
Math Geosci (2022) 54:857–872
https://doi.org/10.1007/s11004-021-09992-4

Local Ranking of Geological Conceptual Models in
Non-stationary Settings Using Multi-point Geostatistics

Sangga Rima Roman Selia1,2,3 ·
Raimon Tolosana-Delgado1 ·
K. Gerald van den Boogaart1,4

Received: 13 July 2019 / Accepted: 20 December 2021 / Published online: 17 January 2022
© The Author(s) 2022

Abstract In geomodeling, it is commonly accepted that the distribution of physical
properties is controlled by the architecture of geological objects. However, insufficient
data and the complexity of earth processes create an ill-posed problem where many
architectures are plausible. Consequently, several geologists will produce different
geological models for the same location. This contribution proposes a way to objec-
tivize the ranking of those conceptual models by comparing them with hard data, both
globally for the whole study region and locally for certain of its sectors. The idea is
to extend the multi-point geostatistics direct sampling algorithm to be able to extract
data events from different training images, representing several competing geologi-
cal models, and to record the training image origin of values pasted on simulation
grid cells. By tracking the frequency with which every training image is visited, we
can rank the likelihood of each geological model. Histograms of the frequency of
usage of each training image will provide a global ranking of the several conceptual
models, while maps of these frequencies can be used to produce the local rankings.
We demonstrate this method in two synthetic fluvial depositional environments where
three distinct geological concepts are being proposed, with different abundances of
hard data. Results indicate that the proposed method could be a useful tool in defining
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which geological concept dominates at a particular region and which is the frequency
ranking for each training image on that region.

Keywords Multi-point geostatistics · Geological uncertainty · Local ranking

1 Introduction

Geological heterogeneity has a strong influence on the distribution of physical proper-
ties related to earth resources such as the concentration of economicminerals, porosity
and permeability. Therefore, the process of identifying and building a geological archi-
tecture, including the location of important geological bodies and their relationships, is
usually establishedbefore spatially populating themwith physical properties (Strebelle
and Remy 2005; Zhang et al. 2006; de Almeida 2010). This conventional workflow
has proven to be effective in both the exploration and exploitation phases of natural
resources.

When evaluating the geological conditions of an area, geologists must deal with
complex, scarce, and unevenly distributed data originating from a broad range of
measurement devices with different scales (spatial, temporal, and statistical). Direct
measurements of critical physical properties, e.g. out of core samples, are very lim-
ited so that the physical properties are mostly interpolated or calculated from indirect
measurements such as well logs, seismic data, or other geophysical methods. The ill-
posedness of this problem allows several geologists to have different interpretations
for the same data on the same area. Another substantial reason for this disagreement
is the interpreters’ preexisting knowledge, which Bond et al. (2007) refer to as con-
ceptual uncertainty: these authors observed 412 interpretations of a single synthetic
seismic section produced by forward modeling and defined a conceptual uncertainty
space that encompasses themost uncertain aspects of the interpretations obtained. This
work highlighted the need for tools that can robustly quantify the likelihood of pro-
posed geological concepts against further independent data, as a means for validation,
selection, or ranking of competing geologic interpretations.

There are several methods that can be used to spatially predict subsurface geo-
logical elements, such as geostatistics and stratigraphic forward modeling methods.
Geostatistics is useful in quantifying data uncertainties and has become a standard
tool in the geosciences. On the other hand, stratigraphic forward modeling methods
can be used to test hypotheses about the processes that take place in the system, but
there is generally no way to condition their results to hard data. Both methods can be
incorporated into any workflow (Michael et al. 2010; Zhang et al. 2019) so that it can
be expected to deliver more realistic and objective results.

One group of geostatistical methods is called multi-point geostatistics (MPS). This
utilizes a training image as input together with spatial data. The training image repre-
sents the conceptual arrangement of geological elements, and both second-order and
higher-order statistics can be extracted from it (Guardiano and Srivastava 1993). The
training image is often tauted as more intuitive for geologists, in particular compared
with explicit two- and multi-point structural functions (variograms, autocovariance
functions, generalized covariances, high-order moments, etc.) in providing explicit
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geological information, and it is particularly useful for categorical data. Here, geol-
ogists can apply their prior knowledge and experiences to incorporate features in
the simulation that cannot be observed in sparse data but that the analysts consider
necessary.

