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Abstract Data assimilation in reservoir modeling often involves model variables that
are multimodal, such as porosity and permeability. Well established data assimilation
methods such as ensembleKalman filter and ensemble smoother approaches, are based
on Gaussian assumptions that are not applicable to multimodal random variables. The
selection ensemble smoother is introduced as an alternative to traditional ensemble
methods. In the proposed method, the prior distribution of the model variables, for
example the porosity field, is a selection-Gaussian distribution, which allows mod-
eling of the multimodal behavior of the posterior ensemble. The proposed approach
is applied for validation on a two-dimensional synthetic channelized reservoir. In the
application, an unknown reservoir model of porosity and permeability is estimated
from the measured data. Seismic and production data are assumed to be repeatedly
measured in time and the reservoir model is updated every time new data are assim-
ilated. The example shows that the selection ensemble Kalman model improves the
characterisation of the bimodality of the model parameters compared to the results of
the ensemble smoother.
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1 Introduction

The predictions of fluid flow reservoir models are generally affected by the uncer-
tainty in the initial reservoir model of petrophysical properties, such as porosity and
saturation. This model is usually built by integrating different types of data (core mea-
surements, well logs, and surface seismic measurements) and by using geophysical
data and statistical algorithms. The so-obtained static reservoir model is then used as
an input for fluid flow simulators to predict the dynamic changes in fluid saturation
during injection and production. However, there are several sources of uncertainties
that might impact the accuracy of the static reservoir model, and as a consequence
they affect the accuracy of the fluid flow predictions. Probability random fields can
be used to represent the model uncertainty. When additional data become available,
including production data or repeated seismic surveys, the static model is updated to
reduce the initial uncertainty and improve the reservoir description (Oliver et al. 2008;
Evensen 2009).

During injection and production, direct observations of the fluid saturation can be
acquired at the well locations. However, this information is available only at sparse
locations and cannot fully explain the local variations far away from the wells. Seis-
mic data, repeatedly acquired at multiple times, are used to monitor the changes in
seismic response during injection and production (Landrø 2001; Landrø et al. 2003;
Dadashpour et al. 2010; Trani et al. 2012). The changes in fluid saturation affect the
elastic response of the reservoir. Therefore, by measuring seismic and well data at dif-
ferent times, rock and fluid properties can be predicted by solving inverse problems.
In reservoir modeling, this process is called history matching (Williams et al. 1998),
which is a data assimilation problem where a set of unknown model variables are
updated every time new data are available (Evensen 2009). Time-lapse seismic data
have been previously used in history matching in reservoir applications (Huang et al.
1997; Landa et al. 1997; Aanonsen et al. 2003; Kretz et al. 2002; Dong et al. 2005).
The integration of seismic data leads to several challenges associated with the reso-
lution of the data and the dimensionality of the problem. In this work, the measured
data include oil production and bottom hole pressure at the wells and surface seismic
data, and the unknown model variables are the porosity and saturation fields, but the
process can be extended to other rock and fluid properties.

Several methods have been presented to solve data assimilation problems, such as
gradient-based techniques (e.g. Gauss–Newton), derivative-free optimizationmethods
(e.g. Hooke–Jeeves direct search, genetic algorithm, and particle swarm optimiza-
tion) and Monte Carlo methods (e.g. ensemble Kalman filter and particle filtering) as
described in Oliver and Chen (2011). However, one of the main challenges in seismic
and production data assimilation is the representation of the uncertainty. The Ensem-
ble Kalman filter (EnKF) is a Bayesian updating method that relies on the Kalman
filter predictor-corrector structure (Evensen 2009). This method has been successfully
applied to several geoscience problems including subsurfacemonitoring (Nævdal et al.
2003; Oliver et al. 2008; Evensen 2009; Oliver and Chen 2011). Skjervheim et al.
(2005) applied the EnKF approach to time-lapse seismic and production data in a
three-dimensional field case.
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Several variations of the ensemble approach have been presented to improve the
accuracy of the predictions, including the ensemble smoother and the ensemble
smoother with multiple data assimilation (Emerick and Reynolds 2013). Numerous
attempts focusing on reproducing the uncertainty in the Kalman gain estimate have
also been presented (Myrseth et al. 2010; Sætrom and Omre 2011). Mathematical
formulations including localization, covariance inflation, and dimensionality reduc-
tion have also been tested for preventing overfitting, ensemble collapsing and spurious
correlations and to make the approach applicable to practical applications, including
non-linear models in large grids. However, ensemble based methods are generally
based on Gaussian assumptions for the conditional distribution of the model, and
therefore it is not theoretically applicable to models with multimodal random vari-
ables. A regression towards the mean occurs during the conditioning steps, thereby
rendering posterior marginal distributions Gaussian. This is a challenging problem in
reservoir simulation because subsurface properties, such as porosity and saturation,
often show non-Gaussian distributions owing to the underlying geology. The focus on
this study is on representing non-Gaussian features in the posterior ensemble of the
variables of interest.

