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Abstract Three-dimensional structural geomodels are increasingly being used for 
a wide variety of scientific and societal purposes. Most advanced methods for gen-
erating these models are implicit approaches, but they suffer limitations in the types 
of interpolation constraints permitted, which can lead to poor modeling in struc-
turally complex settings. A geometric deep learning approach, using graph neural 
networks, is presented in this paper as an alternative to classical implicit interpola-
tion that is driven by a learning through training paradigm. The graph neural net-
work approach consists of a developed architecture utilizing unstructured meshes 
as graphs on which coupled implicit and discrete geological unit modeling is per-
formed, with the latter treated as a classification problem. The architecture generates 
three-dimensional structural models constrained by scattered point data, sampling 
geological units and interfaces as well as planar and linear orientations. The mod-
eling capacity of the architecture for representing geological structures is demon-
strated from its application on two diverse case studies. The benefits of the approach 
are (1) its ability to provide an expressive framework for incorporating interpolation 
constraints using loss functions and (2) its capacity to deal with both continuous 
and discrete properties simultaneously. Furthermore, a framework is established for 
future research for which additional geological constraints can be integrated into the 
modeling process.
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1 Introduction

Three-dimensional structural geological models provide a means of improving 
our understanding of the subsurface useful for various earth science applica-
tions (Wellmann and Caumon 2018). Models are typically generated from various 
observations, such as field measurements, borehole logs, and horizon boundaries, 
using various mathematical modeling methods. Currently, implicit-based mod-
eling approaches are the most widely used method for producing such models 
due to their fast, automatic, and reproducible characteristics. Implicit approaches 
can be split into meshless (Lajaunie et al. 1997; Hillier et al. 2014) and discrete 
(Frank et  al. 2007; Caumon et  al. 2013) categories, where the latter requires a 
mesh for computation. These approaches implicitly define relevant geological 
interfaces as iso-surfaces of a volumetric scalar field, interpolated from point data 
sampled over a region of interest. Scalar field interpolants can be constrained by 
various types of point data including positions of geological interfaces, as well as 
planar (e.g., strata, foliation) and linear (e.g., fold axis) orientations. In addition, 
incorporation of discontinuous features such as faults (Calcagno et al. 2008) and 
constraints associated with polyphase deformation (Laurent et al. 2016) enables 
the modeling of more complex geological structures.

Notwithstanding the benefits of existing implicit-based geomodeling 
approaches, there are some scenarios—usually structurally complex terrains—in 
which these approaches can fail to produce geologically valid models given sparse 
or heterogeneously sampled data and available geological knowledge. Corre-
sponding implicit models typically exhibit erroneous topological features incon-
sistent with the known geological history and spatial relationships between rel-
evant geological structures (e.g., stratigraphy, faults, unconformities). This issue 
can be attributed to limitations in the types of data and knowledge constraints that 
implicit interpolants can incorporate. All types of data and knowledge are incor-
porated as a set of linear constraints written in terms of a continuous scalar field. 
Although there have been ways developed to incorporate geological knowledge 
by combining multiple interpolated scalar fields (Calcagno et  al. 2008; Laurent 
et al. 2016), there still exist fundamental limitations on the types of information 
that can constrain these implicit interpolants. For example, constraints such as 
non-orthogonal angular relationships, Gaussian curvature, or topological con-
straints (e.g., number of connect components or holes, spatial relationships) can-
not be incorporated.

Recently, new approaches using Bayesian inference (de la Varga and Wellmann 
2016; Grose et  al. 2019) have emerged for considering a priori knowledge and 
data uncertainty that current implicit mathematical models cannot incorporate. It 
is important to note that these Bayesian approaches still depend on the underly-
ing implicit interpolants as forward models by varying their parameterization and 
input data using probability density and likelihood functions. The range of mod-
els (e.g., model space) is therefore limited to those models that can be generated 
with a specific interpolation structure. Hence, in some geological settings, the 
Bayesian inference approach of model parameter and data distribution sampling 
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may not be sufficient to sample a geological valid model. It is therefore important 
to improve geological interpolation using all available data and knowledge so that 
geologically valid models are guaranteed. This would also benefit Bayesian infer-
ence approaches.

In this paper, we introduce a new three-dimensional structural geological mode-
ling approach that generates structural models using graph neural networks (GNNs) 
(Bronstein et al. 2017; Hamilton et al. 2017a; Wu et al. 2020) from the same types 
of structural data used in existing implicit approaches. GNNs are a relatively new 
type of deep learning approach for graph structure data that propagates information 
through a graph’s connectivity structure. Compared to traditional convolutional neu-
ral networks (CNNs), GNNs do not have a regular neighborhood structure and per-
mit complex structural information and relationships, opening new opportunities for 
enhancing the modeling capacity for three-dimensional structural geological appli-
cations. In recent years, there has been substantial growth in the use of GNNs for 
a wide range of applications including recommender systems (e.g., streaming ser-
vices, e-commerce, social networks) (Ying et al. 2018), chemistry (e.g., molecular 
modeling) (Duvenaud et al. 2015), citation networks (Kipf and Welling 2016a, b), 
computer programming (Allamanis et al. 2017), and geometric deep learning (e.g., 
three-dimensional vision, manifold learning) (Qi et al. 2017; Monti et al. 2017)—
each of which can express corresponding data in graph form. Here, the graphs repre-
sent tetrahedral meshes. Each sampled data point is collocated with a distinct vertex 
in the resultant mesh. Additionally, a mesh can be optimized to adaptively vary tet-
rahedron volumes to accommodate heterogeneous point sampling, reducing overall 
data storage while also supplying higher resolution where needed.

