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Abstract Reinforcement learning (RL) is a promising tool for solving robust optimal
well control problemswhere themodel parameters are highly uncertain and the system
is partially observable in practice. However, the RL of robust control policies often
relies on performing a large number of simulations. This could easily become compu-
tationally intractable for cases with computationally intensive simulations. To address
this bottleneck, an adaptive multigrid RL framework is introduced which is inspired
by principles of geometric multigrid methods used in iterative numerical algorithms.
RL control policies are initially learned using computationally efficient low-fidelity
simulations with coarse grid discretization of the underlying partial differential equa-
tions (PDEs). Subsequently, the simulation fidelity is increased in an adaptive manner
towards the highest fidelity simulation that corresponds to the finest discretization of
the model domain. The proposed framework is demonstrated using a state-of-the-art,
model-free policy-based RL algorithm, namely the proximal policy optimization algo-
rithm. Results are shown for two case studies of robust optimal well control problems,
which are inspired from SPE-10 model 2 benchmark case studies. Prominent gains in
computational efficiency are observed using the proposed framework, saving around
60-70% of the computational cost of its single fine-grid counterpart.
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1 Introduction

Optimal control problem involves finding controls for a dynamical system such that
a certain objective function is optimized over a predefined simulation time. Recently,
reinforcement learning (RL) has been demonstrated as an effective method to solve
stochastic optimal control problems in fields like manufacturing (Dornheim et al.
2020), energy (Anderlini et al. 2016) and fluid dynamics (Rabault et al. 2019). RL,
being virtually a stochastic optimization method, involves a large number of explo-
ration and exploitation attempts to learn the optimal control policy. As a result, the
learning process for the optimal policy comprises a large number of simulations of
the controlled dynamical system, which is often computationally expensive.

Various research studies have shown the effectiveness of using multigrid methods
to improve the convergence rate of reinforcement learning. Anderson and Crawford-
Hines (1994) extend Q-Learning by casting it as a multigrid method and has shown
a reduction in the number of updates required to reach a given error level in the Q-
function. Ziv and Shimkin (2005) and Pareigis (1996) formulate the value function
learning process with a Hamilton-Jacobi-Bellman equation (HJB), which is solved
using algebraic multigrid methods. However, despite the effectiveness of this strategy,
the HJB formulation is only feasible when the model dynamics is well defined. As a
result, these methods cannot be applied to problems where the model dynamics is an
approximate representation of reality. Li and Xia (2015) used multigrid approach to
compute tabular Q values for energy conservation and comfort of HVAC in buildings,
which is applicable to certain simple RL problems with finite and discrete state-action
space. In this paper, the aim is to present a generalized multigrid RL approach that
can be applied to both discrete and continuous state and action space where HJB
formulation may not be possible. For instance, when the transition in model dynamics
is not necessarily differentiable and/or when the model is stochastic.

In the context of the reinforcement learning literature, the proposedmultigrid learn-
ingprocess canbe categorized as a framework for transfer learning. In transfer learning,
the agent is first trained on one or more source task(s), and the acquired knowledge
is then transferred to aid in solving the desired target task (Taylor and Stone 2009).
In the presented study, the highest fidelity simulation corresponds to the target task,
which is assumed to have the fine-grid discretization. The fine-grid discretization is
presumed to guarantee a good approximation of the output quantities of interest with
the accuracy required by the problem at hand. On the other hand, low-grid-fidelity sim-
ulations that compromise the accuracy of these quantities correspond to source tasks.
These low-grid-fidelity simulations are generated using a degree-of-freedom param-
eter called the grid fidelity factor (much like the study by Narvekar et al. (2016)).
Transfer learning is a much broader subdomain of RL that covers knowledge transfer
in the form of data samples (Lazaric et al. 2008), policies (Fernández et al. 2010),
models (Fachantidis et al. 2013), or value functions (Taylor and Stone 2005). In this
study, knowledge transfer is done in the form of a policy for a model-free, on-policy
algorithm called proximal policy optimization (PPO). Since the policy is designed
for the state and actions corresponding to the highest-fidelity simulation, a predefined
mapping function is used, whichmaps states and actions from low-fidelity simulations
to high-fidelity simulations, and vice versa. This is done by defining restriction (map-
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ping from high- to low-fidelity simulation) and prolongation (mapping from low- to
high-fidelity simulation) operators, which are normally found in classical geometric
multigrid methods.

The effectiveness of this multigrid RL framework is demonstrated for the robust
optimal well control problem, which is a subject of intensive research activities in
subsurface reservoir management (van Essen et al. 2009; Roseta-Palma and Xepa-
padeas 2004; Brouwer et al. 2001). Recently, several researchers have proposed the
use of reinforcement learning to solve the optimal well control problem (Miftakhov
et al. 2020; Nasir et al. 2021; Dixit and ElSheikh 2022). For this study, the dynamical
system under consideration is non-linear and, in practice, is partially observable since
the data is only available at a sparse set of points (i.e., well locations). Furthermore,
the subsurface model parameters are highly uncertain due to the sparsity of available
field data. Optimal well control problem consists of optimizing the control variables
like valve openings of wells in order to maximize sweep efficiency of injector fluid
throughout the reservoir life. The reservoir permeability field is considered as an uncer-
tain model parameter for which the uncertainty distribution is known. Two test cases
– both representing a distinct model parameter uncertainty and control dynamics – are
used to demonstrate the computational gains of using the multigrid idea.