Statisticalmethods, such asEnsembleRandomizedLikelihood (EnRML) (Chenand
Oliver 2012), Gaussian anamorphosis (Bertino et al. 2003; Zhou et al. 2012), Gaussian
mixture models (Dovera and Della Rossa 2011) and truncated pluri-Gaussian (Oliver
and Chen 2018), have been developed to address this issue. EnRML and Gaussian
anamorphosis attempt to modify the conditioning step to preserve the desirable fea-
tures in the posterior ensemble, and they are compatible with any prior ensemble.
Gausssian mixture and truncated pluri-Gaussian models assume specific prior distri-
bution, and the ensemble algorithm is adapted to the priormodel. Recent developments
also include the indicator based data assimilation proposed in Kumar and Srinivasan
(2018) and the hierarchical truncated pluri-Gaussian simulation (Silva and Deutsch
2019).

An alternative to Gaussian mixture models is the selection-Gaussian models
(Arellano-Valle et al. 2006; Arellano-Valle and del Pino 2004; Omre and Rimstad
2018). These models have been applied to spatio-temporal inversion in Conjard and
Omre (2020) and validated using synthetic examples. In this manuscript, the compati-
bility of the selection Kalman model framework detailed in Conjard and Omre (2020)
is extended by integrating the selection Kalman model with the ensemble smoother.
The resulting approach is named ’selection ensemble smoother’. The prior for the ini-
tial state vector is a selection-Gaussian distribution, but instead of sampling the initial
ensemble directly from the selection-Gaussian distribution, the proposed approach
takes advantage of the structure of the selection-Gaussian to sample from a Gaussian
augmented state vector, thereby preventing unwanted regression towards the mean
while keeping the computational cost to a minimum. A similar approach has been
proposed for asymmetric priors using the closed skew Gaussian distribution (Naveau
et al. 2005; Rezaie and Eidsvik 2014).

The proposed methodology is then tested on a two-dimensional channelized reser-
voir, with the goal of estimating the porosity and saturation fields based on seismic
and production data. In Sect. 2, the problem is defined in a Bayesian formulation, the
novel method is presented and the forward operator for the reservoir model is defined.
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In Sect. 3, a synthetic two-dimensional case study featuring a channelized reservoir
with two facies is presented. In Sect. 4, conclusions are presented.

2 Methodology

The Methodology section describes the proposed framework for data assimilation in
reservoir modeling. The Bayesian formulation of the selection ensemble smoother is
first presented. Then, the forward operators for the geophysics and fluid flowmodeling
are summarized.

In this paper, f ( y) denotes the probability density function (pdf) of a random
variable y, ϕn( y;μ,�) denotes the pdf of the Gaussian n-vector y with expectation
n-vector μ and covariance (n × n)-matrix �. Furthermore, �n(A;μ,�) denotes the
probability of the aforementioned Gaussian n-vector y to be in A ⊂ R

n . Further, in
is used to denote the all-ones n-vector.

2.1 Hidden Markov Model

From a Bayesian perspective, the data assimilation can be assimilated in a hidden
Markov model formulation, where at a given time the current state is updated based
on the previous state and the current measurements. The state of the chain represents
the values of the variables of interest. If a variable of interest is r and the observable
measurement is d, the goal of data assimilation is to predict the initial value of the
variable of interest, i.e. the state of the chain r0 = r t=0 based on the data d t available
at different times t = 0, . . . , T , assuming that the forward model and the likelihood
function of the measurements are known.

Given the prior model of the initial state vector r0 ∈ R
n , the distribution of the

vector of the following states [r1:T+1|r0] = [r1, . . . , rT+1|r0] is defined as

f (r1:T+1|r0) =
T∏

t=0

f (r t+1|r t ), (1)

with

[r t+1|r t ] =ωt (r t ) + εrt ∼ f (r t+1|r t ), (2)

where ωt (·) ∈ R
n is the forward operator with random Gaussian n-vector εrt , inde-

pendent and identically distributed (iid) for each time t . The forward model defines a
first-order Markov chain.

Consider, then, a set of measurements d = {d1, . . . , dT } where d t ∈ R
m,∀t =

1, . . . , T . It is assumed that the measured data depend on the variables of interest
according to a likelihood model. The likelihood model for [d|r] is conditionally inde-
pendent and defined as
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f (d|r) =
T∏

t=0

f (d t |r t ), (3)

with

[d t |r t ] =ψt (r t ) + εdt ∼ f (d t |r t ), (4)

where ψt (·, ·) ∈ R
m is the likelihood function with random Gaussian m-vector εdt , iid

for each t .
Let �t = ωt ◦ ωt−1 ◦ . . . ω1 such that

[r t+1|r0] = �t (r0) + εrt , (5)

then, it is possible to write [d t |r0] as

[d t |r0] = ψt ◦ �t−1(r0) + εdt , (6)

and consequently [d|r0] as

[d|r0] =
⎡

⎣
ψ1 ◦ �0(r0)

. . .

