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Abstract Plots of chondrite-normalised rare earth element (REE) patterns often
appear as smooth curves. These curves can be decomposed into orthogonal poly-
nomial functions (shape components), each of which captures a feature of the total
pattern. The coefficients of these components (known as the lambda coefficients—λ)
can be derived using least-squares fitting, allowing quantitative description of REE
patterns and dimension reduction of parameters required for this. The tetrad effect is
similarly quantified using least-squares fitting of shape components to data, resulting
in the tetrad coefficients (τ ). Our method allows fitting of all four tetrad coefficients
together with tetrad-independent λ curvature.We describe themathematical derivation
of the method and two tools to apply the method: the online interactive application
BLambdaR, and thePythonpackagepyrolite.We showseveral case studies that explore
aspects of the method, its treatment of redox-anomalous REE, and possible pitfalls
and considerations in its use.
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1 Introduction

Rare earth element (REE) patterns are plots of measured REE abundances in a sample,
in which the concentration of each element is divided by its corresponding concentra-
tion in a reference material, a process termed normalisation (Coryell et al. 1963). The
most common reference material is an average of ordinary chondrite meteorites (CI),
often taken to represent an unmodified primordial composition of the solar system and
the Earth. Once chondrite-normalised (CN), any deviations from a horizontal array
record some geochemical fractionation process. As the geochemical properties of the
REE generally vary in a smooth manner from La to Lu (Anenburg 2020 and references
therein), the pattern itself is a smooth line whose shape is informative of the processes
that led to the sample formation.

Quantification of various shape aspects of patterns is usually achieved using
normalised element ratios. For example, LaN/LuN (where subscript N indicates nor-
malised values) measures the overall slope of a pattern, and LaN/SmN might provide
information on the degree of light REE (LREE) fractionation from the middle REE
(MREE). However, the choice of elements is often arbitrary and chosen to support a
certain hypothesis, or designed for use in simpler environments (e.g., mid-ocean ridge
basalts), and can never provide information on the shape on a shorter wavelength than
the one used for the ratio (Anenburg 2020). For example, the three different REE
patterns shown in Fig. 1 (A, B, C) are clearly different and represent different petroge-
netic processes, yet their LaN/LuN are nearly identical. Additional measures, such as
Dy/Dy* (the deviation of Dy from a straight line connecting La and Yb) that attempts
to quantify pattern concavity, are only reliable for simple patterns (Davidson et al.
2013). For example, Dy/Dy*= 1 for pattern D in Fig. 1, suggesting a simple straight
pattern. Yet, a quick glance at the pattern reveals it to be an artefact of its curvature,
in which Dy is located precisely at the La–Yb interpolating line, simply by chance.

In cases of such complexity, descriptions of REE pattern are often supplemented
by qualitative terms such as “sinusoidal”, “U-shaped”, or “spoon-shaped”. As these
are loosely defined qualitative terms, they are somewhat ambiguous (i.e., one person
might understand “spoon-shaped” differently from another) and unquantifiable (to
what degree is a pattern spoon-shaped?). The problem is compounded when two or
more qualitative shape descriptions are combined. Using normalised element ratios to
describe an overall sloping REE pattern which is simultaneously spoon-shaped and
sinusoidal becomes a futile endeavour. In such cases a simple visual inspection of
the pattern is more informative, as “a picture is worth a thousand words”. However,
visual inspections become challenging when many analyses are present and the prob-
lem of overplotting becomes serious as many individual lines are entangled into an
incomprehensible jumble, from which it is not straightforward to discern trends. For
instance, trends in a data set representing a rock suite in which pattern sinusoidalities
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Fig. 1 Four synthetic REE patterns generated using the following parameters:
�A=(2.2, 35, 300, 0, −17000), �B = (4.9, 37.5,−290, 0, 0), �C = (3.6, 15, 0, 8800, 0), and
�D = (4.6,−15, 225, 7800, 24000). The linear line connecting La and Yb in pattern D is plotted
in light green

increase whereas spoon-shapednesses decrease are likely to be obscured by having “a
thousand pictures”.

The above-described difficulties are greatly reduced if REE patterns are taken as
mathematical functions constructed from simpler functions, each describing a shape,
which we term “shape components”. The method was originally developed by O’Neill
(2016) and employs least-squares fitting of coefficients to orthogonal polynomials of
increasing powers, termed the “lambda shape coefficients”. Here, we explicate the
method of using λ shape components and coefficients to describe REE patterns, and
expand it to include τ coefficients that describe the tetrad effect—subtle variation in
REE behaviours that affects individual groups of four consecutive elements.

2 Mathematical Description of REE Patterns

2.1 Lambda Shape Coefficients

The function used by O’Neill (2016) to describe REE pattern shapes is

ln [REEi ]N = λ0 + λ1 f
orth
1 + λ2 f

orth
2 + λ3 f

orth
3 + λ4 f

orth
4 , (1)
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where ln[REEi ]N is the natural logarithm of the normalised element concentration.
REE plots are plotted using the common logarithm (i.e., log10[REEi ]N), which makes
the choice of natural logarithm seem odd; the reasoning for the use of the natural
logarithm is presented in O’Neill (2016). In any case, transformations between the
two logarithm bases are trivial (see appendix in Anenburg 2020).

In Eq. 1, f orthn are orthogonal polynomial functions of eightfold ionic REE radii ri
(Shannon 1976). The functions of increasing order are as follows

f orth1 = (ri − β)

f orth2 = (ri − γ1)(ri − γ2)

f orth3 = (ri − δ1)(ri − δ2)(ri − δ3)

f orth4 = (ri − ε1)(ri − ε2)(ri − ε3)(ri − ε4).

