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Abstract The present work proposes a new high-order simulation framework based
on statistical learning. The training data consist of the sample data together with a
training image, and the learning target is the underlying random field model of spatial
attributes of interest. The learning process attempts to find a model with expected
high-order spatial statistics that coincide with those observed in the available data,
while the learning problem is approached within the statistical learning framework in
a reproducing kernel Hilbert space (RKHS). More specifically, the required RKHS is
constructed via a spatial Legendre moment (SLM) reproducing kernel that system-
atically incorporates the high-order spatial statistics. The target distributions of the
random field are mapped into the SLM-RKHS to start the learning process, where
solutions of the random field model amount to solving a quadratic programming prob-
lem. Case studies with a known data set in different initial settings show that sequential
simulation under the new framework reproduces the high-order spatial statistics of the
available data and resolves the potential conflicts between the training image and the
sample data. This is due to the characteristics of the spatial Legendre moment kernel
and the generalization capability of the proposed statistical learning framework. A
three-dimensional case study at a gold deposit shows practical aspects of the proposed
method in real-life applications.
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1 Introduction

Stochastic simulations are used to quantify the spatial uncertainty in earth science or
engineering applications. Since the early 1990s, the so-termed multipoint statistical
simulation (MPS) methods (Guardiano and Srivastava 1993; Journel and Zhang 2006;
Strebelle 2002) were first proposed to overcome the limitation of the second-order
simulation approaches in reproducing the complex spatial patterns encountered in
natural phenomena. Instead of using a theoretical variogram/covariance model, as
is the case with conventional two-point geostatistical simulations, the MPS methods
consider that the so-called training image (TI) contains the prior information of the
spatial statistics or patterns of the attribute to be simulated.A spatial template is defined
as a geometrical configuration of the relative locations among the multiple points,
regardless of the coordinates. The known data within the spatial template at a certain
location on the simulation grid acts as the conditioning data in the simulation and is
termed a data event. Over the past decade, several state-of-the-artMPS algorithms have
been proposed to improve the efficiency and reproduction of the curvilinear features
(Mariethoz and Caers 2014; Remy et al. 2009).

An inherent limitation of theMPS algorithms is that the high-order spatial statistics
of the available data are not systematically considered and are partly integrated in ad-
hoc ways. This issue becomes more prominent when the spatial statistics of the TI
and the sample data are different, leading to realizations conflicting with the spatial
statistics of the sample data, especially when the latter data is relatively dense as is the
case in mining applications (Goodfellow et al. 2012; Osterholt and Dimitrakopoulos
2007). As an alternative, high-order simulation methods are proposed to model a
random field without any presumption of its probability distribution, and high-order
spatial statistics are systematically incorporated in the model (Dimitrakopoulos et al.
2010; Mustapha and Dimitrakopoulos 2010a, b, 2011). The first algorithm of high-
order simulation, HOSIM, approximates the probability density function (PDF) by the
Legendre polynomial series through the so-called spatial cumulants (Dimitrakopoulos
et al. 2010;Mustapha andDimitrakopoulos 2010b, 2011). Further developments of the
high-order simulation paradigm include the simulation of spatially correlated variables
(Minniakhmetov and Dimitrakopoulos 2017) and the direct simulation at the block
scale (de Carvalho et al. 2019). Most recently, Yao et al. (2018) proposed a new
computational model of high-order simulation as a unified empirical function, which
avoidsCPU-demanding computations of expansion coefficients. Furthermore, a kernel
function can be derived from this model and will be used in the present work.

A common issue that runs across all of the above-mentioned high-order simulation
methods is that the approximation of the PDF by orthogonal polynomials cannot be
guaranteed to be positive. The sensitivity of high-order polynomials to the rounding
errors near the endpoints of the approximationweakens the convergence of polynomial
series to a stable analytic function, as discussed in Minniakhmetov et al. (2018),
who propose an approximation of the PDF using Legendre-like orthogonal splines
as the basis functions, resulting in a significant improvement in numerical stability.
As the deviation of the empirical statistics from the true expectation arises due to
possible statistical conflicts between the sample data and the TI, the convergence of
the approximation to the actual underlying PDF could be undermined. Under such a
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circumstance, a postprocessing step has to be introduced to correct the approximation.
For example, the correction procedure through interpolation around the points of
negative densities is applied in Mustapha and Dimitrakopoulos (2010b).

The present work proposes a new high-order simulation framework based on statis-
tical learning (Vapnik 1995, 1998), which deliberatelymitigates the statistical conflicts
between the sample data and the TI, and also overcomes the limitation of approximat-
ing the PDF with the orthogonal expansion series. Statistical learning theory (Vapnik
1998) develops a new learning paradigm to explore functional dependency from a
given data set without relying on prior knowledge, which contrasts with the classical
statistical methods that are based on parametric models. According to the learning
paradigm, a target model needs to be learned from the available data set, which rep-
resents the training data. The so-called learning machine (Vapnik 1998) is frequently
given as a set of functions, from which a specific learning model is selected to approx-
imate the target model according to certain criteria.