The use of a training image should consider its representativeness to conditional
data, rather than based solely on relevant geology. Some authors (Boisvert et al. 2007;
Feng et al. 2017; Pérez et al. 2014) have discussed the issue of training image qual-
ity assessment, a process which is usually carried out prior to simulation. Boisvert
et al. (2007) proposed using the distribution of runs for a one-dimensional vertical
direction, employing extensive vertical well data and a multiple-point histogram for
any dimension (one-dimensional, two-dimensional, or three-dimensional). Pérez et al.
(2014) counted the occurrences of conditioning data event patterns on each training
image by scanning thewhole training image or by using less expensive direct sampling
algorithms. Feng et al. (2017) proposed the ranking of training images by calculating
the mean and the variance of the minimum data event distance (MDevD), which can
be obtained using the direct sampling algorithm.

Apart from MPS, there are also other methods that use training images to obtain
spatial structure information such as the high-order spatial cumulant method (Dim-
itrakopoulos et al. 2010) and neural networks (Caers 2001). The high-order spatial
cumulant method is less sensitive to training images, since it uses multi-point informa-
tion from both conditioning data and training images to estimate the local probability
density function. To the best of authors’ knowledge, this method has not yet been used
for assessing the quality of training images.

The objective of this paper is to propose a data-driven method to rank the pref-
erence for local conceptual models. Additionally, the method produces conditional
simulations, with certain shortcomings. We approach the problem by employing mul-
tiple training images containing alternative geological concepts exemplarily in one of
the MPS methods, direct sampling (DS). The conventional DS algorithm is modified
slightly to enable it to visit several training images and to record the training image
origin of simulated values. Subsequently, we obtain the frequency for each training
image at each location of the simulation domain while generating realizations that
might mix patterns and structures coming from different training images.

The paper is divided into four sections. This first section has discussed the back-
ground of this research. The second section describes inmore detail theDSmethod and
our proposal to extend it to the objective of this paper. This section also illustrates the
application of the method to several synthetic cases representing fluvial depositional
environments. Some training images with different geological concepts are used in
these case studies. A discussion of the results is presented in Section 3.

2 Multi-point Geostatistics

MPS was first introduced in rather hypothetical fashion by Guardiano and Srivastava
(1993), and since the work of Strebelle (2002), it has been developed to solve real
case studies (Harding et al. 2005; van der Grijp and Minnitt 2015; Kim et al. 2018)
with a variety of algorithms. Originally, MPS methods were developed for categor-
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ical variables such as rock facies, but current implementations are able to deal with
continuous (Zhang et al. 2006) and even with compositional variables (Talebi et al.
2019). MPS methods are very attractive because they can reproduce curvilinear and
complex structures while honoring conditional data, both hard and soft. This ability
is particularly important in settings where the realizations are further employed for
highly non-linear post-processing, such as fluid flow simulations or mine scheduling.

In MPS, geological concepts and interpretations are provided in the form of a
training image, andmulti-point statistics information is borrowed from it. This training
image might come from a digitized image made by a geologist, numerical modeling of
physical simulation (Michael et al. 2010), prior modeling using two-point geostatistics
or object-based methods (Strebelle 2002; Zhang et al. 2006), outcrops (Pickel et al.
2015), modern analogues (Jung et al. 2012; Hashemi et al. 2014; Dagasan et al. 2019),
or spatial data if extensively available (Yin et al. 2016). In geology, an expert opinion in
the form of an image is highly informative, as it gives a broad picture of the distribution
of geological facies and the interdependence between them. Hence, the idea of using
a training image is a highly promising and relevant approach. Alternatively, training
images can be generated by physical or numerical simulation, capturing highly detailed
physical phenomena and high-frequency characteristics, although not all geological
conditions can be readily simulated at the required complexity level. In any case, the
representativity of a training image and its ability to appropriately reproduce the spatial
distribution of the studied features was recently challenged by Emery and Lantuéjoul
(2014), who concluded that training images must be theoretically very large.