ψT ◦ �T−1(r0)

⎤

⎦ +
⎡

⎣
εd1
. . .

εdT

⎤

⎦ . (7)

Equations 1 and 4 provide the framework for the EnKF, whereas Eq. 7 gives the
framework for the ensemble smoother using the same hidden Markov model formu-
lation.

2.2 Ensemble Smoother

The ensemble smoother is an inverse method that assimilates the measured data d in
a unique step by evaluating the likelihood f (r0|d). The likelihood model described
in Eq. 7 is represented as

d = g(r0) + δ, (8)

where g(r0) =
⎡

⎣
ψ1 ◦ �0(r0)

. . .

ψT ◦ �T−1(r0)

⎤

⎦ and δ =
⎡

⎣
εd1
. . .

εdT

⎤

⎦.

In this data assimilation approach, an ensemble of ne members r p(i), i = 1, . . . , ne
is generated from the prior distribution of the initial state f (r0) and the ensemble
members are updated as

ru(i) = r p(i) + �̂r,d�̂
−1
d (d − di ), i = 1, . . . , ne, (9)
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where di represents the pseudo-data (i.e. the data predicted from the model according
to the forward operator) generated for the ensemble member i as d(i) = g(r p(i)) + δ,
and where the crosscovariance and covariance matrices, �̂r,d and �̂d , are computed
as

�̂r,d = 1

ne

ne∑

i=1

(r p(i) − r p)(di − d)T , (10)

�̂d = 1

ne

ne∑

i=1

(di − d)(di − d)T , (11)

with r p being the empirical mean from the initial ensemble and d the empirical mean
of the pseudo-data. Localization has been proposed in data assimilation problems to
avoid spurious correlations and ensemble collapse (Houtekamer and Mitchell 1998;
Chen and Oliver 2011). The method is based on distance-dependent functions to
constrain the updates of the model variables and their variability to a specific area
based on the observed data in that region. Localization should be applied on a scale
larger than the correlation length of the spatial variograms of the model variables to
avoid introducing biases on the spatial correlation and resolution of the model. In the
case study, localization is used on both �̂r,d and �̂d because, as is often the case, the
size of the ensemble is small compared to the dimension of the state vector.

One of the most popular inverse methods in reservoir modeling simulation is the
ensemble smootherwithmultiple data assimilation (ES-MDA) (Emerick andReynolds
2013). In the MDA version of the ensemble smoother, the data are assimilated mul-
tiple times to improve convergence. This approach requires a limited number of runs
of the forward operator and handles the non-linearity in the forward and likelihood
models. The mathematical formulation of the MDA approach is detailed in Emerick
and Reynolds (2013).

In the ensemble smoother, the prior distribution for the initial state can be cho-
sen freely, however it is difficult to preserve non-Gaussian features in the posterior
distribution owing to the linearized update (Eq. 9). The selection ensemble smoother
attempts to represent non-Gaussian features in the posterior distribution.

2.3 Selection Ensemble Smoother

The selection-Gaussian pdf can represent multimodality, skewness, and heavy-tailed
distributions; it is an extension of the skew-Gaussian distribution (Omre and Rimstad
2018). Consider a Gaussian (n + n)-vector [r̃, κ]

[
r̃
κ

]
∼ ϕ2n

([
r̃
κ

]
;
[
μr̃
μκ

]
,

[
�r̃ �r̃�

T
κ|r̃

�κ|r̃�r̃ �κ

])
, (12)

where μr̃ and μκ are n-vectors, �κ|r̃ is a (n × n)-matrix, and �r̃ , �κ , and �κ|r̃ are
three covariance (n × n)-matrices with �κ = �κ|r̃�r̃�

T
κ|r̃ + �κ|r̃ .
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If r0 is defined as r0 = [r̃|κ ∈ A], where A ⊂ R
n is a selection set of dimension

n, then r0 is distributed according to a selection-Gaussian pdf given by

f (r0) = [
�n(A;μκ ,�κ)

]−1

�n(A;μκ + �κ|r̃ (r0 − μr̃ ),�κ|r̃ ) × ϕn(r0;μr̃ ,�r̃ ). (13)

The structure of the selection-Gaussian model provides a suitable model for non-
Gaussian features of the posterior distribution of the inverse problem.

A selection-Gaussian random variable r A ∈ R
n can be written as [r|κ ∈ A] with

r ∈ R
n , κ ∈ R

n , A ⊂ R
n , and where [r, κ] is jointly Gaussian. When conditioning

on data, it is always possible to consider [r, κ], condition first on the data d and
then on κ ∈ A. Similarly when transforming r A :→ g(r A), one can show that the
distribution of g(r A)) is equal to that of [g(r)|κ ∈ A]. In any data assimilation process
where a selection-Gaussian distribution is chosen as a prior, it is therefore possible
to work on the augmented Gaussian vector [r, κ] throughout the assimilation step(s),
and condition on the latent variable κ being in A afterwards. The selection Ensemble
Kalman filter detailed in (Conjard and Omre 2020) adopts this approach.

