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Abstract
Acoustic data collected by multibeam echosounders (MBES) are increasingly used for high resolution seabed mapping. The 
relationships between substrate properties and the acoustic response of the seafloor depends on the acoustic angle of incidence 
and the operating frequency of the sonar, and these dependencies can be analysed for discrimination of benthic substrates or 
habitats. An outstanding challenge for angular MBES mapping at a high spatial resolution is discontinuity; acoustic data are 
seldom represented at a full range of incidence angles across an entire survey area, hindering continuous spatial mapping. 
Given quantifiable relationships between MBES data at various incidence angles and frequencies, we propose to use multi-
ple imputation to achieve complete estimates of angular MBES data over full survey extents at a high spatial resolution for 
seabed mapping. The primary goals of this study are (i) to evaluate the effectiveness of multiple imputation for producing 
accurate estimates of angular backscatter intensity and substrate penetration information, and (ii) to evaluate the usefulness 
of imputed angular data for benthic habitat and substrate mapping at a high spatial resolution. Using a multi-frequency case 
study, acoustic soundings were first aggregated to homogenous seabed units at a high spatial resolution via image segmenta-
tion. The effectiveness and limitations of imputation were explored in this context by simulating various amounts of missing 
angular data, and results suggested that a substantial proportion of missing measurements (> 40%) could be imputed with 
little error using Multiple Imputation by Chained Equations (MICE). The usefulness of imputed angular data for seabed 
mapping was then evaluated empirically by using MICE to generate multiple stochastic versions of a dataset with missing 
angular measurements. The complete, imputed datasets were used to model the distribution of substrate properties observed 
from ground-truth samples using Random Forest and neural networks. Model results were pooled for continuous spatial 
prediction and estimates of confidence were derived to reflect uncertainty resulting from multiple imputations. In addition 
to enabling continuous spatial prediction, the high-resolution imputed angular models performed favourably compared to 
broader segmentations or non-angular data.

Keywords Multibeam echosounder · Acoustic backscatter · Multispectral · Benthic habitat mapping · Angular range 
analysis · Multiple imputation

Introduction

Seafloor substrate properties are mapped at a high reso-
lution to characterize the benthic environment for a wide 
range of applications. High-resolution substrate information 
is necessary to produce detailed maps of surficial geology 
(e.g., Todd et al. 2014; Stephens and Diesing 2015; Misiuk 
et al. 2018 Mitchell et al. 2018) and is useful for estimating 

benthic species habitat suitability (McArthur et al. 2010). 
This information is often essential for local and regional 
marine management (Cogan et al. 2009), informing, for 
example, marine protected area (MPA) design (Howell et al. 
2010; Ferrari et al. 2018) and recently, fisheries stock assess-
ment and management (Smith et al. 2017).

Acoustic backscatter is one of the few direct surrogates 
available for seafloor substrate properties in waters too 
deep for spectral imaging (> ~ 20–30 m). Seafloor back-
scatter describes the echo intensity of an acoustic wave 
that has reflected off the bottom. The intensity reflected 
is partly a function of the material properties of the sub-
strate, but also depends on internal and external substrate 
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structure (e.g., surface roughness, sediment bed forms, 
sediment stratigraphy), and characteristics of the acoustic 
signal such as the frequency and angle of incidence (Lur-
ton 2010). If the latter factors are properly constrained, 
backscatter can serve as a useful quantitative indicator 
of material seabed properties, and has been correlated to 
specific substrate parameters (e.g., Davis et al. 1996; Goff 
et al. 2000, 2004; Collier and Brown 2005; Ferrini and 
Flood 2006; Sutherland et al. 2007; Haris et al. 2012). 
Recently, angle-varying gain (AVG) corrections have been 
widely employed to remove the angular dependence of the 
backscatter intensity from swath sonar systems, producing 
backscatter “mosaics” that can serve as a non-parametric 
predictor of seabed substrate and habitat type (Lurton and 
Lamarche 2015; Schimel et al. 2015). This provides the 
opportunity to treat backscatter data from multibeam echo-
sounder (MBES) or sidescan sonar (SSS) systems as a 
raster layer, simplifying its use as a predictor in sediment 
and habitat modelling, while also enabling additional tex-
tural and image processing approaches (e.g., Lucieer and 
Lamarche 2011; Fakiris et al. 2019; Trzcinska et al. 2020).

Although the AVG backscatter mosaic has proven highly 
useful for mapping seabed substrate properties and benthic 
habitats, it requires a reduction of angle-dependent acous-
tic information that may be useful for discriminating sea-
bed characteristics (Fonseca et al. 2009; Haris et al. 2012). 
Backscatter intensity co-depends on the angle of incidence 
and the properties of the substrate (e.g., roughness, grain 
size; Lamarche and Lurton 2018), and different MBES beam 
angles may provide complementary, non-redundant infor-
mation describing substrate characteristics (Hughes Clarke 
et al. 1996). Scattering of inner acoustic beams, for exam-
ple, is dominated by specular reflection, which is largely a 
function of seafloor hardness (Weber and Lurton 2015). At 
the outer beams, scattering is increasingly sensitive to the 
interface roughness. Some mapping approaches advocate 
retaining this rich acoustic information to better discrimi-
nate substrate properties. Angular range analysis (ARA) is 
an approach for calculating the full angular response curve 
(ARC) across each half of the MBES swath (i.e., from nadir 
to the outer beam on both the port and starboard sides of the 
swath), which can be used to estimate substrate properties, 
for example, by deriving parameters that are used to invert 
an acoustic backscatter model using calibrated backscatter 
data (Fonseca and Mayer 2007). The use of data spanning 
half the swath width results in low horizontal resolution 
for substrate predictions that are estimated using angular 
approaches. Fonseca et al. (2009) therefore proposed to 
aggregate soundings by homogenous patches of seabed iden-
tified from the backscatter mosaic rather than by the swath 
width, increasing the spatial resolution of the angular analy-
sis. Che Hasan et al. (2012, 2014) applied this technique 
automatically by first segmenting the backscatter mosaic into 

“image objects”, then aggregating soundings according to 
the segment boundaries.