(2)

The parameters β, γn , δn , and εn are pre-calculated constants, such that each f orthn
describes a fixed, predetermined shape (see Appendix). The use of ionic radii is pre-
ferred to atomic number, as it widens the distance between each LREE relative to
HREE. First, each LREE often varies in its properties from its neighbour more than
the HREE: in most natural samples, the fractionation degree of Ce differs from Pr
more than Ho differs from Tm. This behaviour follows that of ionic radii, and by
using them, the greater fractionation degree is accommodated by lower-order shape
components. Second, O’Neill (2016) empirically demonstrated that using ionic radii
results in a superior fit compared to using atomic numbers. The drawback is that the
mathematical treatment becomes slightly more complex, but this is not an issue in
nearly all applications if the available software described below is made use of. We
follow the convention used byO’Neill (2016) of using the eightfold coordinated “ionic
radius” from Shannon (1976), itself based on an earlier structure determination of sim-
ple lanthanide fluorides (Greis and Petzel 1974). Whether these values are sufficiently
accurate and admissible as representative values for the entire field of geochemistry is
still debatable, while being mindful that the “ionic radius” of an element varies based
on the local environment and that ions are not rigid balls (Liu et al. 2013; Gibbs et al.
2013). There is ongoing work attempting to refine REE ionic radius values (Gagné
2018), and it is possible that slightly different radii will be used in future versions of
the tools presented here.

A complete REE pattern is thus described by the linear combination of the shape
coefficients (λn) acting as scaling factors for their respective shape components
( f orthn ). Specifically,λ0 represents the averageREE abundance,λ1 represents the linear
slope,λ2 represents quadratic curvature,λ3 represents cubic curvature (i.e., sinusoidal-
ity), and λ4 represents the quartic curvature (i.e., W-shape), essentially providing finer
control that, when combined with the previous coefficients, allows for various spoon
shapes and the like. Figure 2 shows an example of a REE pattern constructed by the
gradual addition of shape coefficients. An interactive online app, ALambdaR (https://
lambdar.rses.anu.edu.au), allows easy visualisation of the effect of shape coefficients
on REE patterns, and readers are encouraged to experiment with it in order to gain an
intuitive understanding of the method.
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(a)

(b)

(c)

(d)

Fig. 2 Illustration of progressive addition of shape components, using a λ1 and subsequent b λ2, c λ3,
and d λ4. Dark blue lines are the full patterns described by the � vector in each panel header, light blue
lines are the λn f orthn components added in each step, and light green lines show the previous full pattern to
which the component has been added. For example, �b = �a + λ2
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2.2 Tetrad Effects

2.2.1 Background and Previous Studies

In addition to the smooth variation in REE geochemical properties across the lan-
thanide row, there are cases where the REE are divided into four segments (“tetrads”),
each consisting of four elements: (i) La–Ce–Pr–Nd, (ii) Pm–Sm–Eu–Gd, (iii) Gd–
Tb–Dy–Ho, and (iv) Er–Tm–Yb–Lu (Kawabe 1992). Within each tetrad, the middle
two elements are fractionated relative to the elements at the edges (e.g., Tb and Dy
are fractionated relative to Gd and Ho). The fractionation can be positive or negative,
which is manifested as a series of ridges or troughs on a REE pattern, occasionally
called M-type and W-type, respectively. Various combinations of these types can also
be observed (Azizi et al. 2020). The tetrad effect stems from quantum mechanical
effects on the electronic structure and energies of the 4f subshell (Kawabe 1992).
Note that these M-type and W-type tetrads are distinct from the quartic f orth4 of a
smooth pattern described by λ4, often referred to as M-shaped or W-shaped.

Previous attempts to quantify the tetrad effect included the ratio of the middle ele-
ments from their values on an interpolated line connecting the edge elements (Irber
1999), or calculation of the standard deviation of this ratio (Monecke et al. 2002;
Abedini et al. 2020). These methods suffer from three major problems. Firstly, the
magnitude of the tetrad effect can only be calculated if all four elements are measured
and do not present anomalies. This eliminates tetrad 2, as it includes Pm, which does
not occur naturally, and Eu, which is commonly anomalous because of its two oxida-
tion states (Eu2+ and Eu3+). This can also lead to elimination of tetrad 1, as Ce is also
occasionally anomalous because of its two oxidation states, Ce3+ and Ce4+, with the
latter being common in low-temperature environments; this is especially problematic
because the tetrad effect is most likely to occur in surface environments and highly
evolved magmatic systems (Bau 1997) up to the low hundreds of degrees Celsius.
Secondly, these methods are not suitable for REE patterns which exhibit curvature,
namely the vast majority. These interpolation methods will report non-zero tetrads
even if the pattern had not been influenced by tetrad effects, simply because curved
lines deviate from straight lines (Bau 1997), as these methods essentially calculate the
degree of precisely that deviation. Thirdly, tetrads are not symmetric. They arise from
the electronic structure of the elements and the stability of empty (La), half-full (Gd),
and full (Lu) f shells (Kawabe 1992; Peppard et al. 1969). Additionally, quarter-full
f shells should also contribute to the tetrad effect, but the number of f orbitals (14) is
not divisible by four, and true quarter-filled shells will only be realised in non-existing
elements that occur between Nd and Pm, and Ho and Er (Nugent 1970). This mis-
match leads to asymmetry which is not captured by simple linear interpolation on
a normalised REE pattern plot. Finally, the two methods based on standard devia-
tions (Monecke et al. 2002; Abedini et al. 2020) may erroneously quantify analytical
noise as a tetrad effect if the middle elements are shifted to the same direction.