Theproposed selection ensemble smoother for data assimilation problems is defined
by aprior distribution f (r0) that is selection-Gaussian such that r0 = [r̃0|κ ∈ A], A ⊂
R
n , and where the prior state vector is represented by the augmented vector [r̃0, κ].

When assessing [r0|d1:T ], the selection ensemble smoother first evaluates [r̃0, κ |d1:T ]
and then adopts aMarkov chainMonte-Carlo (MCMC) algorithm (Omre and Rimstad
2018) to calculate [r0|d1:T ] = [r̃0|κ ∈ A, d1:T ]. There are two advantages in using
the augmented state vector. First, in ensemble methods, the update step is optimal if
the prior is Gaussian and the prior and the data are jointly Gaussian. Therefore, by
enforcing a Gaussian initial state vector, the optimal update conditions are ensured.
Then, since the update is optimal only if the prior is Gaussian and the forward and
likelihood models linear and Gaussian, the traditional update tends to make the poste-
rior ensemble more and more Gaussian; however, conditioning on the latent variable
after the assimilation is performed allows representing non-Gaussian features in the
posterior distribution.

The selection ensemble smoother proceeds as follows. First, ne ensemble members
are generated

[r̃ p(i), κ p(i)], i = 1, . . . , ne, (14)

from the augmented Gaussian prior distribution of the initial state f (r0, κ), and they
are updated as

[
r̃u(i)

κu(i)

]
=

[
r̃ p(i)

κ p(i)

]
+ �̂r̃κ,d�̂

−1
d (d − di ), i = 1, . . . , ne, (15)
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where di represents the pseudo-data generated for the ensemble member i as d(i) =
g(r̃ p(i)) + δ, and where �̂r̃κ,d and �̂d are calculated as follows

�̂r̃κ,d = 1

ne

ne∑

i=1

([
r̃ p(i)

κ p(i)

]
−

[
r̃
p

κ p

])
(di − d)T , (16)

�̂d = 1

ne

ne∑

i=1

(di − d)(di − d)T , (17)

with r̃
p
and κ p being the empiricalmeans from each component of the initial ensemble

and d being the empirical mean of the pseudo-data. In the case study, localization is
used on both �̂r̃κ,d and �̂d because the size of the ensemble is small compared to the
dimension of the state vector.

After conditioning on the data, the ensemble represents [r0, κ |d]which is assumed
to be Gaussian. The target distribution f (r0|κ ∈ A, d) can be written as

f (r0|κ ∈ A, d) = 1

f (κ ∈ A|d)

∫

A
f (r0|κ, d) f (κ |d)dκ, (18)

=
∫

Rn
f (r0|κ, d)

f (κ, d)I A(κ)

f (κ ∈ A, d)
dκ, (19)

=
∫

Rn
f (r0|κ, d) f (κ |κ ∈ A, d)dκ . (20)

Equation 20 shows how sampling from the posterior distribution is performed:
first from the truncated Gaussian κ∗ ∼ [κ |κ ∈ A, d] and then from the Gaussian
vector r∗ ∼ [r0|κ∗, d]. Hence r∗ are distributed according to the target distribution
f (r0|κ ∈ A, d).
The challenging step is the sampling from the truncated Gaussian, which is per-

formed using an MCMC sampling algorithm (Omre and Rimstad 2018). The MCMC
algorithm, denoted by S, generates κ∗

κ∗ = S(μ̂κ |d, �̂κ |d, A), (21)

where μ̂κ |d and �̂κ |d are the empirical mean and covariance matrix of the posterior
ensemble for κ . Note that the selection set A is considered constant throughout the
algorithm. The empirical covariance matrix estimate �̂κ |d is known to be subject to
sampling errors, which are addressed by using localization on �̂κ |d . The algorithm
itself has to be tailored to the specific application as rank deficiency is to be expected
in high-dimensional inverse problems. The original algorithm expected a positive
definite covariance matrix, and even though localization does increase the rank of
the localised matrix, it is unlikely that it becomes full rank after the transformation.
Therefore, singular value decomposition is used to evaluate the pseudo inverse instead
of outright inverting the matrix in the algorithm. The singular value decomposition of
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�̂κ |d gives,

�̂κ |d = U�V T , (22)

where U and V are (n × n) orthogonal matrices, and � is an (n × n) diagonal matrix

whose diagonal entries are non-negative. The pseudo inverse �̂
+
κ |d of �̂κ |d is then

given by

�̂
+
κ |d = V�+UT , (23)

where �+ is the pseudoinverse of �, which is formed by replacing every non-zero
diagonal entry by its inverse and transposing the resulting matrix.