Our proposed GNN architecture makes scalar field predictions generated by 
deep learning methodologies using typical implicit point data (e.g., interface 
points associated with multiple distinct geological interfaces, and linear/planar 
orientations). Scalar field predictions are constrained by scalar values encoding 
the stratigraphic sequence of sampled interfaces as well as new angular con-
straints for orientation observations. The new angular constraints permit any ori-
entation relationship with the gradient of the scalar field to be considered. These 
constraints can be used for the usual normal and tangent data, but also permit 
non-orthogonal angular relationships useful for bedding-cleavage relationships. 
If geological rock unit observations are available, scalar field predictions can be 
used as input to a coupled GNN, leveraging the structural features of the sca-
lar field to generate geological unit predictions. The coupled GNN treats geo-
logical units as discrete data and is formulated as a classification problem. By 
comparison, current implicit approaches use inequality constraints (Dubrule and 
Kostov 1986; Frank et al. 2007; Hillier et al. 2014) on continuous scalar values 
to express discrete data, requiring the use of computationally expensive optimi-
zation methods to find a solution. Interpolation constraints are incorporated in 
the presented approach using loss functions that measure the error between the 
GNN’s predictions and the available constraints. Loss functions provide a flex-
ible framework for incorporating geological interpolation constraints, since the 
only requirement is that the error is measurable. Moreover, solving a large lin-
ear system of equations with prescribed mathematical conditions (e.g., positive 
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definiteness) is avoided. In addition, the proposed GNN architecture provides 
a promising foundation for directly incorporating into the modeling knowledge 
constraints expressible as a graph (e.g., topology, and other knowledge graphs).

The remainder of this paper is organized as follows. Section  2 describes the 
GNN architecture and its associated methodology used to generate constrained 
three-dimensional structural geological models. Section 3 includes two case stud-
ies in which the proposed GNN architecture is applied to demonstrate its struc-
tural geological modeling performance. Section 4 discusses the modeling charac-
teristics of the GNN approach and its capacities for three-dimensional geological 
modeling, along with useful empirical observations. Conclusions are given in the 
last section.

2  GNN Architecture and Methodology

2.1  Definitions and Notations

Notations and formal definitions are given for the graphs used throughout this paper.
First, the notations for scalar, vector, and matrix quantities are as follows: low-

ercase, bold lowercase, and bold uppercase characters, respectively.
Graphs are represented by G = (V ,E) , where V  is the set of nodes (vertices) 

and E is the set of edges (Fig. 1). The set V  contains N nodes vi ∈ V  and an edge 
eij = (vi, vj) ∈ E connecting from vi to vj. An edge, eij , can be associated with a 
weight wij for weighted graphs and wij = 1 for unweighted graphs. The direct 
neighborhood of node v , also known as the one-hop neighborhood, is defined as 
N(v) = {u ∈ V|(u, v) ∈ E} . The global connectivity structure of a graph can be rep-
resented by an adjacency matrix A ∈ ℝ

N×N , where Aij = wij if eij ∈ E and Aij = 0 
if eij ∉ E . Graphs can be categorized as either directed or undirected. As the name 
implies, directed graphs have directions associated with the edges. In contrast, all 
edges in undirected graphs are bidirectional—information can go in both directions. 
Graphs in our work are undirected and have associated node features X ∈ ℝ

N×d with 
each node xv ∈ ℝ

d containing relevant data associated with the node.

Fig. 1  Simple undirected graph with an associated adjacency matrix A and node feature matrix X



1729

1 3

Math Geosci (2021) 53:1725–1749 

2.2  GNNs

GNNs are deep learning models using graph structured data for various learn-
ing tasks such as regression, classification, and link prediction performed in an 
end-to-end manner. There are four kinds of GNNs: recurrent (Scarselli et  al. 
2008), convolutional (Kipf and Welling 2016a; Gilmer et  al. 2017; Hamilton 
et al. 2017b), graph autoencoders (Kipf and Welling 2016b), and spatial–tempo-
ral (Yan et  al. 2018). GNNs generate embeddings h which are low-dimensional 
vectors that encode high-level representations of various graph elements such as 
nodes and edges, as well as graph themselves, encapsulating topological struc-
ture and other relevant associated property information in a compressed form. 
Embeddings are used to make predictions for relevant learning task(s), and the 
information (e.g., their meaning) encoded within them is task-dependent. During 
the training process, the network learns how to encode better embeddings that 
capture domain-specific meaning and latent data characteristics. Furthermore, 
embeddings are encoded such that similar things are positioned closer together 
within the continuous embedding space. This provides a means for measuring 
errors during training that can be minimized, producing higher-quality embed-
dings. The higher the quality of the embeddings, the more accurate the resultant 
predictions.