Alternative approaches have sought spatially continuous 
solutions for retaining the resolution of the AVG backscatter 
mosaic while also achieving an estimate of the ARC. Parnum 
(2007) proposed to derive an “angular cube”—comparable 
to the hyperspectral cube in terrestrial remote sensing—by 
interpolating continuous surfaces from discrete incidence 
angles, thereby producing angular response estimates for 
each raster cell of a gridded dataset. Huang et al. (2014) 
suggested this could also be achieved by producing multi-
ple backscatter mosaics using different reference angles for 
the AVG correction. These two approaches were compared 
by Alevizos and Greinert (2018), who found they produced 
similar results, yet noted the latter may be more flexible 
regarding the dataset overlap and sounding density (e.g., in 
deeper waters). Simons and Snellen (2009) have presented 
yet another solution, wherein the backscatter response of 
each beam is classified independently in an unsupervised 
Bayesian framework, precluding the need for angular com-
pensation. If the survey overlap is sufficient, this approach 
can produce near-continuous maps (Alevizos et al. 2015)—
otherwise, results can be interpolated (Gaida et al. 2019).

The advent of multi-frequency MBES presents new 
opportunities for seabed discrimination. Multi-frequency 
MBES vary the operating frequency on a “ping-by-ping” 
basis, cycling through a pre-selected range of frequencies 
(e.g., 100, 200, 400 kHz; Brown et al. 2019). In addition to 
multiple promising approaches for utilizing the backscat-
ter response of these individual frequencies for substrate 
discrimination (e.g., Buscombe and Grams 2018; Costa 
2019; Gaida et al. 2019), Gaida et al. (2020) demonstrated 
the potential for measuring differences in substrate penetra-
tion from the depth soundings of different frequencies. They 
recommended analysing the multi-frequency backscatter 
intensity alongside the difference in depth measurements 
to obtain a robust estimate of both the surficial sediment 
composition and water depth. Additionally, they provide 
evidence that differences in substrate penetration between 
frequencies vary substantially with both incidence angle and 
substrate composition.

The interrelationships between backscatter intensity, inci-
dence angle, substrate penetration, and operating frequency 
for multi-frequency MBES are complex, yet we believe 
this complexity could be utilized for addressing outstand-
ing challenges regarding the application of high-resolution 
angle-dependent backscatter analysis. All angular response 
analyses must contend with the discontinuous nature of 
angular data. Where soundings are sufficiently dense, this 
issue is readily mitigated, for example, by simply gridding 
the soundings at an appropriate cell size (Alevizos et al. 
2018). In fact, ensuring a sufficiently dense survey so that 
all angles of incidence are represented at the desired spatial 
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resolution is the most straightforward and robust solution 
to the issue of angular data discontinuity. As the depth 
increases though, or where the survey overlap of pre-exist-
ing data is insufficient, such solutions become infeasible, 
and alternative methods such as object-based aggregation 
(Che Hasan et al. 2012, 2014), interpolation (Parnum 2007; 
Alevizos and Greinert 2018), or multiple angular compensa-
tions (Huang et al. 2014; Alevizos and Greinert 2018) are 
required. Furthermore, multi-frequency MBES may also suf-
fer reduced sounding density in the along-track direction, per 
frequency, as the system must cycle through the frequencies 
sequentially.

Multicollinearity is also a characteristic of MBES angular 
response data that is increased in multi-frequency systems. 
MBES backscatter intensity at any given angle of incidence 
is expected to be correlated with intensities at other, simi-
lar angles, which is one reason why AVG compensation 
is successful. Though different operating frequencies will 
produce unique angular response curves (Weber and Lurton 
2015), some amount of correlation is still expected between 
them, depending on the substrate—effectively increasing 
the dimensionality of multicollinearity. Multicollinearity 
is, of course, problematic in some modelling contexts, but 
can also be highly valuable for handling missing data. Data 
imputation techniques enable the leveraging of collinearity 
between variables in order to facilitate statistical modelling 
using incomplete observations (i.e., data points with missing 
values for some variables).

Data imputation refers to a suite of methods for complet-
ing datasets with missing values in order to avoid the listwise 
deletion of partially complete observations in downstream 
analyses (Rubin 1987; van Buuren 2018). These techniques 
are now well-developed and have been applied to missing 
data problems in public censes (Rubin 1987), psychology 
(van Ginkel et al. 2010), medicine and epidemiology (e.g., 
Ambler et al. 2007; Vergouw et al. 2012; Eekhout et al. 
2012), and biology (e.g., Troyanskaya et al. 2001; Penone 
et al. 2014). The general approach of most data imputation 
techniques is to estimate missing observations of variables 
using relationships with other variables where observations 
are not missing. Imputation of univariate missing data is 
readily accomplished, for example, by modelling the missing 
values according to the complete observations, or by draw-
ing from observed values. Multivariate imputation—where 
missing data are imputed for multiple variables simultane-
ously—is non-trivial, yet can be accomplished using Fully 
Conditional Specification (FCS; van Buuren et al. 2006), 
wherein missing data from each variable are modelled iter-
atively and sequentially until the scope of the imputation 
is achieved. Furthermore, “multiple imputation” describes 
methods in which the missing data are imputed multiple 
times to obtain “proper” estimates of the uncertainty of the 
missing data (Rubin 1987, 2004; van Buuren 2018). Unlike 

many modelling applications, imputation stands to benefit 
from multicollinearity within the dataset, which can be lev-
eraged to estimate missing values where no data occur.

Given the multidimensional multicollinearity of multi-
frequency MBES datasets, and the preponderance of missing 
data at any given angle of incidence at the seafloor, we pro-
pose to evaluate the use of multiple imputation to estimate 
missing angular data at a high spatial resolution. This is 
motivated primarily by (i) the common need for spatially 
continuous map predictions that require complete observa-
tions of all explanatory variables over the study extent, and 
(ii) a desire to avoid omitting ground truth data points dur-
ing statistical modelling at locations where all explanatory 
angular variables are not represented (i.e., the listwise dele-
tion of partially complete observations; van Buuren 2018). 
Additionally, we propose to use the difference between 
measured depths from different acoustic frequencies at par-
ticular incidence angles as a proxy for substrate penetration 
to inform the imputation procedure and increase capacity 
to map sediment properties (Gaida et al. 2020). To achieve 
full spatial continuity for angular intensity and depth dif-
ference data, aggregation is still required at some level to 
produce map units that accommodate observations at mul-
tiple angles of incidence simultaneously. We investigate the 
methods proposed by Che Hasan et al. (2012, 2014), wherein 
discontinuous angular measurements are aggregated accord-
ing to object-based image segments expected to represent 
“acoustic themes” (i.e., homogenous substrate units; Fon-
seca et al. 2009). This method facilitates the co-location of 
angular response data and can help to initially minimize the 
amount of missing information per observation. We hypoth-
esize an optimal segmentation scale that is fine enough to 
delimit substrate boundaries at the scale of interest, but gen-
eral enough to allow for the simultaneous observation at a 
range of incidence angles. The goals of this paper are:

 (i) to evaluate the effectiveness of multiple imputation 
for leveraging inter-angular and inter-frequency mul-
ticollinearity of MBES data to produce realistic esti-
mates of missing angular acoustic values;

 (ii) to evaluate the usefulness of imputed angular 
response and depth difference data for benthic habitat 
and substrate mapping at a high spatial resolution.