2.4 Forward Operator

The data assimilation problem discussed in this work requires two operators: the fluid
flow simulation operator used as a forward model and the geophysical operator used
for the likelihood model of the measured data.

The forecast of the dynamic behavior of fluid displacement in the subsurface
requires a mathematical-physical model generally called fluid flow simulation. For
hydrocarbon-water two-phase flow in subsurface reservoirs, the model is based on
Darcy’s equation and mass balance law and includes two partial differential equations
(PDE) in two unknowns, namely water saturation sw(t) andwater pressure pw(t). This
model assumes that there are only two immiscible fluids, the flow is isothermal, and
the capillary pressure is a function of saturation. For a system of oil and water, the
PDE system can be written as follows

∇ ·
[

kkw
Bwμw

(∇ pw(t) − γw∇d)

]
+ qw = ∂

∂t

(
φsw(t)

Bt

)
, (24)

∇ ·
[

kko
Boμo

(∇(pw(t) − pc(t)) − γo∇d)

]
+ qo = ∂

∂t

(
φ(1 − sw(t))

Bo

)
, (25)

where k is the absolute permeability, φ is the porosity, d is the depth, pc is the capillary
pressure, qw is the water production rate, qo is the oil production rate and the constants
kw, Bw, μw, γw, γw, ko, Bo, μo, and γo are parameters associated with the fluid
properties of oil and water. If porosity and permeability are known, then the system
can be solved using finite difference methods to compute the water and saturation and
pressure, sw(t) and pw(t), at any time t . The oil saturation and pressure can then be
computed from water saturation and water pressure.

The permeability field is assumed to be a point-wise function of the porosity field
given by Kozeny–Carman’s equation

k = a × φ3

(1 − φ)2
, (26)

123



1454 Math Geosci (2021) 53:1445–1468

where a is a geometrical factor estimated by fitting the true permeability field. This
approximation allows removing k from the state vector because it is then a known
function of the porosity φ.

Similarly, the prediction of the geophysical response of subsurface models requires
a mathematical-physical model that includes rock physics relations and seismic wave
propagationmodels. Rock physicsmodels allow computing P-wave and S-wave veloc-
ities and densities given the petrophysical properties, porosity, and fluid saturation.
The seismic wave propagation model allows calculating the seismic response, in terms
of amplitude and travel time, based on the velocities and densities. For a partially-
saturated porous rock of porosity φ and water saturation sw, the density ρ(φ, sw) can
be computed as

ρ(φ, sw) = (1 − φ)ρm + φ (ρwsw + ρo(1 − sw)) , (27)

and the P-wave and S-wave velocities, vp(φ, sw) and vs(φ, sw), are given by Raymer–
Dvorkin’s relations (Dvorkin et al. 2014)

vp(φ, sw) = (1 − φ)2

√
Km + 4

3Gm

ρm
+ φ

√√√√
(

sw
Kw

+ 1−sw
Ko

)−1

ρwsw + ρo(1 − sw)
, (28)

vs(φ, sw) = (1 − φ)2

√
Gm

ρm

√
(1 − φ)ρm

ρ(φ, sw)
, (29)

where ρm is the density of the solid phase, ρw is the density of water, ρo is the density
of oil, Km is the bulk modulus of the solid phase, Gm is the shear modulus of the solid
phase, Kw is the bulk modulus of water, and Ko is the bulk modulus of oil. All these
parameters are assumed to be constant and known. The reflection coefficients rpp(t, θ)

associated with seismic wave propagation are a function of the seismic travel time and
incident angle θ and depend on the relative change in P-wave and S-wave velocity
and density. For small incident angles, the reflection coefficients can be approximated
using Aki–Richards equations (Aki and Richards 1980) as

rpp(t, θ) = rp(θ)
∂

∂t
vp(t) + rs(θ)

∂

∂t
vs(t) + rρ(θ)

∂

∂t
ρ(t), (30)

where

rp(θ) = 1

2
(1 + tan2(θ)), (31)

rs(θ) = − 4c sin2(θ), (32)

rρ = 1

2
(1 − 4c sin2(θ)), (33)

with c being a constant value equal to the square of the average vs/vp ratio.
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Fig. 1 Graph of the hidden Markov model

Fig. 2 Data assimilation flowchart

Fig. 3 Reference porosity and permeability fields, with the location of the injection and producer wells

The amplitudes s(t, θ) of the seismogram are then approximated as a convolution
of a wavelet w(t, θ) and the reflection coefficients rpp(t, θ) as

s(t, θ) =
∫

w(u, θ)rpp(t − u, θ)du, (34)

where the wavelet w(t, θ) is generally assumed to be known. As shown in Buland and
Omre (2003), the convolution can be discretized by decomposing thematrix associated
with the forward operator as G = WAD, where W is the wavelet matrix, A is the
reflection coefficient matrix, and D is the first order differential matrix.
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Fig. 4 Water saturation at initial and final times