The proposed GNN architecture used for three-dimensional structural geologi-
cal modeling is illustrated in Fig. 2. Spatial-based convolutional GNNs are used 
to generate graph node embeddings by stacking multiple neural network layers, 
each of which computes a convolution at every graph node v . Node embeddings 
hv are initialized to node features xv and used as input to the network’s first layer. 
Spatial context is provided to the GNN by setting each graph node’s features xv 
to the normalized spatial coordinates of the node positioned in three-dimensional 
space xv = (̂xv, ŷv, ẑv) . Each normalized Cartesian coordinate is computed by cen-
tering the data on � and rescaling each coordinate by the maximum coordinate 
range. For example, the normalized x-coordinate is computed as

Fig. 2  Proposed GNN architecture for three-dimensional structural geological modeling composed of 
two GNN modules which generate scalar field predictions and rock unit predictions, respectively. Green 
arrows indicate GNN input and red arrows GNN output. Training data (bottom) are associated which 
each module. Iso-contours (dashed curves) represent interfaces between stratigraphic layers
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where xv is the un-normalized x-coordinate of the mesh node, and xc is the computed 
center of the x-coordinates (e.g., xc =

(
xmax + xmin

)
∕2 ). Each normalized coordinate 

is scaled by the same factor to ensure isometric scaling. The scale factor is divided 
by 2 to place the maximum coordinate range between [−1, 1] . Feature normalization 
is a common preprocessing requirement for machine learning algorithms. This is 
particularly important when using geospatial data, where coordinate values can be 
extremely large and their variation over a region of interest is small.

The GNN input consists of (1) a graph representing a volumetric unstruc-
tured mesh constrained by scattered structural field point data; (2) a node feature 
matrix X containing normalized spatial coordinates of the nodes; and (3) train-
ing data associated with subsets of graph nodes collocated with geological data. 
There are two separate GNN modules that generate different coupled aspects of 
the three-dimensional model and are associated with different learning tasks. The 
first GNN module (Scalar Field GNN) generates scalar field predictions for every 
graph node, creating an implicit model incorporating structural features sampled 
by structural field observations. The second GNN module (Rock Unit GNN), uses 
the predictions from the first module and leverages the structural continuity of the 
predicted scalar field as input (e.g., inputted node features) to make predictions 
about geological rock units. It is important to note that the Rock Unit GNN can 
also influence the implicit modeling of the Scalar field GNN. In addition, each 
GNN module can also be used on its own if the necessary data for the other mod-
ule is unavailable.

2.3  Spatial Convolutions

Convolutions play a critical role in any convolution neural network by extracting 
localized information relevant to a learning task via the application of learnable 
filter weights W throughout a domain. In GNNs, there are two types of convolu-
tions: spectral and spatial. Spectral approaches define filters from a graph signal 
perspective requiring eigendecomposition on the graph’s Laplacian, whereas spa-
tial approaches define them from a node’s local neighborhood. Empirically, we have 
found that spatial-based convolutions yielded far superior modeling as compared to 
spectral-based convolutions. However, these findings are not surprising given that 
three-dimensional modeling is driven by spatial interpolation. Furthermore, embed-
ding spaces generated by spectral convolutions are likely to be disconnected from 
the corresponding physical space in which they are created. We consider two spa-
tial convolutions (W ⋆ h)v of a graph node v suitable for three-dimensional struc-
tural geological modeling applications. The first and simpler convolution inspired by 
GraphSAGE (Hamilton et al. 2017b) is a weighted average of transformed neighbor 
embeddings

(1)x̂v =

(
xv − xc

)

max
(
xmax − xmin, ymax − ymin, zmax − zmin

)
∕2

,
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where W ∈ ℝ
din×dout and b ∈ ℝ

1×dout are respectively learnable matrices and vectors 
used to linearly transform neighbor embeddings hu ∈ ℝ

1×din with dimension din into 
dimension dout . The edge weights wuv for this convolution are leveraged to incor-
porate additional geometric information (e.g., neighbor distances, tetrahedron vol-
ume) of the tetrahedral mesh into the graph structure. The geometry-dependent edge 
weights derived from discrete Laplacian operators (Alexa et al. 2020) are computed 
from

Here the sum is taken over all tetrahedra containing edge eij , lkl is the length of 
the edge ekl belonging to tetrahedron indexed by ijkl , and �kl is the dihedral angle 
between the two faces of the tetrahedron containing ekl (Fig. 3).

The second convolution uses a Gaussian mixture model (GMM) (Monti et  al. 
2017) composed of K parameterized Gaussian kernels

(2)(W ⋆ h)v =

∑
u∈Nv

wuv

�
huW + b

�

∑
u∈Nv

wuv

,

(3)wij =
1

6

∑

ijkl

lkl cot �kl.

(4)
(W ⋆ h)v = hvWnode + b +

1
||Nv

||

∑

u∈Nv

1

K

K∑

k=1

wk
uv

(
puv

)
huW

k
neigh

,wk
uv

(
puv

)

= exp
(
−
1

2

(
puv − �k

)T
Σ−1
k

(
puv − �k

))
,

Fig. 3  Geometric quantities 
used to compute graph edge 
weights
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where (Wnode,W
k
neigh

) ∈ ℝ
din×dout and b ∈ ℝ

1×dout are learnable matrices and vec-
tors to linearly transform the node v and their neighbor u ∈ Nv embeddings 
(hv, hu) ∈ ℝ

1×din into dimension dout . GMM-based convolutions associate each edge 
connecting two nodes u and v with K weights depending on the edge’s pseudo-coor-
dinate puv ∈ ℝ

d , and learnable d × 1 vector �k and d × d matrix Σ−1
k

 correspond-
ing to the mean and covariance, respectively, of a Gaussian kernel. Note that our 
implementations of GMM-based convolutions do not restrict the covariance Σk to 
have diagonal form (Monti et al. 2017)—to ensure the learnable covariance matrix 
is positive definite, we simply use Σ�

k
= ΣkΣ

T
k
 . Here we use the pseudo-coordinates 

puv =
(
x̂u − x̂v, ŷu − ŷv, ẑu − ẑv

)
 ; however, this vectorial variable can also be lever-

aged for other geometrical information that can be associated to the edge.