In summary, a multigrid reinforcement learning framework is proposed to solve
the optimal well control problem for subsurface flow with uncertain parameters. This
framework is essentially inspired by the principles of geometric multigrid methods
used in iterative numerical algorithms. The optimal policy learning process is initiated
using a low-fidelity simulation that corresponds to a coarse grid discretization of the
underlying partial differential equations (PDEs). This learned policy is then reused
to initialize training against a high-fidelity simulation environment in an adaptive
and incremental manner. That is, the shifting from a low fidelity to higher fidelity
environments is done adaptively after the convergence of the learned policy with the
low fidelity environment. Due to this adaptive learning strategy, most of the initial
policy learning takes place against lower-fidelity environments, yielding a minimal
computational cost in the initial stages (significant part) of the reinforcement learning
process. Robustness of the policy learned using this framework is finally evaluated
against uncertainties in the model dynamics.

The outline of the remainder of this paper is as follows. Section 2 provides the
description of the problem and the proposed framework to solve the robust optimal
well control problem. Section 3 details the model parameters for the two case studies
designed for demonstration. Results of the proposed framework on these two case
studies are demonstrated in Sect. 4. Finally, Sect. 5 concludes with a summary of the
research study and an outlook on future research directions.

2 Methodology

Fluid flow control in subsurface reservoirs has many engineering applications, ranging
from the financial aspects of efficient hydrocarbon production to the environmental
problems of contaminant removal from polluted aquifers (Whitaker 1999). In this
paper, a canonical single-phase subsurface flow control problem (also referred to as
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robust optimalwell control problem) is studiedwherewater is injected in porousmedia
to displace a contaminant. This process is commonly modeled using an advection
equation for tracer flow through porous media (also called Darcy flow through porous
media) over the temporal domain T = [t0, tM ] ⊂ R and spatial domain X ⊂ R

2.
In the context of fluid displacement (e.g., groundwater decontamination), the tracer
corresponds to cleanwater injected in the reservoir from the injector wells and the non-
tracedfluid corresponds to the displaced contaminatedwater from the reservoir through
producer wells. The source and sink locations within the model domain correspond to
the injector and producer wells, respectively. Tracer flow models water flooding with
the fractional variable s(x, t) ∈ [0, 1] (also known as saturation). Saturation s(x, t),
represents the fraction which is calculated as the ratio of injected clean water mass
to the displaced contaminated water mass at location x ∈ X and time t ∈ T . The
flow of fluid in and out of the domain is represented by a(x, t), which is treated as
the source / sink terms of the governing equation. The set of well locations is denoted
as x ′ ∈ X ′ (where X ′ ⊂ X ). In other words, a(x, t) is assigned to zero everywhere
in the domain X except the set of locations x ′. The controls a+(x, t) (formulated as
max(0, a(x, t))) and a−(x, t) (formulated as min(0, a(x, t))) represent the injector
and producer flow controls, respectively (note that a = a+ + a−). The task of the
problem under consideration is to find optimal controls a∗(x ′, t), which is the solution
of the closed-loop optimization problem defined as

max
s(·),a(·)

∫ tM

t0

(∑
x ′

a−(x ′, t)(1 − s(x ′, t))
)
dt, x ′ ∈ X ′, t ∈ T (1a)

ds

dt
= 1

φ

(
a+ + sa− − ∇ · sv)

, x ∈ X , t ∈ T (1b)

s(·, t0) = s0, v · n = 0, (1c)∑
x ′

a+(x ′, t) = −
∑
x ′

a−(x ′, t) = c. x ′ ∈ X ′, t ∈ T (1d)

The objective function defined in Eq. 1a represents the total flow of fluid displaced
from the reservoir (for example, contaminated water production) and is maximized
over a finite time interval T . The integrand in this function is referred to as Lagrangian
term in control theory and is often denoted by L(s, a). The water flow trajectory
s(x, t), is governed by advection Eq. 1b which is solved given the velocity field v,
which is obtained from the Darcy law: v = −(k/μ)∇ p. The pressure p(x, t) ∈ R, is
obtained from the pressure equation−∇·(k/μ)∇ p = a. Porosityφ(x, ·), permeability
k(x, ·), and viscosity μ(x, ·) are the model parameters. Permeability k, represents the
model uncertainty and is treated as a random variable that follows a known probability
density functionK with K as its domain. The initial and no-flow boundary conditions
are defined in Eq. 1c, where n denotes outward normal vector from the boundary of
X . The constraint defined in Eq. 1d represent the fluid incompressibility assumption
alongwith the fixed total source/sink term c, which represents total water injection rate
in the reservoir. In a nutshell, the optimization problem provided in Eqs. 1 is solved to
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find the optimal controls a∗(x ′, t) such that they are robustly optimal over the entire
uncertainty domain of permeability, K .

2.1 RL Framework

According to RL convention, the optimal control problem defined in Eq. 1 is modelled
as aMarkov decision process, which is formulated as a quadruple 〈S,A,P,R〉. Here,
S ⊂ R

ns is a set of all possible states with the dimension ns , A ⊂ R
na is a set

of all possible actions with the dimension na . The state S, is represented with the
saturation s(x, ·) and pressure p(x, ·) values over the entire domain X . The action A,
is represented by an array of well control values a(x ′, ·). More details of this array, like
the representation of action, are presented in Sect. 3.3. The optimal control problem
defined in Eq. 1 is discretized into M control steps and as a result, its solution is a set
of optimal control values a∗(x ′, t1), a∗(x ′, t2), . . . , a∗(x ′, tM ) where t0 < t1 < t2 <

· · · < tM . The transition function P : S × A → S, is assumed to follow the Markov
property. That is, transition to the state S(tm+1) is obtained by executing the actions
A(tm)when in the state S(tm). Such transition function is obtained by discretizing Eq.
1b. For a transition from state S(tm) to state S(tm+1), the real value reward R(tm+1)

is calculated as R(tm+1) = R(S(tm), A(tm), S(tm+1)), where R : S × A × S → R

is the reward function. The reward function is obtained by discretizing the objective
function (Eq. 1a) into control steps such that

R(tm+1) =
∫ tm+1

tm
L(s, a)dt. (2)