A superior method for tetrad effect quantification was developed by Minami and
Masuda (1997). It involves least-squares fitting of four quadratic curves to the four
tetrads, mathematically constraining the positions of the curves such that they inter-
sect correctly at the quarter-filled non-existent element positions using the method of
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Lagrange undetermined multipliers. The method also solves the problem of missing
elements—they are simply excluded from the fitting procedure, using the remaining
elements instead. Finally, themethod partially solves the issue of curvature by dividing
the entire REE pattern into four linear slopes unto which parabolas are superim-
posed. Unfortunately, the method has largely remained unadopted by the geochemical
community, likely due to its mathematical complexity and the lack of accessible com-
putational tools to apply it.

2.2.2 Tetrad Functions Compatible with λ Shape Coefficients

A major limitation for tetrad fitting is that the method of Minami and Masuda (1997)
cannot be easily applied in conjunction with the REE shape coefficients described
above, as the least-squaresmatrix construction is different.Minami andMasuda (1997)
only use a subset of the REE for the fitting of each tetrad, whereas λ fitting considers
all elements simultaneously. Furthermore, as the tetrad fitting already includes some
degree of curvature (albeit in low resolution), there is a conflict between that and
some of the λ coefficients. Here we adapt their method so that it is compatible with
the O’Neill (2016) λ shape coefficients, and allows compatible fitting of both shape
and tetrad coefficients.

Each tetrad is initially represented by a negative parabola that rises above the x-axis
at its respective location and is zero elsewhere, essentially the function

f tet(x) = max(0, 1 − x2) = 1 − x2 +
√(

1 − x2
)2

2
. (3)

Four such parabolas have to be generated, each shifted laterally so that their x-axis
intersections occur at the following positions on an atomic number axis: (i) La and
Nd–Pm midpoint: 57 and 60.5, (ii) Nd–Pm midpoint and Gd: 60.5 and 64, (iii) Gd
and Ho–Er midpoint: 64 and 67.5, and (iv) Ho–Er midpoint and Lu: 67.5 and 71.
Their maxima are located between the intersections at 58.75, 62.25, 65.75, and 69.25,
respectively. Consequently, 1−x2 is transformed to form all four tetrads via f tet (g(z))
where g(z) = (z−z0)

1.75 , z0 are the maxima positions, and 1.75 is half of the parabola
width (3.5/2) at f tet = 0. Finally, as the λ method expects ionic radii rather than
atomic number, a third function that transforms r to z is required. Previous attempts
to parameterise r as a function of z have found agreement with Slater’s model for
atomic shielding (Raymond et al. 2010; Seitz et al. 2007), but here we use a simple
polynomial function h(r) = z that maps the Shannon (1976) radii to atomic number.
The polynomial order can be arbitrarily large, and we find that a seventh-order poly-
nomial is sufficient to accurately generate parabolas at the correct locations when the
parabolas are calculated using f tet (g (h (r))).

Each tetrad is then described by τn f tetn , where τn are each of the four tetrad coef-
ficients, with positive values indicating a negative parabola (i.e., a ridge, or M-type
tetrad), and negative values indicating a positive parabola (i.e., a trough, or W-type
tetrad).
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(a)

(b)

Fig. 3 Complete REE patterns showing a an M-type tetrad effect and b a W -type tetrad effect (bottom).
Dark blue lines are the smooth patterns derived from λn terms, light blue lines are the tetrads derived
from τn terms, light green lines are the quadratic curves that underlie the tetrad model, and purple lines are
the complete REE patterns (i.e., � + T)

2.3 Combining λ and τ Shape Coefficients

The sum of all functions described so far leads to the complete function that describes
REE patterns

ln [REEi ]N = λ0 + λ1 f
orth
1 + λ2 f

orth
2 + λ3 f

orth
3 + λ4 f

orth
4

+τ1 f
tet
1 + τ2 f

tet
2 + τ3 f

tet
3 + τ4 f

tet
4 . (4)

Two examples of complete REE patterns that include both λ and τ terms are given
in Fig. 3.

Fitting data to this form is a straightforward procedure inmost modern data analysis
software packages. There are currently two tools available for fitting a function of
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this form (Eq. 4) to REE patterns. The first is BLambdaR, an interactive online tool
written in the Shiny package for R, using R’s native linear algebra routines (Chang
et al. 2020; R Core Team 2020; Anderson et al. 1999; Wilkinson and Rogers 1973;
Chambers 1992). It is accessible at https://lambdar.rses.anu.edu.au/blambdar/. The
second is pyrolite, a Python package which includes functions for fitting lambdas
and tetrads amongst a suite of tools tailored to transformation and visualisation of
geochemical data (Williams et al. 2020).

2.4 Treatment of Uncertainties

Naturally, the fitting of often noisy real-world data using λ and τ coefficients is never
perfect. Several numerical indicators can be used to assess the fit quality. The first
indicator is the coefficient of determination (r2), a number ranging from 0 to 1 which
is commonly interpreted as the proportion of variability in the data explained by the
model, with higher r2 values indicating lower unexplained variance. Whilst useful for
linear fits, r2 has the problem that it increases for every fitted parameter, even if said
parameter does not actually improve the fit. As our model may include up to nine
parameters (five λ and four τ ), this may be an issue of concern. Therefore, we use the
adjusted r2

r2adj = 1 −
(
1 − r2

)
× n − 1

n − p
, (5)

where n is the number of fitted REE and p is the number of fitted coefficients. Note
that the denominator often includes a −1 term in the statistical literature to account
for an intercept parameter, but in our case this parameter (λ0) is included in p, ren-
dering decrementation by one unnecessary. r2adj attempts to account for the potentially

spurious increase of r2 when many parameters are fitted, and provide a less biased
estimate of unexplained variance (Freund et al. 2010).

