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Abstract  This study focuses on using various 
machine learning (ML) models to evaluate the 
shear behaviors of ultra-high-performance concrete 
(UHPC) beams reinforced with glass fiber-rein-
forced polymer (GFRP) bars. The main objective of 
the study is to predict the shear strength of UHPC 
beams reinforced with GFRP bars using ML mod-
els. We use four different ML models: support vec-
tor machine (SVM), artificial neural network (ANN), 
random forest (R.F.), and extreme gradient boosting 
(XGBoost). The experimental database used in the 
study is acquired from various literature sources and 
comprises 54 test observations with 11 input features. 

These input features are likely parameters related to 
the composition, geometry, and properties of the 
UHPC beams and GFRP bars. To ensure the ML mod-
els’ generalizability and scalability, random search 
methods are utilized to tune the hyperparameters of 
the algorithms. This tuning process helps improve 
the performance of the models when predicting the 
shear strength. The study uses the ACI318M-14 and 
Eurocode 2 standard building codes to predict the 
shear capacity behavior of GFRP bars-reinforced 
UHPC I-shaped beams. The ML models’ predictions 
are compared to the results obtained from these build-
ing code standards. According to the findings, the 
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XGBoost model demonstrates the highest predictive 
test performance among the investigated ML mod-
els. The study employs the SHAP (SHapley Addi-
tive exPlanations) analysis to assess the significance 
of each input parameter in the ML models’ predictive 
capabilities. A Taylor diagram is used to statistically 
compare the accuracy of the ML models. This study 
concludes that ML models, particularly XGBoost, 
can effectively predict the shear capacity behavior of 
GFRP bars-reinforced UHPC I-shaped beams.

Keywords  Glass fiber reinforced polymer rebar · 
Shear behavior · Machine learning · Ultra-high-
performance concrete · SHAP analysis

Abbreviations 
UHPC	� Ultra-high-performance concrete
SVM	� Support vector machine
ANN	� Artificial neural network
XGBoost	� Extreme gradient boosting
GFRP	� Glass fiber-reinforced polymer
IEPANN	� Improved eliminate particles swamp 

optimization hybridized artificial neural 
network

E.T.R.	� Extra tree regression
GBRT	� Gradient boosts tree regression.
NN-FFA	� Neural network Firefly algorithm
S.V.R.	� Support vector regressor
N.S.C.	� Normal strength concrete
OOB	� Out of bag

1  Introduction

Ultra-high-performance concrete (UHPC) has gained 
significant attention and practical applications in the 
construction industry due to its exceptional compres-
sive strength and durability. Its use extends to vari-
ous structures, including super high-rise buildings, 
long-span bridges, maritime structures, bridge gird-
ers, bridge decks, and pre-stressed girders mainte-
nance (Xue et al. 2020; Nematollahi et al. 2012). The 
mechanical performance, toughness, ductility, and 
long-term durability of UHPC make it a preferred 
material for critical infrastructure. The key factors 
in constructing advanced UHPC include develop-
ing a highly dense particle-carrying architecture and 
incorporating steel fibers for concrete reinforcement. 
Achieving an optimal steel fiber content in the UHPC 

composition is crucial to establish the desired charac-
terizes of the material. These steel fibers enhance the 
UHPC’s tensile durability and ductility, resulting in 
enhanced crack resistance and overall performance. 
(Yu et  al. 2014). Indeed, the material and structural 
characteristics of UHPC differ significantly from 
those of conventional concrete structures. UHPC is 
famous for its exceptional physical characteristics, 
including higher compressive strength, higher tensile 
strength, and excellent durability. These unique prop-
erties make UHPC well-suited for various applica-
tions, especially in  situations where enhanced shear 
and flexural behavior are essential for structural sta-
bility and design (Yavas and Goker 2020a). In such 
stochastic settings, understanding and predicting 
shear behavior become even more critical for ensur-
ing the structural integrity of UHPC members. Proper 
consideration of shear behavior in the design pro-
cess helps prevent shear failures, shear cracks, and 
other potential structural issues that may arise due 
to the complex randomness in geometrical materi-
als. The shear behavior of UHPC has been the sub-
ject of numerous studies to understand its mechani-
cal response and ensure the safety and reliability of 
structures made from this advanced material. Some 
of the key studies and findings related to the shear 
behavior of UHPC are summarized. Simwanda et al. 
(2022) focused on the structural reliability of UHPC 
fiber-reinforced concrete beams with stirrups. They 
conducted a numerical analysis using non-linear 
finite element methods and compared the results with 
standard design codes to assess the accuracy of exist-
ing design approaches. The inclusion of fibers and 
stirrups in UHPC beams significantly influenced their 
shear behavior, and the study aimed to validate and 
enhance the design guidelines for UHPC structures. 
In a research by Qi et el. (2016), UHPC fiber-rein-
forced concrete beams underwent a four-spot bending 
trial to investigate their flexural response, especially 
changes in bending resistance. Graybeal et al. (2006) 
used pre-stressed I-UHPC beam and conducted three 
shear tests without any reinforcement involvement. 
The findings revealed that conventional code require-
ments often underestimate shear resistance of UHPC 
beam. This highlights importance of studying and 
understanding specific shear behavior of UHPC to 
develop accurate design guidelines. Some research-
ers (Yang et al. 2022; Liu et al. 2020) explored inter-
action characteristics with steel bars and UHPC, 
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particularly in context of geopolymer-based UHPC 
(G-UHPC). Understanding the bond characteristics is 
crucial for assessing the comprehensive shear behav-
ior of UHPC structures, as the interaction of concrete 
with reinforcement significantly influences the load 
transfer capacity. Understanding the complexities of 
shear behavior, especially in challenging scenarios 
such as intense pressures and early concrete cracking 
(Elsayed et al. 2022; Yoo and Banthia 2016), is essen-
tial for optimizing UHPC’s performance and pro-
moting its use in practical engineering applications 
(Raheem et  al. 2019; Schmidt and Fehling 2005). 
Properly designed UHPC structures with enhanced 
shear behavior can lead to more durable and resilient 
infrastructure, offering significant benefits in terms of 
safety and performance. The outstanding mechani-
cal characteristics of glass FRP, such as its stiffness 
and strength, make it a valuable material for rein-
forcement (Silva and Rodrigues 2006). Understand-
ing the bond behavior and stress-slip relationship 
between UHPC and GFRP is essential for using this 
combination in practical engineering applications. 
Such research could lead to the commercialization 
of UHPC and its successful implementation in real-
world structures (Tian et al. 2019; Liao et al. 2022). 
Overall, these studies highlight the importance of 
investigating the shear behavior of UHPC and its 
interaction with various reinforcement materials.

