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Abstract
Increases of water turbidity and suspended sediment transport in submarine canyons have been associated with high-energy 
events such as storms, river floods and dense shelf water cascading (DSWC), and occasionally with bottom trawling along 
canyon flanks and rims. To assess the variations on the water column turbidity and sediment transport in the Palamós Canyon 
linked to both natural and trawling-induced processes, an autonomous hydrographic profiler, as well as a near-bottom current 
meter and a turbidimeter were deployed in the canyon axis (929 m depth) from February to June 2017, covering a trawling 
closure (February) and trawling activities (March-June). Periods of enhanced water turbidity during the trawling closure 
were mostly associated with storms and DSWC events, transporting turbid dense waters into the canyon. In absence of such 
events, the water column displayed low suspended sediment concentrations (~ 0.3 mg L− 1) until the trawling season began, 
when particulate matter detachments, ranging between > 1 mg L− 1 and 3.8 mg L− 1, were observed at the water depths where 
the trawling grounds are found. During the trawling closure, high near-bottom suspended sediment fluxes (35–44 g m− 2 s− 1) 
were sporadically registered at ~  920 m depth associated with a major storm and DSWC event. Smaller but more frequent 
increases of near-bottom suspended sediment fluxes (0.1–1.4 g m− 2 s− 1) were recorded during trawling activities. Despite 
these smaller trawling-induced suspended sediment fluxes, 30 days of continuous bottom trawling activity transported a total 
amount of 40 kg m− 2, of similar magnitude to that generated by a major DSWC event (50 kg m− 2). Since bottom trawling in 
Palamós Canyon is practiced on a daily basis throughout the year, a much larger contribution of anthropogenically derived 
water turbidity and suspended sediment transport can be expected.

Keywords  Palamós Canyon · Dense shelf water cascading (DSWC) · Bottom trawling · Sediment transport · Nepheloid 
structure · NW Mediterranean

Introduction

Submarine canyons are widespread morphological fea-
tures incising continental margins (Shepard and Dill 1966; 
Shepard 1972; Harris and Whiteway 2011) considered to be 
preferential pathways for the transference of water and sedi-
ments between nearshore areas and deep-sea environments 
(e.g., García et al. 2008; Allen and Durrieu de Madron 2009; 
Puig et al. 2014; Porter et al. 2016). For this reason, several 
studies have focused on studying the shelf-slope exchanges 
of downward particle fluxes and water turbidity by means 
of moored oceanographic instruments (see review by Puig 
et al. 2014). In these investigations, increases in sediment 
fluxes have been generally associated with lateral inputs of 
particulate matter by the action of different mechanisms 
such as breaking and/or shoaling of internal waves and tidal 
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motions (e.g., Gardner 1989; Kunze et al. 2002; Cacchione 
and Ogston 2002; Puig et al. 2004b; Pomar et al. 2012) or 
high-energy storms affecting the upper portion of subma-
rine canyons and hyperpycnal plumes formed during river 
floods (Monaco et al. 1990; Puig et al. 2004a; Palanques 
et al. 2006b, 2008; Bonnin et al. 2008; Ulses et al. 2008a). 
Occasionally, increases in turbidity have been associated 
with sediment gravity flow related events, such as slope 
failure on canyon walls (e.g., Paull et al. 2003; Puig et al., 
2003, 2004a; Xu et al. 2004; Piper and Normark et al. 2009; 
Völker et al. 2011). Additionally, it has been demonstrated 
that dense shelf water cascading (DSWC) can also transport 
particles and erode and reshape the seafloor of submarine 
canyons, thereby increasing suspended sediment concentra-
tions and transport towards the slope (Canals et al. 2006; 
Palanques et al. 2006b, 2008; Puig et al. 2008; Allen and 
Durrieu de Madron 2009). This later phenomenon is particu-
larly relevant in the NW Mediterranean. Dense-shelf water 
formation tends to occur in winter over the Gulf of Lions 
(GoL) induced by dry and cold north and northwesterly 
winds (Tramontane and Mistral, respectively), which cause 
the cooling and heat loos of surface coastal waters. Eventu-
ally, these shelf waters become denser than the surrounding 
waters and sink over the shelf-edge and cascade downslope, 
mainly through submarine canyons until they reach their 
equilibrium depth, and continue flowing along the margin 
towards the southwest (Millot 1990; Durrieu de Madron 
2005a). During mild or average winters, which are the most 
common in the study site, they are detached at intermediate 
depths, contributing to the formation of the seasonal West-
ern Intermediate Water (WIW) found at the upper slope 
depths (Lapouyade and Durrieu de Madron 2001; Dufau-
Julliand et al. 2004). In very dry, cold and windy winters, 
DSWC can be exceptionally intense, and dense shelf waters 
can affect the entire continental slope and even reach the 
basin floor (Canals et al. 2006; Palanques et al. 2012; Dur-
rieu de Madron et al. 2013; Palanques and Puig 2018).

In addition to these various natural transport mechanisms, 
human activities, such as bottom trawling practiced at the 
flanks and rims of submarine canyons, have also been shown 
to contribute substantially to present-day sediment resus-
pension and water column turbidity (Palanques et al. 2006a; 
Puig et al. 2012; Martín et al. 2014a; Wilson et al. 2015b; 
Daly et al. 2018). Generally, the impacts of bottom trawling 
activities have been studied in shallow water environments, 
and mostly include the scraping and ploughing of the seabed 
by the use of heavy trawl doors that leave big furrows behind 
(Krost et al. 1990; Smith et al. 2003). The design of these 
heavy trawls also causes increases in near-bottom turbidity 
due to the sediment resuspension (O’Neill and Summerbell 
2011), which contributes to the formation of turbid plumes 
and persistent nepheloid layers that are afterwards advected 
by local currents, waves and tides (Churchill 1989; Durrieu 

de Madron et al. 2005b; Palanques et al. 2001, 2014). How-
ever, shallow water environments on the continental shelf 
(< 120 m depth) are periodically impacted by natural sedi-
ment resuspension processes, masking the consequences of 
this anthropogenic activity. Therefore, assessing the rela-
tive contribution of oceanographic processes and anthro-
pogenic activities to the sedimentary dynamics is rather 
complex because each area has its own wave climate, cur-
rent regime, seabed sediment characteristics and bottom 
trawling frequency, and only a few studies have attempted 
to do this (e.g., Pilskaln et al. 1998; Churchill 1989; Ferré 
et al. 2008; Palanques et al. 2014; Oberle et al. 2016a; Men-
gual et al. 2016). A common conclusion of all these studies 
is that bottom trawling has a measurable impact on sediment 
resuspension in shallow-water environments, comparable to 
that created by natural forces. In deeper environments on 
the continental slope, however, bottom trawling disturbances 
can be more severe and have longer-lasting effects mainly 
because natural processes capable of overcoming human 
impacts are generally weaker than in shallower areas (Puig 
et al. 2012; Martín et al. 2014a; Oberle et al. 2016a).

The Mediterranean Sea hosts important deep-sea bot-
tom trawl fisheries mainly located on the upper slope on 
the northwestern continental margin, where trawled bottoms 
exist up to 800 m depth, with greater depths being reached 
occasionally (Puig et al. 2012). Several studies aimed at 
understanding the effects of bottom trawling on the sedi-
ment dynamics in this area focused on the Palamós Can-
yon (also known as La Fonera or Llafranc Canyon) (Lastras 
et al. 2011), one of the most prominent morphological fea-
tures incising this margin (Serra 1981). Some of these stud-
ies have shown that bottom trawling along the flanks of this 
canyon can trigger sediment gravity flows and transport sedi-
ments downslope from the fishing grounds to deeper regions 
of the canyon (Palanques et al. 2005; Martín et al. 2007, 
2014a; Payo-Payo et al. 2017), affecting sediment accumu-
lation rates in the canyon axis (Martín et al. 2006, 2008; 
Puig et al. 2015), and altering the natural morphology of 
the canyon flanks due to periodic reworking and removal 
of sediments (Puig et al. 2012). Additionally, Martín et al. 
(2014a) reported the presence of bottom and intermediate 
nepheloid layers (BNLs and INLs, respectively) in several 
hydrographic profiles conducted after the passage of the 
trawling fleet over the northern flank of the Palamós Canyon, 
but the continued effect of bottom trawling in this canyon 
causing changes in the water column turbidity beyond fish-
ing grounds is an issue that remains largely unexplored.