The second indicator, whichmeasures the goodness of fit, is the reduced chi-squared

χ2
ν = χ2

ν
=

∑ (
ln [REEi ]N − ln ̂[REEi ]N

)2

ν × s(ln[REE])∗2 , (6)

where ν indicates degrees of freedom (i.e., fitted variables minus fitted parameters),
the numerator is the sum of squared residuals, the hat symbol indicates expected value
from fit, and s indicates the assumed uncertainty on REE measurements as a fraction
(i.e., 5% uncertainty should be taken as s = 0.05). See Bevington and Robinson
(2003) and the Appendix in O’Neill (2016) for more details. In general, lower χ2

ν is
better. However, given that we know that there are errors in the data because analytical
methods are not foolproof and unavoidable uncertainties exist—s(ln[REE])∗2 > 0—
it is very unlikely for χ2

ν to be too low, as that would imply much lower uncertainties in
the REE data than is possible according to instrumental and other sources of error. χ2

ν

is then an indicator of this issue: χ2
ν = 1 indicates that the fitted residuals of the model

are in accordance with the assumed data uncertainty, χ2
ν > 1 indicates that the model
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does not do a good job of fitting or that we have underestimated data uncertainties,
and χ2

ν < 1 indicates that we are overfitting the model (i.e., it fits a curve with no
actual significance) or thatwe have overestimated data uncertainties.Geochronologists
and other geoscientists might be more familiar with an alternative term for χ2

ν , the
mean squared weighted deviation, or MSWD (Powell et al. 2002). Individual χ2

ν

values may not be particularly informative themselves, as a single measurement may
be exceptionally accurate or inaccurate just by chance. However, when integrated
along a large database, all individual χ2

ν values are themselves χ2-distributed with
a theoretical maximum that corresponds to the actual s, allowing one to estimate an
overall representative uncertainty on REE data across the database (O’Neill 2016).

We also include statistics on individual parameters: the standard error (SE) and
p-value. The SE is calculated by taking the square root of the diagonal of the variance-
covariance matrix derived from the measured data (Freund et al. 2010; Bevington
and Robinson 2003). The ratio of the coefficients and their respective SE is taken,
from which a double-sided probability of that value or larger under a t distribution
with ν degrees of freedom is computed as the p-value. Better fits result in lower p-
values. In hypothesis testing, p-values smaller than 0.05 are often taken as a rubber
stamp for statistical significance, or whether there is a real influence by a certain fitted
parameter. We would caution against such a simplistic interpretation in this case, as
no hypothesis testing is conducted per se, and the physical interpretation of the shape
coefficients is debatable (see below). There is an ongoing discussion on the use and
abuse of p-values (Amrhein et al. 2017; McShane et al. 2019; Greenland 2019), and
we recommend that they are taken as a semi-quantitative indicator of whether a certain
pattern exhibits a certain shape. Values as low as 0.0001 can safely be interpreted as
“the shape definitely exists”, and values as high as 0.3 may require more scrutiny. This
is particularly important for tetrads: if they cannot be consistently and significantly
fitted, it is best to leave them out of themodel, as their inclusion breaks λ orthogonality,
as discussed in the next section.

2.5 Orthogonality and Lack of Thereof During Tetrad Fitting

One principal strength of the λ shape parameters and their respective shape com-
ponents is predicated upon their orthogonality. All components are independent of
each other. For instance, bending of a linearly sloping pattern in a fashion consistent
with f orth2 would increase the magnitude of λ2 with no influence on λ1. Another strik-
ing example, which we encourage readers to attempt on their own using the online
tools, is to generate REE data with� = (0, 0, 0, 0,−20000) in ALambdaR so that the
pattern consists essentially of an M-shaped f orth4 . Next, feed the REE data to BLamb-
daR, which correctly extracts the initial � vector (permitting minor deviations due to
rounding errors, etc.). Unticking the option to fit λ4 leads BLambaR to counterintu-
itively report � = (0, 0, 0, 0), as if the fitted pattern is a simple horizontal line. This
behaviour provides an excellent demonstration of orthogonality: any f orthn polynomial
is essentially invisible to all other orthogonal polynomials, and allows the method to
be used consistently across the range of all naturally occurring REE patterns. A cer-
tain shape (e.g., quadratic curvature: λ2) is intercomparable across all other patterns,
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Fig. 4 Three REE patterns, shifted horizontally. �A = (1, 0, 300, 0, 0), �B = (1.1, 14.5, 300, 0, 0),
�C = (1.5,−18, 300, 0, 0)

regardless of the degree of their slope and sinusoidality, and other shapes described
by λ �=2.

The above-described property of orthogonality breaks down when tetrad compo-
nents (τn f tetn ) are added to the least-squares fitting. The quadratic f tetn functions are
only defined in their respective four-element tetrads and are consequently indepen-
dent of each other. That is, excluding or including a certain tetrad will not directly
affect the other tetrads. However, they are not orthogonal with respect to the f orthn
functions, and cannot be made so. The consequence is that when both λ and τ coef-
ficients are sought in a single least-squares fit, the fitted coefficients do not follow
the expected mutual orthogonal independence. This can be easily seen for the above
pattern (λ4 = −20000) by ticking all τn while λ4 remains unticked. The pattern con-
tains no tetrads and no other λ-shapes—because that is how we prepared it, yet the
fitting leads to the following spurious parameters: � = (−0.115,−1.59,−12.1, 666)
and T = (0.57, 0.043,−0.01, 0.15). The problem leads to a concern: how can the
fitted parameters be trusted and interpreted when attempting to quantify the tetrad
effect? An attempt to address these issues is given in the case studies below.