To interpret high-order simulation in terms of statistical learning, the training data
are regarded as the available data from the sample data and/or the TI. The target model
is the probability distribution related to the random field of the spatial attributes.
The learning model is the approximated PDF of the target probability distribution,
from which the realizations can be generated. The learning process for high-order
simulation is driven by matching the expected high-order spatial statistics of the target
probability distribution to the high-order spatial statistics observed from the available
data. The matching of the high-order spatial statistics is the most challenging part
and is approached herein by a learning process in a reproducing kernel Hilbert space
(RKHS) (Scholkopf and Smola 2001). A spatial Legendremoment (SLM) reproducing
kernel is proposed to construct the specified RKHS (SLM-RKHS), such that the high-
order spatial statistics are systematically incorporated in this Hilbert space for a certain
probability distribution. The elements in the original data space are mapped into the
SLM-RKHS, termed RKHS embedding (Muandet et al. 2016; Smola et al. 2007; Song
et al. 2008, 2013). In addition, the high-order spatial statistics of the available data
are carried over to the domain after this RKHS embedding. Eventually, the statistical
learning regarding high-order simulation leads to a convex optimization in SLM-
RKHS where the solutions amount to solving a quadratic programming problem.

In the following sections, the general theory of kernelmethods, including theRKHS
and RKHS embedding of probability distributions, are introduced. Section 3 describes
the main workflow of high-order sequential simulation via statistical learning, and
a spatial Legendre moment reproducing kernel is defined to construct the specific
SLM-RKHS. Furthermore, this SLM-RKHS is decomposed to lower-dimensional
subspaces, such that conditional probability density functions (CPDF) in the context
of sequential simulation can be embedded into the corresponding subspaces. Subse-
quently, a high-order stochastic simulation method is presented as a learning process
based on the embedding of the CPDF into the decomposed subspace of the SLM-
RKHS. Next, the proposed simulation method is tested using a fully known data set.
A case study at a gold deposit is then presented to show the practical aspects of the
proposed method. Conclusions follow.
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2 Methods

2.1 Overview of Kernel Space and Embedding a Probability Distribution

In the general setting of kernelmethods, a kernel space needs to be set up and associated
with a predefined kernel function, and a feature mapping is defined to map an arbitrary
element from the original data space into the kernel space. The related general concepts
and theory are formalized in the followed subsections.

2.1.1 Reproducing Kernel Hilbert Space

A Hilbert spaceH is a vector space over a field endowed with an inner product (Stein
and Shakarchi 2005). For simplicity, theHilbert spaceH over the setR of real numbers
is considered here, and the inner product is defined as

〈 f, g〉 :H × H → R, ∀ f, g ∈ H.

The norm is defined as

‖ f ‖H � 〈 f, f 〉1/2 , ∀ f ∈ H.

Other essential properties can be found in Stein and Shakarchi (2005). The concepts of
reproducing kernel and positive definite function are fromBerlinet andThomas-Agnan
(2004) with the modification of the range of kernel function to R.

Reproducing Kernel Let E be a non-empty set andH be a Hilbert space of functions
defined on E. Then, a function K :E × E → R is a reproducing kernel of a Hilbert
space H if and only if

(1) ∀t ∈ E, K (·, t) ∈ H, and
(2) ∀t ∈ E,∀ f ∈ H, 〈 f, K (·, t)〉 � f (t).

The last condition is called “the reproducing property,” because any function in
H can be reproduced by its inner product with the kernel K . In addition, as a direct
derivation of the above conditions, the reproducing kernel can be written as the inner
product

K (s, t) � 〈K (·, s) , K (·, t)〉 , ∀s, t ∈ E.

Naturally, a Hilbert space in possession of a reproducing kernel is called a repro-
ducing kernel Hilbert space. The feature map associated with an RKHS H with
kernel K is defined as φ:E → H such that 〈φ (s) , φ (t)〉 � K (s, t). In fact,
φ (t) :E → H, t 	→ K (·, t) ,∀t ∈ E satisfies such a definition as the feature map
according to the reproducing property. This type of feature map is called a reproduc-
ing kernel map (Scholkopf and Smola 2001) or canonical feature map (Steinwart and
Christmann 2008) and will be used in the present paper.
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Positive Definite Function A real-valued function K :E×E → R is positive definite
if ∀n ≥ 1,∀ (a1, . . . , an) ∈ R

n,∀(x1, . . . , xn) ∈ E
n , there is

n∑

i�1

n∑

j�1

aia j K
(
xi , x j

) ≥ 0

The reason for introducing the concept of the positive definite function is that a repro-
ducing kernel is equivalently a positive definite function (Berlinet and Thomas-Agnan
2004). Thus, in practical terms, constructing an RKHS is equivalent to defining a
positive definite function.

2.1.2 RKHS Embedding of a Probability Distribution

The range of the feature mapping spans RKHSH by definition (Scholkopf and Smola
2001). Thus, the feature mapping φ is crucial in embedding a data element into the
RKHSH.Accordingly, twomappings are important to embedaprobability distribution
into the RKHS H (Smola et al. 2007)

μ [p] � Ex∼p [φ (x)] , (1)

and

μ [X ] � 1
M

M∑
i�1

φ (Xi ) , (2)

where the first equation is the expectation kernel mean map regarding the density
p and the second one is the empirical kernel mean map with the finite sample set
X � {X1, . . . , XM }. The expectation kernel mean map μ[p] is an element in the
RKHS H as long as Ex∼p [K (x, x)] < ∞ (Smola et al. 2007). Suppose that the
samples from X are independently drawn from the same probability distribution with
density p, then μ[p] can be approximated by μ[X ] (Song et al. 2008), with the bound
of the deviation ‖μ [p] − μ [X ] ‖H with the probability given by Altun and Smola
(2006).