Optimal controls are obtained by learning a control policy function, which is defined
as π : S → A. This function is denoted as π(A|S) and is generally represented by
a neural network. Essentially, the control policy π(A|S), maps a given state S(tm), to
an action A(tm). For an optimal control problem, with M control steps, the goal of
reinforcement learning is to find an optimal policy π∗(A|S) such that the expected
reward G = ∑M

m=1 γm−1R(tm), is maximized. Note that immediate rewards R, are
exponentially decayedby the discount rateγ ∈ [0, 1]. The discount rate represents how
myopic the learned policy is; for example, a learned policy is considered completely
myopic when γ = 0. The controller, which is also referred to as an agent, follows the
policy and explores various control trajectories by interacting with the environment,
which consists of a transition function P and a reward functionR. The data gathered
by these control trajectories are used to update the policy towards optimality. Each such
update of the policy is called a policy iteration. In RL literature, a single complete
control trajectory is referred to as an episode. Essentially, RL algorithms attempt
to learn the optimal policy π∗(A|S) from a randomly initialized policy π(A|S), by
exploring the state-action space by executing a high number of episodes.

In order to represent the variability in permeability, a finite number of well spread
samples is chosen from the predefined uncertainty distribution. This is achieved with
a cluster analysis (see Appendix 1 for the formulation of cluster analysis) of the
distribution domain K . The sample vector k = {k1, k2, · · · kl}, is constructed with
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samples of the distribution K, which are located nearest to the cluster centres. The
policy π∗(A|S), is learned by randomly selecting the parameter k from the training
vector k at the beginning of each episode. The policy return Rπ(A|S), is computed by
averaging the returns of policy π(A|S; ki ) (policy applied to the simulation where the
permeability is set to ki ) in l simulations, which is formulated as

Rπ(A|S) = 1

l

l∑
i=1

M−1∑
m=0

∫ tm+1

tm
L(s, π(A|S; ki ))dt. (3)

In optimal well control problems, the system is partially observable; that is, reservoir
information is only available at well locations throughout the reservoir life cycle. To
accommodate this fact, the agent is provided with the available observation as its
state. For this study, observation is represented with a set of saturation and pressure
values at the well locations x ′. This is also apparent in the definition of Lagrangian
term L(s, a), where values s and a are taken at well locations x ′, as defined in Eq.
1a. Note that with such a representation of states, the underlying assumption of the
Markov property of the transition function is approximated. Such system is referred
to as partially observable Markov decision process (POMDP). By the definition of
POMDP, the policy requires the observations and actions of all previous control steps
to return the action for a certain control step. However, for the presented case studies,
observation from only the previous control step is observed to be sufficient for policy
representation.

2.2 Learning Convergence Criteria

The optimal policy convergence is detected by monitoring the policy return Rπ(A|S),
after every policy iteration. Conventionally, when this value converges to a maximum
value, the optimal policy is assumed to be learned. The convergence criteria for i th
policy iteration is defined as

δi =
∣∣∣∣∣
Rπ(A|S)
i − Rπ(A|S)

i−1

max(Rπ(A|S)
i−1 , ε)

∣∣∣∣∣ < δ, (4)

where δi is the return tolerance at i th policy iteration, δ is the stopping tolerance and ε

is a small non-zero number used to avoid division by zero. The convergence of policy
learning process is often flat near the optimal result. For this reason, the convergence
criteria defined in Eq. 4 is checked for the last n consecutive policy iterations. For
example, if r is the array of monitored values of Rπ(A|S) at all policy iterations, the
policy π(A|S) is considered converged when the convergence criteria are met (Eq.
4) for last n policy iterations is met. Algorithm 1 delineates the pseudocode for this
convergence criteria.

Figure 1 illustrates the effect of n and δ on the convergence criteria for an example
of a reinforcement learning process.
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Algorithm 1 Learning convergence criteria
1: procedure IsConverged(r, n, δ)
2: if length(r) < n then return False
3: end if
4: compute δi (Eq. 4) for last n values of r and get its maximum δmax
5: if δmax < δ then
6: return True
7: else
8: return False
9: end if
10: end procedure

(a)

(b)

Fig. 1 Plot of policy returns versus number of training episodes: a illustrates effect of δ on convergence
criteria and b illustrates effect of n on convergence criteria
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The policy return plot is shown in blue, where each value at the policy iteration is
shown with a dot. The corresponding return tolerance is plotted in gray color, which is
represented in percentage format (δi ×100, where δi is calculated fromEq. 4). It can be
seen that the convergence criteria (denoted with markers on these plots) takes longer
to satisfy when the stopping tolerance δ, is smaller and consecutive policy iteration
steps n, are higher.

2.3 Adaptive Multigrid RL Framework

An adaptive multigrid RL framework is proposed where, essentially, the policies
learned using lower grid fidelity environments are transferred and trained with higher-
fidelity environments. The fidelity of the grid for an environment is described by the
factor β ∈ (0, 1]. The environment with β = 1 is assumed to have the fine-grid dis-
cretization, which guarantees good approximation of fluid flow production out of the
domain as defined in Eq. 1a. For any environment where β < 1, the size of the environ-
ment grid is coarsened by the factor of β. For example, if a high-fidelity environment
where β = 1 corresponds to the simulation with grid size 64 × 64, the simulation
grid size is reduced to 32 × 32 when β is set to 0.5. Restriction operator �β(), is
used to coarsen the high fidelity simulation parameters with the factor of β. This is
done by partitioning a finer grid of size m × n (corresponding to β = 1) into coarser
dimensions 
βm� × 
βn� (corresponding to β < 1 where 
·� is the floor operator)
and computing these values of the coarse grid cell as a function f, of the values in
the corresponding partition. Figure 2a illustrate this restriction operator for a variable
x ∈ R

n×m .
The function f, for different parameters of the reservoir simulation, are listed in

Table 1.
On the other hand, the prolongation operator �−1

β (), maps the coarse grid environ-
ment parameters to the fine grid as shown in Fig. 2b.