Trawling-derived increases in suspended sediment 
concentrations (SSC) on the continental slope were also 
recorded in hydrographic studies conducted in the Celtic 
Sea (NE Atlantic). These studies showed unusual turbidity 
peaks in the water column within the Whittard Canyon that 
were linked to bottom trawling activities at the adjacent 
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canyon spurs (Wilson et al. 2015b; Daly et al. 2018). How-
ever, the temporal evolution of such trawling-induced tur-
bidity increases throughout the water column has not been 
assessed in this submarine canyon. To our knowledge, the 
only study addressing this aspect in a trawled submarine 
canyon was conducted by Arjona-Camas et al. (2019) in 
the Foix Canyon (Catalan margin, NW Mediterranean). 
Two months of hydrographic profiles were acquired at the 
axis of this canyon during the trawling season, revealing the 
occurrence BNLs at the bottom of the canyon and quasi-
permanent INLs over the canyon rim, originating from 
trawling activities on the adjacent continental slope. How-
ever, accurate estimates of the quantity of material being 
introduced by bottom trawling to the water column are still 
needed to better appreciate its contribution to the sediment 
dynamics and the potential environmental and ecological 
impacts associated with it. In this new study, we aim to 
assess the spatial and temporal variations on the water tur-
bidity structure and near-bottom suspended sediment fluxes 
linked to both anthropogenic (bottom trawling) and natural 
(storms and DSWC) processes in the Palamós Canyon, as 
well as assess the contribution of each mechanism to the 
sediment fluxes.

Regional setting

The NW Mediterranean margin has a high density of 
submarine canyons, the Palamós Canyon (Fig. 1) being 
one of the most prominent examples (Canals et al. 2013). 
The canyon head is situated closest to the coastline at 
~ 1 km and incises the continental shelf at 90 m depth. 
The first ~ 5 km of the canyon presents a N-S direction 
parallel to the coastline, after which the canyon’s direc-
tion turns to WNW-ESE for ~ 35 km, separating the Roses 
margin to the north, and La Planassa margin to the south 
(Amblas et al. 2006). This submarine canyon has a total 
length of 110 km, and a maximum width of 18.4 km, and 
runs almost from the coastline down to 2550 m water 
depth. The canyon’s steep walls (> 25º) present several 
well-developed gullies generated by sedimentary instabili-
ties (Lastras et al. 2011), although these complex mor-
phologies have been smoothened on fishing grounds due 
to recurrent disturbance of the seafloor by the trawling 
gear (Puig et al. 2012).

The hydrographic structure in this area is composed 
by a three-layer system (Salat and Cruzado 1981; Salat 
et al. 2002). Within the first layer, from the surface down 
to 150–300 m depth, the Atlantic Water (AW) is gener-
ally found. AW can be distinguished between “recent” and 
“old” according to the residence time in the Mediterranean 
basin that increases its salinity (Salat, 1996). In the NW 
Mediterranean, the oAW is found and is characterized by 

temperatures > 13 ºC and salinity values of 38.0–38.2. 
Mainly during wintertime, cold (~ 13 ºC) and fresh 
(~ 38.5) lenses of Western Intermediate Water (WIW) can 
be found at ~ 150 m depth. The second layer is formed by 
the Levantine Intermediate Water (LIW) between 300 and 
600 m depth and is characterized by temperatures ~ 13.5 
ºC and salinities of ~ 38.5. The third layer is formed by 
the near-homogeneous Western Mediterranean Deep Water 
(WMDW), which is formed in the open ocean resulting 
from intense sea-atmosphere heat exchanges and the sub-
sequent buoyancy loss of offshore waters induced by cold, 
dry and persistent N-NW winds (Salat et al. 2002; Font 
et al. 2007). It covers the entire basin below 1000 m depth 
and has cold (~ 13 ºC) and salty (~ 38.5) characteristics 
(Font et al. 2007).

Since the Palamós Canyon is deeply incised in the con-
tinental shelf, it is capable of intercepting particulate mat-
ter transported by the Northern Current. This baroclinic 
current follows the continental slope from NE to SW in 
quasi-geostrophic equilibrium with a shelf-slope density 
front established between low-salinity coastal waters and 
the more saline and denser open waters (Font et al. 1988; 
Millot 1999). Although it approaches the Palamós Canyon 
mainly in a southwestward direction (Font et al. 1988), the 
abrupt topography of the canyon forces some adjustments 
of the Northern Current (Masó et al. 1991), which lead to 
significant vertical motions (Palanques et al. 2005; Jordi 
et al. 2005).

This submarine canyon also acts as a preferential con-
duit for particulate matter transported during sporadic 
events such as storms or river discharges (Palanques 
et al. 2005). The most important river in the nearby coast 
is the Ter River, whose mouth reaches the sea at 25 km 
north from the canyon. It has a mean annual water dis-
charge of 12.1 m3 s− 1 (Liquete et al. 2009). On this margin, 
northern storms are very frequent and persistent, but due to 
their reduced fetch they can only generate relatively small 
waves (~ 2 m) on the inner shelf that have limited capacity 
to resuspend sediment. Eastern storms are rarer and brief, 
although they generate larger waves (> 4 m), particularly 
during fall and winter months (Palanques et al. 2008). They 
are usually accompanied by heavy rains and torrential river 
discharges carrying large amounts of sediment to the coast 
(Ribó et al. 2011).

The Palamós Canyon’s flanks are intensively exploited 
by a local trawling fleet targeting the blue and red shrimp 
Aristeus antennatus. Trawlers are active in this area on a 
daily basis except for weekends, holidays, and local festivi-
ties, mainly along the Sant Sebastià and the Rostoll fish-
ing grounds (Fig. 1). The same vessel usually carries out 
two hauls per day, starting typically at 7 a.m. in an offshore 
direction, until 6 p.m. when it heads back to port. The aver-
age length of a haul usually ranges from 10 to 20 km, with 
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an average of 15 km. The bottom trawl gear used in this 
fishery consists of two heavy otter boards, each up to 1 
ton in weight, spreading ~ 100 m apart during the trawling 
operation and connected to the net opening by 60–200 m 
long sweeplines. The net measures 80–150 m in length and 
has a width of ~ 50 m at its ballasted mouth (Palanques 
et al. 2006a; Martín et al. 2014a). A recent fishery manage-
ment established a two-month trawling closure from early-
January to early-March since 2013 to allow the recruitment 
of juveniles and avoid the risk of overexploitation of the 
fishing stock (Bjørkan et al. 2020). In 2017, this seasonal 

trawling closure occurred from January 5 to March 8 
(BOE 2017).

Materials and methods

Moored instruments

During the oceanographic cruise ABIDES-1, onboard the 
R/V García del Cid, a mooring line was deployed in the 
axis of the Palamós Canyon at 929 m depth (41º 52.329′ N; 

Fig. 1   Bathymetric map of the Palamós Canyon, showing the loca-
tion of the mooring line in the canyon axis (yellow dot) and the main 
fishing grounds along the canyon flanks (Sant Sebastià and Rostoll). 
The overlying density represents an estimate of the fishing effort of 

otter board (OTB) vessels based on the number of hauls per hectare 
obtained from year 2017 Automatic Identification System (AIS) data. 
For interpretation of the references in color in this figure legend, the 
reader is referred to the web version of this article
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3º 7.660′ E), at a slightly deeper location than the maximum 
working depth of the local trawling fleet (~ 800 m) (Fig. 1). 
One of the main concerns when deploying instruments in 
a trawled submarine canyon is the risk of losing data and 
expensive instrumental as a result of a collision with fishing 
gear. During this study, the position and deployment depth 
of the mooring was chosen in agreement with the Palamós 
fishermen guild in order to avoid interfering with their bot-
tom trawling activities, and still be able to carry out our 
experimental observations in the canyon. The deployment 
was programmed from February 7 to early June, 2017, which 
covered a trawling closure period (February) and the contin-
uation of the regular trawling season in the fishing grounds 
of the canyon (March-June). Unfortunately, the instruments 
recorded good data during 60 days until April 7, when the 
mooring line was displaced by a longline fishing vessel from 
a neighboring fishing harbor. Nevertheless, the recorded 
period allowed to capture the transition between the fishing 
closure and the trawling season and to address the scientific 
goals pursued in this study.