The space of all probability distributions forms a convex setP; thus, the image of
the expectation kernel mean mapM :� {μ [p] ,∀p ∈ P} is also convex and is called
the marginal polytope (Smola et al. 2007). In terms of the RKHS embedding, the goal
of the density estimation is to find an optimal probability density p̂ ∈ P such that
the deviation ‖μ [X ] − μ [ p̂] ‖H is minimized. In practice, the density estimator p̂ is
assumed as a mixture of a set of candidate densities or prototypes pi (Smola et al.
2007; Song et al. 2008) as

p̂ �
n∑

i�1
αi pi , (3)

where
∑n

i αi � 1 and αi ≥ 0,∀1 ≤ i ≤ n.
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Let us define the subset P0 of P as

P0 :�
{
p̂ �

n∑

i

αi pi |
n∑

i�1

αi � 1 and αi ≥ 0, ∀1 ≤ i ≤ n

}
.

It can be seen thatP0 is a convex hull of the prototypes since p̂ is a convex combination
of the candidate densities. The density estimation amounts to solving theminimization
problem restricted to a convex set P0 as

min
p̂∈P0

∥∥μ [X ] − μ
[
p̂
]∥∥2H . (4)

Explicit expansion ofEq. (4) leads to solving a quadratic program forα � (α1, . . . , αn)
as the following (Song et al. 2008)

min
α

1
2α

T (Q + λI) α − qTα

s.t.
n∑

i�1
αi � 1

αi ≥ 0, ∀1 ≤ i ≤ n

, (5)

where λ is a regularization constant to prevent overfitting, and I is the identity matrix.
Q � [

Qi j
]
n×n is a matrix, and q � (q1, . . . , qn) is a vector of length n, both of which

are entries that depend on the kernel function. The matrixQ is positive definite; hence
the above quadratic program (5) is a convex optimization problem.

2.2 High-Order Simulation Method in Spatial Legendre Moment Kernel Space

2.2.1 SLM Reproducing Kernel

Themotivation for applying statistical learning to the high-order simulation is tomatch
the high-order spatial statistics of the output realizations to the training data through
the learning process. This goal is achieved by the learning procedure in a newly defined
kernel space, while the kernel is defined as

K (X,Y) �
N∏
i�0

[
W∑

w�0

(
w + 1

2

)
Pw (xi ) Pw (yi )

]
, (6)

and is called a spatial Legendre moment kernel (SLM-kernel for short) of order W ,
where X,Y ∈ [− 1, 1]N+1, X � (x0, x1, . . . , xN ) ,Y � (y0, y1, . . . , yN ), and Pw (·)
is the Legendre polynomial of order w defined on the interval [− 1, 1].

As the name of the kernel suggests, one reason to define the SLM-kernel in the
form of Eq. (6) is that past studies of high-order simulations based on Legendre-
polynomial series have shown the capacity for capturing complex spatial patterns
with spatial cumulants or spatial Legendre moments (Dimitrakopoulos et al. 2010;
Mustapha and Dimitrakopoulos 2010b; Yao et al. 2018). In other words, the SLM-
kernel is constructed in a way that the distance between two distributions embedded
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into the kernel space actually represent the deviation of spatial Legendre moments
from each other. The other reason stems from the fact that the computational model
from Yao et al. (2018) leads to a kernel-like expression of approximating the CPDF
[cf. Eq. (14) in Yao et al. (2018)].

To prove that K (X,Y ) is positive definite, one can first define a simpler function
k (s, t) � Pw (s) Pw (t) ,∀s, t ∈ [− 1, 1] and show that it is positive definite. In fact,

∀n ≥ 1, ∀ai , a j ∈ R, ∀ti ∈ [−1, 1] , 1 ≤ i, j ≤ n,

it is easy to see that

n∑

i�1

n∑

j�1

aia j Pw (ti ) Pw

(
t j

) �
[

n∑

i�1

ai Pw (ti )

]2

≥ 0

Therefore, k (s, t) is positive definite. Now, we denote

K ′ (X,Y) �
W∑

w�0

(
w +

1

2

)
Pw (xi ) Pw (yi )

�
W∑

w�0

(
w +

1

2

)
k (xi , yi )

.

K ′ (X,Y) is positive definite because the weighted sum of positive definite functions
with non-negative coefficients is also positive definite. Finally, K (X,Y) can bewritten
as K (X,Y) � ∏N

i�0K
′ (X,Y). Given that the finite product of positive definite

functions is also positive definite (Steinwart and Christmann 2008), it is proven that
the function K (X,Y ) is positive definite, and thus, it defines a reproducing kernel.

2.2.2 Sequential Simulation via Statistical Learning in SLM-Kernel Space

The implementation of a high-order stochastic simulation is under the framework
of a sequential simulation (Journel 1994). By means of decomposing the multivariate
probability distribution into a consecutive set of univariate distributions, the simulation
is carried out sequentially to generate random values from conditional distributions
per a random path visiting the simulation grid. Specifically, let us denote the random
field to be simulated as Z(u), which composes a multivariate distribution regarding
the variable locations u at a discrete simulation grid. Suppose an arbitrary node Z0
to be simulated within a random path is located at u0 with a neighborhood � of N
conditioning data that contains either the sample data or the previously simulated nodes
along the random path. Without loss of generality, the key problem in the stochastic
simulation is to find an estimation of the CPDF f (Z0|�), given the center node Z0 and
the N conditioning data. From the spatial configuration of the neighborhood, a spatial
template can be extracted as T � (u0, u0 + h1, . . . , u0 + hN ), where h1, . . . , hN are
distance vectors of the location of each conditioning data from the center node u0.