A typical agent-environment interaction using this framework is illustrated in Fig.
3. Note that the transition function P and the reward functionR are subscripted with
β to indicate the grid fidelity of the environment. State S(tm), action A(tm) and reward
R(tm) are denotedwith shorthand notations, Sm , Am and Rm , respectively. Throughout
the learning process, the policy is represented with states and actions corresponding
to the high-fidelity grid environment. As a result, actions, and states to and from the
environment, undergo the restriction �β and prolongation �−1

β operations at each
time-step as shown in the environment box in the Fig. 3.

The proposed framework is demonstrated for PPO algorithm. PPO (Schulman et al.
2017) is a policy gradient algorithm that models stochastic policy πθ (A|S), with a
neural network (also known as the actor network). Essentially, the network parameters
θ , are obtained by optimizing the objective function defined as

Jppo(θ) = Êt

[
min

(
rt (θ) ˆAdv(St , At ),

clip(rt (θ), 1 − ε, 1 + ε) ˆAdv(St , At )
)]

,

(5)
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(a)

(b)

Fig. 2 Illustration for the restriction operator �β (a) and prolongation operator �−1
β (b) for a parameter

x

Table 1 Restriction operator
function for simulation
parameters

Simulation parameter Function, f

Saturation, s Mean

Porosity, φ Mean

Pressure, p Mean

Permeability, k Harmonic mean

Flow control, a Sum

where rt (θ) = πθ (At |St )/πθold (At |St ) and θold correspond to the policy parameters
before the policy update. The advantage function estimator ˆAdv, is calculated using
the generalized advantage estimator (Schulman et al. 2015) derived from the value
function Vt . The value function estimator V̂t is learned through a separate neural
network, termed as the critic network. The definitions of advantage and value functions
are provided in Appendix 2. In practice, a single neural network is used to represent
both the actor and critic networks. The objective function for this integrated actor-
critic network is the sum of the actor loss term (Eq. 5), value loss term and entropy
loss term. For the purpose of maintaining brevity in our description, these latter loss
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Fig. 3 A typical agent-environment interaction in the proposed multigrid RL framework

terms are omitted and the policy network’s objective function is treated as Jppo(θ) in
further discussion. However, please note that they are considered while executing the
framework. The readers are referred to Schulman et al. (2017) for a detailed definition
of the policy network loss term. The Algorithm 2 presents the pseudocode for the
proposed multigrid RL framework.

Algorithm 2 PPO with adaptive multigrid framework
1: Define δ, n and an empty array r for convergence criteria
2: Define a grid fidelity factor array β = [β1, β2, . . . , βm ], where βm = 1 and β1 < β2 < . . . < βm .
3: Define an episode limit array E = [E1, E2, . . . , Em ], where E1 < E2 < . . . < Em .
4: Define total episode count, e = 0
5: for i = 1, 2, . . . ,m do
6: Generate the environment Eβi , with the grid fidelity factor βi
7: for i teration = 1, 2, . . . do
8: for actor = 1, 2, . . . , N do
9: Run policy πθold in environment Eβi , for T time steps (in total, E episodes)

10: Compute value function estimates V̂1, . . . , V̂T using critic network
11: Compute advantage function estimates Â1, . . . , ÂT
12: end for
13: Optimize Jppo(θ) with K epochs and minibatch size M ≤ NT
14: θold ← θ

15: Compute the policy return Rπθ (A|S) and append it in r
16: e := e + E
17: if IsConverged(r, n, δ) or e ≥ Ei then
18: break
19: end if
20: end for
21: end for

The framework consists of, in total, m values of grid fidelity factor which are
represented with an array β = [β1, β2, . . . , βm], where βm = 1 and β1 < β2 < · · · <
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Table 2 Reservoir model parameters

Case 1 Case 2 Units

Spatial domain X (1200×1200) (620×1820) ft2

Temporal domain T [0,125] [0,25] days

Initial saturation s0 0.0 0.0 –

Viscosity μ 0.3 0.3 cP

Porosity φ 0.2 0.2 –

Number of producers n p 31 14 –

Number of injectors ni 31 7 –

Total injector flow
∑

a+ 2304 9072 ft2/day

βm . The environment is denoted as Eβi , which represents the environment with the
grid fidelity factor βi . Policy πθ (A|S) is initially learned with the environment Eβ1 ,
until the convergence criteria are met. The convergence criteria are checked using the
Algorithm 1 with predefined parameters δ and n. Upon convergence, further policy
iterations are learned using the environment Eβ2 , and so on until the convergence
criteria are met for the highest grid fidelity environment Eβm . A limit for the number
of episodes to be executed at each grid level is also set. This is done by defining an
episode limit array E = [E1, E2, . . . , Em], where Em is the total number of episodes
to be executed and E1 < E2 < · · · < Em . That is, for every environment with grid
fidelity factor, β j the maximum number of episodes to be trained is limited to E j .

3 Case Studies

Two test cases are designed, representing two distinct uncertainty distributions of
permeability and control dynamics. For both cases, the values for model parameters
emulate those in the benchmark reservoir simulation cases, SPE-10 model 2 (Christie
et al. 2001). Table 2 delineates these values for test cases 1 and 2. As per the convention
in geostatistics, the distribution of log (k) is assumed to be known and is denoted by
G.As a result, g = log(k) is treated as a random variable in the problem description
defined in Eq. 1. The uncertainty distributions for test cases 1 and 2 are indicated with
G1 and G2, respectively.