2.1 MPS Direct Sampling

Onemethod ofMPS is direct sampling (DS,Mariethoz et al. (2010)), which is based on
distance calculations between the data events in the simulation grid and the data events
in the training image,which are limited by a specificwindowsize.Adata event contains
values obtained from either the simulation grid (hard data or previously simulated data)
or the training image that are located relative to a central reference point. The distance
calculation depends on the type of variables that are being modeled, whether discrete,
continuous (Mariethoz and Kelly 2011), or even specific multivariate scales, such as
compositional variables (Talebi et al. 2019), to mention just a few. DS offers simplicity
and flexibility because no pre-computation of conditional probabilities is required, and
there is no need to store patterns in a database as in other MPS algorithms. The value
of the central node in a training image data event will be exported directly to the
simulation grid if the distance has met the necessary criteria, typically being under
a certain threshold value. We may export the value of more than one pixel to make
the simulation process faster (Rezaee et al. 2013). Another advantage of DS is that
we can easily combine different information sources to perform co-simulation, either
between the same type of variables (e.g. categorical and categorical) or different types
of variables (e.g. categorical and continuous, or categorical and compositional), as
presented by several authors (Talebi et al. 2019; Yin et al. 2016). This contribution
focuses on DS for categorical variables, although some of its conclusions extend to
other scales of data.
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Assume that Z(x) is a categorical regionalized variable that can have a value on
the set c = {c1, c2, ..., ck}, for instance rock facies. A simulation grid is characterized
by nodes filled in by hard data and empty nodes to be simulated. A reference position
in the simulation grid or the training image is denoted by x0 or y0, respectively.
A set of relative spatial lags of n data within a certain window size is denoted by
H = {h1,h2, . . . ,hn}. A data event from the simulation grid is M(x0, H) = {z(x0 +
h j )|h j ∈ H}, denoted for short as Mx0 =: M(x0, H). Equivalently, a data event from
the training imagewill be denoted as either Ny0 = N (y0, H) =: {z(y0+h j )|h j ∈ H},
depending on the context. Moreover, let d(Mx0 , Ny0) be the distance between the
two data events, for example computed using an appropriate distance criterion for
categorical variables, such as (Mariethoz and Kelly 2011)

d(Mx0 , Ny0) = 1

n

n∑

j=1

d(z(x0 + h j ), z(y0 + h j ));

d(z(x), z(y)) = {0 if z(x)=z(y)
1 otherwise (1)

The value of z(y0) will be pasted in z(x0) if d(Mx0 , Ny0) < dthr, where dthr is a
threshold value in the range of 0 to 1; otherwise the new data event Ny0 will be
extracted from a different y0 location and the distance calculation is repeated. The
training image is randomly scanned until a data event satisfying that condition is
found or until a portion f of the training image has been scanned. In the latter case,
the value of z(y0) associated with the smallest d(Mx0 , Ny0) will be used. This is
achieved by storing both values each time the distance decreases.

DS is a sequential method where every grid is visited one by one, either randomly
or systematically (laterally starting from a corner). The same applies to the scanning
path in the training image. Each simulated value in the simulation grid becomes the
new hard data.

2.2 Direct Sampling with Multiple Training Images and Training Image Origin
Tracking

A training image depicts prior geological information for a study area. However, as
mentioned in the introduction, it is generally difficult to find only one proper concept
for a geological problem. Geologists with diverse backgrounds will employ different
concepts in solving the same problem. Thus, working with multiple training images
that accommodate a collection of geological concepts may bemore appropriate. Addi-
tionally, the use of a large training image, as recommended by Emery and Lantuéjoul
(2014), can also be replaced by the use of many training images. One of the early
MPS methods, SNESIM, implements a multiscale method, where multiple training
images are used to capture different scales of phenomena (Liu 2006; Strebelle 2002).
Straubhaar (2019) developed a DS algorithm with multiple training images that is
able to combine patterns from different training images in each realization. However,
its use is specifically to produce realizations, and not to quantify the compatibility of
training images against data.
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Fig. 1 Training images used in the experiments (top), and their omnidirectional variograms (bottom)

Fig. 2 Global fraction of facies 1 in every training image, target, and conditional data. The amounts of
conditional data for every target are labeled with 1%, 5%, and 10%
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The method proposed here requires modification of the DS algorithm to cope with
multiple training images and to quantify the frequency of each training image in the
simulation grid. Denote by z(i)(x) the i-th training image, and by N (i)

y0 = {z(i)(y0 +
h j )|h j ∈ H} = N (y0, H, i) a data event extracted from it. One can then devise a
path randomly sampling across all training images, provided that it visits all of them
equally. One can then accept the first z(i)(y0) data event which satisfies the distance
condition, i.e. which distance

d(Mx0 , N
(i)
y0 ) = 1

n

n∑

j=1

d(z(x0 + h j ), z
(i)(y0 + h j )); d(z(x), z(y)) = {0 if z(x)=z(y)

1 otherwise

(2)

is d(Mx0 , N
(i)
y0 ) < dthr. The training image index i should be stored as well, to be able

to track the origin of each simulated value.
Alternatively, one can parallelize the search algorithm, and at the same time visit

all training images equally, with the following modification. The distances between
data events from each training image N (i)

y0 and that of the simulation grid Mx0 are

simultaneously calculated (Eq. 2), and those N (i)
y0 that satisfy the threshold condition

are kept. If there are several N (i)
y0 that meet the condition d(Mx0 , N

(i)
y0 ) < dthr, one will

be picked up at random, and the z(i)(y0) value of the selected N (i)
y0 will be pasted in

the z(x0). In this way, it will ensure that the DS algorithm visits all the training images
equally, and a data event in the simulation grid will be compared to all the training
images with the same frequency.