2.4  Node Embedding and Prediction

As previously mentioned, GNNs generate embeddings h that encode useful high-level 
representations which in turn are used to make predictions relevant to specific learning 
tasks. Our GNN architecture generates node embeddings with dimension dembed which 
are used to make scalar field predictions as well as rock unit predictions if those data 
observations are available. The node embedding and prediction generation algorithm 
given by Algorithm 1 represents the forward propagation (e.g., feed-forward) stage of 
the neural network having D convolutional layers. As a result of recursive application 
of D spatial convolutions, every graph node v aggregates information up to its D-hop 
neighborhood (Fig. 4) and increases the receptive field surrounding the node. There-
fore, as the network’s depth D is increased, more global information can be encoded 
into the node’s embedding. The network’s final layer transforms embeddings into pre-
dictions for relevant learning tasks with the prescribed dimensionality dpred . For graph 
node classification tasks, for example, the final layer outputs a vector for each graph 
node with a dimensionality equal to the total number of possible classes, with each 
vector element denoting the probability of a specific class. Dimensionalities of both 
embeddings and predictions are controlled through the linear transformation’s output 

Fig. 4  Neighborhood aggregation of target node (red) in a two-layer GNN neural network
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dimension dout performed by the spatial convolutions (Eqs.  2, 4). For embeddings, 
dout = dembed , while for predictions, dout = dpred.

2.5  Training

Training the neural network involves optimizing associated network variables such that 
prediction accuracy is maximized. Since there are very few data observations in com-
parison to the number of nodes in our graphs, we utilize GNNs primarily in a semi-
supervised context where only errors on graph nodes associated with data observations 
are computed via loss functions. However, when anisotropy information is available to 
describe directions of structural continuity, local errors in modeled orientation can be 
efficiently computed on all graph nodes—useful for both global and local anisotropy 
modeling. At every iteration of the learning algorithm, errors are minimized through 
the process of backpropagation where neural network variables are updated. As itera-
tions increase, node embeddings encode more and more useful high-level information 
suitable for the learning objective, thereby maximizing prediction accuracy. Depending 
on the type of network prediction (e.g., continuous variable, discrete classes) and learn-
ing objective, loss functions will vary (Sects. 2.6 and 2.7). The resulting loss is simply 
the sum of the individual loss functions for corresponding available data constraints.

2.6  Scalar Field GNN

Scalar field predictions zscalar
v

 are generated by the Scalar Field GNN module for 
every graph node and are constrained by data points that sample interfaces between 
stratigraphic layers and structural orientation observations. Interface points sam-
pling H horizons indexed by {1,⋯ ,H} are associated with iso-values f  encoding 
the stratigraphic order such that

where f1 and fH are the youngest and oldest, respectively. In implicit modeling, these 
iso-values define two-dimensional manifold surfaces embedded within a volumetric 

(5)f1 > ⋯ > fH ,
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scalar field s(x) and are obtained by iso-surface extraction methods (Treece et  al. 
1999). The subset of graph nodes v collocated with the set of sampled interface 
points I are given the scalar field constraint

The associated loss function for sample interface points measures the squared 
difference between the network’s predictions zscalar

v
 and the scalar field constraints 

sv and sums them

The loss function associated with orientation constraints measures, at a node, 
the angle between the gradient of the scalar field and an orientation observation 
for the set of graph nodes O associated with those observations. To measure these 
angles, the gradient of the predicted scalar field at these graph nodes must first 
be estimated. To do so, we utilize the first-order Taylor series approximation of 
the scalar field using the one-hop neighborhood surrounding a given graph node 
and perform a least square fit of directional derivatives (Correa et al. 2009) on the 
predicted scalar field

where ∇zscalar
v

=
(
�zscalar

v
∕�x, �zscalar

v
∕�y, �zscalar

v
∕�z

)
 is the estimated gradient of the 

scalar field at node v , and matrices Pv and Sv are defined by

where x̂,̂y, ẑ  are the normalized spatial coordinates of a given node. The estimated 
angle between the predicted scalar field gradient at node v and a collocated orienta-
tion vector �v

is used to measure the angular error compared with the observed angular con-
straint �obs

v
 . In general, for any angular constraint �obs

v
 , the loss function

can be used. For normal data (e.g., nv ) �obsv
= 0◦ , the resulting loss function

(6)I =
{
v ∈ V|sv = fv

}
.

(7)Linterface =

|I|∑

v∈I

(
zscalar
v

− sv
)2
.

