (parameter P , after Sahimi 1995;
Renard and De Marsily 1997). Section 3 uses CBM to model a hierarchical OBM of
a poorly connected deep water lobe system constrained by AR, while Sect. 4 applies
it to create a TGS model of a well-connected vein system defined by a high value of
P . In Sect. 5 the CBM method, including the well-conditioning workflow devised by
Walsh andManzocchi (2021b), is applied within a commercial geomodelling software
package.

2 Connectivity in Facies Models and Natural Depositional Systems

2.1 Global Connectivity in Object-Based and Pixel-BasedModels

The global connectivity of an OBM is best expressed with reference to the percolation
threshold of the system. For a binary system consisting of a permeable facies within an
impermeable background, the percolation threshold is usually expressed as a critical
net:gross ratio (NTGC ) above which a continuous connected cluster (in principal of
infinite extent) exists within the permeable facies, and below which it does not. NTGC

has been characterized for a number of object types, and only a very brief summary
is provided here. NTGC = 0.28 for three-dimensional systems of aligned cuboids
(King 1990), and the threshold is similar for spheres and aligned ellipsoids (Baker
et al. 2002). Introducing variably sized objects has little effect on their percolation
threshold (Consiglio et al. 2003), and the anisotropy of the objects has no effect on
it so long as the objects remain aligned with each other. Hence NTGC ≈ 0.28 for
flat-lying disks, ellipsoids and semi-ellipsoids (common shapes in OBM of lobate
or sheetlike sedimentary deposits) but if the ellipsoids are misaligned, increasing
either their orientation distribution or their aspect ratio decreases the value of NTGC

systematically (Garboczi et al. 1995; Manzocchi et al. 2007).
These studies have all examined finite sized objects within stationary three-

dimensional systemsmany times larger than the objects in all directions, and hence the
systems are geometrically representative in three dimensions. Stationarity and geo-
metrical representivity are necessary conditions for defining a percolation threshold
but are not always applicable to natural geological systems. For example, Larue and
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Hovadik (2006) examined channel systems which do not satisfy this condition since
the channel lengths exceed the size of the system containing them. If the channels
are straight and parallel to each other, the system percolates at the two-dimensional
threshold (NTGC = 0.66) since the system is geometrically representative only in two
directions. However, inclusion in the models of variable orientations or channel sinu-
osity results in a system representative in three dimensions with a threshold at NTGC

≈ 0.2 (Larue and Hovadik 2006).
Percolation thresholds of models generated using pixel-based methods have not

received as much attention as of object-based methods, but a recent systematic study
(Walsh and Manzocchi 2021a) established the three-dimensional thresholds of repre-
sentative isotropic models built using an industrial implementation of the SIS, TGS
and SNESIMMPSmethods with different variograms (or training images). The study
concluded that these pixel-based models have NTGC ≤ 0.28, with the simplest algo-
rithms having NTGC ≈ 0.13. Different versions of TGS can be defined with higher
or lower thresholds (Zinn and Harvey 2003; Walsh and Manzocchi 2021a), but in all
cases have NTGC ≤ 0.28. The SNESIM model results are particularly interesting,
since connectivity of MPS models had not previously been examined in detail. Sri-
vastava (2018) showed that if a complete geostatistical description of a target image is
provided, a pixel-based approach, in theory, can precisely recreate the image. There-
fore, pixel-based MPS algorithms arguably should be able to honor all aspects of the
training image. However, it is accepted that MPS models built using practical imple-
mentations of the SNESIM method do not necessarily reproduce the connectivity of
their training images (Strebelle 2012, 2021; Tahmasebi 2018). Walsh and Manzocchi
(2021a, b) showed that geometrically representative three-dimensional isotropic mod-
els built using a widely available SNESIM implementation (Schlumberger 2017) are
well connected if NTG > 0.28, even if the training image has very low connectivity.