Methods

Multi‑frequency MBES data

The Bedford Basin 2017 MBES dataset was selected to 
test the utility of imputation methods for multi-frequency 
angular mapping. This dataset is well-established follow-
ing its use in the 2017 R2Sonic Multispectral Challenge 
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(e.g., Buscombe and Grams 2018; Gaida et al. 2018; Costa 
2019) and is useful as a benchmark for methodological 
investigations. Brown et  al. (2019) provide a detailed 
description of the data acquisition. Briefly, the survey was 
conducted on 2 May 2017 to map a heterogeneous patch 
of seabed that has been studied previously at the Bed-
ford Basin, Halifax, Canada (Fader and Miller 2008). A 
pole mounted R2Sonic 2026 MBES with a Valeport sound 

velocity probe and POS MV Wave Master Inertial Naviga-
tion System with two Trimble GPS antennas was deployed 
port-side of a 12 m vessel, and soundings were conducted 
at 100, 200, and 400 kHz operating frequencies. Sound 
velocity profiles (SVP) were obtained during the survey 
using an AML Base X2, and all data were integrated dur-
ing acquisition using QPS QINSy. The full data processing 
workflow for this project is summarized in Fig. 1.

Fig. 1  Summary of methods used to evaluate the effectiveness of 
multiple imputation for analysis of angular acoustic data. Data are 
summarized in the center; analyses and processes are on the periph-

ery (i–iv). Solid lines represent inputs and outputs; dashed lines rep-
resent intermediate processing
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The QPS suite was used to reprocess the multi-frequency 
MBES data for the purposes of this study. The raw data were 
loaded into Qimera with corresponding tidal and SVP meas-
urements acquired during the survey. Tidal and SVP correc-
tions were applied to the data, followed by filters to isolate 
soundings from each MBES frequency in turn (100, 200, 
400 kHz). For each set of soundings, spline filters were used 
to reject erroneous data, followed by minimal manual clean-
ing of residual artefacts. Cleaned and corrected soundings 
were exported as.GSF files along with gridded bathymetric 
surfaces, yielding three single-frequency datasets.

The Fledermaus Geocoder Toolbox (FMGT) was used 
to apply standard radiometric corrections to the raw MBES 
backscatter intensity. Cleaned soundings for each of the 
frequencies were imported into FMGT via the.GSF files 
output by Qimera, and the gridded bathymetric layers were 
added as reference grids for slope correction. The R2Sonic 
2026 sonar defaults were retained within the software, and 
absorption coefficients were estimated for each frequency 
using calculations provided by the National Physical Labora-
tory (2018), as recommended in the current FMGT software 
documentation. Default settings were used for all other geo-
metric and radiometric corrections. The corrected soundings 
without AVG (i.e., level BL3; Schimel et al. 2018; Malik 
et al. 2019) were exported as ASCII files, and AVG-com-
pensated mosaics (i.e., BL4) were also generated using the 
“flat” algorithm, referencing the mean of the angular inter-
val between 30–60° with a moving window of 300 pings. 
The echosounder was not calibrated prior to the survey; all 
backscatter values output from processing were on a rela-
tive dB scale.

Backscatter data segmentation and aggregation

Angular acoustic measurements were derived over the extent 
of the MBES coverage. The ASCII files output from FMGT 
were parsed by the angle of incidence at the seafloor with 
a custom R function to achieve a point representation of 
each sounding with depth and backscatter intensity attrib-
utes for each frequency. The soundings were aggregated 
to 3° bins to acquire the backscatter intensity variables 

BSf (�) for all frequencies f = 100, 200, 400 , and angle bins 
� = [10, 12], [13, 15],… , [55, 57] . The difference in meas-
ured depth, Δdf ,f � (�) , was calculated between each pair of 
frequencies f  and f ′ for each angle bin � by aggregating the 

depth soundings to a 2-m grid and subtracting co-located 
soundings of disparate frequency but like angle. These vari-
ables have a high angular (3°) and spatial (2 m grid) resolu-
tion, but poor continuity across the dataset resulting from 
insufficient angular coverage.

In order to co-locate the angular frequency-dependent 
variables that do not occur in the same grid cell, and to 
increase their spatial coverage, the acoustic data were 
aggregated to seabed segments using the approach sug-
gested by Che Hasan et al. (2012; modified from Fonseca 
et al. 2009). Seabed segments were achieved by segment-
ing a three-band RGB raster containing AVG-compensated 
backscatter mosaics for each frequency using the mean 
shift algorithm (Comaniciu and Meer 2002) in ArcGIS 
Pro. Behaviour of the mean shift in ArcGIS Pro is con-
trolled by manipulating parameters that balance the “spa-
tial detail” (segmentation weighting based on proximity), 
“spectral detail” (weighting based on attribute values), and 
minimum or maximum segment size, which are used to 
merge or split segments at a given number of raster cells. 
Here, spatial and spectral detail were set to their maxi-
mum values and the minimum segment size was used to 
manipulate the segmentation outcome. The product was 
a continuous set of segmented units over the study extent 
(termed “acoustic segments”). The angular frequency-
dependent data were then averaged at each acoustic seg-
ment (Fig. 2). The average backscatter intensity of fre-
quency f  and angle bin � for a given segment was obtained 
by first averaging the values of all soundings i = 1, 2,… , n 
within a given raster cell, then averaging the values of all 
cells j = 1, 2,… ,m within an acoustic segment:

Similarly, the average depth difference between frequen-
cies f  and f ′ at angle � was calculated for a given segment 
by first averaging the depth soundings over each raster cell 
where data exists, then subtracting depth values of differing 
frequency at co-located cells. The results were averaged over 
the acoustic segment:

Given the three frequencies, 16 angle bins, and two meas-
urements (backscatter and depth difference), this yielded 96 
attributes for each acoustic segment of the dataset.
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Fig. 2  a Swath multibeam soundings were binned according to the 
angle of incidence and overlain on a segmented raster grid (seg-
ment boundaries in black). b The backscatter and depth difference of 
binned angular soundings were aggregated per 2-m raster cell (exam-
ple cell in red) for three operating frequencies. c Cell values were 

then aggregated according to acoustic segments (example in red) 
to achieve estimates over the full range of angles for a homogenous 
patch of seabed. Missing data may occur where a segment does not 
contain data at all incidence angles
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Fig. 3  a RGB composite of multi-frequency backscatter ( BL4,100 , BL4,200 , BL4,400 ) segmented at b a broad scale with no missing data, and c a 
fine scale that captures the substrate heterogeneity, which produces d acoustic segments with missing data
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To explore the trade-off between spatial resolution and 
data continuity for benthic mapping at the Bedford Basin, 
two segmentations were generated:

 (i) the three-band backscatter mosaic was segmented at 
a scale broad enough (minimum mean shift segment 
size 7000  m2) to yield segments with no missing 
angular data (i.e., all segments included soundings 
at all frequencies and incidence angles; Fig. 3b);

 (ii) segmentation was performed at the finest scale nec-
essary to capture the apparent local heterogeneity in 
substrate patches visible in the multi-band backscat-
ter mosaic, allowing missing data to occur (minimum 
mean shift segment size 1000  m2; Fig. 3c, d).

Because the former segmentation generated acoustic seg-
ments of considerably lower detail than the latter, it is neces-
sary to evaluate the trade-off between dataset continuity and 
spatial resolution. For comparison, the AVG-compensated 
backscatter mosaics for each frequency (hereafter BL4,100 , 
BL4,200 , BL4,400 ) and average depth (between all frequencies; 
D ) were also extracted for each segment.

Imputation

Missing angular data resulting from the fine scale segmenta-
tion were completed using multiple imputation. “Multiple 
imputation” encompasses the entire workflow for achieving 
statistical inference using an incomplete dataset—from the 
estimation of missing values to statistical model fitting. The 
full multiple imputation workflow can be divided into three 
parts (Rubin 1987; van Buuren 2007):

 (i) Multiple versions of the complete dataset are gener-
ated by predicting the missing values using statistical 
relationships with other correlated variables in the 
dataset. The non-missing data are identical between 
versions of the full dataset, but the imputed values 
differ as a function of the imputation models, which 
incorporates variability in the prediction of missing 
values (van Buuren 2018).

 (ii) Each version of the complete imputed dataset is 
used to fit the statistical model of interest, resulting 
in multiple independent analyses and models, which 
differ according to variability among the imputed 
data.

 (iii) The models are pooled to estimate the parameter(s) 
of interest, including estimates of uncertainty aris-
ing from multiple versions of the imputed dataset. 
Uncertainty in the modelled parameters is a function 
of uncertainty regarding the missing values.

The motivation for completing multiple versions of the 
dataset and analysis is that the single imputation of a value 
that was missing underestimates uncertainty regarding 
what the missing value should be. Rubin (1978) noted that, 
“imputing one value for a missing datum cannot be correct 
in general, because we don’t know what value to impute with 
certainty (if we did, it wouldn’t be missing)”. A number of 
methods exist to introduce proper amounts of variability in 
the imputed data.

An effective approach to generating multiple multivariate 
imputations (step i) above) is Fully Conditional Specifica-
tion (FCS; van Buuren et al. 2006). FCS proceeds iteratively 
by specifying an imputation model independently for each 
variable in the dataset with missing values, using the other 
covariates as predictors. There are many potential imputa-
tion models, but generally, these should produce imputed 
values with an appropriate amount of variability given that 
which is observed for each variable in the dataset. Multi-
ple Imputation by Chained Equations (MICE) is a Markov 
Chain Monte Carlo method for FCS—specifically, a Gibbs 
sampler (van Buuren and Groothuis-Oudshoorn 2011; van 
Buuren 2018). MICE works by first completing missing data 
for each of q predictors in the dataset (here, the 96 acous-
tic attributes at each acoustic segment) using random draws 
from the observed values as “placeholders” (Azur et al. 
2011). Starting with the first of the q variables, �1 of �q , the 
“placeholder” values are removed, and a model is fit between 
the remaining observed values for �1 and the other predic-
tors in the dataset, �2,… , �q . The missing values are then 
predicted for �1 using the model, which also incorporates 
uncertainty in the prediction using one of several means 
(e.g., random draws from the data, bootstrapping, Bayesian 
regression). The variable �1 has now been updated and the 
algorithm proceeds with �2 , using the other synthetically 
complete variables in the dataset, including those resulting 
from prediction in the previous steps. The entire process of 
cycling through all q variables is repeated for a set number 
of iterations for the algorithm to converge (often ~ 10), and 
the final version of the dataset is retained as one of multi-
ple imputations. Additional details on the specifics of these 
steps are provided by Azur et al. (2011), van Buuren and 
Groothuis-Oudshoorn (2011), and van Buuren (2018).

Here, several imputation models were trialed for the 
prediction step, yet the implementation of Random Forest 
multiple imputation in the R package ‘mice’ (van Buuren 
and Groothuis-Oudshoorn 2011) generally produced impu-
tations that converged quicker, with lower error, than other 
methods such as predictive mean matching (PMM), Bayes-
ian linear regression, and linear regression using boot-
strapping. Random Forest was therefore selected for all 
imputations presented hereafter. The ability of Random 
Forest to automatically model variable interactions has 
been highlighted as one of its strengths for imputation 
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(Doove et al. 2014). This is expected to be useful in the 
present case of highly dimensional multi-frequency MBES 
data. This form of imputation proceeds not by simply pre-
dicting missing values using Random Forest, but by using 
the trees that comprise a Random Forest model to identify 
“donor” values in a manner similar to PMM (van Buuren 
2018). Treating the variable being imputed as the response 
and the other covariates as predictors, multiple decision 
trees are grown on bootstrap samples of the dataset accord-
ing to established Random Forest methods (Breiman 
2001). Imputed values are generated by determining the 
terminal leaf of each decision tree to which the missing 
values belong according to the tree splits, then randomly 
selecting from among the observed values at those leaves, 
which comprise the potential “donors” (Doove et  al. 
2014). This has the effect of injecting multiple elements 
of stochasticity into the imputations, while retaining the 
exclusive selection of “real” values that are drawn from 
the dataset. Conceptually, this is a non-parametric and 
non-linear method for generating candidate donor values 
rather than a predictive model, and relatively few trees are 
required for each imputation (e.g., 10). Doove et al. (2014) 
provide a detailed description of the algorithm.