Autonomous hydrographic profiler

The mooring line was equipped with an autonomous hydro-
graphic profiler (Aqualog) programmed to perform two 
up- and down-casts per day (at 2 a.m. and 2 p.m.), at a rela-
tive speed of 0.25 m s− 1, from ~ 150 to 738 m water depth 
(parking position). Therefore, the upper ~ 150 m and the 
lower ~ 200 m of the water column at the mooring location 
were not monitored. Unfortunately, the Aqualog did not pro-
file the entire water column at certain time spans during the 
study period (i.e., February 7–27), presumably caused by 
the tilting of the mooring line due to strong currents, which 
prevented the carrier from progressing deeper and complet-
ing the hydrographic profiles.

The profiler was equipped with a SeaBird 19 plus CTD 
probe configured to collect temperature, salinity and pres-
sure at 4 Hz (i.e., 4 scans per second). The profiler was also 
equipped with a SeaPoint turbidity sensor, programmed to 
measure water turbidity in Formazin Turbidity Units (FTU) 
by detecting scattered light from suspended particles at 0–25 
FTU range, at 1 Hz (i.e., 1 scan per second).

Near‑bottom instrumentation

The lower portion of the mooring line was also equipped 
with a single point Nortek Aquadopp current meter cou-
pled with a SeaBird SBE-37 placed at 6 m above the bottom 
(mab) at 923 m depth that provided data at 5-min sampling 
interval. Closer to the bottom (at 5 mab), the mooring line 
also sustained an AQUA-logger 210TY equipped with a 
SeaPoint turbidity sensor that measured at 1-min sampling 

interval. The logger was set to operate in autogain mode, 
allowing to measure turbidity readings up to 2000 FTU.

CTD transect

After the mooring recovery, on June 7, 2017, a ship-based 
hydrographic transect was conducted in the study area 
onboard the R/V García del Cid. The transect consisted in 
15 vertical stations across the canyon head, collected using 
a SeaBird 911 CTD probe coupled with a SeaPoint turbidity 
sensor (see location in Fig. 2).

Data analysis

Suspended sediment concentration

FTU readings from the CTD probes and moored instru-
ments were converted into suspended sediment concentra-
tion (SSC) units using a regression equation obtained from a 
laboratory calibration. It was carried out by deploying eight 
different AQUA-logger 210TY SeaPoint turbidity sensors in 
an experimental tank, in which suspended particulate matter, 
using bottom sediments that were previously collected at the 

Fig. 2   Bathymetric map of the Palamós canyon head showing the 
fishing effort between March 9 and April 7, 2017 (trawling season). 
The yellow dot depicts the location of the mooring line, while the 
green dots indicate the position of the hydrographic transect con-
ducted in June 7, 2017. For interpretation of the references in color 
in this figure legend, the reader is referred to the web version of this 
article
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study site, was introduced incrementally. With continuous 
stirring, water samples were taken at given FTU readings 
and filtered through pre-weighed Nucleopore membranes 
to obtain SSC values, yielding the following linear regres-
sion (Fig. 3):

Net particulate standing crop

The SSC profiles obtained by the Aqualog were used to com-
pute the Net Particulate Standing Crop (NPSC, mg cm− 2) 
by calculating the excess over the value of the clear water 
minimum and integrating the SSC excess over the height of 
the profiling range:

 where h stands for the depth of the considered water column 
(in m) and SSC (z) represents the estimated SSC (in mg L− 1) 
(see details in Karageorgis and Anagnostou 2003; Arjona-
Camas et al. 2019).

As the profiler did not reach the same depths during 
the trawling closure and the trawling period, two distinct 
approaches were considered. In the first one, the NPSC was 
calculated for the 150–400 m depth interval, where data was 
recorded throughout the deployment period. In the second, 
the NPSC was computed only for the time-period when the 

SSC
(

mg ⋅ L−1
)

= 1.14 ⋅ FTU − 0.37
(

r2 = 0.99
)

NPSC =
1

h∫
h

0

SSC(z)dz

profiler recorded data along most of the working depth range 
(150–738 m depth).

Sediment fluxes

Near-bottom currents and SSC data were used to calculate 
instantaneous suspended sediment fluxes, as well as time-
integrated cumulative suspended sediment transport at each 
timestep (i), following:

where current speedi, in m  s− 1, multiplied by SSC, in 
mg L− 1, yielded to instantaneous suspended sediment flux 
in g m− 2 s− 1.

Then, the time integrated cumulative suspended sediment 
transport (in kg m− 2) can be calculated following:

 where the timestep was 5 min (or 300 s), corresponding 
to the measuring interval of the near-bottom current meter 
placed at 923 m depth. This multiplied by the instantane-
ous suspended sediment flux yielded to the time-integrated 
cumulative suspended sediment transport.

An intermediary computation prior to calculating sedi-
ment flux and cumulative transport is needed to estimate 
the current components with respect to geographical coor-
dinates by applying an angle Ɵ of rotation. In our study, 
to obtain the along- and across-canyon components at the 
mooring location, the North and East current components 
were rotated 70 degrees counterclockwise based on the can-
yon axis orientation.

For the along-canyon component up-canyon fluxes are 
positive, whereas for the down-canyon fluxes are negative. 
For the across-canyon component NE orientation fluxes are 
positive, whereas SW fluxes are negative. The integration of 
the instantaneous suspended sediment fluxes for the duration 
of the study period yields the cumulative across- and along-
canyon suspended sediment transports.

Long time series have an uncertainty associated to errors 
on the measurement of the different variables, which deserve 
to be calculated to complete sediment flux and time-inte-
grated cumulative transport calculations. These uncertain-
ties are derived from measurements of particle concentration 
derived from turbidity, as well as the propagation error along 
the time series. Hence, for any measure on a time series, we 
have an uncertainty on both along- and across-canyon cur-
rent components (σv), an uncertainty on suspended sediment 
concentration (σc), and an uncertainty on suspended sedi-
ment fluxes (σF) and time-integrated cumulative transport 
(σ2

NF). Estimated parameters’ uncertainties derived from 
the measurement errors corresponding to each independent 

Fluxi = Vi × Ci = currenti × SSCi

Cumulative transport =

N
∑

i=1

Fluxi × Δ t = Sumof fluxi x time step

Fig. 3   Relation between the turbidity signal (FTU) and the measured 
suspended sediment concentration (SSC, mg L-1) for the eight turbid-
ity sensors used in this laboratory calibration
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time series are shown in Table 1. The uncertainty (or error 
propagation) in suspended sediment fluxes, for each time 
step, can be calculated following:

The uncertainty associated to time-integrated cumulative 
transport (NF) is calculated following:

Assessment of fishing effort

The activity of bottom trawlers around the Palamós Canyon 
operating in the fishing grounds of Sant Sebastià (northern 
canyon flank) and Rostoll (southern canyon flank) (Fig. 1) 
was obtained from ShipLocus®, the main module of the 
Spanish Ports Authority to exploit maritime traffic data for 
management and research purposes (Puertos del Estado 
2017), through the use of Automatic Identification Sys-
tem (AIS) tracking. Vessels with AIS provide their posi-
tion omni-directionally at intervals that can vary from 2 s 
to 3 min to nearby AIS-bearing ships, as well as to coastal 
stations and satellites, enabling the monitoring of fine-scale 
vessel behaviors and movement patterns (Natale et al. 2015).

The spatial fishing effort was estimated using AIS data 
from year 2017, which included the study period, and con-
sisted in static data of fishing vessels (vessel name, call sign 
identifier, IMO number, dimensions) and their dynamic data 

�
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+
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�Dir
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× �
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2
NF
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N
∑

i=1

�
2
Fluxi

(vessel position, speed over ground, course over ground and 
heading). Since the total volume of AIS dataset exceeded 
computational dataset management capacities, the dataset 
was reduced to the first entry per minute of each vessel. This 
resulted in a smaller and homogeneous dataset for the study 
period. Vessels equipped with otter trawl boards (OTB) were 
extracted by cross-checking the AIS dataset with data from 
the Community Fishing Fleet Register (European Commis-
sion Fisheries and Maritime Affairs 2014). AIS data were 
then filtered according by speed to infer whether an AIS 
message corresponded to fishing activity, using similar crite-
ria to those used in previous studies (e.g., Natale et al. 2015; 
Oberle et al. 2016a; Paradis et al. 2021). It assumes that bot-
tom trawler speed follows a bimodal distribution correspond-
ing to navigating (high speed) and trawling (low speed) con-
ditions. Trawling speed was finally obtained as the mean of 
the first gaussian distribution ± 2 standard deviations (95 % 
of the distribution) of the OTB vessel speeds. This interval 
corresponds to speeds between 0.8 and 3.9 knots. However, 
simply filtering according to this trawling speed may lead 
to false-positives, when a trawler is navigating or drifting 
at a specified trawling speeds, and false-negatives, when a 
trawler is hauling at anomalous speeds for a few minutes due 
to piloting reasons (i.e., when trawling down-slope the vessel 
needs to reduce its speed to keep the gear on the seafloor). 
Hence, a minimum length of 10 min per haul was assumed 
to correct for false-positives, whereas anomalous speeds that 
lasted less than 5 min were considered to correct for false-
negatives. Hauls per vessel were then defined as consecutive 
entries that met these trawling criteria for at least 100 min.