2.2 Local and Global Connectivity in Natural Systems and Facies Models

Establishing whether or not a particular system is above or below the percolation
threshold relies on characterizing the size or extent of the largest cluster of connected
objects in the model. The proportion of objects contained in this cluster changes from
virtually none, to virtually all, between NTG values below and above the threshold,
and the extent of the largest cluster changes from finite to infinite. Neither of these
global characteristics can be estimated for natural geological systems based on outcrop
or well data, since the full three-dimensional distribution of the objects and their inter-
connections is unknown. Therefore, a more local measure of connectivity is required,
and the amalgamation ratio (AR) is often used. AR is defined as the proportion of
object bases that overlie another object (as opposed to the inter-object facies) and
can be measured in object-based and rule-based facies models as well as in natural
depositional systems (Stephen et al. 2001; Manzocchi et al. 2007; López-Cabrera and
Manzocchi 2019). However, AR cannot be measured in pixel-based facies models
since it is an object-centric measure and pixel-based models do not contain objects.

It is well established than in an OBM containing objects of equal thickness, AR =
NTG (Manzocchi et al. 2007; Walsh and Manzocchi 2021a). Therefore, an OBM of
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Fig. 2 The relationship between amalgamation ratio and net:gross ratio for a object-based models and b
natural deep marine deposits and rule-based models

equal-sized ellipsoids, which has NTGC = 0.28, also has critical amalgamation ratio
(ARC ) = 0.28. NTGC is relatively insensitive to the size distribution of the objects
(Consiglio et al. 2003) but ARC is sensitive to size distribution because if the objects
have variable thickness, AR<NTG since the thicker beds have the potential to entirely
erode thinner ones. Relationships between AR and NTG for mixtures of equal pro-
portions of beds of two different thicknesses calculated analytically are shown for an
idealized OBM (Fig. 2a). This calculation was made by establishing the probability
distribution of the distance of bed bases above and below the bases of other beds and
determining from this the resultant likelihood that they are amalgamated, unamalga-
mated or eroded out of the system Manzocchi and Walsh (2022). A summation of
probabilities provides the final AR value. The 1:1 relationship (Fig. 2a) is obtained in
models in which all objects are equal thickness, and the two curves represent cases
with equal proportions of two types of object with one type three or ten times thicker
than the other. Results indicate that that OBM containing equal proportions of objects
of two different thickness, which have NTGC in the range 0.28 to 0.30 (Consiglio
et al. 2003), must have ARC in the range 0.19–0.28 (Fig. 2a).

Compilations of AR as a function of NTG for natural depositional systems consis-
tently haveAR<NTG,with different systems or hierarchical levels defining particular
trends between NTG and AR similar to the lines shown in Fig. 2b (Manzocchi et al.
2007; Romans et al. 2009; Zhang et al. 2015; Soni et al. 2020). More erosive and
channelized systems tend to have higher AR at a particular NTG, and lower energy
sheet-like systems have lower AR. In all systems examined, AR is significantly lower
than the relationships observed in OBM (Fig. 1a), which therefore do not contain
realistic values of AR at particular values of NTG.

A study by López-Cabrera and Manzocchi (2019) examined a series of rule-based
models of deep-water lobe systems. All models had approximately the same overall
NTG (0.8) but because the models were generated with different rules governing the
deposition and erosion of sand-prone and shale-prone facies, they have very different
connectivity characteristics. As expected (Fig. 1a), these RBMs appear from a qual-
itative perspective to be much more geologically realistic than equivalent object- or
pixel-based models. However, they are also more realistic from a quantitative perspec-
tive, since wells drilled in individual models follow very similar trends between local
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AR and NTG as the natural systems (Fig. 2b), with models generated using different
rules following different trends. Hence, both natural systems and rule-based models
have variable relationships between AR and NTG, with AR << NTG in many cases.
López-Cabrera andManzocchi (2019) examined the global connectivity as well as the
AR of the models, and found a clear percolation threshold in their models at ARC ≈
0.25. Hence, the rule-based models have the same percolation threshold as the OBM
in terms of AR, but a much more varied behavior in terms of NTG.