Fig. 5 Well production data: bottom hole pressure and oil production rate

In the current implementation, we adopted a forward model based on the con-
volution of the wavelet with the linearized approximation of Zoeppritz equations
(Shuey 1985; Aki and Richards 1980) because it is mathematically tractable, and the
computational cost is limited. The proposed approach can be extended to other for-
ward operations including convolutional models based on full Zoeppritz equations,
Kennett’s invariant imbedding method and the Born weak scattering approximation
(Zoeppritz 1919; Kennett 1984; Russell 1988; Sheriff and Geldart 1995; Yilmaz 2001;
Aki and Richards 1980). In theory, the same formulation can also be applied to the
full waveform model for wave propagation, however, the computational cost of the
approach is still prohibitive for field-scale applications. Applications of ensemble-
based methods to full waveform inversion problems have been proposed Thurin et al.
(2019) and Gineste et al. (2020), according to Gaussian assumptions of the error and
model variables.
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Fig. 6 Seismic data (near and far angle) at the top and bottom of the reservoir after 12 years of injection
and production

Table 1 Parameter values

μ
φ

r̃ () μ
φ
κ () σ

φ

r̃ () γ φ() A() dx (m) dy(m)

−2.5 0 0.2 0.99 (]-∞,- 0.2] ∩ [0.3, 2[)n 100 200

3 Application

The proposed method is applied to a two-dimensional synthetic case to demonstrate
the validity of the selection ensemble smoother (S-ES) and the advantages compared
to the traditional ensemble smoother (ES).

The synthetic example mimics the production of hydrocarbon in a reservoir by
water injection as shown in Liu and Grana (2018, 2020). The geology of the reservoir
includes four channels in the north-south direction with an average porosity of 0.2.
The channels are surrounded by shale with effective porosity close to 0. It is assumed
that the entire reservoir is filled by oil with an irreducible water saturation of 0.2.
Water is injected in four wells and oil is produced from six wells. All the wells are
located within the channels. Fluid flow occurs predominantly within the channels due
to the low porosity and permeability of the surrounding shale, and the injected water
displaces the oil in place towards the producing wells.
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Fig. 7 Prior ensemble of models: mean maps and marginal histograms

Fig. 8 Posterior ensemble prediction from the selection ensemble smoother: marginal maximum a poste-
riori (MMAP) predictions

The reservoir model mimics the two-phase (oil and water) flow due to water injec-
tion and oil production in a geological system represented in a two-dimensional
uniform grid of n = 64×64 cells of dimension 40×40×25m. Figure 3 shows the true
porosityφr and permeability kr fields. The reference porositymodel is generated using
the following geostatistical modeling approach: First, a facies model for a channelized
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Fig. 9 Posterior ensemble prediction from the selection ensemble smoother: predictions along horizontal
and vertical lines

system is generated using object modeling with randomly sampled parameters of the
channel geometry (length, width, and tortuosity). Then a porosity model is generated
using sequential Gaussian simulation within each facies using facies-dependent prior
distributions to mimic medium-high porosity within the channels and low porosity in
the background shale. Finally, permeability is simulated in the logarithmic domain,
conditioned on the porosity field using sequential Gaussian co-simulation. Figure 3
shows the geostatistical realization used as the reference (true) model for the applica-
tion. Figure 3 also shows the locations of the four water injection wells (i1, i2, i3, i4)
and the six producer wells (p1, . . . , p6).

Fluid flow is then simulated to create the reference (true) saturation maps for a
time period of 12 years using the Matlab Reservoir Simulation Toolbox (MRST) (Lie
2019). Figure 4 shows the evolution of the water saturation in the field for the reference
porosity and permeability field specified in Fig. 3. The initial water saturation sw0 is
set constant to 0.2, then water propagates predominantly within the channels until it
reaches, after 12 years, one of the producers. Figure 5 shows the bottom hole pressure
(BHP) and the oil production rate (OPR) every six months at the injector and producer
wells, respectively.

In addition to the saturation and production data, a synthetic geophysical dataset is
generated for the data assimilation problem. To generate seismic data, two additional
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Fig. 10 Posterior realizations from the posterior distribution of the porosity field obtained from the selection
ensemble smoother

Fig. 11 Posterior statistics of the selection ensemble smoother results compared to the true model

geological layers representing non-permeable shale formations are added above and
below the reservoir model. The model then includes three layers (top shale, reservoir,
and bottom shale) and two interfaces (top reservoir and bottom reservoir). Seismic
data are then generated using the rock physics model with constant mineral properties
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Fig. 12 Predicted bottom hole pressure (BHP) at the 4 injection wells obtained from the selection ensemble
smoother; the ensemble members are in black, the measured BHP in red