Imputation simulation

To inform on the circumstances under which the methods 
presented here may be tenable, simulation was used to 
explore how accurately the angular frequency-dependent 
backscatter ( BSf (�) ) and depth difference ( Δdf ,f � (�) ) meas-
urements can be imputed given variable amounts of miss-
ing data. First, all segments resulting from the mean shift 
algorithm with complete observations at all incidence angles 
using each frequency ( n = 564 ) were isolated to produce a 
complete dataset (i.e., with no missing data). Missing data 
were synthetically generated for this dataset by randomly 
dropping observations within the segments to achieve ver-
sions of the dataset with between 10 and 90% of data miss-
ing. To realistically simulate the conditions under which 
missing data may occur using a swath sonar system, the 
missing data generator algorithm proceeded as follows:

 (i) select an acoustic segment at random from the com-
plete dataset;

 (ii) for  that  segment ,  randomly select  one 
of  the  avai lab le  inc idence  angle  b ins 
( � = [10, 12], [13, 15],… , [55, 57]);

 (iii) drop all observations of variables that were measured 
at the angle bin selected in (ii).

Given the two variables measured at three operating 
frequencies, the above produces six missing values per 

iteration. At the end of each iteration, the cumulative pro-
portion of missing data is calculated and the algorithm pro-
ceeds until the desired amount of missing data is achieved. 
Because multiple variables are measured at a given angle-
dependent sounding, all variables at a given angle are likely 
to be either present or missing for each observation, and this 
method of missing data generation is therefore expected to 
be more realistic than a random draw.

For each simulated incomplete dataset (10–90% missing 
data) the missing data were imputed and compared to the 
actual measured values that were dropped. Ten Random For-
est imputations were conducted for each simulation using the 
default Random Forest parameters in the ‘mice’ package for 
ten iterations. The mean absolute error (MAE) and variance 
explained (VE) between multiple imputed values and the 
real values were calculated to determine the absolute and 
relative average accuracies of the imputations given increas-
ing amounts of missing data.

Full dataset imputation

Following simulation, the missing angular measurements of 
all fine scale segments ( n = 1087 ) were imputed to produce 
ten plausible hypotheses of the full dataset. Imputation of the 
full dataset was performed using the same imputation design 
as the simulations in "Imputation simulation" section (ten 
imputations using Random Forest for ten iterations). Using 
the ‘mice’ package, it is possible to specify a unique set of 
predictors for each variable undergoing imputation. Random 
Forest is expected to be robust to uninformative predictors 
(i.e., they are not selected for tree splitting), yet predictors 
of a given variable were additionally omitted if the absolute 
Pearson correlation between the variable and predictor was 
below 0.1, or if the predictor was present in less than 10% 
of observations of the variable being imputed. All angular 
variables at all frequencies were included in the imputa-
tion procedure, along with the average water depth meas-
ured by all frequencies ( D ). The imputation algorithm was 
run for ten iterations, after which convergence was checked 
by observing the mean and standard deviation of imputed 
values plotted against the iteration number, following van 
Buuren and Groothuis-Oudshoorn (2011). The result was 
ten versions of the imputed dataset with complete observa-
tions of variables using each operating frequency at each 
incidence angle bin for both backscatter intensity ( BSf (�) ), 
and depth difference ( Δdf ,f � (�)).

Substrate modelling

The utility of the imputed data for habitat mapping appli-
cations was evaluated using empirical modelling. Georef-
erenced ground truth photographs and video observations 
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Fig. 4  a 400  kHz backscatter intensity for each segment meas-
ured at the 37° incidence angle bin ( BS400(37)) with observed sub-
strate classes from seafloor images and video, and b depth difference 
between 100 and 400 kHz soundings for each segment measured at 

the 37° incidence angle bin ( Δd100,400(37)) with grab samples. Seg-
ments with missing data for the 37° angle bin are shown as hatched 
areas and were imputed to produce full coverage observations for c 
BS400(37) and d Δd100,400(37)
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collected in 2017 and 2018, described by Brown et  al. 
(2019), were examined in the context of the angular fre-
quency-dependent data (Fig. 4). Where a segment had mul-
tiple ground truth observations, the most common class 
was assigned (producing n = 171 ground truth segments). 
Random Forest models predicting the bottom class using 
the angular frequency-dependent predictors were trained 
using the ‘randomForest’ package (Liaw and Wiener 2002) 
in the Microsoft R Open version of R (R Core Team 2019). 
Models were built using 500 trees, default hyperparameters, 
and no variable reduction. For comparison, several models 
were generated using various configurations of the acoustic 
predictors and segmented backscatter layers: (i) fine scale 
segmentation with AVG compensated frequency-dependent 
backscatter values and depth; (ii) fine scale segmentation 
with angular frequency-dependent predictors and depth 
(with missing data); (iii) broad scale segmentation with 
angular frequency-dependent predictors and depth; and (iv) 
fine scale segmentation with imputed angular frequency-
dependent predictors and depth (Table 1).

Model predictive performance and uncertainty were eval-
uated to explore the effects of multiple imputation on classi-
fication results. Predictive performance was quantified using 
the classification accuracy and kappa values calculated from 
the out-of-bag samples. The votes from the Random For-
est represent a discrete event X for each acoustic segment, 
with three possible outcomes, {x1, x2, x3 } that represent the 
ground truth classes. The predictive uncertainty from the ten 
different models can therefore be represented succinctly for 
each acoustic segment using their entropy,

where P(xi) is the proportion of votes (i.e., the probabil-
ity) for each class. Lower values of H represent increas-
ingly unanimous agreement among models and high val-
ues indicates low agreement. Entropy values were mapped 
along with the predicted classes for each acoustic segment 

(3)H(X) = −

3∑
i=1

P
(
xi
)
logP

(
xi
)
,

to convey predictive uncertainty spatially. The relation-
ship between the proportion of missing data, which were 
imputed, and the entropy at each segment was also inves-
tigated. To control for heterogeneity among the substrate 
classes, entropy was modelled as a function of the propor-
tion of missing data and also the predicted class using a 
generalized linear model (GLM). Entropy is a positive and 
continuous variable, but here contained a preponderance of 
zero values where model agreement was unanimous, which 
occurred exclusively for the “fine” sediment class. A hurdle 
approach was used to partition the model into two parts: (i) 
the probability that entropy is not zero, and ii) the entropy 
value, conditional on it not being zero (Cragg 1971; Potts 
and Elith 2006). The first model was a binomial GLM with 
a log link function to predict the probability of non-zero 
entropy as a function of the proportion of missing data and 
the predicted substrate class. The second was a GLM with 
a gamma error distribution and identity link to predict non-
zero entropy values using missing data proportion and sub-
strate class. Interaction was tested between all predictors.