2.3 Discussion

A number of key observations can be made from the studies discussed above. First,
facies in OBM containing flat-lying ellipsoidal objects become connected in three
dimensions at NTGC in the range 0.28–0.3. This corresponds to ARC in the range
0.19–0.28 (Fig. 2a). Facies in common implementations of pixel-basedmodels become
connected at similar, or lower values of NTGC . Second, natural depositional systems
and rule-based models have diverse relationships between AR and NTG (Fig. 2b).
However, in OBM the two properties are approximately equal, and it is impossible
to generate OBM with AR << NTG (Fig. 2a). Third, RBMs become connected at
a similar ARC value to OBMs. However, this occurs over a wider range of higher
NTG values (Fig. 2b). It is likely that natural depositional systems, as well as rule-
based models, become connected at NTGC in the range 0.45–0.9. These points lead
to the conclusion that simple OBM are constrained by an artificial link between AR
and NTG which is not present in RBM or natural systems. Since they have similar
(or lower) NTGC values, pixel-based models built using two-point statistics (SIS,
TGS) also suffer a similar constraint, as do the MPS models built using the industrial
implementation of SNESIM examined by Walsh and Manzocchi (2021a). Put simply,
these methods or implementations do not contain sufficient degrees of freedom to
allow models with natural diversity of facies connectivity at high NTG values to be
built.

Objects in rule-based models are stacked in depositional order according to geolog-
ical rules, and the resultant models are much more representative of natural systems
than the object- or pixel-based models discussed above. The ability to vary the depo-
sitional and erosional rules provides the added degree of freedom relative to OBM to
model realistic connectivity. However, RBMs are problematic because they are dif-
ficult to condition to hard data (Fig. 1). The plurigaussian method (Armstrong et al.
2011) is a pixel-based approach which uses truncations of two or more correlated
Gaussian fields to define the facies distribution. Use of several random fields within
the same model permits a wide range of connectivity behaviour to be achieved. The
method, however, has yet to receive widespread implementation in commercial soft-
ware. Therefore, the current work focuses on compression-based modelling which
offers a means for improving connectivity within simpler modelling workflows that
can more easily honor well data, since compression-based modelling can be used in
connection with simpler pixel-based methods (Walsh and Manzocchi 2021b).
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2.4 The CompressionMethod for Object- and Pixel-BasedModels

The compression algorithm was devised initially to improve the representation of
connectivity in OBM, by providing the extra degree of freedom required to allow
NTG and AR to be independent inputs (Manzocchi et al. 2007). The algorithm has
recently been described in detail (Walsh and Manzocchi 2021a), and consists of the
two key steps. In Step 1, a model is built with the target connectivity. In the case of
an OBM containing constant sized beds, this model will have an initial NTG equal
to the target AR. In Step 2, the thickness of all the grid cells is scaled according to
facies-specific compression factors. This does not alter the topological properties of
the model, and hence both the local and global connectivity are unaffected. However,
the object thicknesses and overall model NTG are modified.

The approach can be used in conjunction with object-based modelling to generate
systems with independent, user-defined values of AR and NTG (Fig.3a). The three
systems with AR = NTG (Fig. 3 a) are representative of conventional OBMs. The
three systems that plot below these models are less connected than a normal OBM
(i.e. they have AR< NTG) and are representative of low energy depositional systems
as discussed in the previous sections. The three systems that plot in the upper left
region (Fig. 3a) are better connected than a conventional OBM. These may also be
of geological relevance since they are reminiscent of fluid-driven geological systems
such as sand injectites or diagenetic vein systems (Hurst and Cartwright 2007; Meng
et al. 2018).

In the CBM approach applied to an OBM (Fig. 3a), all the models were initially
generated from a conventional OBM with an initial net:gross ratio (NTGI ) equal to
AR. For the models in which AR>NTG, the cells containing shale are expanded and
the cells containing sand are compressed to produce the final model, and the opposite
occurs for the models with AR < NTG. The ratio between the final thickness of the
shale and sand cells is the compression factor (cF ), and is given by Manzocchi et al.
(2007); Walsh and Manzocchi (2021a)

cF =
(
1 − 1

NTG

)

(
1 − 1

NTGI

) . (1)

A conventional OBM has cF = 1, but many depositional systems have cF in the
range 0.03–0.3 (Fig. 2b). The initial thickness of the objects (TI ) scales with the final
thickness (T ) according to the relationship

TI = NTGIT

NTG
. (2)