Finally, bottom trawling effort was obtained from the total 
number of hauls within one hectare (100 × 100), assuming 
an average trawling-door spread of 100 m. These units are 
a good indicator of the times that a trawler tows an area and 
can be used as a proxy of their capacity to resuspend bot-
tom sediments (Ragnarsson and Steingrimsson 2003; Martín 
et al. 2014b). Trawling effort was finally represented and 
plotted using ArcGIS© 10.4 software for the entire monitor-
ing period (Fig. 1), and for the trawling closure (spanning 
from February 7 to March 8) and for the trawling season 
(spanning from March 9 until the end of the study period on 
April 7) (Fig. 2).

Ancillary data

The daily discharges of the Ter and the Daró rivers, located 
slightly northwards of the Palamós Canyon, were supplied 
by the Agència Catalana de l’Aigua (Catalan Government 
Water Agency), and have been used to assess the riverine 
sediment supplies during the study period. This data is avail-
able online via ACA’s website (http://​aca-​web.​gencat.​cat/​
sdim21/​selec​cioXa​rxes.​do).

Table 1   Estimated parameters’ uncertainties derived from the meas-
urement errors to each independent time series. The variance of the 
variables as well as constant parameters are shown. “A” corresponds 
to the constant that multiplies FTU values to yield SSCs, while Ɵ 
corresponds to the angle of rotation applied to obtain along- and 
across-canyon currents. In this case, Ɵ = 70º, with respect to the 
North and East components, is applied in the equations for uncer-
tainty calculations

Variable Variance/constant Value

Current speed �Speed  ± 0.005 m s−1

Current direction �Dir  ± 5º
Turbidity �Turb  ± 2.7 FTU
Constant of turbidity A 1.14
Angle of rotation (counter-

clockwise)
Ɵ 70º

http://aca-web.gencat.cat/sdim21/seleccioXarxes.do
http://aca-web.gencat.cat/sdim21/seleccioXarxes.do
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Wave conditions during the study period were provided 
by the REDEXT network of deep-water oceanographic 
buoys of the Spanish Ports Authority (http://​www.​puert​os.​
es/​es-​es/​ocean​ograf​ia/​Pagin​as/​portus.​aspx) and recorded 
hourly by the Cap de Begur buoy, located offshore on the 
northern continental slope region next to Palamós Canyon, 
over the 1200 m isobath (41º 55.2′ N; 3º 39.0′ E).

Results

Activity of OTB vessels

The fishing grounds of the Palamós canyon were exploited 
by 34 OTB vessels, most of which from the Palamós harbor, 
but occasionally from Blanes and Roses harbors (located 
southwards and northwards, respectively, and not shown in 
Fig. 1).

Time-series observations on OTB vessel positions, based 
on fishing effort, revealed no trawling activity occurred 
around the mooring site during the trawling closure at the 
flanks of the canyon (not shown), while during the trawling 
season, the fishing effort increased on both canyon flanks 
(Fig. 2). In the Rostoll fishing ground section located closer 
to the mooring and CTD transect, bottom trawling occurred 
at relatively shallow depths ranging from 250 to 450 m, at 
a predominating frequency of 5 hauls per hectare. The fish-
ing effort in the Rostoll fishing ground increased seawards, 
reaching 10–30 hauls per hectare at 500–600 m depth. At the 
Sant Sebastià fishing ground, the predominating frequency 
in the canyon wall next to the mooring and the CTD tran-
sect was 20–40 hauls per hectare between 400 and 800 m 
depth (Fig. 2). The number of daily hauls was computed at 

both fishing grounds during the monitored trawling season, 
being generally higher in Sant Sebastià than in Rostoll, and 
accounting for a total of 74 hauls against 31 hauls, respec-
tively (Fig. 4).

More scattered trawling activity was also observed on 
the upper continental slope at depths < 200 m (Fig. 2). This 
fishing effort was estimated to be less than 5 hauls per hec-
tare during the monitored trawling season. The number of 
hauls computed at these depths was considerably smaller in 
comparison to those computed at the depths of the canyon 
flanks’ fishing grounds and accounted for a total of 18 hauls 
for the monitored trawling season (Fig. 4).

Forcing conditions

During the monitoring period, several storms, defined as 
sustained significant wave heights (Hs) greater than 2 m for 
more than 6 h (Mendoza and Jiménez 2009), were recorded 
during the monitoring in early February, and early- and 
late-March, the majority of them caused by strong northern 
winds and with Hs > 3 m (Fig. 5a). These events were gener-
ally dry storms (Guillén et al. 2006) that did not lead to sig-
nificant increases in Ter and Daró River discharges (Fig. 5b).

Four major storms (Hs > 4 m) were recorded during the 
monitoring period. A strong northern storm occurred in 
early February with maximum Hs of 4.9 m, which lasted 
more than 15 h (Fig. 5a). A unique strong eastern storm 
with maximum Hs of 4.7 m at the peak of the storm that 
lasted from February 12 to February 16 (Fig. 5a) caused a 
torrential Ter River discharge that reached 30.6 m3 s− 1 on 
February 15, concurrent with a small increase of 6.0 m3 s− 1 
at the Daró River (Fig. 5b). A stronger northern storm with 
a maximum Hs of 5.1 m occurred on March 4 that lasted for 

Fig. 4   Daily hauls in the Sant Sebastià and Rostoll fishing grounds, and in the upper slope region during the monitoring period. The dashed line 
separates the trawling closure from the trawling season

http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx
http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx
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two days (Fig. 5a) and led to a Ter River discharge of 11.1 
m3 s− 1 and a Daró River discharge of 2.2 m3 s− 1 (Fig. 5b). 
At the end of the study period, a strong southern storm with 
maximum Hs of 4.1 m occurred on March 25 (Fig. 5a), 
which lead to a Ter River discharge of 19.4 m3 s− 1 and a 
Daró River discharge of 1.5 m3 s− 1 (Fig. 5b).

Time series observations

Identification of water masses

Compiled data of all hydrographic profiles during the moni-
toring period revealed distinct changes in temperature and 
salinity throughout the water column that are ascribed to the 
different water masses in the study area (Fig. 6).

The old Atlantic Water (oAW) occupied the shallowest 
water column (150–300 m) during most of the recording 
period (Figs. 6 and 7). Below oAW, the temperature and salin-
ity time series, as well as the Ɵ-S diagram, showed the more 
saline Levantine Intermediate Water (LIW), mainly centered at 
500–600 m water depth (Figs. 6 and 7). The Western Mediter-
ranean Deep Water (WMDW) was generally observed at the 
deepest part of the hydrographic profiles, exhibiting its char-
acteristic temperature and salinity values (Figs. 6 and 7). In 
addition to these water masses, the seasonal Western Interme-
diate Water (WIW, Ɵ = 12.9–13.2 ºC; S = 38.1–38.3) and two 
pulses of Dense Shelf Water (DSW), displaying temperature 
minima reaching < 12.6 ºC along with salinity values < 38.2, 

Fig. 5   Temporal evolution of the a  significant wave height (Hs, m) 
measured at the Cap de Begur buoy and b the Ter and the Daró river 
discharges (m3 s-1) during the monitoring period. Major storms, with 
Hs > 4, are indicated with an N (northern storms), E (eastern storms) 

or an S (southern storms) according to their origin. The occurrence 
of dense shelf water cascading (DSWC) events is indicated by a grey 
vertical bar