The capacity for modelling continuous substrate proper-
ties was also evaluated. Van Veen grabs obtained from the 
site in 2018 ( n = 19 ; Brown et al. 2019) were analyzed for 
sediment grain size, providing particle size distributions. 
The arithmetic mean grain size ( xa ) and sorting ( �a ) in 
μm were calculated for each sample using GRADISTAT 
(Blott and Pye 2001) and were assigned to their overlap-
ping acoustic segments (Fig. 4). Initial trials suggested 
that neural networks outperformed Random Forest at 
modelling these continuous substrate properties. Neural 
networks predicting xa and �a using each configuration 
of the acoustic data (Table 1) were trained using Keras 
TensorFlow in Python 3.7. Both models comprised two 
dense layers of 128 and 64 units using the rectified linear 
unit (ReLU) activation function, followed by a single-unit 
dense output layer with linear activation. Dropout was 
implemented between all dense layers at a rate of 0.3. 
The models were optimized using the Adam algorithm 
(Kingma and Ba 2017) with a mean squared error (MSE) 
loss function and were trained for 600 epochs using the 
full batch size. Leave-one-out cross validation (LOO CV) 
was used to obtain estimates of model performance given 
the small sample size. Pearson’s correlation ( r ), variance 
explained (VE), and mean absolute percent error (MAPE) 
were calculated between the predicted and omitted test 
values, and were compared between all configurations of 
the acoustic data (Table 1).

The effects of missing data on the uncertainty of grain 
size parameter predictions were explored using GLMs. 
Prediction variability, as measured by the standard devi-
ation,  was modelled against missing data proportion 
for each parameter ( xa and �a ). To control for apparent 
increases in uncertainty at higher predicted values, the 

Table 1  Configurations of acoustic data, segmentation scale, and 
missing data compared via empirical modelling

Segmen-
tation 
scale

Acoustic 
data treat-
ment

Predictors Missing data

Fine AVG BL4,100 + BL4,200 + 
BL4,400  + D

No

Fine Angular BSf (�) + Δdf ,f � (�)  + D Yes

Broad Angular BSf (�) + Δdf ,f � (�)  + D No

Fine Angular BSf (�) + Δdf ,f � (�)  + D No (imputed)
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predicted parameters at each segment were also included 
in the model. The standard deviation of predictions (the 
response) was continuous and greater than zero, yet non-
linear relationships were observed with the predictors. 
Initial models also suggested heteroskedasticity of residu-
als. GLMs were fit with a gamma error distribution and a 

log link function, and interaction was tested between all 
predictors.

Fig. 5  Mean absolute error a and b and variance explained c and d ± 1 SD between simulated missing data and imputed data for angular- and 
frequency-dependent depth differences (left) and backscatter intensity (right). Lines are fitted exponential curves

Table 2  Out-of-bag Random 
Forest classification 
performance using different 
methods of acoustic data 
treatment and scale

Acoustic data Segmentation scale n Accuracy (± 1 SD) Kappa ( k; ± 1 SD)

AVG Fine 171 0.9374 0.7398
Angular Fine (missing) 117 0.9487 0.8414
Angular Broad 71 0.9014 0.6401
Angular Fine (imputed) 171 0.9538 ± 0.0033 0.8224 ± 0.0110
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Results

Imputation

Exploratory analysis suggested strong multicollinearity 
among angular frequency-dependent variables. In short, 
backscatter measurements were strongly correlated across 
incidence angles and frequencies. Backscatter measurements 
were correlated to the depth differences between frequencies 
at non-oblique angles (e.g., < 46°), but were generally uncor-
related with these measurements at increasingly oblique 
angles. Depth differences were also intercorrelated, with 
lower correlations at increasingly oblique angles. Detailed 
analysis of the correlation matrix is provided in Online 
Resource S1.

Imputation simulation

Given the observed correlations between angular frequency-
dependent variables, missing data were simulated to deter-
mine what proportions of missing data may be reasonable 
to impute for a multi-frequency MBES dataset. Results sug-
gested that the error of depth difference ( Δdf ,f � (�) ) impu-
tation tends to accelerate past > 50% missing data (Fig. 5). 
The low MAE of Δd200,400(�) imputations, even at high 
levels of missing data, contrasts with the drop in VE, sug-
gesting the Δd200,400(�) variables may have comparatively 
low amounts of variance. The error of angular backscat-
ter ( BSf (�) ) imputation accelerates at levels > 60% missing 
data, which appears as an elbow in plots of error against the 
proportion of missing data (Fig. 5). These are likely con-
servative estimates given the reduced simulation sample size 
using complete cases ( n = 564 ) compared to the full dataset 
( n = 1087).

Fig. 6  Pooled Random Forest predicted substrate classes and OOB 
confusion matrix (left), and prediction entropy with hurdle model 
coefficients (right). Note that the gamma coefficient for fine sediment 

is the reference level for the predicted sediment factor; coefficients 
�mixed and �coarse are offsets relative to �fine . Hill shade is from the 
bathymetric raster
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Full dataset imputation

The proportion of missing data resulting from the fine scale 
segmentation (“Backscatter data segmentation and aggrega-
tion” section) was 14.05%. Results from "Imputation simu-
lation" section suggest this is a reasonable proportion of 
missing data to impute for both sets of angular frequency-
dependent variables ( Δdf ,f � (�) ; BSf (�) ). Multiple Imputation 
by Chained Equations was performed for ten iterations to 
produce ten versions of the complete dataset.

Substrate modelling

Random Forest classification of the bottom type observed 
in ground truth imagery produced different results depend-
ing on the configuration of the acoustic predictor data. The 
fine scale segmentations using angular data (missing and 
imputed) produced the most accurate classification results 
(Table 2)—the differences between these two models are 
that (i) imputation makes available more ground truth sam-
ples for model training ( n = 171 vs. n = 117 acoustic seg-
ments), and (ii) model predictions using imputation span the 
full extent of the study area, while those without imputation 
leave missing data areas unclassified. The segmentation that 
was sufficiently broad to yield no missing angular data was 
too coarse to capture the full heterogeneity of bottom types 
and produced the least accurate model. The compensated 
acoustic data with a fine segmentation (and no missing data) 
was less successful than the fine scale angular methods at 
predicting rarer classes, as indicated by the kappa score.

The hurdle model provided insight into the effects that 
the missing data, which were imputed, had on the predictive 
uncertainty (i.e., entropy). The fitted binomial model was:

where p(H > 0) is the probability of non-zero entropy, and 
miss is a predictor representing the proportion of missing 

(4)ln

(
p(H > 0)

1 − p(H > 0)

)
= 𝛽0 + 𝛽missmiss + 𝜀,

data. The model suggested that the proportion of miss-
ing data was a significant predictor of non-zero entropy 
( P < 0.001 ; Fig. 6), but we note, again, that the zero val-
ues occurred exclusively in the “fine” class (precluding the 
inclusion of predicted class in the model). Back-transform-
ing predicted values from the logistic model predicts a ~ 15% 
increase in the probability of non-zero entropy between 0 
and 100% missing data.