Amalgamation ratio is not a useful measure of connectivity in pixel-based models,
andWalsh andManzocchi (2021a) defined an equation for including connectivity as a
function of the target proximity of the system to its percolation threshold (P). In this
case, NTGI is given by

NTGI = 1 − (1 − NTGC )
P+1, (3)
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Fig. 4 Example of a two-dimensional hierarchical compression-based model. a The facies hierarchy. b The
final compression-based model. c The initial OBM it was generated from. d A comparison conventional
OBM with the same hierarchy and facies proportions as b. In b-d, (i) shows a model cross-section, (ii) a
cross-plot of ART vs. PF , and (iii) a cross-plot of ARE vs. PFE . The curves in b (iii) are for cF = 0.03,
0.1, 0.3

where NTGC (the critical net:gross ratio) is a variable that depends on the specific
pixel-based method used to generate the model (Walsh and Manzocchi 2021a). P is a
well-known property in percolation theory, and many physical properties of a system
(such as strength or permeability) are related to P through power-laws (Sahimi 1995).

Example models generated using a TGS algorithm for which NTGC = 0.12 (Walsh
and Manzocchi 2021a) are shown in Fig. 3b, with the target vertical and horizontal
variogram ranges set to the same values as the object thicknesses and widths used
for the OBMs shown in Fig. 3a. Quantitatively, the nine compressed TGS models are
similar to the nine compressed OBM models, and it does not seem that the OBM
models are more geologically realistic than the TGS ones, apart from the precise
shape of the beds in some of the low NTG models. However, most large-scale system
properties are governed by the connectivity and anisotropy of the system, rather than
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by details of the shapes of the bodies, and these examples demonstrate that connectivity
and anisotropy can both be honored in the CBM method using either an object- or a
pixel-based modelling approach.

3 The Compression Algorithm for Hierarchical Object-BasedModels

The simple illustration of the compression algorithm in Fig. 3 is based on models
containing a single permeable facies in a background shale facies. In this case it is
straightforward to calculate the thickness (TI ) and net:gross ratio (NTGI ) of the objects
in the initial model, and the multipliers (E0, E1) by which the thickness of shale and
sandstone cells must be altered to achieve the target NTG, AR and object thickness (T )
in the final model (Walsh and Manzocchi 2021a). Here, we outline how the method
has been extended to deal with multiple facies within a hierarchical setting. NTG is
an impractical measure when more than one foreground facies is present, and instead
the facies proportion (PF ) is used in the discussion.

The process is based on the analytical solution mentioned earlier Manzocchi and
Walsh (2022), which provides an exact answer to the expected AR values, facies
proportions and thicknesses of each facies in the final model as a function of the
facies proportions, thicknesses and compression factors used the generate the initial
model. For the example shown here (Fig. 4), the analytical solution is used to solve the
inverse problem numerically, so that the input properties (TI , PF I , E) of each facies
are calculated as a function of the target properties of the model to be created (AR, T ,
PF ). The method is illustrated using a high resolution two-dimensional model in the
following sub-section before it is validated in the subsequent one.

3.1 Description of theMethod

Consider the hierarchical models shown in Fig. 4. These contain seven different facies
consisting of two object types at each of two hierarchical levels, plus a background
facies (Facies 1), as represented in the facies diagram (Fig. 4a) which shows the colors
used in the model cross-sections and graphs, and the facies codes (1-7) referred to in
the text. The compression-based version of the model is shown in Fig. 4b(i). At the
largest scale, the model contains poorly amalgamated lobes (each of which contains
Facies 2, 4 and 5) and relatively well-amalgamated channels (each of which contains
Facies 3, 6 and 7). Both the lobes and the channels contain smaller-scale poorly-
(Facies 4 and 6) and well-amalgamated (Facies 5 and 7) sandstone beds, while Facies
2 and 3 represent inter-bed shales.