Fig. 6   General Ɵ-S diagram for all the hydrographic casts acquired 
by the autonomous hydrographic profiler (Aqualog) during the moni-
toring period identifying the different water masses in the study area: 
oAW (old Atlantic Water), WIW (Western Intermediate Water), DSW 
(Dense Shelf Water), LIW (Levantine Intermediate Water), WMDW 
(Western Mediterranean Deep Water). For interpretation of the refer-
ences in color in this figure legend, the reader is referred to the web 
version of this article
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Fig. 7   Time series of a  temperature (ºC) b salinity, and c suspended 
sediment concentration (SSC, mg  L-1) measured by the autonomous 
hydrographic profiler (Aqualog), as well as d  temperature (ºC) and 
e SSC measured by the near-bottom instrumentation during the moni-
toring period. Panels a and b show the different water masses being 
present in the study area: oAW (old Atlantic Water), WIW (Western 
Intermediate Water), DSW (Dense Shelf Water), LIW (Levantine 

Intermediate Water), WMDW (Western Mediterranean Deep Water). 
The occurrence of two dense shelf water cascading (DSWC) events is 
indicated by a black triangle. Blank spaces represent incomplete pro-
files. The dashed line separates the trawling closure from the trawling 
season. For interpretation of the references in color in this figure leg-
end, the reader is referred to the web version of this article
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were observed at the beginning of the recording period (Figs. 6 
and 7). Particularly, the presence of DSW and WIW over the 
Palamós Canyon occurred from February 7 to February 24, the 
latter mainly ranging from 150 to ~ 400 m depth (Fig. 7a, b).

Evolution of water column suspended sediment 
concentration (SSC)

The vertical particulate matter distribution showed increas-
ing SSC (up to 1 mg L− 1) that lasted for the first two days 
of the monitoring period, in agreement with the presence 
of WIW (Fig. 7c). Immediately afterwards, the water tur-
bidity decreased and maintained values < 0.8 mg L− 1 in 
the profiled water column for 6 days, when water turbidity 
increased to between 1.1 and 3.8 mg L− 1 from February 
13 to February 15 coinciding with the first DSW pulse into 
the canyon (Fig. 7a–c) (see the first black triangle). This 
DSWC event was noted by a sharp decrease in temperature 
(~ 0.5 ºC) and salinity (~ 0.2) values (Fig. 7a, b). This first 
pulse of DSW was detected all along the entire profiling 
range recorded at that time. However, it was only observed 
reaching depths between 370 and 400 m in the hydrographic 
profiles recorded by the Aqualog, without being able to cap-
ture its deeper limit in these profiles (Fig. 7a-c). This DSW 
pulse reached the canyon axis, as observed by the tempera-
ture and turbidity values recorded close to the bottom by 
the near-bottom instrumentation, presenting near-bottom 
temperatures of ~ 12.6 ºC (Fig. 7d) and maximum SSC of 
~ 234 mg L− 1 (Fig. 7e). Afterwards, water turbidity main-
tained relatively high SSCs along the hydrographic profiles 
for three days associated with the presence of WIW, ranging 
from 0.4 to 1.1 mg L− 1 down to depths of ~ 500 m (Fig. 7c). 
On February 21, the shallowest part of the hydrographic 
profiles recorded a new decrease in temperature and salin-
ity values, and an increase of SSC of 2.2 mg L− 1, coincid-
ing with the arrival of the second pulse of DSW into the 
canyon (Fig. 7a-c). However, it only lasted for a few hours 
and descended to maximum water depths of 200 m (see the 
second black triangle), without displacing the WIW found 
underneath (Fig. 7a, b). After this event, and until February 
24, the vertical particulate matter distribution still showed 
events of moderate SSC elevation in the water column that 
ranged between 0.3 and 0.9 mg L− 1 from the uppermost part 
of the hydrographic profiles to maximum water depths of 
500 m (Fig. 7c). From February 24 to the end of the study 
period, the WIW was absent and recorded temperature and 
salinity values that corresponded to the more general hydro-
graphic structure of the northwestern Mediterranean, with 
the presence of surface oAW, the core of LIW at mid-waters 
and centered between 500 and 600 m and the WMDW occu-
pying the deeper part of the profiled water column (Fig. 7a, 
b). During this period, the vertical distribution of particulate 
matter showed no periods of significant SSC increase in the 

profiled water column until the beginning of the trawling 
season on March 9 (Fig. 7c).

During the trawling season, several SSC increases were 
recorded at intermediate waters (from 150 to 300 m depth), 
reaching up to 2.5 mg L− 1 and at the lower part (> 500 m 
depth) of the profiled water column (Fig. 7c). A relative 
clear water minimum was recorded between 300 and 500 m 
water depth. The maximum SSC was recorded on March 
30 at ~ 718 m depth, reaching up to 3.8 mg L− 1 (Fig. 7c). 
Near-bottom time series (923 m depth) of temperature and 
turbidity values remained constant during most of the time, 
displaying temperature values ranging from 13.2 to 13.6 ºC 
(Fig. 7d) and SSC < 1.5 mg L− 1 (Fig. 7e). Punctual increases 
in SSC between 5 and 10 mg L− 1 were recorded during the 
trawling season (Fig. 7e), although such increases showed 
no relation with temperature fluctuations.

The NPSC for the upper part of the profiled water column 
peaked at ~ 40.7 mg cm− 2 and 23.3 mg cm− 2 during the two 
DSW pulses, respectively (see black triangles in Fig. 8a), and 
decreased to baseline NPSC values (~ 10 mg cm− 2) at the 
end of the closure season. The NPSC values increased again 
in the trawling season, when almost a double-fold increase 
in the NPSC (~ 20 mg cm− 2) was observed (Fig. 8a). In 
the second approach, considering the entire profiling range, 
the NPSC varied between 8.3 and 20.8 mg cm− 2 during the 
end of the closure season, whereas it was doubled and even 
quadrupled during the trawling period, reaching maximum 
values of 50.1 mg cm− 2 (Fig. 8b).

Near‑bottom currents

During most of the recording period, near-bottom currents 
followed the canyon axis (Fig. 9a, b). Current speeds varied 
between 0.05 and 0.25 m s− 1 during most of the monitor-
ing in both along- and across-canyon directions (Fig. 9c, d), 
although periodic reversals in the current direction mainly 
oriented up- and down-canyon were observed (Fig. 9c).

This general current pattern was altered between Febru-
ary 14 and February 15, during the first DSW pulse, when 
near-bottom currents and SSC changed drastically (Figs. 9 
and 10). During the first stages of this event, tempera-
ture experimented a slight increase of 0.2 ºC (Fig. 10a), 
concurrent with an increase of the down-canyon current 
velocity up to 0.2 m s− 1 (Fig. 10b) but slightly oriented 
towards the NE sector (Fig. 10c), while turbidity pro-
gressively increased up to 75 mg L− 1 (Fig. 10d). A sharp 
decrease in near-bottom temperature (~ 0.5 ºC) reaching 
down to 12.6 ºC (Fig. 10a) was recorded afterwards and, 
simultaneously, currents reached speeds of 0.3 m s− 1 with 
dominant down-canyon direction but oriented towards the 
SW (Fig. 10b, c), while near-bottom turbidity increased 
up to 160.1 mg  L− 1 (Fig. 10d). Three hours later, the 
temperature increased to 13.3 ºC (Fig. 10a), which was 
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concurrent with a maximum peak in current speed up 
to 0.6 m s− 1 directed up-canyon (Fig. 10c). When this 
current reversal occurred, a sharp increase in turbidity 
was observed, reaching maximum SSC of ~ 234 mg L− 1 
(Fig. 10d). Near-bottom currents maintained the up-can-
yon flow direction for almost 5 h (Fig. 10b), and turbid-
ity values gradually decreased to 4 mg L− 1 (Fig. 10d). 
Afterwards, the near-bottom current flow reversed fol-
lowing the down-canyon direction (Fig. 10b) and slightly 
towards the SW (Fig. 10c). Another current reversal of 
up to 0.3 m s− 1 was detected up-canyon (Fig. 10b), while 
another concurrent important turbidity peak of 96 mg L− 1 
was recorded (Fig. 10d). Towards the end of this event, 
the current speed and turbidity decreased to baseline val-
ues (Fig. 10b–d).

Near‑bottom suspended sediment fluxes and cumulative 
transport

During most of the trawling closure, instantaneous along-
canyon near-bottom suspended sediment fluxes fluctuated 
between 0.02 and 0.1 g m− 2 s− 1 (Fig. 11a) and between 0.01 
and 0.06 g m− 2 s− 1 in the across-canyon direction (Fig. 11b). 