The fitted gamma model for non-zero entropy was:

where mixed and coarse are levels of the predicted categori-
cal substrate class (with the “fine” class acting as reference). 
Results from this model suggested that non-zero entropy 
was highly dependent on the predicted substrate class 
( P < 0.001 ), but that the proportion of missing data had no 
significant effect ( P = 0.417 ). Interaction terms between the 
proportion of missing data and predicted substrate class were 
non-significant and were dropped. Additional model analysis 
is provided in Online Resource S2.

Prediction of continuous substrate properties was gener-
ally most successful using the angular frequency-dependent 
predictors. These outperformed the compensated backscatter 
predictors in all cases, even when using broader acoustic 
segments (Table 3). The broader segmentation resulted in 
the aggregation of four grab samples at two of the acoustic 
segments, reducing the sample size to n = 15 . Predictions 
using the angular variables at a fine segment scale with miss-
ing data were highly accurate, particularly for the mean grain 
size predictions, yet the occurrence of missing predictors 
reduced the sample size by more than half ( n = 7 ), bring-
ing into question the representativeness of these results. The 
angular imputed datasets performed well on average with 
the lowest error in all cases (according to the MAPE), and 
the highest correlation and VE scores amongst the sorting 
models.

GLMs provided insight into the effects of missing data 
on the uncertainty for the two grain size parameters. For 

(5)
ln (H) = �0 + �missmiss + �mixedmixed + �coarsecoarse + �,

Table 3  Neural network 
regression LOO CV 
performance using different 
methods of acoustic data 
treatment and scale

Mean grain size ( xa)

Acoustic data Segmentation scale n Pearson r (± 1 SD) VE (± 1 SD) MAPE (± 1 SD)

AVG Fine 19 0.7178 0.5153 0.2169
Angular Fine (missing) 7 0.9305 0.8546 0.1994
Angular Broad 15 0.8205 0.6731 0.2185
Angular Fine (imputed) 19 0.8596 ± 0.0169 0.7378 ± 0.0302 0.1688 ± 0.0112

Sorting ( �a)
AVG Fine 19 0.7757 0.5918 0.3273
Angular Fine (missing) 7 0.8453 0.6929 0.387
Angular Broad 15 0.8327 0.6926 0.2853
Angular Fine (imputed) 19 0.8798 ± 0.0093 0.7737 ± 0.0162 0.2594 ± 0.0149
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Fig. 7  Pooled neural network mean grain size predictions a with the standard deviation of predictions b, and sorting predictions c and standard 
deviation d from multiple imputation data at the Bedford Basin. Hill shade is from the bathymetric raster
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both predictions, increased uncertainty was apparent in the 
along-track direction of the survey (NW–SE), corresponding 
to acoustic segments with high amounts of missing angular 
data (Fig. 3), which can be conveyed spatially along with the 
pooled model predictions (Fig. 7). The gamma GLMs fitted 
to investigate the effects of missing data on the mean grain 
size and sorting prediction variability were: 

and

The coefficient for missing data, �miss , suggested an 
increase in the standard deviation of predictions by a 
factor of 3.50 per unit for mean grain size, which is a 
factor of ~ 1.13 per 10% missing data. Similarly, �miss for 
sorting suggested an increase in the standard deviation 
of predictions by a factor of 6.19 per unit, or ~ 1.20 per 
10% missing data. Areas of finer predicted mean grain 
size appeared to have lower uncertainty than coarse areas 
(e.g., xa > 120 μm). The fitted coefficient for the pre-
dicted mean grain size ( �xa ) suggested that the predic-
tion variability increased slightly but significantly with 
the predicted value of xa—by a factor of less than 1.01 
per μm, or ~1.07 per 10 μm (Table 4). The coefficient 
for sorting ( ��� ) predicted a very slight increase in vari-
ability at higher sorting values, by a factor of ~1.02 per 
10 μm. All interaction terms were non-significant and 
were dropped from the models. Additional details on the 
GLMs are provided in Online Resource S2.

Discussion

Novel acoustic technologies obtain increasingly detailed 
information on the seabed, and complementary analytical 
approaches facilitate the use of these data for seabed map-
ping purposes. The recent introduction of multi-frequency 

(6)ln
(
sxa

)
= �0 + �xa

xa + �missmiss + �

(7)ln
(
s�a

)
= �0 + ��a�a + �missmiss + �.

MBES provides opportunities to overcome dependencies 
imposed by the use of a single acoustic frequency, and addi-
tionally, to investigate new metrics related to the relation-
ships between frequencies (e.g., differences in substrate pen-
etration; Gaida et al. 2020). Empirical approaches on the use 
of multi-frequency angular response information for seabed 
mapping are still sparse, and general research on acoustic 
angular response and its application for seabed mapping 
is ongoing (e.g., Alevizos and Greinert 2018; Wendelboe 
2018; Fakiris et al. 2019; Fezzani et al. 2021; Fonseca et al. 
2021). Ways in which discrete ground truth samples can 
be characterized using angular data covering the full swath 
width, and thus the full study area, are of particular interest. 
The methods presented here propose to leverage the collin-
earity between angular measurements and multiple operating 
frequencies to impute well-informed estimates of spatially 
continuous angular data across the extent of the study area. 
This enables modelling and prediction of substrate param-
eters from discrete ground truth samples at a high spatial and 
acoustic resolution. The uncertainty associated with predic-
tions using imputed data are conveyed spatially to aid in the 
interpretation of results. We note that this procedure also 
allows for estimation of the full angular response curve at all 
acoustic segments across the dataset (Online Resource S3).

Imputation simulations in "Imputation simulation" sec-
tion suggested that the proportion of missing data result-
ing from fine scale acoustic segmentation in this study 
(14.05%) did not approach the upper limits of what may 
be reasonable to impute. Even with 40% simulated miss-
ing data, imputed values explained, on average, > 90 and 
75% of observed data variance for backscatter and depth 
difference variables, respectively (Fig. 5). These results 
are encouraging, particular for angular backscatter imputa-
tion, and are enabled by the consistent collinearity of col-
located measurements (Online Resource S1). We suggest 
that the success of depth difference variable imputation 
will depend strongly on the substrate properties, as will the 
usefulness of such variables for habitat and substrate map-
ping (Gaida et al. 2020). These variables may have little 
value for predicting coarse or hard surficial sediments that 
preclude measurable differences in substrate penetration.