The target facies stacking properties are defined in Fig. 4b(ii), following the
approach for characterizing the stacking behavior of hierarchical systems defined
in Manzocchi et al. (2020). At the largest scale, the total amalgamation ratio (ART )
of object types 2 and 3 is defined by the ratio between the number of bases of each
of these object types that overlie another object rather than a background shale at
the hierarchical level of interest. Hence, 20% of the lobes, and 45% of the channels,
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Fig. 5 Cross-plots of target values and measured values in 20 realizations of a PF and b ART of the
two-dimensional model (e.g., Fig. 4b). c The high resolution one-dimensional model and two enlargements
of it. (d, e): as a-b, but for 20 realizations of the one-dimensional model. Colors and facies hierarchy as Fig.
4

are amalgamated with either a lobe or a channel (Fig. 4b(ii)). At a smaller hierarchi-
cal level, the ART values similarly represent the probability that the objects overlie
objects at the same hierarchical level, with the bright green facies (Facies 7) being
the best connected at the smallest scale. These properties are loosely based on the
characteristics of facies in channel lobe transition zones discussed by Fryer and Jobe
(2019).

The target stacking relationships are evident in the final model realization (Fig.
4b(i)) but the propensity for the different facies to erode or aggrade is not particularly
obvious from the target, facies-specific, ART and PF values used to generate the
model (Fig. 4b(ii)). This is because whenmore than one facies is present at a particular
hierarchical level, the ART does not follow a simple relationship with the PF (as they
do for a single facies, e.g., Figs. 2b, 3) because the objects of one facies can amalgamate
with objects of the other facies. This tends to result in larger facies-specificART values
than would be present if the other facies did not exist. Additionally, the presence of
more than one facieswithin each object type results in low facies proportions. Together,
this results in many of the target ART values of the model exceeding the target PF
values (Fig. 4b(ii)). This is correct but somewhat counterintuitive.

A more intuitive representation of the stacking behavior is provided in Fig. 4b(iii),
which is a cross-plot of an effective amalgamation ratio against an effective facies
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proportion (ARE and PFE respectively). These effective parameters represent the
values with respect only to the facies in question and to the hierarchically equivalent
shale facies. Hence, for example, the PFE of Facies 7 is given by

PFE7 = PF7
PF7 + PF3

, (4)

while ARE7 is given by the number of Facies 7 object bases those overlie another
Facies 7 object, as a proportion of these that overlie either Facies 7 or Facies 3. In
general, ARE is marginally lower than ART (with a larger discrepancy between the
two if the facies is more poorly amalgamated) and PFE is significantly greater than
PF (Fig. 4b(iii)).

ARE and PFE can be calculated as a function of ART and PF and the other target
model properties, and vice versa, which means that either set of properties could be
used to define the target model properties. In this case ART and PF have provided the
target properties (Fig. 4b(ii)), but ARE and PFE are more intuitive graphically, since
the location of a particular facies on the cross-plot can be interpreted in the same way
that it could be if no other facies were present. Hence, Facies 6 is the least erosive
facies in the model since it has the lowest compression factor (cF ≈ 0.03; Fig. 4b(iii)).
This is reflected in the model realization by the common occurrence of continuous
inter-beds (Facies 3) between the Facies 6 beds (Fig.4b(i)). In contrast, the large-scale
channels (Object 3) are the most erosive since they have a high cF value (≈ 0.5).

Theway the compression algorithmworkswithmultiple hierarchical facies, and the
way the facies stacking properties scale, is perhaps easier to understand with reference
to the initial OBMmodel generated in Step 1 of the compression modelling workflow
(Fig. 4c) and to a comparison OBM generated with the same facies proportions and
object thicknesses as the targetmodel, but created using a conventionalOBMworkflow
and hence without reference to connectivity and amalgamation (Fig. 4d). Shale Facies
1 and 3 are over-represented in the initial model (Fig. 4c(ii)) relative to the final model
(Fig. 4b(ii)) since the thickness of the cells containing these facies is reduced during
application of the compression algorithm. Sandstone Facies 4 and 6, by contrast, have
very low proportions in the initial model and are expanded significantly in accordance
with their poor connectivity. Shale Facies 2 ends up with a similar proportion in the
initial and final models since it is expanded as part of the poorly amalgamated lobes
but compressed because it is a shale inter-bed facies between poorly connected objects
(Facies 4 and 5).