3.1 Uncertainty Distribution for Test Case 1

The log-permeability uncertainty distribution for test case 1 is inspired by the case
study of Brouwer et al. (2001). Figure 4a shows schematics of the spatial domain for
this case. In total, 31 injector wells (illustrated with blue circles) and 31 producer
wells (illustrated with red circles) are placed on the left and right edges of the domain,
respectively. As illustrated in Fig. 4a, a linear high-permeability channel (shown in
gray) passes from the left to right side of the domain.
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(a) (b)

Fig. 4 Schematic of the spatial domain for test case 1 (a) and 2 (b)

l1 and l2 represent the distance from the upper edge of the domain on the left
and right sides, while the width of the channel is indicated by w. These parameters
follow uniform distributions defined as w ∼ U (120, 360), l1 ∼ U (0, L − w) and
l2 ∼ U (0, L −w), where L is the domain length. In other words, the random variable
g follows the probability distribution G1 that is parameterized with w, l1 and l2 which
is described as

g ∼ G1(w, l1, l2).

To be specific, the log-permeability g at a location (x, y) is formulated as

g(x, y) =
⎧⎨
⎩
log (245) if l2−l1

L x + l1 ≤ y ≤ l2−l1
L x + l1 + w,

log (0.14) otherwise,

where x and y are horizontal and vertical distances from the upper left corner of the
domain illustrated in Fig. 4a. The values for permeability at the channel (245 mD)
and the rest of the domain (0.14 mD) are inspired from Upperness log-permeability
distribution peak values specified in SPE-10 model 2 case.

3.2 Uncertainty Distribution for Test Case 2

Test case 2 represents the uncertainty distribution of a smoother permeability field.
Figure 4b illustrates reservoir domain for this case. It comprises 14 producers (illus-
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trated with red circles) located symmetrically on the left and right edges (7 on each
edge) of the domain and 7 injectors (illustrated with blue circles) located at the central
vertical axis of the domain. A prior distribution F is assumed on all locations x ∈ X
as

F(x) = μ + Z(x),where,

E(Z(x)) = 0,

Cov(Z(x), Z(x̃)) = σ 2k(x, x̃), (6)

where the process variance, σ , is assigned as 5 and the exponential covariance function
(kernel), k(x, x̃), is defined as

k(x, x̃) = exp

⎡
⎣−

(
(x1 − x̃1)2

l21
+ (x2 − x̃2)2

l22

)1/2
⎤
⎦ ,

where the parameters l1 and l2 are assigned to be 620ft (width of the domain) and 62ft
(10% of domain width), respectively. The posterior distribution given the observed
log-permeability vector, g(x ′) = [g(x ′

1), g(x
′
2), · · · , g(x ′

n)], where each observation
corresponds to a log-permeability value of 2.41 at a well location (that is, n = 21
since there are, in total, 21 wells in this case). From the principle of ordinary kriging,
the posterior distribution, G2, for log-permeability at a location x ∈ X is a normal
distribution which is defined as

g(x) ∼ G2(ĝ(x), ŝ2(x)), where,

ĝ(x) = μ̂ + k(x ′, x)ᵀk(x ′, x ′)−1(g(x ′) − 1μ̂),

ŝ2(x) = σ 2
[
1 − k(x ′, x)ᵀk(x ′, x ′)−1k(x ′, x)

+ (1 − 1ᵀk(x ′, x ′)−1k(x ′, x))2

1ᵀk(x ′, x ′)−11

]
,

where k(x ′, x) is the n dimensional vector whose i th value is k(x ′
i , x), k(x ′, x ′) is the

n×n dimensional matrix whose value at (i, j) is k(x ′
i , x

′
j ), 1 is a n dimensional vector

with all elements of one (1 = [1, 1, . . . , 1]ᵀ) and μ̂ is an estimate of the globalmeanμ,
which is obtained from the kriging model based on the maximum likelihood estimate
of the distribution F(x) (from Eq. 6) for the observations g(x ′), and is formulated as

μ̂ = 1ᵀk(x ′, x ′)−1g(x ′)
1ᵀk(x ′, x ′)−11

.

The log-permeability distribution G2, is created with an ordinary kriging model using
the geostatistics library gstools (Müller and Schüler 2019). In the simulation, samples
of the permeability fields are obtained with a clockwise rotation angle of π/8.
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3.3 State, Action and Reward Formulation

PPOalgorithmattempts to learn the parameters θ of the policyneural networkπθ (A|S).
The episodes (i.e., the entire simulation in the temporal domain T ) are divided into
five control steps. Each episode timestep corresponding to a control step is denoted
with tm , where m ∈ {1, 2, . . . , 5}. The state S, is represented by an observation vector
that consists of saturation and pressure values at well locations x ′. Since the saturation
values in the injector wells are always one, regardless of time tm , they are omitted from
the observation vector. Consequently, the observation vector is of the size 2n p + ni
(i.e., ns = 93 for test case 1 and ns = 35 for test case 2). Note that this observation
vector forms the input to the policy network πθ(A|S). A vector of flow control values
of all the injector and producer wells, denoted by A, is represented as the action. The
action vector A consists of in total n p + ni values (that is, na = 62 for test case 1 and
na = 21 for test case 2). To maintain constraints defined in Eq. 1d, the action vector
is represented by a weight vector w ∈ R

na , such that 0.001 ≤ w j ≤ 1. Each weight
value w j , corresponds to the proportion of flow through the j th well. As a result,
the values in the action vector are written as (w1, . . . , wni , wni+1, . . . , wni+n p ). Flow
through j th injector A j , is computed such that the constraint defined in Eq. 1d is
satisfied

A j = − w j∑ni
i= j w j

c.

Similarly, the flow through the j th producer, A j+ni , is calculated as

A j+ni = w j+ni∑n p
j=1 w j+ni

c.