However, during the first DSWC pulse, there was an increase 
in both along- and across-canyon suspended sediment fluxes. 
In the along-canyon direction, suspended sediment flux 
increased up to 19 g m− 2 s− 1 down-canyon, but the more 
important suspended sediment flux was registered up-canyon, 
reaching values of 44 g m− 2 s− 1 (Fig. 11a). In the across-can-
yon direction, suspended sediment flux increased up to 8.8 g 
m− 2 s− 1 towards the NE, although the maximum suspended 
sediment flux was registered towards the SW reaching up to 
35 g m− 2 s− 1 (Fig. 11b). The cumulative transport after this 
event was up-canyon (Fig. 11c) and towards the SW (Fig. 11d), 
reaching values of 50 kg m− 2 and 80 kg m− 2, respectively.

During the trawling season, near-bottom instantaneous 
along-canyon suspended sediment flux ranged from 0.1 to 
0.7 g m− 2 s− 1 and was predominantly in the up-canyon direc-
tion, and across-canyon suspended sediment flux reached 
maximum values of 1.4 g m− 2 s− 1 mainly towards the SW 
(i.e., coming from the northern flank) (Fig. 11a, b). There-
fore, throughout the trawling season, the resultant cumu-
lative suspended sediment transport was in the up-canyon 
direction and from the northern canyon flank (towards the 
SW) in the across-canyon component, reaching 40 kg m− 2 
and 20 kg m− 2, respectively (Fig. 11c, d).

Fig. 8   Net Particulate Standing Crop for a  the upper water column 
(150–400  m depth) and for b  water depths between 150 to 738  m 
depth during the monitoring period. The occurrence of two dense 

shelf water cascading (DSWC) events is indicated by a black trian-
gle. The dashed line separates the trawling closure from the trawling 
season



Marine Geophysical Research (2021) 42:38	

1 3

Page 13 of 22  38

CTD transect

The hydrographic data obtained by the June 7, 2017 high-
resolution CTD transect across the Palamós canyon head 
from the surface down to 925 m water depth revealed dis-
tinct changes in temperature and salinity throughout the 
water column (Fig. 12). In the first 50 m of water column, 
waters with distinctly low salinities (38.0-38.2) and high 
temperatures (15–19 ºC) were observed (Fig. 12a, b), most 
probably corresponding to the influence of the seasonal 
thermocline. The signature of the oAW, characterized by 
temperatures > 13 ºC (Fig. 12a) and salinity values ranging 
from 38.0 to 38.4 (Fig. 12b), was found underneath, reaching 
water depths down to 200 m in the northern canyon flank 
and ~ 300 m in the southern canyon flank. Below (down to 
~ 800 m water depth), the temperature and salinity along 

the transect showed the more saline LIW core, which dis-
played a salinity maximum (S > 38.5) centered ~ 500 m water 
depth (Fig. 12a, b). The deepest part of the water column 
was occupied by the WMDW that exhibited temperature 
minima of 13 ºC and salinity values of 38.5 (Fig. 12a, b).

SSC distribution across the studied canyon section 
showed a surface clear water layer down to ~ 100  m 
water depth and a continuous INL with concentra-
tions ~ 0.5 mg L− 1 extending over the entire canyon width 
in the water parcel occupied by the oAW (Fig. 12c). Within 
the canyon confinement, the central part of the water col-
umn mainly corresponded to the upper levels of the LIW 
core and was characterized by low SSC, whereas near-bot-
tom waters in both canyon flanks and close to the canyon 
axis displayed higher SSC. Over the southern canyon wall, 
there was a detachment of a thin BNL mainly centered at 

Fig. 9   Near-bottom currents during the monitoring period. a  Polar 
plot of current speed and direction showing the preferential current 
orientation. b  Close-up of the bathymetry at the mooring location 
(yellow dot) and the canyon axis orientation used to rotate the current 

velocity components (red arrow). Panels c  and d  correspond to the 
time series of along-canyon current velocity and across-canyon cur-
rent velocity components, respectively
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~ 300 m depth, reaching SSC up to 3 mg L− 1 (Fig. 12c, 
station #2). This detachment extended ~ 450 m horizon-
tally towards the canyon interior as an INL, which was 
observed in station #3 at the same water depth, but with 
SSC values of 0.5 mg L− 1. On the northern canyon wall, 
a well-developed BNL displaying SSCs up to 1.5 mg L− 1 
was observed at ~ 450 m water depth (Fig. 12c, station 
#11), which evolved towards the canyon interior and to a 
less concentrated and thicker BNL, with SSC ~ 1 mg L− 1 
extending from 550 to 700 m depth (Fig. 12c, station #10). 
The lower part of the profiled water column over the can-
yon axis (stations #5 to #9) showed SSC > 0.5 mg L− 1 that 
corresponded to scattered and isolated INLs showing poor 
lateral continuity among consecutive hydrographic casts 
(Fig. 12c).

Discussion

Natural‑induced water turbidity and suspended 
sediment transport

The earlier studies using moored instrumentation demon-
strated that river floods and storms enhanced particle fluxes 
inside submarine canyons and on the continental slope 
(Monaco et al. 1990; Puig and Palanques 1998b), and for a 
long time, these processes were considered the major con-
temporary mechanisms able to transport sediments from 
shallow water environments to deeper environments. Recent 
studies conducted in the NW Mediterranean also recognize 
the importance of the formation of dense shelf waters and 
their subsequent downslope cascading, exporting sediment 

Fig. 10   Time series of near-bottom a  temperature (ºC), b along-canyon current velocity (m  s-1), c across-canyon current velocity (m s-1), and 
d suspended sediment concentration (SSC, mg L-1) measured during the first DSWC event
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particles towards deep-sea regions (Canals et al. 2006; Pal-
anques et al. 2006a). DSWC events occur frequently, prefer-
entially during early winter, after a period of several months 
without significant storms during which the continental 
shelf can be covered by easily resuspendable sediment from 
nearby rivers.

In the Palamós Canyon, Ribó et al. (2011) reported for 
the first time the presence of DSWC events related to east-
ern storms. In this investigation, priority was given to the 
deployment of near-bottom instruments at the canyon head, 
on the assumption that most of the suspended sediment 
transport and water turbidity increases were coming from 
the shelf and relatively confined near the canyon seafloor. 
The results presented in this new study contribute to refine 
the sediment dynamics associated to DSWC events in the 

Palamós Canyon providing additional information through-
out the water column, as well as near the bottom at a deeper 
canyon axis location (Figs. 7, 8, 9, 10 and 11). During the 
present study, the first DSWC event was enhanced by a major 
eastern storm that occurred between February 12 and Febru-
ary 16, which also led to a torrential water discharge from 
the Ter River. The eastern storm was most probably respon-
sible for the expulsion of dense coastal waters on the shelf 
upstream of the canyon, which alongside with the ephemer-
ally sediment deposited on the shelf by the Ter River, gener-
ated high downslope and down-canyon sediment transport 
into Palamós Canyon. The DSW signal was detected along 
the profiled water column from 150 to 377 m depth and also 
near the bottom at 923 m depth (Fig. 7), which suggests an 
increase of turbidity throughout the entire water column. 