Importantly, the total and effective ARs of the initial and final model are identical
(Figs. 4b, 4c). These properties govern the system topology and the compression
algorithm, by design, does modify model topology. The 1:1 relationship between
ARE and PFE for all facies in the initial model and the comparison OBM (Figs.
4c(iii) and 4d(iii)) reflects the point made earlier that a conventional OBM of constant
sized objects has AR = NTG (Fig. 2a).

The facies in the comparison OBM (Fig. 4d) have identical PF and PFE values
as the compression-based model (Fig. 4b) but much higher ART and ARE values.
Hence, although the ART values of the facies in the hierarchical compression model
are larger than their PF values (Fig. 4b(ii)), they are much lower than the equivalent
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values of the conventional OBM (Fig. 4d(ii)). The values are least dissimilar between
the two models for the larger-scale channels (Object type 3, containing Facies 3, 6 and
7), and this is reflected by the fact that the shapes of these objects have not needed a
large alteration between the initial and final models to account for their connectivity
characteristics (i.e., as discussed above, they have a high cF value of ≈ 0.5; Fig.
4b(iii)). An artefact of CBM which is evident from comparing the initial and final
models (Figs. 4c(i), b(i)) is the imposition of gradients on initially flat objects. This
is an inevitable consequence of applying different compression factors across lateral
facies transitions, and has been discussed by Manzocchi et al. (2020) and Walsh and
Manzocchi (2021a).

3.2 Validation of the Algorithm

The model discussed above (Fig. 4b(i)) illustrates the main aspects of the compres-
sion method when applied to multiple object types in a hierarchical OBM of a deep
marine deposit, with different facies requiring different geometrical transformations to
account for their connectivity characteristics (Fig. 4b(iii)). In the approach, the target
properties (Fig. 4b(ii)) are used to define analytically the properties (facies propor-
tions and object thicknesses) of an initial conventional OBM (Fig. 4c(i)) as well as
the amount by which the thickness of the cells containing each facies are expanded or
compressed to transform it into the final model (Fig. 4b(i)).

A validation of the approach requires that the final properties of the model repro-
duce the target properties used to generate it. Leuangthon et al. (2004) defined a set
of minimum acceptance criteria for model validation. In this approach, aspects of a
realisation (conditioning data, property distributions and mean values, variograms)
are compared to their expected values. The criteria are designed for models of con-
tinuous properties rather than discrete facies for which single values of PF and ART

are obtained for each facies in an individual model realisation. Therefore, a slightly
different approach to model validation is applied here. Rather than focusing on the
distribution of properties obtained in a single realisation, the distribution of values of
PF and ART obtained in a series of realisations are compared to their target values.
Hence, the cross-plots in Figs. 5a, b compare the target value to the mean value of
20 realisations, with the error bars (many of which are smaller than the symbols)
reflecting the variability across the realisations (± one standard deviation).

The analytical solution is based on the assumption of complete representivity, and
therefore is correct if all objects are vanishingly small in relation to the hierarchically
larger object they are contained in, and infinitely large in relation to the size of the
modelling grid cells. Of course, these assumptions are not met in the model, and it is
likely that the discrepancies (Figs. 5a, b) are due to modelling biases introduced due to
non-representivity. To verify this claim, a high-resolution one-dimensional model was
built (Fig. 5c) in which representivity was addressed by ensuring that the thickness
of each container is at least 20 times larger than of the beds within it, and that the
facies proportions used ensure that at least 20 objects are expected in each container.
Additionally, the one-dimensional model was created in a continuum to eliminate
grid-related biases. Results from 20 realizations (each containing about 14,000 beds)
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Fig. 6 Crack-seal gypsum veins at Watchet, UK. b Fence diagram of an extremely well-connected CBM
model built to represent one layer of the vein network (NTG = 0.09, P = 6). c The initial conventional TGS
model from which the CBM model was derived (NTGI = 0.57)

are shown in Figs. 5d, e and confirm that when representative models are built, the
analytical basis of the compression methods for multiple hierarchical facies is sound.