Fig. 13 Predicted oil production rate (OPR) at the 6 producer wells obtained from the selection ensemble
smoother; the ensemble members are in grey, the measured OPR in red

in sand and shale and the seismic convolutional operator. The seismic data are calcu-
lated for two incident angles of 8◦ (near) and 24◦ (far). Figure 6 shows the seismic
data computed 12 years after injection and production started. Because the reservoir
properties are assumed to be vertically homogeneous within the model, two main
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Fig. 14 Ensemble smoother predictions:meanmaps,marginal histograms, and predictions along horizontal
and vertical lines

reflections are generated in the seismic response, at the top and at the bottom of the
reservoir. For this reason, for each trace, the dimension of the data is 4×1 (two angles
and two measurements per angle), the dimension of the vector of elastic variables is
9 × 1 (three properties and three locations per property), and the dimension of the
vector of porosity and initial saturation is 6×1 (two properties and three locations per
property). The seismic operator is represented by a matrix G = WAD of dimensions

123



Math Geosci (2021) 53:1445–1468 1463

Fig. 15 Predicted bottomhole pressure (BHP) at the 4 injectionwells obtained from the ensemble smoother;
the ensemble members are in black, the measured BHP in red

Fig. 16 Predicted oil production rate (OPR) at the 6 producer wells obtained from the ensemble smoother;
the ensemble members are in grey, the measured OPR in red

4× 9 (W is 4× 4, A is 4× 6, D is 6× 9) and the rock physics model is a system of 3
equations (one for each elastic property) with two unknowns (porosity and saturation).

The focus is on the prediction of the porosity field assumed to be spatially variable
but constant in time, and the water saturation field before and after the experiment.
Following the formalism in Eq. 8, all the measured data, production and seismic are
saved in a vector d that contains OPR and BHP measurements every six months for
twelve years and the seismic amplitudes measured after twelve years. Porosity and
initial water saturation are stored in r0. The forward model f generates the model
predictions according to the discretization of Eqs. 24, 25, 30 and 34 . The measured
data are perturbed by adding white noise represented by the Gaussian error term δ with
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standard deviation 1,
√
2/2 for BHP and OPR respectively. The seismic amplitudes

have a signal to noise ratio of approximately 2.5.
In this case study, data assimilation is performed using two methods: S-ES and ES.

Figure 2 displays a flowchart summarizing the data assimilation procedure. For the
S-ES, the prior distribution of the porosity field φ is defined on log-scale as f (log(φ))

and is selection-Gaussian with parameters

�SG
φ = (μ

φ

r̃ , μφ
κ , σ

φ

r̃ ,�
ρ

r̃ , γ φ, A). (35)

The parameters (γ φ, A) are chosen so that the prior marginal is bimodal, with
modes approximately matching the average porosity values of the two facies in the
reference field. The spatial correlation (n × n)-matrix �

ρ· is defined by the second

order exponential spatial correlation function ρ(τ ; dx , dy) = exp [−(
τ 2x
d2x

+ τ 2y

d2y
)]. The

parameters values are listed in Table 1. The chosen values for dx and dy assume longer
correlation along the y-axis than along the x-axis. The prior distribution for the initial
water saturation field is Gaussian centered at μsw = 0.2 × in with covariance matrix
�sw = 0.0005 ∗ �

ρ

r̃ , where �
ρ

r̃ is the covariance matrix of the porosity field.

An initial ensemble e0 = {r p(i)0 , i = 1, . . . , ne} of size ne = 500 is generated.
Covariance localization (Gaspari and Cohn 1999) is used for the conditioning. The
localization was chosen restrictive enough to preserve an acceptable rank in the esti-
mated covariance matrix, thereby preventing ensemble collapse. The mean of the
realizations and the marginal distributions are shown in Fig. 7. The spatial stationarity
is shown in themaps, whereas themarginal distribution is displayed by the histograms,
which show the bimodality of the selection-Gaussian prior distribution for porosity.

The posterior distributions of porosity andwater saturation are then computed using
the S-ESmethod. Figure 8 shows the posteriormean for the porosity field and thewater
saturation field after 12 years obtained by the S-ES. Comparing the posterior mean
of the porosity field to the reference porosity field, it can be observed that channels
are correctly identified with good accuracy. The predicted water saturation field is
smoother than the reference water saturation, but the overall pattern is aptly repro-
duced. Figure 9 shows the prediction and 95% confidence interval for porosity and
water saturation along a vertical and horizontal line of the two-dimensional field. Even
though the uncertainty is slightly underestimated, the S-ES captures the characteristics
of the variations of the porosity and water saturation fields. Inflation was not adopted
to show the uncertainty quantification of the methods, but the use of inflation factors
might mitigate the underestimation in the uncertainty quantification. Figure 10 shows
realizations from the posterior distribution of the porosity field obtainedwith the S-ES.
The channels are correctly predicted with some uncertainties on the boundaries. Fig-
ure 11 shows the spatial histograms of the predicted porosity field and water saturation
field obtained with the S-ES and compares them the reference values. The marginal
maximum a posteriori (MMAP) is used as a predictor due to the marginal bimodality
of the posterior ensemble. The spatial histogram of the mean porosity field shows an
accurate match with the reference porosity field, whereas the water saturation spatial
histogram is slightly smoother than the references one. Both findings are consistent
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Table 2 Statistics comparing
the S-ES prediction to the ES
prediction

S-ES ES

MAEφ 1.96 × 10−2 2.6 × 10−2

MAEsw 6.6 × 10−2 8.5 × 10−2

corrφ 0.85 0.82

corrsw 0.84 0.75

80% coverage 0.85 0.71

with the analysis of Fig. 8. Figures 12 and 13 show the predicted OPR and BHP for
the S-ES respectively, showing a good agreement with the true data.