The reward function, as defined in Eq. 2, is divided by total pore volume (φ×lx×ly) as
a form of normalization to obtain a reward function in the range [0,1]. The normalized
reward represents the recovery factor or the sweep efficiency of the contaminated fluid.
Recovery factor represents the total amount of contaminants swept out of the domain.
For example, the recovery factor of 0.65 means that 65% of contaminants are swept
out of the domain using water flooding. To put it in the context of a groundwater
decontamination problem, the optimal controls correspond to the well controls that
maximize the percentage of contaminants swept out of the reservoir.

3.4 Multigrid Framework Formulations

The proposed framework is demonstrated using three levels of simulation grid fidelity.
Note that β = 1 case corresponds to the finest level of simulation, which provides an
accurate estimate of recovery factor. In this study, the aim is to exploit the simulations
with β < 1, which correspond to computationally cheaper simulation run times by
definition. Furthermore, β < 1 simulations are deliberately chosen such that they
correspond to a recovery factor estimate that deviates from accurate β = 1 simulation
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Table 3 Grid fidelity factor and
corresponding grid size

Test case 1 Test case 2

β = 1 61 × 61 31 × 91

β = 0.5 30 × 30 15 × 45

β = 0.25 15 × 15 7 × 22

(a)

(b)

Fig. 5 Comparison of recovery factor estimates with β = 1, β = 0.5 and β = 0.25 for test case 1 (a) and
test case 2 (b)

estimates. Table 3 lists the discretization grid size corresponding to these grid fidelity
factors for both test cases.

Figures 5a and b plot the recovery factor estimates (with all wells open equally)
for these grid fidelity factors for each permeability sample ki , in test cases 1 and 2,
respectively.
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Table 4 Multigrid framework experiments

Test case 1 Test case 2

β = [0.25] β = [0.25]
Single grid (β = 0.25) E = [75, 000] E = [150, 000]

n = ∞; δ = 0 n = ∞; δ = 0

β = [0.5] β = [0.5]
Single grid (β = 0.5) E = [75, 000] E = [150, 000]

n = ∞; δ = 0 n = ∞; δ = 0

β = [1.0] β = [1.0]
Single grid (β = 1.0) E = [75, 000] E = [150, 000]

n = ∞; δ = 0 n = ∞; δ = 0

β = [0.25, 0.5, 1.0] β = [0.25, 0.5, 1.0]
Fixed multigrid E = [25, 000, 50, 000, 75, 000] E = [50, 000, 100, 000, 150, 000]

n = ∞; δ = 0 n = ∞; δ = 0

β = [0.25, 0.5, 1.0] β = [0.25, 0.5, 1.0]
Adaptive multigrid E = [25, 000, 50, 000, 75, 000] E = [50, 000, 100, 000, 150, 000]

n = 25; δ = 0.2 n = 25; δ = 0.2

The deviation from the accurate recovery factor (that is, for β = 1) for β = 0.5
and β = 0.25 can be seen for both cases. As expected, the recovery factor estimates
with β = 0.25 show a higher deviation from the estimates of β = 1 compared to
those of β = 0.5. To show the effectiveness of the proposed framework, the obtained
results are compared with single-grid and multigrid frameworks. The results for a
single-grid framework are the same as if they were obtained using the classical PPO
algorithm, where the environment has a fixed fidelity factor throughout the policy-
learning process. This is done by setting the grid fidelity factor array β, and episode
limit array E, with a single value in Algorithm 2. The factor n in convergence criteria
procedure (delineated in Algorithm 1) is set to infinity. In other words, convergence
criteria is unchecked and the policy learning takes place for a predefined number of
episodes. In total, three such single-grid experiments are performed corresponding
to β = 0.25, β = 0.5, and β = 1.0. In addition, two multigrid experiments are per-
formed to demonstrate the effectiveness of the proposed framework. The firstmultigrid
experiment is referred to as fixed, where convergence criteria are kept unchecked just
like single-grid frameworks. Multiple levels of grids are defined by setting the grid
fidelity factor array β, and episode limit array E, as an array of multiple values cor-
responding to each fidelity factor value and its corresponding episode count. In the
fixed multigrid framework, policy learning takes place by updating the fidelity factor
of the environment according to β without checking the convergence criteria (i.e., by
setting n = ∞). Second, the parameters of the adaptive multigrid framework are set
similarly to those used in the fixed multigrid framework, except for the convergence
criteria parameters n and δ. Table 4 delineates the number of experiments and their
corresponding parameters for test cases 1 and 2.
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(a)

(b)

(c)

Fig. 6 Effect of grid fidelity factor β on the environment for test case 1: a on a sample of log-permeability,
b on corresponding saturation and c on simulation run time

Figure 6 provides visualization for the effect of fidelity factor β, on the simulation
in test case 1.

Figure 6a and b show log-permeability and saturation plots corresponding to β =
0.25, β = 0.5 and β = 1.0. Furthermore, Fig. 6c illustrates the effect of grid fidelity
on simulation run time for a single episode (shown on left with a box plot of 100
simulations) and the equivalent β = 1 simulation run time for each grid fidelity
factor (shown on right). Equivalent β = 1 simulation run time is defined as the ratio
of average simulation run time for a grid fidelity factor β, to that corresponding to
β = 1. This quantity is used as a scaling factor to convert the number of simulations
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(a)

(b)

(c)

Fig. 7 Effect of grid fidelity factor β on the environment for test case 2: a on a sample of log-permeability,
b on corresponding saturation and c on simulation run time

for any value of β to its equivalent number of simulations as if they were performed
with β = 1. Similar plots for test case 2 are shown in Fig. 7.

The results obtained using the proposed framework are evaluated against the bench-
mark optimization results. These benchmark optimal results are obtained using the
differential evolution (DE) algorithm (Storn and Price 1997). For both optimization
methods (PPO and DE), multi-processing is used to reduce total computational time.
However, the parallelism behavior is quite varied between the PPO andDE algorithms.
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For instance, neural networks are back propagated synchronously at the end of each
policy iteration of PPO, which causes extra computational time in waiting and data
distribution. For this reason, a computational cost comparison among various experi-
ments is performed by comparing the number of simulation runs in each experiment.
The PPO algorithm for the proposed framework is executed using the stable baselines
library (Raffin et al. 2019), while python’s SciPy (Virtanen et al. 2020) library is used
are provided in Appendix 3 delineates all the algorithm parameters used in this study.