123



700 Math Geosci (2020) 52:693–723

Clearly, statistical learning for the simulation aims to learn a target probability
distribution from the available training data, and this turns out to be minimizing the
distance of the empirical distribution and the target distribution after embedding them
into the SLM-kernel space. By the definition of the Dirac delta function, one can
define an empirical probability density function (EPDF) (Scott 2015) corresponding
to a sample set X of size M as

femp (x) � 1
M

M∑
i�1

δ (x − Xi ) . (7)

Then, the empirical kernel mean map μ [X ] can be rewritten as a convolution with the
kernel K as

μK
[
femp

]
:� μ [X ] � ∫

femp (x) K (x, ·) dx . (8)

Similarly, the expectation kernel mean map μ [p] can also be written as

μK [p] � ∫
p (x) K (x, ·) dx . (9)

In this way, both the empirical kernel mean map μ[X ] and the expectation kernel
mean map μ[p] can be regarded as an integral operator μK determined by the kernel
K acting on the EPDF or the PDF. The convolution of the density functionwith kernels
can be analogous to the regularization of the integral operator to solve the ill-posed
problem of density estimation (Vapnik 1998; Vapnik and Mukherjee 1999).

Given the above-mentioned template T � (u0, u0 + h1, . . . , u0 + hN ) and the
replicate encountered in the TI as ζ t � (ζt,0, ζt,1, . . . , ζt,N ) corresponding to T , the
EPDF femp embedded in the SLM-RKHS is identical to the density estimator in Yao
et al. (2018) in the kernel form as

μK
[
femp

] � 1
M

M∑
t�1

K
(
ζ t , ·

)
. (10)

Furthermore, under the sequential simulation framework, the CPDF f (Z0|�) can be
mapped into a lower-dimensional kernel space through decomposition of the kernel
space, so that the high-order simulation can be reduced to a one-dimensional opti-
mization problem.

Note that the kernel K in Eq. (6) can be decomposed as a product of lower-
dimensional kernels K0 and KN as

K0 (x0, y0) �
W∑

w�0

(
w + 1

2

)
Pw (x0) Pw (y0) , (11)

and

KN
(
X ′,Y ′) �

N∏
i�1

[
W∑

w�0

(
w + 1

2

)
Pw

(
x ′
i

)
Pw

(
y′
i

)]
, (12)
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where K0 is one-dimensional and KN is N -dimensional with X ′ �
(x1, . . . , xN ) ,Y ′ � (y1, . . . , yN ). Through marginalization of Eq. (10), the approxi-
mation of the CPDF f̃W (z0|�) can be rewritten in terms of the kernels as

f̃W (z0|�) �
∑M

t�1 K0(ζt,0,z0)·KN

(
ζ ′
t ,�

)

∑M
t�1 KN

(
ζ ′
t ,�

) , (13)

where ζ ′
t � (

ζt,1, . . . , ζt,N
)
. By letting

βt � KN

(
ζ ′
t ,�

)

∑M
t�1 KN

(
ζ ′
t ,�

) , (14)

the approximation of the CPDF f̃W (z0|�) can be expressed as

f̃W (z0|�) �
M∑
t�1

βt · K0
(
ζt,0, z0

)
. (15)

From Eq. (15), it turns out that the approximated CPDF f̃W (z0|�) is a linear combi-
nation of kernel bases, and therefore, it lies in the SLM-RKHS with the kernel K0.
Furthermore, it can be regarded as the embedding of the empirical CPDF into the SLM-
RKHS. In other words, the kernel mean map μK0 for the conditional distributions can
be defined as

μK0

[
femp (z0|�)

] �
M∑
t�1

βt · K0
(
ζt,0, ·

)
, (16)

and

μK0 [ f (z0|�)] � ∫
f (z0|�) K0 (z0, ·) dz0 � E [K0 (z0, ·)] , (17)

where Eqs. (16) and (17) correspond to the SLM-RKHS embedding of the empirical
CPDF and the target CPDF, respectively.

Assuming that the CPDF can be expressed as the convex combination of some
candidate distributions pi as in Eq. (3), such that f (z0|�) ∈ P0, then the density
estimation for the CPDF can be solved by a similar minimization problem as Eq. (4)
with the kernel mean map changing to μK0 . Explicit expansion of the minimization
problem leads to a quadratic program similar to Eq. (5), whereas the matrixQ and the
vector q are expressed as

Qi j � Ez0∼pi ,z′0∼p j

[
K0

(
z0, z′0

)]
, (18)

q j �
M∑
t�1

βt · Ez0∼p j

[
K0

(
ζt,0, z0

)]
. (19)

Therefore, combining Eqs. (5), (11), (18) and (19), the RKHS embedding of the CPDF
leads to a quadratic program expressed by the one-dimensional kernel K0. The solution
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Fig. 1 Workflow of high-order simulation via statistical learning

to the optimization problem will give the weights αi of each candidate distribution pi ,
which leads to a target distribution matching to the high-order spatial statistics of the
available data.