(8)PT
v
Pv∇z

scalar
v

= PT
v
Sv,

(9)
Pv =

[
x̂u − x̂v ŷu − ŷv ẑu − ẑv

⋮ ⋮ ⋮

]

Sv =

[
zscalar
u

− zscalar
v

⋮

] , ∀u ∈ Nv ,

(10)cos�pred
v

=
�v ∙ ∇z

scalar
v

‖�v‖‖∇zscalarv
‖

(11)LOrientation =

|O|∑

v∈O

|||cos�
obs
v

− cos�pred
v

|||
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can be used, and for tangent data (e.g., tv ) �obsv
= 90◦,

It is important to note that for modeling multiple geological interfaces simulta-
neously, the polarity normal data nv is required to be consistent with the younging 
direction (e.g., direction of younger stratigraphy). Tangent data tv can be used to 
describe foliation data where planar polarity has no geological meaning as well 
as for anisotropic characteristics of structural features such as local plunge vec-
tors (Hillier et al. 2014). For foliation data, a dip vector and strike vector are used 
as tangent constraints to describe the planar orientation. Meanwhile, for local or 
global anisotropy, a tangent vector is used to describe the direction of the plunge 
axis—the loss function is independent of the polarity of the vector due to the 
absolute value.

2.7  Rock Unit GNN

Our GNN architecture can also incorporate rock unit observations commonly 
available from drill core and outcrop datasets. This is particularly advantageous 
for geological datasets absent of interface observations and where there is an 
abundance of rock unit observations. Since rock units are discrete properties this 
GNN module is associated with a classification learning task. Given a set rock 
unit observations R containing a total of Nclasses possible classes collocated with 
a subset of graph nodes, each rock unit observation is assigned a one-hot vector 
yv indicating the class to which it belongs. One-hot vectors are vectors whose 
elements are all zero except for a single element which is given a value of 1. For 
example, for a dataset containing Nclasses = 3 , one-hot vectors corresponding to 
classes a , b , c are respectively

The loss function associated with these data is the cross-entropy loss

(12)Lnormal =

�O��

v∈O

1 −
nv ∙ ∇z

scalar
v

‖nv‖‖∇zscalarv
‖

(13)Ltangent =

�O��

v∈O

�����

tv ∙ ∇z
scalar
v

‖tv‖‖∇zscalarv
‖

�����
.

(14)ya
v
= (1, 0, 0),

yb
v
= (0, 1, 0),

yc
v
= (0, 0, 1).

(15)LRockUnit = −
∑

v∈R

(
yv ∙ log

(
ypred
v

))
,
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where ypredv
 is the predicted class probabilities obtained from

where zunit
vi

 is the i-th element of vector zunit
v

 , which is the output of the rock unit 
GNN module. The softmax function is routinely used in machine learning to nor-
malize network outputs to a probability distribution over the number of classes 
Nclasses.

3  Case Studies

Three-dimensional structural geological modeling results from the proposed 
GNN architecture are presented here for a synthetic and a real-world case study 
to demonstrate proof of concept. Results for both case studies were obtained 
using a desktop PC with an Intel Core i9-9980XE CPU and a single NVIDIA 
RTX 2080 Ti GPU. Each case study consists of scattered structural observations 
sampling stratigraphic interfaces and bedding (S0—e.g., normal data), with 
one case study (synthetic) having rock unit observations. Locations of struc-
tural observations are used to generate constrained tetrahedral meshes generated 
by TetGen (Hang 2015), with each data point being collocated with a distinct 
mesh vertex. Each mesh is converted into a graph structure dataset G = (V ,E) 
encoding all relevant data used as input into the GNN architecture, including the 
following:

• Node features xv = (̂xv, ŷv, ẑv) of normalized spatial coordinates.
• A node v collocated with a structural observation can have the following 

attached data:

o Iso-value fv encoding stratigraphic order. Iso-values normalized to [−1, 1] 
range.

o Normal vector nv describing bedding orientation with polarity specifying 
younging direction.

o One-hot vector yv indicating geological unit class.

• Edges eij are associated with geometry-dependent weights wij (Eq. 3).

The learnable variables of the GNN architecture are initialized using 
Xavier initialization (Glorot and Bengio 2010). In addition, both case studies 
use AdamW (Loshchilov and Hutter 2017) as the optimizer to update network 
parameters using GNN model parameters summarized in Table 1.

(16)ypred
vi

= Softmax
�
zunit
vi

�
=

e
zunit
vi

∑
j e

zunit
vj

,
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3.1  Synthetic Example

The first case study is of a conformally folded stratigraphic layered volume where 
folds are cylindrical (Fig. 5a). Constraint data composed of 67 interface points and 
50 planar orientations are randomly sampled from synthetic interface surfaces. In 
addition, 44 rock unit observations sampling six distinct rock units from simulated 
drill-hole data are used as constraints for the GNN architecture. A tetrahedral mesh 
(Fig. 5b) containing 239,784 tetrahedrons generated from these point constraints was 
converted into a graph-structured dataset and used as the architecture’s input. Cou-
pled implicit and geological unit modeling results after 300 epochs of training using 
weighted mean convolution (Eq. 2) are presented in Fig. 5c, d, respectively. Note 
that “epoch” is the term to indicate one complete feed-forward pass (Algorithm 1) 
and one backpropagation pass of all training nodes. Average computational time for 
each epoch was approximately 0.05 s. Model performance as measured by loss func-
tions for each constraint type and the average nearest distance between synthetic and 
modeled surfaces is tabulated in Table 2. The fact that this distance is Δd = 1.564 m 
and that the average stratigraphic thickness is 15 m between interfaces clearly indi-
cates that the proposed GNN architecture is beneficial for three-dimensional struc-
tural geological modeling. By visual comparison, the GNN is nearly identical to the 
synthetic model (Fig. 5e). It even maintains the cylindricity of the fold even though 
no global plunge information has been used to constrain the model.