4 Practical Implementation of Compression-BasedModelling

The previous sections have provided a summary of recent work on the compression
algorithm. The mathematics of the algorithm when applied to hierarchical models
with several facies at each level is now established, as discussed in the previous sec-
tion and described in detail by Manzocchi and Walsh (2022). That work focuses
on the Amalgamation Ratio as the fundamental measure of connectivity, and hence
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Fig. 7 Fence diagram of a model of a synthetic sequence, generated by applying the compression workflow
plugins to the pixel-based facies modelling algorithms contained in an industry-standard software package

the method is better developed for hierarchical object-based rather than pixel-based
models (Manzocchi et al. 2020; Soni et al. 2020). However, definition of the relation-
ship between AR and connectivity measures based on percolation theory (Sect. 2.4,
Walsh and Manzocchi 2021a) allows pixel-based CBMs to be built as a function of
user-defined connectivity. For example, Fig. 6 shows a TGS CBM model of highly
connected diagenetic gypsum veins developed during exhumation of the evaporite-
rich Mercia Mudstone Formation (Meng et al. 2018), with connectivity constrained
by P .

In parallel to these analytical developments, work has also focused on simplify-
ing the implementation of the hierarchical CBM approach (Walsh and Manzocchi
2019; Soni et al. 2020). A previous large-scale implementation of CBM used a stand-
alone code in which nested grids were compressed individually and reassembled in
a complex procedure that honored onlap and truncations at scales smaller than the
grid resolution (Zhang et al. 2015; Manzocchi et al. 2020). Although flexible and
geometrically accurate, that approach is extremely complicated and only suitable to
object-based models. The applicability of the method has now been broadened by
implementing key parts of the workflow as plugins to an industrial geo-modelling
package (Schlumberger 2017, Fig. 7). In this approach, the whole hierarchical facies
model is built in a compressed state and then transformed in one step: an application to
modelling a hierarchical submarine channel system, including a subsequent property
modelling step, is described by Soni et al. (2020).

The procedure for conditioning pixel-based CBMs to wells was described in detail
by Walsh and Manzocchi (2021b). In CBM, the facies modelling is performed using a
geometrical transformation of the facies description so that facies connectivity is hon-
oured. This means that the facies thicknesses in the conditioning wells must undergo
the inverse transformation prior to facies modelling. The example shown (Fig. 7) con-
sists of multiple zones with erosive channel facies (blue) and poorly amalgamated lobe
elements facies (yellow, orange) arranged hierarchically in a shale (grey) background
facies and is conditioned to vertical, inclined and horizontal wells. The procedure for
conditioning the model to the wells is summarised in Fig. 8. The conditioning wells
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Fig. 8 Procedure for conditioning to wells in a compression-based model. See text for details

(Fig. 8a) are discretised horizontally within each modelling zone at the cell stacks
(Fig. 8b). A vertical transformation within each stack rescales the facies thicknesses
according to the inverse of the compression factor, and the facies are then discre-
tised vertically to the resolution of the modelling grid (Fig. 8c). A pixel-based model
conditioned to the wells is then created using one of the methods available in the soft-
ware (Fig. 8d). Finally, application of the compression algorithm transforms the facies
model to the required facies proportions, and also restores the constraining wells to
their initial condition (Fig. 8e).

5 Summary and Conclusions

Compression-basedmodelling is amethod that can be used in conjunctionwith object-
or pixel-based facies methods to modify facies connectivity. The necessity for the
approach stems from the recognition that object-based and widely available imple-
mentations of pixel-based facies modelling algorithms lack the freedom required to
allow connectivity to be a user-defined input variable as opposed to an unconstrained
model output. Connectivity in natural geological systems and in rule-based models is
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much more variable than can be represented using these methods which therefore are
unsuitable for modelling a wide range of geological scenarios.

This paper has provided a snapshot state-of-the art summary of recent advances
in compression-based modelling. The compression algorithm is a grid transformation
that can be used to create models with independently defined facies proportions and
connectivity, with the latter expressed either as a function of amalgamation ratio or
proximity to percolation threshold. A workflow has been developed for defining pre-
cisely the input properties required to generate amodelwith target output properties for
hierarchical systems with multiple objects at each level. In parallel, the approach has
been implemented in an industrial geomodelling package allowing better integration
with other geomodelling workflows.
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