A general high-order stochastic simulation workflow via statistical learning is
shown in Fig. 1. Themain difference between the new high-order simulation workflow
and the other geostatistical simulation methods is that the key element in the proposed
workflow becomes the kernelization, including the kernel construction and the kernel
mean mapping. A detailed implementation of the algorithm is given in Sect. 4.

3 Sequential Simulation Algorithm Based on Statistical Learning
in SLM-RKHS

The SLM-RKHS embedding of theCPDFprojects the density estimation in high-order
stochastic simulation into a quadratic program in the feature spacewithSLM-kernel K0
defined in the interval [− 1, 1]. Hence, the sample data and the TI are first transformed
into the interval [− 1, 1]. The truncated normal densities on the interval [− 1, 1] are
used as the prototypes. Let us denote the normal density with mean mi and standard
deviation σ as gσ,mi and its corresponding cumulative distribution function as Gσ,mi .
Then, the density functions of the prototypes are pi � gσ,mi /ci , with ci � Gσ,mi (1)−
Gσ,mi (− 1). Thus, the approximated CPDF can be expressed as

f̂ (z0|�) �
n∑

i�1
αi gσ,mi (z0) /ci , (20)

where n is the number of the prototypes. The computations of the matrix Q and the
vector q are essential to build the quadratic program for solving the weights αi . Further
expansions of Qi j and q j in Eqs. (18) and (19) give
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Qi j �
W∑

w�0

(
w + 1

2

)
Ez0∼pi [Pw (z0)] · Ez′0∼p j

[
Pw

(
z′0

)]
, (21)

q j �
M∑
t�1

βt ·
(

W∑
w�0

(
w + 1

2

)
Pw

(
ζt,0

)
Ez0∼p j [Pw (z0)]

)
. (22)

As the computations of the coefficients βt and the Legendre polynomial Pw

(
ζt,0

)
are

straightforward according to their definitions, the Legendre polynomial moment with
the truncated normal density Ez0∼pi [Pw (z0)] remains the only term of more con-
sideration. Here, a recursive algorithm to compute the Legendre polynomial moment
Ez0∼pi [Pw (z0)] is developed.

Let us denote Aw,i � Ez0∼pi [Pw (z0)] and Bw,i � Ez0∼pi [z0Pw (z0)] . Note that
P0 (z0) � 1, and P1 (z0) � z0,∀z0 ∈ [−1, 1]. There are

A0,i � 1, (23)

and

A1,i � B0,i � mi + σ 2
[
gσ,mi (−1) − gσ,mi (1)

]
/ci . (24)

The recursive relations of Legendre polynomials (Lebedev and Silverman 1965) are

(w + 1) Pw+1 (z0) � (2w + 1) z0Pw (z0) − wPw−1 (z0) , (25)

and

(2w + 1) Pw (z0) � d
dz0

[
Pw+1 (z0) − Pw−1 (z0)

]
. (26)

By Eqs. (25) and (26) and through integration by parts, one can derive the following
recursive equations

(w + 1) Aw+1,i � (2w + 1) Bw,i − wAw−1,i , (27)

and

Bw,i � mi Aw,i + σ 2 [
(−1)w gσ,mi (−1) − gσ,mi (1)

]
/ci

+ σ 2 [(2 (w − 1) + 1] Aw−1,i + σ 2 [2 (w − 3) + 1] Aw−3,i + · · · . (28)

Combining with the initial conditions in Eqs. (23) and (24), Eqs. (27) and (28) form
a complete recursive procedure to compute Ez0∼pi [Pw (z0)]. The computations in
turn build the quadratic program for density estimation of the conditional probability
distribution in the simulation.

In a situation with high-dimensional space, the location parameters mi of the pro-
totypes can be determined by clustering the available data. Here, since the density
estimation problem is cast to the one-dimensional space by kernel decomposition,
the locations of the prototypes are given by a set of peak points of the function from
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Eq. (15). Specifically, the interval [− 1, 1] is divided evenly into 100 subintervals, and
the prototypes are selected from the subintervals which contain the peak points of the
function Eq. (15). This heuristic approach to selecting prototypes further simplifies the
quadratic program and makes the simulation feasible for implementation. The scale
parameter σ can be chosen by the method of stochastic gradient descent where the
gradients can be derived from the recursive equations in Eqs. (27) and (28).

In summary, the high-order stochastic simulation algorithmbased onRKHSembed-
ding (KERNELSIM hereafter for simplification) can be described as follows:

(1) Scale the property values of the samples and the TI to the interval [−1, 1].
(2) Generate a random path to visit the simulation grid.
(3) Pick one node from the random path to simulate, with the conditioning data

taken from the neighborhood containing both the sample data and the previously
simulated nodes.

(4) Replicates are scanned from theTI according to the template defined by the spatial
configuration of the conditioning data.

(5) Compute the SLM-kernel moments to build the quadratic program.
(6) Solve the quadratic program to estimate of the CPDF with regard to the center

node. Draw a random value from the CPDF as the data value of the center node.
(7) Repeat from step (3) until the simulation is completed.
(8) Back transform the property values of the simulation from [− 1, 1] to the original

data space.