3.2  Real‑World Dataset

The second case study utilizes a real-world dataset from the Purcell Anticlino-
rium in the east Kootenay region of Southeastern British Columbia (de Kemp et al. 
2016). A subset of the large regional-scale dataset is taken surrounding the Sullivan 
mine area where a world-class sedimentary exhalative deposit (SEDEX) is located 
along with several deep drill holes sampling several stratigraphic interfaces. Field 
observations taken from outcrops sampling these interfaces, as well as bedding ori-
entation (S0), are also available. In total, the dataset contains 103 interface points 
sampling six distinct interfaces and 187 bedding observations as shown in Fig. 6a. 
Point constraints are heterogeneously sampled with dense drill-hole sampling in a 
small portion of the model and a strong horizontal sampling bias (e.g., small vari-
ance in elevation) for the outcrop observations—typical of geological survey and 
mineral exploration datasets. Furthermore, bedding observations exhibit large local 

Table 1  GNN model parameter 
values for the architecture with 
prelu being the parametric 
rectified linear activation 
function

GNN model parameters Value

Network depth D 3
Node embedding dimension d

embed
128

Learning rate 0.01
Activation function prelu
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Fig. 5  Three-dimensional structural geological modeling results using weighted mean spatial convo-
lution on a synthetic conformally folded (cylindrically) stratigraphic layered model. a Point data con-
straints including interface (spheres), normal orientation (white arrows), and rock unit observations 
(triangles) sampled throughout the volume, b tetrahedral mesh constrained by point data constraints illus-
trating constraints are collocated with mesh vertices (inset), c implicit scalar field and d rock unit predic-
tions outputted by corresponding GNN modules after 300 epochs of training, e comparison of synthetic 
(white) and modeled (red) surfaces viewed along the global plunge axis
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variations sampling multiple scales not necessarily important to the scale of the 
region of interest in the model. These orientation data were used to fit a Kent distri-
bution (Kent 1982) and clearly indicate the presence of a folded structure. The fitted 
distribution ( � = 8, � = 4 ) has strong ellipticity ( e = 2�∕� = 1 ) suggesting a more 
cylindrically folded structure.

The resulting model presented in Fig. 6b was obtained using GMM spatial con-
volutions (Eq.  4) with one kernel (e.g., K = 1 ) for each layer of the Scalar Field 
GNN module after 150 epochs of training. The average computational time for each 
epoch was approximately 0.12 s using a mesh containing 555,396 tetrahedrons. Iso-
surfaces extracted from the scalar field model for the six stratigraphic interfaces are 
shown in Fig.  6c, d from two viewing perspectives. Both cross sections (Fig.  6e, 
f) highlight the GNN’s fitting characteristics on nearby structural geological data. 
For this dataset, the GNN was trained for only 150 epochs to avoid overtraining—
also known as early stopping. With more training the GNN will attempt to transition 
from capturing the global features of the model to minimizing the errors associated 
to large localized structural variations (typical of real-world noisy datasets). If there 
are structural contradictions or hard-to-reconcile features with the given data, as 
with this dataset, more training can negatively impact the resulting model. This will 
occur in later phases of training when loss function values begin to fluctuate signifi-
cantly from epoch to epoch. Table 3 summarizes the resulting model performance 
metrics on this dataset.

4  Discussion

The presented case studies show that the GNN architecture can generate three-
dimensional structural geological models constrained by point data sampling geo-
logical units, stratigraphic interfaces, and planar structural orientation. The first case 
study demonstrates that the architecture can perform both implicit and geological 
unit modeling that is effective in producing a model that is nearly identical to the 
synthetic model. In addition, the coupled scalar field and geological unit GNN mod-
ules of the architecture highlight the ability of the GNN to cope with continuous 
and discrete properties simultaneously. Furthermore, its capacity to capture global 
anisotropy of the fold without being provided this information from orientation 
analysis is notable. In the second case study, we show that the architecture can pro-
duce a geologically reasonable structural model given noisy and hard-to-reconcile 

Table 2  Model performance 
metrics after 300 epochs of 
learning algorithm on synthetic 
case study

Δd is the average distance between synthetic and modeled surfaces

Metric Value

Linterface 0.0331
Lnormal 0.148
LRockUnit 0.0125

Δd 1.564 m
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Fig. 6  Structural modeling results using GMM spatial convolutions. a Heterogeneously distributed point 
constraints accompanied by fitted Kent distribution (right) of the bedding orientation, b predicted scalar 
field outputted by GNN—red rectangular regions indicate cross sections shown in e and f, c and d iso-
surfaces extracted from mesh from two viewing perspectives—large red arrow indicates global plunge 
direction determined from orientation analysis
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real-world data, and provides promise for general application for constrained three-
dimensional structural geological modeling. The developed architecture is a new 
way to model geological structures and is, to the best of the authors’ knowledge, the 
first deep learning approach to geological implicit modeling.