3 Physical Significance of λ Shape Coefficients

Accurately measured REE patterns represent actual fractionation processes experi-
enced by the analysed sample. An underlying assumption for least-squares fitting is
that real data are well represented by the fitted model. This leads to the question: are
the predetermined f orthn shape functions meaningful, and do they directly represent
actual natural processes? The physical significance of λ0 is trivial, as it represents
the overall average chondrite-normalised abundance of REE in a pattern and does not
affect the shape.
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REE patterns essentially reflect REE partitioning and segregation between two or
more phases. This partitioning is invariably related to crystal-chemical constraints, and
is oftenmodelled using the lattice strainmodel (Blundy andWood 2003).Quadratic fits
to measured REE partition coefficients in D− ri space are usually accurate (where D
is the concentration ratio between two phases), particularly for minerals that contain
a single crystallographic site that can host REE. High-quality partition data often
reveal minor asymmetry, which is successfully modelled by an additional cubic r3i
term. The physical significance of λ1 and λ2 is therefore a proxy for simple lattice
strain partitioning, as they similarly describe quadratic curves in ratio −ri space. The
parabola defined by λ2 f orth2 , on its own, has an extremum close to Eu (pattern A
in Fig. 4), and it can be shifted horizontally by varying λ0 and λ1 (as any parabola
defined by y(x) = ax2+bx+c can be transformed in x− y space by varying b and c),
demonstrated bypatternsBandC inFig. 4.However, this is a simplificationbecause the
hypothetical patterns in Fig. 4would have formed by fractionation of a single-REE-site
mineral from an unfractionated CI chondrite pattern. Real REE patterns are unlikely
to be that simple, because they are formed by fractionation of numerous minerals,
each having more than one REE-hosting crystallographical site, from an already-
fractionated source. In essence, a currently measured REE pattern reflects the entire
lattice strain partitioning pedigree since the formation of the solar system. Modelling
this history is theoretically possible, but arduous andmost likely non-unique, leading to
accurate reconstruction beingunachievable.Nevertheless, fractionated natural patterns
will inevitably be smoothly curved, leading to the use ofλ3 andλ4. There is arguably no
direct physical significance to the cubic f orth3 and quartic f orth4 , but these higher-order
polynomials represent fine-tuning and approximate small variations that stem from
the cumulative parabolas, of varying heights, widths, and positions, encapsulated in a
single REE pattern. The lack of physical significance does not, however, detract from
the usefulness of the method, as it does an excellent job of describing various shape
features of REE patterns. The method also has practical applications in petrogenetic
modelling by parameterising REE crystal/melt partition coefficients as D = δ0 +
δ1 f orth1 + · · · and using these coefficients in petrogenetic process vectors (�) and
coefficients (ψn). See O’Neill (2016) for more details and examples.

4 Quantification of Cerium and Europium Anomalies

A common feature of REE patterns is the presence of anomalies: the deviation of
the redox-sensitive elements Ce and Eu from the smooth pattern exhibited by all
other elements. The presence, sign, and magnitude of Ce and Eu anomalies are use-
ful indicators of various petrogenetic processes. For example, Ce and Eu anomalies
in zircon are indicative of the magma oxidation state from which the zircon crys-
tallised (Loucks et al. 2020 and references therein). Anomalies are typically quantified
by taking the ratio of the observed normalised concentration of Ce and Eu to a calcu-
lated normalised concentration derived by the geometricmean of the two neighbouring
elements, often termed Ce* and Eu* (geometrically being the linear interpola-
tion between the two elements on a logarithmic plot): Ce/Ce∗

LI = √
LaN × PrN

and Eu/Eu∗
LI = √

SmN × GdN, where subscript LI indicates linear interpolation. A
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Fig. 5 A zircon-like REE pattern generated using the parameters � = (4.6,−63,−545,−1400, 10500)
in light blue, and the same pattern with Ce and Eu anomalies in dark blue. Lightest blue are linear lines
connecting La and Pr, and Sm and Gd. The pattern is truncated at Tb for clarity, and the full pattern can be
obtained by inputting the � vector into ALambdaR

major disadvantage of this method is the assumption of linearity, namely the question
of whether the geometric mean indeed represents the true concentration of Ce and Eu
had there been no redox effects. Whilst this method may give acceptable results for
relatively straight patterns, it rapidly becomes inaccurate when patterns are strongly
curved. For example, the REE pattern shown in Fig. 5 is a typical zircon-like pattern,
with positive Ce and negative Eu anomalies. Ce anomalies in zircon are a useful petro-
genetic indicator (Burnham andBerry 2014; Trail et al. 2015), andmany approaches to
zircon Ce anomaly quantification have been published in recent decades (Zhong et al.
2019). Visually, the difference between the interpolated line and the non-anomalous
pattern looks negligible—the difference is smaller than the symbol size and the line
plots on top of the circles. However, this is misleading, as the y-axis covers six orders
of magnitude.We indicate the expected value of Ce from the smooth curve constructed
from shape components asCe∗

λτ . The pattern has been generatedwith aCe/Ce
∗
λτ = 40,

but calculating the anomaly using the interpolated line results in Ce/Ce∗
LI = 47.5,

an overestimation of about 19%. Likewise, Eu/Eu∗
λτ = 0.6 (the true Eu anomaly),

whereas the calculated anomaly via interpolation is Eu/Eu∗
LI = 0.667 , an underesti-

mation of about 11%.
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Following the above example,more accurate anomaly quantifications are conducted
by taking the ratio of measured Ce and Eu to that value expected from the least-
squares fit, instead of linear interpolation. Clearly, this requires that anomalous Ce
and Eu are not used for the actual fitting. It should be noted that for this method
to succeed, accurate values for all REE are crucial, particularly for elements at the
extreme edges (i.e., La, Yb, and Lu)when calculating aCe anomaly. In somematerials,
this proves difficult, with Lu having the lowest chondritic abundance of all the REE.
Additionally, La is notoriously difficult to measure in minerals that reject LREE, most
notably zircon (Zou et al. 2019; Burnham 2020). In such cases, we recommend a visual
inspection of the measured pattern, fitted line, and statistical indicators as given by
pyrolite and interactively by BLambdaR, to assess whether an anomaly determination
is reliable.