In a practical implementation, step (5) can be simplified to precompute the Leg-
endre polynomial moments for each prototype distribution, as well as the Legendre
polynomial values of the replicates, and therefore the computations can be greatly
reduced at the cost of more memory usage. The solver for the quadratic program in
step (6) applied to the present paper is based on the algorithm from Goldfarb and
Idnani (1983).

The time complexity of the proposed algorithm is of polynomial time overall. Sup-
pose that the size of the simulation grid is S and the size of the training data is M ,
the maximum order of the Legendre moments is W , the maximum number of con-
ditioning data is N , and the number of the prototype distributions is n p. Searching
the replicates of the conditioning data from a regular grid takes O(M · N ) oper-
ations. Computing the kernel moments and building the quadratic program takes
O

(
M · n p

(
W 3 +W 2N

))
arithmetic operations. Solving the quadratic program prob-

lem also takes polynomial time of O
(
n4p · L

)
, where L is the size of the problem

encoding in binary (Vavasis 2001). Hence, the overall time complexity is a polynomial

of O
(
S · (M · n p

(
W 3 +W 2N

)
+ n4p · L)

)
.

4 Case Studies

4.1 Case Study at a Fully Known Reservoir

The porosity attributes from the Stanford V reservoir data set (Mao and Journel 1999)
are considered for simulation. Two horizontal sections at different depths are extracted
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Fig. 2 Exhaustive image: a
horizontal section from a fully
known reservoir

Fig. 3 TI-1: another horizontal
section from a fully known
reservoir

from the reservoir, acting as the exhaustive image and the TI, respectively. For com-
parison, the two horizontal sections shown in Figs. 2 and 3 are selected to be the same
ones used in a previous study (Yao et al. 2018). Firstly, the TI extracted from the orig-
inal reservoir data set is rotated 45° clockwise to generate a new TI with seemingly
different spatial structures, which are noted as TI-1 and TI-2 (Figs. 3, 4), respectively.
Furthermore, two different sets of sample data as DS-1 and DS-2 are drawn from the
exhaustive image and are shown in Figs. 5 and 6, corresponding to the relatively sparse
and dense samples, respectively. The main purposes of performing a simulation on
these different cases are: (1) testing the sensitivity of KERNELSIM to the statistical
conflicts between the sample data and the TI; (2) testing the impact of the number of
sample data on the realization of KERNELSIM.

4.1.1 Example 1

This example consists of simulation results generated by KERNELSIM with the TI-
1 as the training image and DS-1 and DS-2 as the sample data sets. This example
generally represents the situation where the sample data and the TI are of different
origin but are sharing some similarity in spatial patterns. For instance, the channels in
both the exhaustive image and TI-1 are preferential in the vertical directions.
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Fig. 4 TI-2: rotation of TI-1 45°
clockwise

Fig. 5 DS-1: data samples of
200 points drawn from the
exhaustive image

Fig. 6 DS-2: data samples of
400 points drawn from the
exhaustive image

Figure 7 shows one realization of KERNELSIM using TI-1 as the training image
and with DS-1 and DS-2 as the sample data, respectively. For comparison, both
realizations are generated by the same random path to visit the nodes on the grid. It
is clear that both realizations reproduce the main spatial structures of the exhaustive
image along the vertical channels from the visualization (Fig. 7). The realization
shown in Fig. 7a is comparable to the case study in Yao et al. (2018), and it shows that
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Fig. 7 One realization from KERNELSIM using TI-1. a DS-1 as the sample data, b DS-2 as the sample
data

Fig. 8 Histograms of 10 realizations of KERNELSIM using TI-1. a DS-1 as the sample data, b DS-2 as
the sample data

the present method reproduces channel connectivity better and eliminates the noisy
points that appeared in the realizations generated using past approaches, which were
caused by the impact of statistical conflicts between the sample data and the TI. Com-
parisons of the histograms and variograms of 10 realizations of KERNELSIM using
either DS-1 or DS-2 as the sample data are illustrated in Figs. 8 and 9, respectively.
The third-order cumulant maps of the sample sets DS-1 (smoothed for visualization)
and DS-2 are shown in Fig. 10a, b. The cumulant maps of the exhaustive image and
the TI are shown in Fig. 10c, d. For comparison, the third-order cumulant maps of the
realizations of KERNELSIM using either the DS-1 or DS-2 as the sample data are
shown in Fig. 10e, f. Figure 10g, h shows the average third-order cumulant maps of
10 realizations using the DS-1 and DS-2 as the sample data, respectively. Similarly, a
further comparison of fourth-order cumulant maps is displayed in Fig. 11. The spatial
template for computing the fourth-order cumulant maps included directions along the
X-axis, Y -axis and the diagonal direction. The fourth-order cumulant maps are scaled
by their deviations for clearer visualization of the patterns. Both the third-order and
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Fig. 9 Variograms of 10 realizations of KERNELSIM using TI-1. a, b Along the X and Y axes with DS-1
as the sample data; c, d, along the X and Y axes with DS-2 as the sample data

the fourth-order cumulant maps clearly show that the KERNELSIM realization tends
to have similar spatial patterns to the sample data and the exhaustive image. The above
results show that the KERNELSIM method reproduces both the lower and higher
spatial statistics of the underlying random field given that the TI and the sample data
share some similarity in their spatial distributions. Specifically, regardless the number
of sample data being used, the main spatial features of the reservoir are retained in the
realizations of KERNELSIM, as supported from the visual appearance of the vertical
channels and the variograms, as well as from the cumulant maps.