The proposed GNN approach opens new opportunities for enhancing three-
dimensional structural geological modeling. This is provided by the approach’s 
expressive framework for incorporating interpolation constraints using loss func-
tions and the ability to consider both continuous and discrete properties. Loss func-
tions provide an intuitive mechanism for constraining resulting models by comput-
ing errors between the GNN’s predictions and constraints, which does not require 
solving large systems of equations. Any model property (e.g., interfaces, orienta-
tion, rock units) derived from GNN’s predictions representing a structural model can 
be compared with data or model constraints using loss functions. Discrete proper-
ties, like rock units, can be handled by GNNs by treating them as a classification 
problem. Resulting GNN predictions of these properties are expressed as a vector 
containing continuous class probabilities in a range between 0 and 1. The class 
of a node is simply determined by the vector element with the largest probability. 
Alternatively, rock unit observations can also be expressed as inequality constraints 
(Kervadec et  al. 2019) using scalar field values like previous implicit approaches 
not requiring convex optimization methods. However, treating them as a classifica-
tion problem can be advantageous because it provides the lithostratigraphic model 
directly from which additional model metrics can be potentially derived (e.g., area, 
volume, thickness, spatial relationships between classes) for other model-based con-
straints. Furthermore, treating discrete properties this way permits integration of 
other discrete geological properties that cannot be represented as continuous scalar 
values.

Although not demonstrated here, GNNs have been shown to be massively scal-
able by application to graphs containing billions of nodes for web-scale recom-
mender systems (Ying et  al. 2018). This is made possible by partitioning a graph 
into batches of sampled sub-graphs (Hamilton et al. 2017b) describing k-hop neigh-
borhoods which can be distributed across cloud computing infrastructure for train-
ing and inference. This is a promising direction for massive-scale three-dimensional 
geological modeling.

One modeling assumption is imposed by the presented GNN approach. This 
assumption, also known as inductive bias, asserts that nearby information is more 
useful than distant information for making geologically related predictions. This bias 
is provided by the graph’s structure, which for the presented approach is a tetrahe-
dral mesh. Since predictions on graph nodes are derived from recursion aggregation 
of neighboring node embeddings, and these neighboring nodes are spatially close, 

Table 3  Model performance 
metrics after 150 epochs of 
training on real-world dataset

Metric Value

Linterface 1.75
Lnormal 25.6
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local information has a greater influence on these predictions than distant informa-
tion. For geological applications, this inductive bias is strongly supported and origi-
nates from Tobler’s first law of geography, which states that closer things are more 
related to each other than things that are further away (Tobler 1970). Furthermore, 
this law is the foundation for spatial interpolation methods such as kriging.

One potential limitation of the presented GNN approach are challenges with 
reproducibility—an aspect of all deep learning methods. Since the network’s learn-
able parameters are initialized randomly, rerunning the algorithm under the same 
conditions will not yield the exact same geological model. Normally, resultant mod-
els are quite similar, with small shifts in modeled geological surfaces. However, in 
some circumstances the differences can be large if (1) the modeling capacity of the 
GNN model is not sufficient (e.g., too few learnable parameters) or (2) a diverse 
set of plausible structural geological solutions exist given the supplied constraints. 
In these circumstances, there are many local minima in the neural network’s solu-
tion space. In contrast, existing implicit approaches achieve perfect reproducibility 
because they are deterministic methods that return the global minimum solution 
obtained from a linear system of equations or convex optimization problem. How-
ever, since three-dimensional geological modeling applications suffer from limited 
data compared to the volumes they aim to resolve, there is an infinite set of plausible 
geological models given the sampled data. Therefore, because the GNN can gener-
ate a family of solutions given the same modeling parameters, it provides a means 
for exploring a larger set of plausible geological structures (Jessell et  al. 2010). 
Challenges with reproducibility of geological models obtained from GNNs could be 
addressed by fully characterizing the space of solutions as well as generating model 
uncertainty through Bayesian deep learning techniques on graphs (Ryu et al. 2019).

Modeling assumptions imposed by existing implicit approaches can in some 
circumstances negatively impact the resultant structural models. All existing 
implicit interpolants impose explicit smoothness criteria to obtain a unique inter-
polation. For meshless methods, this is the minimum norm interpolant criterion 
that corresponds to the smoothest possible interpolation given the chosen ker-
nel function. On the other hand, for discrete methods, this is the constant scalar 
gradient criterion between neighboring tetrahedra. Both smoothness criteria can 
lead to poor geological modeling of highly variant structures due to the compro-
mising influence of local variations on the geological reasonableness (de Kemp 
et  al. 2017) of the model. An example of this behavior is shown in Fig.  7, in 
which critical points (vanishing derivatives) within the scalar field create topo-
logical features (Ni et al. 2004) in the modeled interface which are not geologi-
cally reasonable. Although, this issue can be mitigated to varying degrees of 
success by approximating solutions (e.g., nugget effect, regression smoothing) 
instead of exact interpolation. For GNNs, these explicit smoothness criteria are 
not imposed. Instead, smoothness of resulting predictions is implicitly driven by 
the recursive spatial convolutions of node embeddings and loss functions associ-
ated with various constraints. Spatial convolutions in GNNs can be viewed as a 
generalization of kernel functions in classical implicit interpolation (Gong et al. 
2020) whose parameterization is optimized through training on given constraints. 
In addition to the smoothness criterion, existing implicit approaches also impose 
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assumptions on normal orientation data—useful for modeling overturned struc-
tures—quantifying planar orientation as well as direction (polarity) of younger 
stratigraphy. Existing approaches use a scalar gradient constraint equal to a nor-
mal vector whose norm (e.g., vector magnitude) is arbitrarily chosen, typically 
as a unit normal. The magnitude of the gradient controls the scalar field’s rate of 
change in the direction of the normal. Moreover, all gradient constraints are asso-
ciated with the same norm value that consequently restricts modeling especially 
in highly deformed settings where stratigraphic thicknesses typically vary. The 
angular constraints used in the proposed GNN architecture provides the desired 
orientational control on modeled geometries unaffected and unrestricted by the 
arbitrarily chosen norm.