5 Case Studies

5.1 Gadolinium Anomaly and Tetrad Effect in Seawater

REE compositions and patterns of seawater are a useful proxy for studying various
ocean processes such as mixing of reservoirs, sediment load, hydrothermal vent input,
etc. Our understanding of these processes might be improved if shape coefficients
are used to describe seawater. As an example, we took the representative seawater
data “BATS” of van de Flierdt et al. (2012) and fitted λ coefficients to it, treating Ce
and Eu as anomalous. The match between the fitted line and the data is close, but
not perfect (adjusted r2 is 0.95 and 0.90 for shallow and deep waters, respectively,
Fig 6a, Online Resource A1). Adding τ coefficients markedly improved the fit, with
adjusted r2 increasing to 0.997 and 0.985, respectively (Fig 6b, Online Resource A2).

It may be argued that the improved fit is least-squares trickery, because increas-
ing the amount of parameters invariably leads to better fits and greater r2. However,
there are several lines of evidence to suggest the effect is real. First, we are using the
adjusted r2 which accounts for spurious increases in determination caused by addi-
tional parameters. Second, all τ coefficients are consistently negative (i.e., reflecting
a W -type tetrad effect) and showing roughly the same magnitude, except τ1 which is
known to be stronger in geological environments (Fig. 7). Had the additional τ coeffi-
cients described noise and spuriously improved the least-squares fit, this consistency
would have been unlikely. Third, the uncertainty range of the τ coefficients is well
away from zero (Fig. 7), and the τ significance p-values for deep water—consisting of
more abundant REE, hence more likely to be accurately and precisely measured—are
all under 0.012. For less accurate shallow water, the τ1 p-value is 0.068, whereas the
others are under 0.04.

Whether seawater has a tetrad effect or not has been previously debated (McLennan
1994; Kawabe et al. 1998), but our modelling shows that, when reliable REE data are
normalised using reliable CI values, a significant tetrad effect is indeed observed, in
agreement with recent observations (Ernst and Bau 2021). Seawater is commonly nor-
malised to PAAS (Post-Archean Australian shale) rather than CI. Fitting τ coefficients
to accurately measured PAAS data of Pourmand et al. (2012) reveals that PAAS does
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(a)

(b)

Fig. 6 Seawater data (circles) and least-squares fit (lines). a Lines fit using λn coefficients. b Lines fit
using λn and τn coefficients. Data from van de Flierdt et al. (2012)

Fig. 7 Tetrad coefficients for seawater (BATS) and PAAS. Uncertainty shown is 1 standard error
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not contain any statistically significant tetrad effect, with p-values ranging from 0.24
to 0.96 (Fig. 7, Online Resource A3). Therefore, the choice of either CI or PAAS for
normalisation is unlikely to generate, obscure, or erase tetrad effects. The tetrad fitting
also shows that the minor positive Gd anomaly observed in Fig. 6 is the result of the
tetrad effect and represents a natural phenomenon. A positive Gd anomaly in seawater,
lakes, or the rivers that feed them is interpreted as anthropogenic contamination, and
the anomaly is usually quantified using deviations of Gd from linear interpolation of
other REE on a PAAS-normalised plot (Kulaksız and Bau 2011a), or by using non-
orthogonal linear or polynomial least squares (Kulaksız and Bau 2011b; Müller et al.
2002). As these methods do not take overall pattern curvature or tetrad effects into
consideration, subtle anomalies which derive from the tetrad effect might be erro-
neously ascribed to anthropogenic contamination. We recommend that least-squares
fits to REE patterns using λ and τ parameters be examined to check for consistency
with the linear interpolation or fitting methods.

5.2 Tetrad Effects in the Toongi Rare Metal Deposit

The Toongi Deposit in NSW, Australia, hosts substantial resources of Zr, Hf, Nb,
Ta, REE, and Y. The mineralisation is hosted in eudialyte and various later alteration
products such as bastnäsite, vlasovite, milarite, catapleiite, and gaidonnayite (Spandler
and Morris 2016). These minerals often exhibit unusual and complex REE patterns,
and Spandler and Morris (2016) qualitatively noted the presence of the tetrad effect
in the patterns they obtained from the Toongi minerals.

Figure 8 shows τ coefficients derived from the Spandler and Morris (2016) data
(seeOnline ResourceA4 andA5). As discussed above, there is a clash between τ and λ

shape components, particularly when the patterns are highly curved at the edges, in
which case the same features are fitted by both τ1, τ4, and λ4. To investigate the issue,
we fitted the data with λ4 (light green) and without λ4 (dark blue). It is immediately
evident that eudialyte has small positive tetrads, which are negligible compared to the
later minerals. This is consistent with the inference of Spandler andMorris (2016) that
it is a primary mineral, unaffected by lower-temperature hydrothermal processes. For
minerals other than eudialyte, there is a clear difference between the λ4 inclusive and
exclusive values of τ1and τ4. Which values are correct? The two middle tetrads—τ2
and τ3—are informative as they remain mostly unchanged irrespective of whether λ4
is fitted or not. Therefore, we expect the external tetrads to follow the same behaviour,
which is only achieved when λ4 is not fitted. In contrast, τ1 and τ4 are diminished
in magnitude and reversed in sign when λ4 is included, a result inconsistent with the
middle tetrads. Therefore, in this case of strongly curved LREE and HREE, we proffer
that λ4 is spuriously preventing the correct identification of the tetrads.