4 Results

The control policy inwhich the injector andproducerwells are equally open throughout
the entire episode is called the base policy. Under such policy, the water flooding
prominently takes place in the high permeability region, leaving the low permeability
region swept inefficiently. The optimal policy for these test cases would be to control
the producer and injector flow tomitigate this imbalance inwater flooding. The optimal
policy, learned using reinforcement learning for test case 1, shows on average around
12% improvement with respect to the recovery factor achieved using the base policy.
While for test case 2, the average improvement is in the order of 25%.

Figure 8 illustrates the plots for the policy return Rπ(A|S), corresponding to all the
frameworks listed in Table 4 for test case 1. At the beginning of the learning process,
the policy return values for single-grid framework keeps improving and eventually
converge to a maximum value when the policy converges to an optimal policy. Note
that for lower value of grid fidelity factor β, the optimal policy return is also low. In
other words, the coarsening of simulation grid discretization also reflects in overall
reduction in recovery factor. This is due to the low accuracy of the state and action
representation for environments with β < 1. However, the overall computational gain
is observed as a result of coarser grid sizes. The simulation run time corresponding to
β = 0.25 and β = 0.5 shows a reduction of around 66% and 54% compared to β = 1.
The results of multigrid frameworks are compared with the single grid framework
corresponding to β = 1 which refers to the classical PPO algorithm that uses the
environment with a fixed high-fidelity grid factor. As shown in the plots at the center
and right of Fig. 8, bothmultigrid frameworks show convergence to the optimal policy,
which is achieved using the high-fidelity single-grid framework. In the fixed multigrid
framework, the fidelity factor is incremented at a fixed interval of 25,000 number of
episodes. The adaptive framework is also provided with the same interval but with
additional convergence check within each interval. For multigrid learning plots shown
in Fig. 8 (center and right plots), the equivalent number of episodes corresponding to
the environment with β = 1 is illustrated as a secondary horizontal axis.

In this way, the computational effect of multigrid frameworks is directly compared
to a single-grid framework (with β = 1). The equivalent number of β = 1 episodes
corresponding to episodes with a certain value β is computed by multiplying it with
the equivalent β = 1 simulation run time. For example, the number of episodes with
β = 0.25 is multiplied by 0.37. For a fixed multigrid framework, it takes 45,496
equivalent β = 1 episodes to achieve an equally optimal policy that is obtained
with a 75,000 number of episodes using single grid (β = 1) framework. Similarly,
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Fig. 8 Plots of policy return versus number of episodes for test case 1

the same is achieved with just 28,303 equivalent β = 1 episodes using the adaptive
multigrid framework. In other words, around 38% and 61% reductions are observed in
the simulation run time using fixed and adaptive multigrid frameworks, respectively.
Further, the robustness of the policy learned using these frameworks is compared by
applying it on the highest fidelity environment with random permeability samples
from the distribution G1, which were never seen during the policy learning process.
Figure 9a shows the plots of these unseen permeability fields, while the corresponding
results obtained using these frameworks are plotted in Fig. 9b.

Optimal results obtained using differential evolutionary (DE) algorithms are pro-
vided as benchmark (marked as DE in Fig. 9b). Note that DE algorithm is not a suitable
method to solve the robust optimal control problem since it can provide optimal con-
trols only for certain permeability samples as opposed to PPO algorithm where the
learned policy is applicable to all samples of permeability distribution. However, DE
results are used as the reference optimal results, which are achieved by direct opti-
mization on sample-by-sample basis. Equivalence in the optimality of learned policies
obtained using these three experiments can be observed from the closeness in their
corresponding optimal recovery factors. Figure 10 demonstrates the visualization of
the policy for an example of the permeability sample in case 1.

In this figure, the results are shown for permeability sample index 4 from the Fig.
9a where a high permeability channel passes through the lower region of the domain.
The optimal policy in this case would be to restrict flow through the injector and
producer wells that are in the vicinity of the channel. The superpositioned comparison
of optimal results for base case, differential evolution, single-grid framework (where
β = 1), fixed multigrid framework and adaptive multigrid framework shows that the
optimal policy is learned successfully using the proposed framework.

For test case 2, similar results are observed as shown in Fig. 11.
The single-grid algorithms converge to an optimal policy in total 150,000 number

of episodes. The fixed multigrid algorithm is trained with 50,000 episode interval for
each grid fidelity factor as shown in the central plot in Fig. 11. The optimal policy is
learned in 94,141 equivalent β = 1 episodes thus saving around 38% of simulation
run time. The adaptive multigrid framework further reduces computational cost by
achieving the optimal policy in 39,582 equivalent β = 1 episodes (simulation time
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(a)

(b)

Fig. 9 Evaluation of learned policies for test case 1: a evaluation samples of log-permeability distribution
G1, b recovery factor (in % format) versus evaluation sample index (from a) plot
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Fig. 10 Illustration of learned optimal control policies for test case 1

Fig. 11 Plots of policy return versus number of episodes for test case 2

reduction of about 76% with respect to the β = 1 single-grid framework). Figure 12
illustrates the results of policy evaluation on unseen permeability samples from the
distribution G2.