4.1.2 Example 2

By rotating the TI-1 45° clockwise and creating a new training image as TI-2, shown
in Fig. 4, there is seemingly a difference in the channel orientations between the TI-2
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Fig. 10 Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d TI-1, e realization in Fig. 7a
with DS-1 as the sample data, f realization in Fig. 7b with DS-2 as the sample data, g 10 realizations in
average with DS-1 as the sample data, and h 10 realizations in average with DS-2 as the sample data
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Fig. 11 Fourth-order cumulant maps of a DS-1, bDS-2, c exhaustive image, d TI-1, e realization in Fig. 7a
with DS-1 as the sample data, f realization in Fig. 7b with DS-2 as the sample data, g 10 realizations in
average with DS-1 as the sample data, and h 10 realizations in average with DS-2 as the sample data
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Fig. 12 One realization from KERNELSIM using TI-2. a DS-1 as the sample data, b DS-2 as the sample
data

Fig. 13 Histograms of 10 realizations of KERNELSIM using TI-2. a DS-1 as the sample data, b DS-2 as
the sample data

and the exhaustive image. Thus, this specific example aims to test the sensitivity of
the KERNELSIMmethod to the more apparent statistical conflicts between the TI and
the sample data. Figure 12 shows one realization of KERNELSIM using TI-2 as the
training image, along with DS-1 and DS-2 as the sample data, respectively. Interest-
ingly, even with relatively sparse sample data DS-1, the realization of KERNELSIM
still reflects the vertical channels well. The same phenomena can also be observed in
the realization using the denser sample data DS-2. Comparisons of the histograms and
the variograms are shown in Figs. 13 and 14, respectively. Further, a comparison of
high-order spatial statistics is shown in Figs. 15 and 16 in a similar way as in Example
1. While the third-order and the fourth-order cumulant maps of the TI and the exhaus-
tive image are very different, the cumulant maps of the realizations still maintain the
main spatial features of the one from the exhaustive image. This specific example
shows that the KERNELSIM method is capable of generalizing the learning model
to adapt to situations in the presence of statistical conflicts between the sample data
and the TI. Of note, even with relatively sparse sample data, the proposed method can
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Fig. 14 Variograms of 10 realizations of KERNELSIM using TI-2. a, b Along the X and Y axes with DS-1
as the sample data; c, d, along the X and Y axes with DS-2 as the sample data

generate realizations with a reasonable reproduction of spatial statistics of the sample
data from the lower to the higher orders.

4.1.3 Conditional Probability on Different Spatial Patterns

Three configurations of the conditioning data are intentionally picked at different
locations to represent the typical spatial patterns that are possibly encountered in the
data event. TheKERNELSIMmethod is applied to generate the conditional probability
distributions on these different spatial patterns to compare the behaviors of the CPDF
at different locations (Fig. 17). Since the attribute values are transformed to the domain
[−1, 1] of Legendre polynomials, both the conditioning data and the CPDFs are also in
this domain. Figure 17a shows the pattern of transition between lower values andhigher
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Fig. 15 Third-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig. 12a with DS-1 as
the sample data, d realization in Fig. 12b with DS-2 as the sample data, e 10 realizations in average with
DS-1 as the sample data, and f 10 realizations in average with DS-2 as the sample data
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Fig. 16 Fourth-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig. 12a with DS-1 as
the sample data, d realization in Fig. 12b with DS-2 as the sample data, e 10 realizations in average with
DS-1 as the sample data, and f 10 realizations in average with DS-2 as the sample data

values, which usually happens near the boundary of the channels in the exhaustive
image, while Fig. 17b shows its corresponding CPDF at the center node. In this case,
the CPDF has two different modes at the values of−0.41 and 0.74, which interestingly
implies that the possible prediction could either be a lower value or a higher value,while
the higher value has a higher likelihood. It turns out that the true value at this location
after transformation is 0.745. However, it should be noted here that this double-modal
behavior is reasonable near the boundary of transitioning between lower and higher
values. This kind of probability distribution cannot be characterized by the second-
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Fig. 17 Behaviors of conditional probability distributions corresponding to conditioning data with different
spatial patterns. The central circle represents the center node to be simulated, and the colored nodes are the
conditioning data in the neighborhood

order geostatistical simulation methods based on Gaussian assumption. Figure 17c,
d shows the simulation behavior at a location where the center node is surrounded
by nodes with relatively lower values. Again, the CPDF also shows a bimodal shape
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Fig. 18 a TI, b a cross section of the TI, and c the sample data of the Au grades

due to the large variation in the spatial patterns. Figure 17e, f shows the behavior of
simulation at a location where the center node is surrounded by nodes with relatively
higher values. The CPDF exhibits a unimodal distribution as the variation in the spatial
pattern is small. Although the behaviors of CPDF could be case-dependent due to
different spatial distributions of attributes of interest, these experiments show that the
CPDFs generated by KERNELSIM are driven by the training data instead of a fixed
covariance function, and thus can reflect the characteristics of different spatial patterns.
In fact, several past studies have also shown the advantage of high-order simulation
methods in reproducing the complex spatial patterns over the traditional second-order
simulation methods, such as sequential Gaussian simulation (de Carvalho et al. 2019;
Minniakhmetov et al. 2018; Mustapha and Dimitrakopoulos 2010b).