The LREE tetrads, τ1 and τ2, are strongly positive in all secondary minerals. One
possibility is that LREE in the Toongi secondary assemblage are dominated by bast-
näsite and other REE carbonates. Although Spandler andMorris (2016) do not provide
full REE data for these minerals, partial patterns based on La, Ce, Pr, Nd, and Sm sug-
gest the presence of a negative τ1 for REE carbonates. The secondary minerals shown
in Fig. 8 are LREE-poor relative to the MREE and HREE, and their positive τ1 and τ2
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(a)

(b)

(c)

(d)

Fig. 8 Tetrad τ coefficients for Toongi minerals. a to d show the first to fourth tetrad coefficients, respec-
tively. Values fitted with λ4 are shown in light green, and values fitted with λ4 omitted are shown in dark
blue. ca, catapleiite; ga, gaidonnayite

may complement the LREE-rich carbonates. The HREE tetrad behaviour is less clear.
The HREE are likely dominated by vlasovite, and its positive τ3 and τ4 complement
the slightly negative τ3 and τ4 observed in milarite.

The above discussion is not meant as a comprehensive study of REE partitioning
and the tetrad effect in Toongi, but serves as an example of a range of possibilities
made available by the use of quantitative λ and τ determinations. It also shows an
example in which it is best to exclude λ4 from the least-squares fitting.

5.3 λ4 and Ce Anomalies in the Troodos Ophiolite

In our final case study, we examineREEpatterns fromoceanic plagiogranites collected
from the Troodos ophiolite in Cyprus by Anenburg et al. (2015). A representative
pattern is shown in Fig. 9. All τ coefficients are highly insignificant, regardless of
whetherλ4 is included in the fit, and therefore there is patently no tetrad effect exhibited
by the pattern (Online Resources A6 and A7), although by simple visual inspection
of the pattern, it might appear as if there is a tetrad effect. This pattern is remarkable
by how well it is described by λ4 (Online Resource A8). Its magnitude is rather large

123



64 Math Geosci (2022) 54:47–70

Fig. 9 REE data for a Troodos ophiolite plagiogranite (dark blue dots), λ polynomial fit to the data,
excluding Eu and Ce (dark blue line), and the λ4 component of the fit (light blue line)

(>10,000) compared to some of the lower-order coefficients (λ2 ≈ 4 andλ3 ≈ 200).λ4
is often less precisely determined than the lower-order coefficients (O’Neill 2016), but
in this case SE(λ4) < 20%, whereas SE(λ2) > 40% and SE(λ3) > 20%.

The peculiar dominance of λ4 can be explained as a combination of the three most
REE-rich minerals that occur in the plagiogranites: hornblende, zircon, and epidote–
allanite. REE patterns for the Troodos hornblende are characterised by two positively
straight segments: a steep segment from La to Sm, and an almost horizontal segment
fromGd toLu (Gillis 2002), such that it would bewell described byλ1 < 0 andλ2 < 0.
Epidotes and allanites are LREE-rich (Anenburg et al. 2015), and zircon is HREE-
rich (Chen et al. 2020), such that small amounts of these accessory minerals allow the
lightest LREE and heaviest HREE to poke out of the hornblende-dominated pattern.
This serves as an example of the lack of distinct physical significance for λ4. The
central wide ridge records the maximum of hornblende curvature, and the two steep
peripheral segments record allanite and zircon (Fig. 9). However, there is no reason
to assume that λ4 is particularly efficient in describing hornblende, allanite, or zircon
patterns. It is just coincidental that the combinations of three lower-order f orthn and
their lateral translations were accurately described by λ4.

The presumably coincidental yet excellentλ4 fit raises an interesting question.What
is the nature of the Ce anomaly in the pattern shown in Fig. 9? Is it a negative anomaly,
as Ce plots below the La–Pr interpolation line (Ce/Ce∗

LI < 1), or is it positive, as Ce
plots above the fitted line (Ce/Ce∗

λτ > 1)? The REE patterns of a rock sample reflect
theREEpatterns of its constituentminerals. The plagiogranites described byAnenburg
et al. (2015) are LREE-poor, with Ce concentrations of around 5 ppm. This low Ce
content is very sensitive to Ce-rich materials, such as zircon. Plagiogranite-hosted
zircon from Troodos is exceptionally Ce-rich, with Ce/Ce* often reaching values
greater than 100 (Chen et al. 2020; Morag et al. 2020), and as such is expected to
contribute substantial Ce to the whole rock budget (along with trace contributions
from epidote and allanite). This anomalous contribution of Ce would not be part of a
smooth curve, and propagate the anomaly to the whole rock, under the assumption that
Ce-rich zircon did not fractionate earlier and impart a measurable anomaly to the melt.
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This case study shows—in addition to the examples shown earlier—that Ce anomalies
obtained using the deviation from the polynomial fit are more accurate where REE
patterns exhibit curvature and better reflect geological and mineralogical observations
relative to the deviation from the interpolation line. In cases of high curvature such as
the one presented here, the inferred anomaly even has the opposite sign.

6 Concluding Remarks

We present a method for parameterising REE patterns, combining the orthogonal
polynomials of O’Neill (2016) with adapted tetrad polynomials based on Minami
and Masuda (1997). Our method provides uncertainty estimates and is implemented
in two forms: an interactive online app written in R and Shiny (BLambdaR), and a
Python package that includes our λ and τ fitting algorithm with other geochemical
data analysis tools (pyrolite). The case studies show that there is no one single fitting
recipe that applies universally, and we recommend that different fitting options be
explored. The case studies also show some of the considerations that apply when
treating real-world data and how they might be approached.
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Appendix

Orthogonal Polynomial Root Derivation

The process for deriving the orthogonal polynomials (Eq. 2) is explained in Bevington
and Robinson (2003). β is calculated by solving

∑
(ri −β) = 0, leading to β = 1

N
∑
ri ,

which is the mean of all ionic radii, where N = 14 (i.e., the number of REE).
γn , δn and εn require solving of equation systems of increasing complexities (Bev-

ington and Robinson 2003)

∑
(ri − γ1)(ri − γ2) = 0∑
ri (ri − γ1)(ri − γ2) = 0,

∑
(ri − δ1)(ri − δ2)(ri − δ3) = 0∑
ri (ri − δ1)(ri − δ2)(ri − δ3) = 0∑
r2i (ri − δ1)(ri − δ2)(ri − δ3) = 0,

∑
(ri − ε1)(ri − ε2)(ri − ε3)(ri − ε4) = 0∑
ri (ri − ε1)(ri − ε2)(ri − ε3)(ri − ε4) = 0∑
r2i (ri − ε1)(ri − ε2)(ri − ε3)(ri − ε4) = 0∑
r3i (ri − ε1)(ri − ε2)(ri − ε3)(ri − ε4) = 0.