Fig. 11   a Instantaneous along-canyon suspended sediment flux (g m-2 s-1), 
b  instantaneous across-canyon suspended sediment flux (g  m-2  s-1), 
c along-canyon cumulative transport (kg m-2) and d across-canyon cumu-
lative transport (kg m-2) at the mooring site during the monitoring period. 
Maximum sediment fluxes reached during DSWC events are indicated in 

italics. The dashed line separates the trawling closure from the trawling 
season. Inset on panels c and d provides the time-integrated cumulative 
transport (net transport) for the along- and across-canyon components 
and their uncertainty ( �2

NF
 ), the standard deviation and the relative error 

derived from these calculations for the entire monitoring period
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Although relatively high SSC increases were recorded at 
intermediate water depths (> 3.5 mg L− 1) (Fig. 7c), very 
strong SSC increases (> 200 mg L− 1) occurred near the 
bottom (Fig. 7e). This indicates that the cascade of DSW 
during this event caused a rapid advection of cold and tur-
bid waters down to the deepest part of the surveyed water 
column, presumably transporting easily erodible sediment 
particles on their way as they moved down-canyon, generat-
ing high near-bottom suspended sediment fluxes (Fig. 11a, 

b; Table 2). Previously recorded DSWC events in Palamós 
Canyon by Ribó et al. (2011) were specific for the canyon 
head (325 m depth) and accounted for lower down-canyon 
current velocities (> 0.4 m s− 1 versus 0.6 m s− 1) and lower 
SSC peaks (~ 6 mg L− 1 versus > 200 mg L− 1) than in the 
canyon axis. However, DSWC events of similar magni-
tude to that observed during the present study have been 
recorded in the Cap de Creus Canyon, where near-bottom 

Fig. 12   CTD transect conducted in June 7, 2017 across the Palamós 
Canyon showing the distribution of a  potential temperature (ºC), 
b  salinity, with the different water masses present in the study area 
(see Fig. 5 for details), and c suspended sediment concentration (SSC, 
mg  L-1). The black arrow indicates the working depth range of the 
autonomous hydrographic profiler (Aqualog) and the white arrows 

indicate the bathymetric range occupied by the Sant Sebastià and 
Rostoll fishing grounds extracted from the AIS spatial distribution at 
the location where the CTD transect was conducted (see location in 
Fig. 2). For interpretation of the references in color in this figure leg-
end, the reader is referred to the web version of this article
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SSC > 170 mg L− 1 and currents of ~ 0.6 m s− 1 were regis-
tered (Ribó et al. 2011).

During the first stages of the major DSWC event recorded 
during the study, the near-bottom suspended sediment 
fluxes were mainly directed down-canyon and towards the 
SW (Fig. 11a, b), suggesting the arrival of a non-channeled 
cascade coming predominantly from the northern canyon 
flank. As the dominant eastern field veered to south-west-
erlies (not shown) and the storm ceased (Fig. 5b), currents 
inside the canyon reversed from down-canyon to up-canyon, 
peaking up to 0.6 m s− 1 (Fig. 10b), and the DSW turbid 
plume was retained within the canyon’s interior, increasing 
near-bottom SSC up to ~ 234 mg L− 1 (Fig. 10d), generat-
ing an abrupt peak in near-bottom suspended sediment flux 
of 44 g m− 2 s− 1 directed up-canyon (Fig. 11a). This sud-
den change in current flow, due to the compensation of the 
isopycnals, has been previously described as the reversal 
(relaxation) phase of cascading/downwelling events (Ulses 
et al. 2008b), and described in detail in the Cap de Creus 
Canyon during a similar storm event in winter 2011 (Martín 
et al. 2013). The second DSW pulse detected on February 
21 was not associated to any storm event nor a flashflood 
river discharge (Fig. 5), and in contrast to the first DSW 
pulse, it was shorter and only reached about 200 m depth 
(Fig. 7). This event generated lower SSC at the upper part 
of the hydrographic profiles, and no signal was recorded 
in the near-bottom instrumentation (Fig. 7). This mild and 
shallow DSW pulse was therefore smaller in magnitude and 
resembled those recorded at similar depths (~ 300 m depth) 
in this submarine canyon by Ribó et al. (2011).

During the trawling closure period, the presence of the 
WIW was detected at the hydrographic profiles reaching 
maximum water depths of ~ 400 m, alongside with relatively 
high SSC values in the profiled water column (Fig. 7a–c). 
The WIW observed during the study period could have been 
formed earlier during the winter season by DSWC events 
affecting the upper slope of the GoL (Lapouyade and Dur-
rieu de Madron 2001; Dufau-Julliand et al. 2004; Durrieu 
de Madron et al. 2005a). This seasonal water mass could 
have then been advected southwards towards the Palamós 
Canyon, following the general circulation, and carrying 
an increased SSC signature. These high turbidity values, 

alongside with the increased SSC associated with the two 
DSW pulses, were also translated into higher NPSC dur-
ing this period (Fig. 8a). Towards the end of the trawling 
closure period, the presence of waters generated by cooling 
and densification during winter (WIW and DSW) was no 
longer detected along the hydrographic profiles, and water 
turbidity decreased to almost baseline SSCs and NPSC in 
the upper water column, reaching the lowest values in the 
entire record (Figs. 7 and 8a).

Trawling‑induced water turbidity and sediment 
transport

Considering the absence of major storm or flooding events 
during the trawling season (Fig. 5) and the position of OTB 
vessels and number of daily hauls (Figs. 2 and 4), we can 
infer that the occurrence of frequent events of increased 
water turbidity within the Palamós Canyon (Fig. 7c) was 
induced by the passage of OTB vessels along the canyon 
flanks.

Throughout the monitored trawling season, the more 
intense fishing activity was particularly detected at depths 
between 250 and 600 m at the southern canyon wall (Ros-
toll fishing ground), and between 400 and 800 m depth at 
the northern canyon wall (Sant Sebastià fishing ground) 
(Fig. 2). Based on the relative depths at which the trawling 
activities occur on each flank next to the mooring location, 
the shallower INLs (250–350 m water depth) observed in 
the hydrographic profiles and the CTD transect most prob-
ably correspond to resuspended sediment detached from the 
Rostoll fishing ground, whereas most of the SSC increases 
detected below 500 m depth could correspond to resuspen-
sion from the Sant Sebastià fishing ground (Figs. 7c and 
12c). These well-developed INLs and BNLs detected at 
depths > 500 m are in agreement with previous observa-
tions reported by Martín et al. (2014a). In their study, a 
hydrographic transect conducted across the Sant Sebastià 
fishing ground revealed the presence of enhanced INLs and 
BNLs coinciding with the depth range exploited by otter 
trawlers. The higher number of hauls carried out at this 
fishing ground in contrast with the lower number of hauls 
occurring at the Rostoll fishing ground (Fig. 4) suggest that 

Table 2   Near-bottom instantaneous suspended sediment (SS) fluxes 
(g  m−2  s−1) and cumulative transport (T  m−2) calculated for the 
along- and across-canyon components during the trawling closure, 
which includes the DSWC period, and the trawling season. For the 

along-canyon component up-canyon flux values and cumulative trans-
port are positive, whereas for the down-canyon flux they are negative. 
For the across-canyon component NE orientation flux values are posi-
tive, whereas for the SW orientation they are negative

Instantaneous SS flux Cumulative transport

Along-canyon Across-canyon Along-canyon Across-canyon

Trawling closure
DSWC period (max.)

0.02–0.1
 + 44

0.01–0.06
− 35

 + 0.05 − 0.08

Trawling season 0.1–0.7 1.4  + 0.04 − 0.02
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most of the increases in water turbidity during the trawling 
season were generated in the northern canyon wall. Moreo-
ver, the Sant Sebastià fishing ground is closer to the canyon 
axis (~ 1.5 km) than the Rostoll fishing ground (~ 2.5 km), 
which would favor that most of SSC increases reaching the 
mooring location were detached from the northern canyon 
wall as nepheloid layers. Over this period, near-bottom 
suspended sediment fluxes presented a dominant direction 
towards the SW (Fig. 11b; Table 2), following the main flow 
of the geostrophic circulation in this margin, which also 
suggests that most the resuspended sediment came from the 
northern flank. Nonetheless, the time-integrated near-bot-
tom cumulative transport over the trawling period showed 
a persistently up-canyon direction (Fig. 11c; Table 2). This 
fact seems to confirm previous time series observations 
within the Palamós Canyon, revealing the presence of a 
residual up-canyon flux superimposed to the periodical (i.e. 
inertial) up- and down-canyon flow oscillations along the 
canyon axis (Martín et al. 2006, 2007). This has important 
implications for the redistribution and final fate of bottom 
trawling resuspended sediments in the canyon, as sediment 
transported down-slope from the canyon flanks’ fishing 
grounds would be retained by the up-canyon residual flow 
and rapidly deposited along the canyon axis, without being 
exported further down-canyon towards greater depths. This 
continuous up-canyon cumulative transport (Fig. 11c) may 
also explain the increase of sediment accumulation rates in 
Palamós Canyon (Martín et al. 2008; Puig et al. 2015), a 
phenomenon observed in other trawled submarine canyons 
of this margin (Paradis et al. 2017, 2018a, b), leading to the 
formation of canyon axes’ anthropogenic depocenters next 
to trawling grounds.