During the sequential process, the method tracks the origin of every simulated
value in the simulation grid. Consequently, after generating several realizations, one
can quantify the frequencyof each training image at every simulation grid. This helps to
observe the tendency of a training image to fill in a certain region of the simulation grid.
Another advantage of the method is that at the same time, one produces realizations
which might incorporate several of the conceptual models being considered. Here, the
assessment of the training images is carried out while obtaining the realizations, not
before obtaining them, as previous researchers did (Boisvert et al. 2007; Feng et al.
2017; Pérez et al. 2014; van den Boogaart 2006).

3 Illustration

In order to show the performance of the proposed method, two sets of experiments are
conducted on two different synthetic settings (Fig. 3). In both cases, three geological
concepts are considered as alternative training images (TI1, TI2, and TI3 displayed in
Fig. 1). The training images resemble the channels and the flood plains of the fluvial
depositional environment which vary smoothly from one another. The yellow color
represent facies 1, reflecting the river channel, which usually presents good porosity
and permeability, while blue is facies 2, which reflects the surrounding depositional
environment with poor porosity and permeability, such as a flood plain. Training

123



864 Math Geosci (2022) 54:857–872

Fig. 3 Targets, conditional data for the experiments, and the corresponding omnidirectional variograms

image TI1 describes braided stream patterns. TI2 and TI3 show meandering stream
patterns, the latter displaying higher sinuosity and an oxbow lake feature. The lower
part of Fig. 1 shows the omnidirectional variograms of each training image, where
the sinuosity or the facies ratio of the training image patterns are reflected in range
and periodicity or the sill of the variogram. Figure 2 shows the difference in the total
fraction of facies 1. TI1 has the highest global fraction of facies 1, with a value of
45%. TI2 and TI3 have global fractions of 25% and 30%, respectively.

These experiments describe situations in which the targets fit with only one or rep-
resent a combination of several geological models (Fig. 3). For the first experiment, the
target is the TI3, but horizontally flipped so that training image and target are analogous
and not identical. For the second experiment, the target represents a transition between
TI1 and TI2, resembling a fluvial transitional depositional environment consisting of
meandering and braided stream patterns (Fig. 3), each occupying roughly 50% of the
area. Conditional data are extracted randomly from the targets at 1%, 5%, and 10%
(Fig. 3). With the variations in the amount of conditional data, we want to examine
how the proposed method works with different data densities. The omnidirectional
variograms of the targets and the conditional data can be seen in Fig. 3. In general, all
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Fig. 4 Outcomes of experiment 1: realizations (columns 1 and 3) and TI tracking maps (columns 2 and 4)

Fig. 5 Variograms of experiment 1: realizations (gray) and the target (blue)

the variograms have a sill value of 0.2 with a range of 8. As the data density decreases,
the variograms become de-structured. In terms of the global fraction of facies 1, the
targets and conditional data exhibit frequencies ranging from 25% to 35%. These are
close to TI2 and TI3 (Fig. 2). The conditional data and the training images are the
inputs to this method.

In these experiments, both the simulation grid and the three training images have
a size of 100 × 100 pixels and the same resolution, to avoid inconsistent object
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Fig. 6 Outcomes of experiment 2: realizations (columns 1 and 3) and TI tracking maps (columns 2 and 4)

Fig. 7 Variograms of experiment 2: realizations (gray) and the target (blue)

size reproduction. A set of 40 realizations was produced, conditional to the available
data, with the following simulation parameters: window size of 10 × 10 pixels, and a
maximumportion of f = 20%of the training image to scan before stopping. These two
parameters were unchanged in all the experiments. Although tuning these parameters
may play a significant role in the final results, in this paper we focus the discussion
on the aspect of data density.
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4 Results and Discussion

Figures 4 and 6 show some of the realizations of the first and second experiments.
The realizations display an overall proper continuity of facies 1. In the upper row
of each figure are the outcomes using 1% conditional data, while in the middle and
the lower rows are those using 5% and 10% conditional data, respectively. From
these two experiments, we can observe that increasing the number of conditional data
results in realizations that increasingly resemble their targets (Fig. 3). For example, in
experiment 1, the oxbow lake feature can be captured with data density of 10%, but
not when the data density is 1% or 5%. In this experiment, better reproductions of the
target variogram are obtained as the data density increases (Fig. 5). And in experiment
2, two channel regimes can be observed in the realizations when the data density is
10%. The two regimes can also be seen in realization 2when the data density is 5%, but
at this data density the influence of TI3 can create a highly sinuous channel, as shown
in realization 1 and its TI tracking map. Figure 7 shows the variogram reproductions
of experiment 2.