The performance of models used to predict seabed sub-
strates varied here depending on the scale and format of 
acoustic predictors. Regardless of whether the acoustic 
data were angular or AVG-compensated, Random Forest 
classification using data segmented at a fine spatial scale 
performed favourably compared to a broader segmenta-
tion. Recall that the fine segmentation scale was selected to 
capture the apparent substrate heterogeneity observed from 
the backscatter data, while the broad scale was selected to 
produce acoustic segments with no missing data. All neu-
ral network grain size parameter models using angular data 
outperformed those using AVG data at a fine spatial scale. 

Table 4  GLM model coefficients for mean grain size and sorting 
standard deviation of predictions (sxa , s�a ). Coefficient values are pro-
vided according to the link, and also back-transformed to the scale of 
the response for interpretation

Model Coefficient Value Back-trans-
form ( e�)

P

sxa
Gamma
(log link)

�0 0.3981 1.4890  < 0.001
�xa 0.0070 1.0070  < 0.001
�miss 1.2541 3.5046  < 0.001

s�a
Gamma
(log link)

�0 1.0747 2.9290  < 0.001
��a 0.0022 1.0022  < 0.001
�miss 1.8227 6.1886  < 0.001
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We note the apparent correspondence between the thematic 
resolution of response and predictors in these cases (i.e., 
the measurement detail). The sediment types identified 
from benthic images at a broad thematic resolution (“fine”, 
“mixed”, “coarse” classes), were predicted well enough 
using acoustic data of low angular resolution (i.e., AVG-
compensated; Table 2). Grain size parameters from physical 
samples (e.g., xa and �a ), however, are measured at a high 
resolution, and were modelled more effectively here using 
angular predictors (Table 3). The acoustic response of the 
seabed may be sensitive to these grain size parameters at 
varying incidence angles—for example, as acoustic scatter-
ing is increasingly influenced by interface roughness and 
less by hardness at oblique angles (Weber and Lurton 2015). 
This information is lost when performing AVG compensa-
tion. In all cases explored here, the fine scale segmentation 
with angular predictors outperformed the AVG models, and 
imputation enabled full coverage maps and increased sample 
size, without the loss of predictive accuracy. It is important 
to note that these methods are also applicable to single fre-
quency MBES datasets.

Although imputation had no negative impact on model 
performance, it affected the uncertainty of model predic-
tions. Multiple imputation (i.e., the creation and modelling 
of multiple entire imputed datasets) necessarily implies 
that we cannot be certain of the imputed values. Retain-
ing and quantifying this uncertainty is an important part of 
the imputation procedure (Rubin 1978; van Buuren 2018); 
predictions based on data that are partially missing should 
be uncertain. Recent emphasis on conveying spatial model 
uncertainty can also be found in the seabed mapping litera-
ture (e.g., Mitchell et al. 2018; Shields et al. 2020; Strong 
2020; Diesing et al. 2021). The results of multiple imputa-
tion can be incorporated into broader uncertainty analyses 
and mapped spatially to facilitate interpretation of model 
results and confidence. The classification results here, for 
example, incorporate the uncertainty that can be gleaned 
from an individual Random Forest model with the uncer-
tainty arising from imputation by tallying votes from the ten 
individual models (Fig. 6). The map of entropy ( H ; Fig. 6) 
portrays predictions of the “mixed” class as uncertain com-
pared to the other classes. Statistical analyses support this 
observation, suggesting that the seabed class was a signifi-
cant predictor of model uncertainty, while the proportion of 
missing data had comparatively little impact on uncertainty 
(Fig. 6; Online Resource S2). The confidence of neural net-
work grain size parameter predictions, on the other hand, 
appears to be strongly affected by the proportion of miss-
ing data according to the uncertainty map (Fig. 7), where 
increased prediction variability is apparent in the along-
track direction. This observation was supported statistically, 
wherein the proportion of missing (and therefore imputed) 

data was significantly and positively predictive of the model 
variability (Online Resource S2).

Machine learning approaches are attractive for analys-
ing angular and multi-frequency MBES datasets given their 
capacity for handling multidimensionality. Neural networks, 
for example, tune model weights to regularize or ignore 
uninformative predictors using backpropagation, which is 
computed based on a loss function that describes the error 
between the model and response data. This is highly advan-
tageous for cases with many variables, some of which may 
be collinear and/or uninformative for the mapping purpose. 
At the Bedford Basin, previous research has identified sub-
surface dredge spoil covered by mud (visible in the north-
west of Fig. 3a; Fader and Miller 2008; Brown et al. 2019). 
These subsurface features are clearly detected using the 
100 kHz signal, yet show a lower homogenous return with 
the 400 kHz frequency (Brown et al. 2019). Here, although 
the subsurface dredge spoil was detected by the 100 kHz 
signal, and also the 100–400 kHz depth difference meas-
urements (Fig. 4d), this information was not mapped to the 
prediction of surficial grain size or sediment class—it was 
effectively ignored by the models, which were trained exclu-
sively using surficial samples (Figs. 6, 7). By generating 
predictors at a range of frequencies and incidence angles, the 
amount of potentially useful information is increased, and 
the model, rather than the analyst, determines the relevance 
of predictors based on the response variable.

Conclusions

Multiple imputation is a promising approach for achiev-
ing continuous estimates of angular response data at a high 
spatial resolution. Simulations in this study suggested that 
the proportion of missing angular data resulting from a fine 
object-based segmentation could be imputed with little 
error, which is attributable to the high collinearity of angular 
acoustic data. The implementation of Random Forest as an 
imputation model allows for automatic variable selection and 
interaction while retaining uncertainty of the imputed values. 
This is ideal for highly dimensional angular acoustic data.

The full imputed datasets of multi-frequency angular 
measurements were effective for producing continuous 
maps of seabed substrate properties at a high resolution. 
Machine learning approaches are well suited to modelling 
imputed multi-frequency angular MBES data, providing an 
alternative to variable selection or dimensionality reduction. 
We found no indication that the imputed data decreased the 
performance of seabed classification models of bottom type 
or regression of grain size parameters. The latter, though, 
were predicted with increasing uncertainty as the propor-
tion of missing data increased for a given acoustic segment. 
Increased uncertainty at areas of sparse sounding density is 
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the cost exacted for continuous high-resolution maps using 
these methods, and this must be conveyed along with the 
mapped predictions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11001- 022- 09471-3.
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