The quasi-permanent presence of INLs and near-BNLs 
near the fishing grounds in the Palamós Canyon during the 
monitored trawling season (Fig. 7) resembles the neph-
eloid structure linked to the trawling activities at the fishing 
grounds of the Foix Canyon (Arjona-Camas et al. 2019). 
Both submarine canyons are deeply incised in the Catalan 
continental margin, at a relatively close distance from the 
coast and are affected differently by the corresponding bot-
tom trawling fleets that operate on them. Trawling activi-
ties at the Foix Canyon take place along the canyon axis 
at 600–800 m depth, and mainly over the upper slope next 
to the canyon (200–500 m depth) (Lleonart 1990), from 
where resuspended particles are advected along-margin by 
ambient currents and cross over the canyon via nepheloid 
layers (Arjona-Camas et al. 2019). In contrast, trawling 
activities at the Palamós Canyon are not carried out along 
its axis, and occur mainly at the canyon flanks, with mini-
mal activity on the northern upper slope (Figs. 2 and 4). 
Nevertheless, the few hauls carried out at the upper slope 
of the Palamós Canyon could have contributed to feed 
the particulate matter detachments observed between 90 

and 200 m depth during the CTD transect conducted on 
June 7 (Fig. 12c), which generated an INL too shallow to 
be recorded by the moored instruments. The pycnocline 
between the oAW and the LIW (Fig. 12a, b) could have 
favored the retention of suspended particles at this depth 
range, which are advected towards the southwest by the 
geostrophic circulation, above the profiling range of the 
moored instruments (Fig. 7). Nevertheless, despite the dif-
ferent locations where trawling activities take place at the 
Foix and the Palamós submarine canyons, the nepheloid 
structure developed in both canyons is remarkably similar 
(see Fig. 6 in Arjona-Camas et al. 2019).

Overall, these new data from the Palamós Canyon sup-
ports the hypothesis that resuspension induced by bottom 
trawling activities can play a significant role in increasing 
SSC in the water column and generating INLs and BNLs 
at certain depths based on the locations of the fishing 
grounds. No other submarine canyon has been studied as 
intensively as the Palamós Canyon regarding the effects of 
bottom trawling on the sediment dynamics but given that 
canyons are very often targeted by demersal fisheries, it is 
likely that similar impacts have occurred and are occurring 
in other submarine canyons elsewhere. Similar enhanced 
trawling-induced nepheloid layers such as those reported in 
the present study at the Palamós Canyon and at the Foix 
Canyon by Arjona-Camas et al. (2019), have been reported 
in Whittard Canyon (NE Atlantic) (Wilson et al. 2015b; 
Daly et al. 2018). As discussed by Wilson et al. (2015b), 
although the trawling activity was not always adjacent to 
where these enhanced nepheloid layers were observed, the 
canyon would have likely transported the material down to 
deeper regions. However, due to limited dataset consisting in 
discrete CTD casts, these authors were not able to conclude 
the frequency of these events, nor their temporal evolution 
during the active trawling period at the Whittard Canyon 
(Wilson et al. 2015b).

Comparison between water turbidity 
during the trawling closure and the trawling season

Remarkable aspects during the trawling closure in February 
2017 were the high SSC increases related to the two DSWC 
events in the canyon (Fig. 7), and the relatively high SSC 
values at the upper levels of the water column associated 
with the presence of WIW (Figs. 6 and 7). This generated 
high NPSC values computed for the upper levels of the 
profiled water column (Fig. 8a). By the end of the trawl-
ing closure period, water turbidity, as well as computed 
NPSC, decreased to baseline values (Figs. 7 and 8a), coin-
ciding with the disappearance of the seasonal WIW and 
the subsequent reestablishment of the more general hydro-
graphic structure of this region (Figs. 6 and 7a and b). As 
it has been previously stated, the formation of WIW over 
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the GoL is directly affected by strong atmospheric events 
(Duffau-Julliand et al. 2004; Juza et al. 2019), being espe-
cially intense between late January to early March. How-
ever, changes in these atmospheric forcing and/or inflowing 
of AW and water properties including changes in LIW, can 
affect its horizontal advection and mixing with surrounding 
waters (Juza et al. 2019) and, subsequently, control its pres-
ence within the Palamós Canyon. These multiple factors 
could explain the rapid disappearance of the WIW from 
the hydrographic profiles by the end of the trawling closure 
season (Fig. 7a, b).

During the trawling season, almost all increases in water 
turbidity were associated with the trawling activities in the 
study area. This was translated in higher NPSC during the 
trawling season, which were almost two times those calcu-
lated at the end of the trawling closure (Fig. 8a). This was 
not only observed in the upper water column NPSC water 
column inventories, which allowed us to compare both peri-
ods, but also in the entire profiled water column (Fig. 8b). 
The higher values calculated for the trawling season indi-
cate that trawling can more than double the suspended sedi-
ment load in the water column, which is in agreement with 
suspended sediment inventories previously documented 
in other trawling grounds, both in shallow and deep-water 
environments (Palanques et al. 2001, 2014; Arjona-Camas 
et al. 2019). Suspended sediment concentrations in the 
water column did not vary significantly when the trawl-
ing fleet was not operating on weekends and holidays at 
the flanks of the canyon. These results contrast with previ-
ous observations from a canyon tributary next to the Sant 
Sebastià fishing ground, which documented the occurrence 
of frequent events of high turbidity (i.e., sediment grav-
ity flows) during working days and working hours of the 
local trawling fleet (Palanques et al. 2006a; Puig et al. 2012; 
Martín et al. 2014a). Additionally, this data showed that 
these events occurred once or twice a day when the trawling 
fleet went offshore and when it headed back to port (Martín 
et al. 2014a). However, in the present study the near-bottom 
time series collected at 923 m depth in the canyon axis 
did not record such periodic sediment gravity flows events 
(Figs. 7 and 10), as the instruments of the mooring were not 
receiving channeled trawled resuspended sediment through 
any canyon tributary. Instead, they received the less dense 
sediment particles that were scattered from the trawling 
grounds and remained in suspension after the passage of 
the sediment gravity flows. Once particles were detached 
in the water column, they remained in suspension for long 
periods of time, contributing to feed quasi-permanent INLs 
and BNLs, where SSC was higher. Because of this, these 
increases of SSC did not show differences between working 
days and weekends.

Conclusions

The data recorded in this monitoring study show different 
turbidity and sediment transport patterns between the trawl-
ing closure period and the trawling season at the Palamós 
Canyon.

During the trawling closure period, natural increases in 
water turbidity and near-bottom suspended sediment fluxes 
occurred mainly during DSWC events. These observations 
provided further insight of the sediment transport associ-
ated with this oceanographic process in Palamós Canyon and 
showed evidence, for the first time, of the presence of DSWC 
reaching > 900 m depth in the canyon axis. During the trawl-
ing season, increases in water turbidity linked to trawling 
activities occurred regularly and were recorded mainly con-
centrated at depths where the Sant Sebastià and the Rostoll 
fishing grounds are located. Bottom trawling introduced sed-
iment into the water column that more than doubled the sus-
pended sediment background values recorded during calm 
sea conditions of the trawling closure, in absence of dense 
shelf waters within the canyon. Near-bottom instantaneous 
suspended sediment fluxes caused by the passage of OTB 
vessels were some orders of magnitude smaller than those 
generated by DSWC events. However, the chronic trawling 
activities for at least 30 days over the same fishing ground 
are capable of producing similar cumulative suspended sedi-
ment transport to that generated by a major DSWC event.

The main difference between natural and trawling-
induced mechanisms is that natural turbidity and suspended 
sediment transport occurs sporadically, whereas trawling-
induced water turbidity and transport is periodic and con-
stant. Taking into account that bottom trawling is practiced 
on a daily basis throughout the year at the flanks of Palamós 
Canyon, with the exception of the 60-day seasonal trawl-
ing closure, weekends and holidays, much higher suspended 
sediment transport would be expected for a complete trawl-
ing season. Results from this study provide further insight on 
how bottom trawling activities are able to overcome natural 
processes as the main mechanism of sediment resuspen-
sion, capable of changing the natural patterns of particulate 
matter dispersion and accumulation in submarine canyon 
environments.

The capacity of bottom trawling to produce similar accu-
mulated impacts to those resulting from sudden and spo-
radic natural high-energy events points out the necessity of 
addressing the effect of anthropogenic activities in studies of 
sediment dynamics in deep-sea environments where fishing 
activities are practiced.

Further mooring data in this and other submarine can-
yons, along with data on the composition of the sediment 
resuspended by both natural and trawling-induced mecha-
nisms would provide additional data on the biogeochemical 
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and ecological consequences derived from this human 
activity.
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