For every realization, there is a record of which training image was used at each
location (Figs. 4 and 6, columns 2 and 4). Out of 40 realizations, the frequency of each
training image in every pixel was computed (Figs. 8 and 9). In addition, we calculated
the frequency over the simulation grid for each realization as well as for all realizations
to produce the box plots and the histograms of selected training images (Fig. 10). The
box plots show the variability in the frequency of usage of each training image across
realizations.

In the first experiment, with 10% conditional data, the resulting frequency maps
show that TI3 is the most frequently visited, followed by TI2 and TI1 (Fig. 8). This
is also reflected in the histogram (Fig. 10). As previously mentioned, the target in the
first experiment was the flipped TI3, so we expect that the interpolated values in the
simulation grid will be dominated by the values from TI3. The next most frequently
used training image is TI2, since it is more similar to TI3 than TI1 (Fig. 1). This is
true for both the fraction of each facies and the typical patterns the TIs exhibit. When
the proportion of conditional data is reduced to 5%, we can still see comparably high
values for the TI3 frequency map, but this is no longer the case when it is 1%. Here,
the values of TI2 are taken more often than of TI3, suggesting that TI2 offers more
flexible data events.

In the second experiment, with 10% data density, TI1 and TI2 show a tendency to
fill in a particular region in the simulation grid (Fig. 9). In other words, they are locally
better supported by the data, as compared with TI3. This result was expected given the
configuration of the target (Fig. 3) as a transition between regimes analogous to TI1
and TI2. However, this tendency is not clearly observed in the histogram, where the
selections of TI1 and TI3 are almost the same, and TI2 was chosen very predominantly
(Fig. 10). In other words, using the histograms on the proposed method to rank the
training images does not tell thewhole story. A visual inspection of the frequencymaps
is required to determine whether there is a strong local dominance of a training image.
A low frequency of a certain training image in the global histogram does not mean
that this training image is not important if it occurs highly concentrated in a specific
area of the simulation grid. This local trend was not visible at 5% or 1% data density,
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Fig. 8 Training image frequency maps of experiment 1 after 40 realizations for each data density

as occurred in the first experiment. We may say that the proposed method works when
the data density is sufficient to differentiate between different patterns in the training
images. Otherwise, when a data event in the simulation domain fits into several training
images, the algorithmwill select one of the fitting training images randomly. Thus, the
updated data events in the neighborhood area will likely support the selected training
image to fill in the values around it. To highlight the more suitable training image for
a certain region, several possible solutions might be used, for example, smoothing the
training image tracking information as a post-processing step. Alternatively, one can
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Fig. 9 Training image frequency maps of experiment 2 after 40 realizations for each data density

implement multiscale distance calculations where the distance comparison between
training images (equation 2) starts from a large window size and then continues to a
smaller window size. The impact of such choices is left for future research.

Once the data density is sufficient, 10% in these experiments, the frequency maps
can help geologists determine which geological concepts are more appropriate for the
entire area or for certain parts of the area. This is also assisted by the resulting real-
izations (e.g. whether the selection of the geological concepts resulted in geologically
proper realizations).
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Fig. 10 Histograms and box plots of selected training images for experiment 1 (top) and experiment 2
(bottom)

Although in this contribution we only considered the value of visited TI bookkeep-
ing for the purpose of conceptual model ranking, one can imagine other uses for it.
For instance, in this contribution, local ranking maps are simply used as a tool to help
the geologist understand the geological setting. But the maps may be used not only
for indicating different regions of compatibility, but also for identifying actual tran-
sitions between regimes (or non-stationarity). If this is the case, in a second batch of
simulations, they could be used as prior probabilities for several TIs, as is done with
the DeSee method (Straubhaar 2019). One could also imagine an iterative process, in
which the probability map of visiting each training image is updated after every batch.
The details or properties (such as convergence) of such an algorithm are left for future
research.

5 Conclusion

We have demonstrated how a multi-point algorithm, in the case of this contribution
direct sampling (DS), can be used in the case of multiple, alternative training images,
representing competing geological interpretations of the area under study. In this way,
many prior geological concepts can be imposed as training images, and the corre-
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sponding visiting frequency for each training image at each sector of the simulation
grid can be calculated. The frequency maps can assist geologists in determining the
most locally compatible conceptual models out of a set of available alternatives. How-
ever, a sufficient amount of data is required so that the patterns from each training
image can be properly distinguished and the correct frequency maps produced.
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