The solutions in Bevington and Robinson (2003) only work for equispaced ri , but
that is not the case here: the difference in ionic radii is not constant (e.g., the difference
between La and Ce is greater than Yb and Lu). O’Neill (2016) solved these non-linear
systems for γn , δn , and εn using Excel’s “Solver” function that numerically finds the
values that satisfy the equations. However, an exact analytical solution is achieved by
application of Vieta’s formula, which allows the conversion of the above systems into
simple polynomial equations whose roots are the sought-after parameters. Starting
with the example of γn , the systems are constructed by rewriting the above equations
in a different form

∑
r2i − ∑

ri (γ1 + γ2) + ∑
(γ1γ2) = 0

∑
r3i − ∑

r2i (γ1 + γ2) + ∑
ri (γ1γ2) = 0.

By defining γ1 + γ2 = a and γ1γ2 = b and noting that
∑
rni are constants, the

systems simplify to the following problem, written in matrix form

(−∑
ri N

−∑
r2i

∑
ri

) (
a
b

)
=

(−∑
r2i−∑
r3i

)
.
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Once solved, a and b are then used as coefficients in the following quadratic equa-
tion

γ 2 − aγ + b = 0,

the roots of which are the two parameters γ1 and γ2.
Similarly, the system for δn is rewritten as

∑
r3i − ∑

r2i (δ1 + δ2 + δ3) + ∑
ri (δ1δ2 + δ1δ3 + δ2δ3) − ∑

(δ1δ2δ3) = 0
∑
r4i − ∑

r3i (δ1 + δ2 + δ3) + ∑
r2i (δ1δ2 + δ1δ3 + δ2δ3) − ∑

ri (δ1δ2δ3) = 0
∑
r5i − ∑

r4i (δ1 + δ2 + δ3) + ∑
r3i (δ1δ2 + δ1δ3 + δ2δ3) − ∑

r2i (δ1δ2δ3) = 0.

Define δ1 + δ2 + δ3 = a, δ1δ2 + δ1δ3 + δ2δ3 = b, and δ1δ2δ3 = c, and solve the
linear system

⎛
⎝

−∑
r2i

∑
ri −N

−∑
r3i

∑
r2i −∑

ri
−∑

r4i
∑
r3i −∑

r2i

⎞
⎠

⎛
⎝
a
b
c

⎞
⎠ =

⎛
⎝

−∑
r3i−∑
r4i−∑
r5i

⎞
⎠ .

a, b, and c are then used in the cubic equation

δ3 − aδ2 + bδ − c = 0

to solve for the roots δ1, δ2, and δ3.
Finally, the system for εn is rewritten as

∑
r4i − ∑

r3i (ε1 + ε2 + ε3 + ε4) + ∑
r2i (ε1ε2 + ε1ε3 + ε1ε4 + ε2ε3 + ε2ε4 + ε3ε4)

− ∑
ri (ε1ε2ε3 + ε1ε2ε4 + ε1ε3ε4 + ε2ε3ε4) + ∑

(ε1ε2ε3ε4) = 0
∑
r5i − ∑

r4i (ε1 + ε2 + ε3 + ε4) + ∑
r3i (ε1ε2 + ε1ε3 + ε1ε4 + ε2ε3 + ε2ε4 + ε3ε4)

− ∑
r2i (ε1ε2ε3 + ε1ε2ε4 + ε1ε3ε4 + ε2ε3ε4) + ∑

ri (ε1ε2ε3ε4) = 0
∑
r6i − ∑

r5i (ε1 + ε2 + ε3 + ε4) + ∑
r4i (ε1ε2 + ε1ε3 + ε1ε4 + ε2ε3 + ε2ε4 + ε3ε4)

− ∑
r3i (ε1ε2ε3 + ε1ε2ε4 + ε1ε3ε4 + ε2ε3ε4) + ∑

r2i (ε1ε2ε3ε4) = 0
∑
r7i − ∑

r6i (ε1 + ε2 + ε3 + ε4) + ∑
r5i (ε1ε2 + ε1ε3 + ε1ε4 + ε2ε3 + ε2ε4 + ε3ε4)

− ∑
r4i (ε1ε2ε3 + ε1ε2ε4 + ε1ε3ε4 + ε2ε3ε4) + ∑

r3i (ε1ε2ε3ε4) = 0.

Define ε1 + ε2 + ε3 + ε4 = a, ε1ε2 + ε1ε3 + ε1ε4 + ε2ε3 + ε2ε4 + ε3ε4 =
b, ε1ε2ε3 + ε1ε2ε4 + ε1ε3ε4 + ε2ε3ε4 = c, and ε1ε2ε3ε4 = d, and solve the linear
system

⎛
⎜⎜⎝

−∑
r3i

∑
r2i −∑

ri N
−∑

r4i
∑
r3i −∑

r2i
∑
ri

−∑
r5i

∑
r4i −∑

r3i
∑
r2i−∑

r6i
∑
r5i −∑

r4i
∑
r3i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−∑
r4i−∑
r5i−∑
r6i−∑
r7i

⎞
⎟⎟⎠ .
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a, b, c, and d are used in the quartic equation

ε4 − aε3 + bε2 − cε + d = 0,

which is solved for the roots ε1, ε2, ε3, and ε4.
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