In addition, the presented GNN approach for three-dimensional geological mod-
eling can also be used as a framework for incorporating additional forms of geo-
logical knowledge. Since edges of a graph can be used to represent any form of 
relation between two objects, they can be exploited for incorporating topological 
relationships between various geological entities like stratigraphy, unconformities, 
intrusions, and faults. Since these interlinked entities can be represented as a graph 
(Thiele et  al. 2016), we see potential in leveraging GNNs for incorporating these 
graph-based constraints into the modeling process. The concept of using edges to 
model relations is one of our motivations for using GNNs over existing implicit 
approaches.

Fig. 7  Example of a radial basis function (RBF) interpolation yielding a geologically unreasonable 
model of an interface (black curve) using interface (blue) and normal constraints (red) sampling a highly 
variable structure. For reference, a geologically reasonable interpretation is shown (dotted white curve)
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Experience with GNN modeling has led to some practical observations regard-
ing the effect of GNN model parameterization, including the types of graph con-
volution, edge weights, embedding dimension, regularization, and network depth. 
The effect of changing the type of convolution, edge weights, and embedding 
dimension on representing an overturned fold can be found in the “Appendix”. In 
order to represent geological structures, the network requires sufficient modeling 
capacity, with complex structures requiring more modeling capacity than simpler 
structures. Increasing the network’s modeling capacity can be achieved by using a 
spatial convolution that has sufficient parameters as well as increasing the embed-
ding dimension. Using a GMM convolution (Eq. 4), the modeling capacity can be 
improved by simply increasing the number of Gaussian kernels K used. It should 
be noted that we tested other graph-based convolutions (Fey et al. 2018; Verma 
et  al. 2018; Thekumparampil et  al. 2018) using the PyTorch Geometric library 
(Fey and Lenssen 2019), and preliminary results indicate that they are useful for 
three-dimensional structural geological modeling. More work, beyond the scope 
of this paper, would be required to fully assess their general use for geological 
modeling. The use of edge weights, either geometrically derived or dynamically 
learned by the network via GMM convolutions, consistently produces better rep-
resentations of geological structures. For regularization, various methods can be 
used to avoid overfitting GNN models given noisy or structurally contradictory 
data, including early stopping (as per the second case study) as well as L1 and L2 
vector space norm regularization of network parameters and dropout (Srivastava 
et al. 2014). With respect to network depth, we found no significant improvement 
in geological modeling when increased beyond three layers, which is attributed to 
a bottlenecking issue in current GNNs (Alon and Yahav 2020). This issue results 
from information loss during successive spatial convolutions, each of which 
compresses information into fixed-size embedding vectors. As network depth is 
increased, the amount of information that needs to be compressed grows expo-
nentially, resulting in diminishing returns in prediction accuracy.

5  Conclusions

A GNN-based deep learning approach to three-dimensional structural geological 
modeling has been presented. The approach can generate both structural scalar 
fields for implicit modeling and geological unit modeling constrained by typical 
scattered implicit point data and geological unit observations. Two case studies 
demonstrate the GNN architecture’s modeling performance in representing three-
dimensional geological structures using two diverse datasets. The case studies 
highlight the GNN’s capability to constrain orientation using angular constraints, 
to handle continuous and discrete properties simultaneously, and to produce rea-
sonable models using noisy real-world data. The approach provides an expres-
sive framework for incorporating interpolation constraints using loss functions, 
enabling new opportunities for three-dimensional structural geological modeling.
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Appendix: The Effect of GNN Model Parameters on Resulting 
Three‑Dimensional Geological Models

To demonstrate the effect of using different model parameters within the pre-
sented graph neural network architecture, eight three-dimensional structural geo-
logical models are produced of a synthetic overturned fold (Fig.  8) using param-
eterization summarized in Table 4. Each structural model was produced after 150 
epochs of training using a network depth of 3. Results show that GMM convolu-
tions (Fig.  8f–i) better reproduce the overturned fold as compared to mean-based 
convolutions (Fig.  8b–e) due to increased modeling capacity and the ability to 
dynamically learn optimal edge weights for modeling. When no edge weights are 
used (Fig. 8c), the resulting iso-surfaces are not as smooth as when the geometri-
cally derived weights are used (Fig. 8b). In both cases, the use of a low embedding 
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Fig. 8  Effect of important GNN parameters on three-dimensional structural geological modeling of a 
synthetic overturned folded structure (grey) using sampled interface (blue) and normal constraints 
(green). Investigated parameters include graph convolution type, edge weight type, and node embedding 
dimension. Refer to Table 4 for details on parameters used for each subfigure. Each sub-figure contains 
two views: (left) along fold axis (right) perpendicular to fold axis



1747

1 3

Math Geosci (2021) 53:1725–1749 

dimension (Fig. 8d, h) results in a modeled structure that is far from optimal, with 
notable creases throughout. On the other hand, when a high embedding dimension 
(Fig. 8e, i) is used, the resultant modeled structure is much smoother. Because of 
an increase in learnable parameters when using a high embedding dimension, 150 
epochs of training is insufficient to minimize the errors on the interface constraints 
when using a mean-based convolution (Fig. 8e). Interestingly, this is not the case for 
GMM-based convolution (Fig. 8i).
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