For the traditional ES approach, the prior ensemble is generated assuming that
the prior distributions for the log-porosity and initial water saturation fields are
Gaussian. The prior distribution for the porosity field is defined as f (log(φ)) ∼
ϕn(log(φ),μr , σ

2
r × �

ρ
r ), where μr = −2.5in and σ 2

r = 0.2 are chosen such that
the marginal prior distribution approximates the spatial histogram of the reference
porosity field. The covariance matrix�

ρ
r and the prior distribution for the initial water

saturation field are the same as in the S-ES case. Figure 14 shows the results for the
posterior ensemble for the porosity field and water saturation field obtained using the
ES. The posterior mean of the porosity field seems to identify the channels but the
porosity values are underestimated within the channels. The predicted water satura-
tion is much smoother than the reference water saturation field and the prediction
from the S-ES. The spatial histogram of the mean porosity field shows that the ES
fails to capture the bimodal nature of the porosity field, while the spatial histogram
of the water saturation field severely underestimates the number of locations where
saturation remains equal to the initial value of 0.2 and overpredicts saturation in sev-
eral locations. By analyzing the predictions of porosity and water saturation along
the horizontal and vertical lines, the ES prediction fails to capture the sharp changes,
even though the coverage of the confidence intervals is satisfactory. Figures 15 and 16
display the predicted OPR and BHP for the ES, showing a better match for OPR and
a worse match for BHP compared to the S-ES results.

The two methods are compared using different statistics: the mean absolute error
(MAE), the correlation, and the 80% coverage probability are considered. Let MAEφ

and corrφ define, respectively, the MAE and the correlation between the predicted
porosity field and the reference porosity field. Further, let MAEsw and corrsw define,
respectively, the MAE and the correlation between the predicted water saturation
field and the reference water saturation at the final time step. The 80% coverage
probability is calculated for the predicted porosity field. The results are detailed in
Table 2. The MAE measures for the ES are about 30% higher than those of the S-
ES. The correlations for the porosity are comparable. The correlation for the water
saturation for the S-ES is about 10% higher than that of the ES. The 80% coverage
probability seems to indicates the ES underestimates the uncertainty more than the
S-ES overestimates it. Overall these statistics are favorable to the S-ES. The sensitivity
to the data does not seem to cause over-fitting. The use of multiple data assimilation
and iterative methods could improve the data match for both the ensemble smoother
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and selection ensemble smoother. The S-ES has a higher computational demand than
the ES because the posterior distribution needs to be sampled. On a 64 × 64 grid, it
takes a few minutes to generate 200 samples, which is considered acceptable in view
of the results. When the dimension of the data is very large, such as for field case
reservoir models defined on 3D grids with millions of nodes, the matrix �̂d in Eqs. 9
and 15 is too large to be stored, let alone inverted. In that case, one could propose
a parametric approach where the covariance is defined by a few model parameters
and maximum likelihood estimation is used to estimate those parameters (Skauvold
and Eidsvik 2019). Alternatively, a methodological development along the lines of the
parametric Kalman filter could be considered (Pannekoucke et al. 2016).

4 Conclusions

Seismic and production data assimilation is performed to predict the spatial distribu-
tion of porosity and water saturation using a novel method named ’selection ensemble
smoother’, a Monte Carlo ensemble method that extends the ensemble smoother to
selection-Gaussian models. By using a selection-Gaussian prior and an augmented
initial state vector, the posterior distribution can represent multimodal posterior dis-
tributions. The main advantage of the selection ensemble smoother is the use of the
augmented state vector which makes possible conditioning on the latent variable after
data assimilation. The posterior distribution is then sampled assuming that the model
is selection-Gaussian, thereby allowing multimodal features in the posterior distribu-
tion. The design of the experiment is optimal for the selection ensemble smoother
approach since the channelized system leads to a bimodal porosity distribution. The
results from the selection ensemble smoother are promising since the predictions are
accurate and the data predictions match the measurements. The limited band-with
of the seismic measurements, which limits the resolution of the data, prevents the
inversion from clearly identifying the non-stationarity in the porosity field but still
allows the selection ensemble smoother method to select the right mode, whereas the
ensemble smoother results regress towards the mean.
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