4.2 Case Study at a Gold Deposit

The case study at a gold deposit is presented here to demonstrate the practical aspects
and the performance of KERNELSIM in its application to a real-life example. The
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Fig. 19 Cross sections of four different realizations of KERNELSIM of the Au grades

sample data are from 407 exploration drill holes and are composited to 10 m in length.
The TI comes from the blast hole data located at a mined-out area of the ore body.
Figure 18 shows the TI, a cross section of the TI and the sample data in a three-
dimensional view. The TI is generated from the blast hole data assuming that the
geological settings of the studied area are similar to the mined-out area, where con-
flicts would be mitigated by the statistical learning process dominated by the sample
data. Figure 19 shows cross sections of four different realizations of KERNELSIM for
the gold deposit in a three-dimensional view. The histogram of the gold grades resem-
bles the histogram of the sample data, as can be seen from Fig. 20. The variograms
of the sample data and the TI are plotted for comparison with the variograms of 10
realizations of KERNELSIM from the gold deposit in Fig. 21. Figure 22 shows the
third-order cumulant maps of the samples, the TI and the realization of KERNELSIM,
respectively, along with the L-shape spatial template in the X–Y plane. Furthermore,
the fourth-order cumulant maps of the samples, the TI and the realization of KERNEL-

123



718 Math Geosci (2020) 52:693–723

Fig. 20 Histograms of 10
realizations of KERNELSIM for
the Au grades of the gold
deposit in comparison to the TI
and the samples
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Fig. 21 Variograms of 10 realizations of KERNELSIM for Au grades at the gold deposit along a E–W, b
N–S, and c down drill holes, in comparison to the sample data and the TI
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Fig. 22 Third-order cumulant maps of a the sample data, b the TI, c the realization of KERNELSIM and
d the 10 realizations of KERNELSIM in average

SIM are respectively displayed in Fig. 23. The results of the comparison in Figs. 22
and 23 show that the KERNELSIM reproduces the high-order spatial statistics of the
sample data in addition to the lower-order statistics, even though the spatial patterns
of the third-order and fourth-order cumulant maps of the TI are different to those of
the sample data.

5 Conclusions

The paper presents a new high-order stochastic simulation framework based on statis-
tical learning. Within this statistical learning workflow, the density estimation in the
sequential simulation is kernelized, which renders it equivalent to solving a quadratic
programming problem. The kernelization is approached by embedding the original
data space into a kernel Hilbert space. A spatial Legendre moment reproducing kernel
is proposed to construct an RKHS that can incorporate the high-order spatial statis-
tics of the original data. In addition, a kernel decomposition technique is proposed
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Fig. 23 Fourth-order cumulant maps of a the sample data, b the TI, c the realization of KERNELSIM and
d the 10 realizations of KERNELSIM in average

to project the kernelization into a one-dimensional kernel Hilbert space to approach
the sequential simulation procedure and to reduce computational complexity. The
proposed statistical learning framework is general and can cope with the possible
statistical conflicts between the sample data and the TI. The implementation of the
method presented, termed KERNELSIM, is tested in different case studies. The exam-
ples, which use a fully known reservoir, show that KERNELSIM can reproduce the
main spatial patterns of the sample data. Notably, the generalization capacity of the
proposed method mitigates the statistical conflicts between the sample data and the
TI and retains high-order statistical features from the sample data. The two examples
in the first case study also provide some insights on how the number of the sam-
ple data and the relation of the sample data to the TI affect the simulation results.
It should be noted that the simulation results only use the replicates from the TI to
infer a conditional probability distribution. Hence, the proposed statistical framework
provides an approach to condition the local probabilistic models learning from the TI
to the existing configuration of the sample data based on the generalization capac-
ity of the learning framework. However, the assumption made is that the TI shares
some similarities in the local spatial structures with the sample data, even though their
global structures could be different. The impact of the TI can also be reduced by only
using replicates from the sample data, if the number of the replicates reaches a cer-
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tain threshold of statistical significance, similarly to the approach adopted in previous
publications (Mustapha and Dimitrakopoulos 2010b; Yao et al. 2018). A case study at
a gold deposit demonstrates the performance of KERNELSIM in a three-dimensional
example. The results show that the KERNELSIM method reproduces the high-order
spatial statistics of the drill hole samples well. Thus, the method provides an effective
approach to simulate the ore body using the drill hole samples with the TI originating
from a suitable mined-out part of the same deposit.

It is important to note that in the context of the general learning process, the com-
promise between minimization of the training error (prediction error on the training
data) and the test error (prediction error with a new input other than the one from the
training data) leads to the well-known bias-and-variance tradeoff (Hastie et al. 2009).
More specifically, the complexity of the learning machine can be balanced to avoid
overfitting and to increase the possibility of generalizing the learning model, which
stabilizes the prediction output of the learning model. On the one hand, the learning
process targeting to match the high-order spatial statistics aims to minimize the bias
(i.e., the deviation of the high-order statistics of the estimated model from that of the
available data). On the other hand, by applying simpler andmore relevantmodels to the
solution space of the target distributions, such as using the convex space of prototype
distributions in the present method, the solutions tend to be less sensitive to the noisy
fluctuation and have a greater capacity for generalization. In fact, this balancing of the
bias-and-variance tradeoff demonstrates the flexibility of the new statistical learning
framework of high-order simulation, which other simulation methods lack.
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