The permeability samples are shown in Fig. 12a and the optimal recovery factor
corresponding to the learned policies is plotted in Fig. 12b. Figure 13 shows the optimal
controls for an example of the permeability sample index 5 from Fig. 12a.
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(a)

(b)

Fig. 12 Evaluation of learned policies for test case 2: a evaluation samples of log-permeability distribution
G2, b recovery factor (in % format) versus evaluation sample index (from a) plot

The optimal policy learned using differential evolution algorithm refers to increas-
ing the flow through injector wells which are in the low permeability region while
restricting the flow through producer wells for which the water cut-off is reached.
Policies learned using the RL framework take advantage of the default location and
orientation of high-permeability regions. In this case, the optimal policy is achieved
by controlling the well flow control such that the flow traverses through the perme-
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Fig. 13 Illustration of learned optimal control policies for test case 2

123



Math Geosci (2023) 55:345–375 369

ability channels (that is, the flow is more or less perpendicular to the permeability
orientation).

5 Conclusion

An adaptive multigrid RL framework is introduced to solve a robust optimal well
control problem. The proposed framework is designed to be general enough to be
applicable to similar optimal control problems governed by a set of time dependant
nonlinear PDEs. Numerically, a significant reduction in the computational costs of
policy learning is observed compared to the results of the classical PPO algorithm. In
the presented case studies, 61% computational savings in simulation runtime for test
case 1 and 76% for test case 2 is observed. However, note that these results are highly
dependent on the right choice of the algorithm hyperparameters (e.g., δ, n, β and E)
which were tuned heuristically. As a future direction for this research study, the aim
is to find the optimal values for β that maximize the overall computational savings.
Furthermore, the policy transfer was performed sequentially in the current framework,
which seemed to have worked optimally. However, to improve the generality of the
proposed framework, it would be important to study the effect of the sequence of
policy transfers on overall performance.
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Appendix 1: Cluster Analysis of Permeability Uncertainty Distribution

Training vector k is chosen to represent the variability in the permeability distribution
K. For the optimal control problem, our main interest is in the uncertainty in the
dynamical response of permeability rather than the uncertainty in permeability itself.
As a result, the connectivity distance (Park 2011) is used as a measure of the distance
between the permeability field samples. The connectivity distance matrix D ∈ R

N×N
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Fig. 14 Log-permeability plots for training data of test case 1 and 2: a and b illustrate clustering for G1
and G2 distribution samples

among the N samples of K is formulated as

D(ki , k j ) =
∑
x ′′

∫ T

t0

[
s(x ′′, t; ki ) − s(x ′′, t; k j )

]2 dt,

where N corresponds to a large number of samples of uncertainty distribution,
s(x ′′, t; ki ) is saturation at location x ′′, and time t , when the permeability is set to
ki and all wells are open equally. Multidimensional scaling of the distance matrix D
is used to produce N two-dimensional coordinates d1, d2, . . . , dN , each represent-
ing a permeability sample. The coordinates d1, d2, . . . , dN are obtained such that the
distance between di and d j is equivalent to D(ki , k j ). In the k-means clustering pro-
cess, these coordinates are divided into l sets S1, S2, . . . , Sl , obtained by solving the
optimization problem, defined as

argmin
S

l∑
i

∑
d j∈Si

∥∥d j − μSi

∥∥ ,

where μSi is average of all coordinates in the set Si . The training vector k is a set of l
samples of K where each of its value ki correspond to the one nearest to μSi .

The total number of samples N and clusters l are chosen to be 1000 and 16 for
both uncertainty distributions, G1 and G2. A training vector k is obtained with samples
k1, . . . , k16 each corresponding to a cluster center. Figure 14a and b show cluster
plots for samples of permeability distribution G1 and G2, respectively. Furthermore,
16 permeability samples, each randomly chosen from a cluster, are chosen to evaluate
the learned policies. Figures 9a and 12a illustrate these samples for test case 1 and 2,
respectively.
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Appendix 2: Definitions of Value and Advantage Function

In RL, the policy π(A|S) is said to be optimal if it maps the state St with an action At

that correspond to maximum expected return value. These return values are learned
through the data obtained from agent-environment interactions. The following are
some definitions of return values typically used in RL:

The value function is the expected future return for a particular state St and is
defined as

V (S) = Eπ

[∑
m

γm Rm+t+1|St = S

]
,

where Eπ [· · · ] denotes the expected value given that the agent follows the policy π .
As a shorthand notation, V (S) in the state St is denoted as Vt .

Q function is similar to value function except that it represents the expected return
when the agent takes action at in the state St . It is defined as

Q(S, A) = Eπ

[∑
m

γm Rm+t+1|St = S, At = A

]
.

Advantage function is defined as the difference between Q function and value function
and is denoted by Adv(S, A) at state S and action A.

Appendix 3: Algorithm Parameters

Parameters used for PPO are tabulated in Table 5 which were tuned using trial and
error. For the PPO algorithm, the parameters were tuned to find the least variability
in the learning plots. Figures 15 and 16 show learning plots corresponding to three
different seeds to show the stochasticity of the obtained results. The parameters of the

Table 5 PPO algorithm parameters

Case 1 Case 2

Number of CPUs, N 64 64

Number of steps, T 40 40

Mini-batch size, M 16 16

Epochs, K 20 20

Discount rate, γ 0.99 0.99

Clip range, ε 0.1 0.15

Policy network MLP layers [93,150,100,80,62] [35,70,70,50,21]

Policy network activation functions tanh tanh

Policy network optimizers Adam Adam

Learning rate 3e-6 1e-4
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(a)

(b)

(c)

Fig. 15 Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 1

DE algorithm are delineated in Table 6. The code repository for both the test cases
presented in this paper can be found on the link: https://github.com/atishdixit16/ada_
multigrid_ppo.
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(a)

(b)

(c)

Fig. 16 Learning plots with seed 1 (a), 2 (b) and 3 (c) for test case 2

Table 6 DE algorithm
parameters

Case 1 Case 2

Number of CPUs 64 64

Number of iterations 1024 1024

Population size 310 105

Recombination factor 0.9 0.9

Mutation factor (0.5,1) (0.5,1)
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