The complexity of the shear mechanism in UHPC 
presents a significant challenge in developing a 
proper theoretical calculation method for predicting 
shear behavior accurately (Chen et  al. 2019). Exist-
ing UHPC guidelines from different countries, such 
as the French UHPC guideline AFGC-1013 (Resplen-
dino 2011), Japan Society of Civil Engineers guide-
line (Uchida, et  al. 2005), and Switzerland UHPC 
standard (S.I.A.) (Graybeal et  al. 2020), often rely 
on classical Strut and Tie theory and employed semi-
theoretical shear strength and hybrid empirical cal-
culation methods to estimate shear capacity. Despite 
efforts by researchers worldwide to propose various 
shear calculation methods, such as plasticity theory, 
Strut and Tie method, limit equilibrium theory, and 
pressure field theory (Nielsen and Hoang 2016), 
these formulas often lack consistency and may even 
yield conflicting results. Consequently, the reliability 
of these shear strength calculation methods remains 
questionable. Given the limitations of traditional the-
oretical methods, there is a need for a more reliable 

and efficient approach to predict shear behavior in 
UHPC structures. ML models offer a sophisticated 
solution to this challenge. Numerous fields of Civil 
Engineering domain, for example, Bridge engineer-
ing (Melhem and Cheng 2003), Tunnel engineer-
ing (Xu et al. 2019), and Transportation engineering 
(Arciszewski et  al. 1994) problems, have been suc-
cessfully solved using the ML model. ML models, 
such as artificial neural networks (ANN) (Ghafari 
et  al. 2012), support vector machines (SVM) (Umar 
et  al. 2022), and tree-based ensembles (Umar et  al. 
2022) like XGBoost and random forest, deep learning 
(DL) (Wu et al. 2022), etc. have shown great prom-
ise in solving complex engineering problems. ML 
models can capture non-linear relationships between 
input parameters and shear behavior in UHPC struc-
tures. By training on experimental data from various 
UHPC beams, ML models can learn patterns and cor-
relations that conventional methods may overlook. 
This data-driven approach enables ML models to 
provide accurate predictions of shear capacity while 
minimizing the computational effort compared to tra-
ditional numerical methods. In summary, due to the 
complexity and inconsistencies in existing theoretical 
calculation methods for predicting the shear behav-
ior of UHPC, a more sophisticated approach like ML 
models is needed. By leveraging the power of data 
and pattern recognition, ML models can offer reliable 
predictions of shear behavior with reduced computa-
tional requirements, making them a valuable tool for 
designing and analyzing UHPC structures.

Various research studies and methodologies lev-
erage artificial intelligence and advanced numerical 
techniques to address complex engineering prob-
lems. For example, Tran et  al. (2023) focused on 
using damage indicators in combination with the 
ALOANN (Augmented Lagrangian-based Optimal 
Artificial Neural Network) method to detect damage 
in structures. By incorporating damage indicators, it 
becomes easier to identify the location and extent 
of damage in the structure. ALOANN is likely an 
optimization-based approach that utilizes ANN to 
efficiently and accurately detect structural damage. 
Nguyen and Wahab (2023) proposed a method to 
enhance the calibration process of 2D VARANS-
VOF (Variational Asymptotic Navier–Stokes-
Volume of Fluid) models. These models are used 
to simulate how waves interact in fluid–structure 
interaction problems. The proposed methodology 
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likely improves the accuracy and reliability of the 
simulation results, enabling better predictions of 
wave interactions in complex scenarios. In research 
by Dang et al. (2023), ANN is integrated with bal-
ancing composite motion optimization (BCMO) to 
address optimization tasks related to the vibration 
and buckling behavior of mathematically varied 
microplates in unknown physical attributes. The 
combination of ANN and BCMO likely offers an 
efficient and effective approach to solve optimiza-
tion problems in the context of composite materi-
als with varying properties. Convolutional neural 
networks (CNN) and region-based CNN (R-CNN) 
were hired to forecast various types of damage and 
accurately predict bounding boxes encompassing 
the affected regions (An efficient stochastic-based 

coupled model for damage identification in plate 
structures). By using CNN and R-CNN, a robust 
and accurate damage forecasting in images or visual 
data can be achieved.

The existing ML methods for predicting the shear 
performance are concisely presented in Table 1. The 
ML model evaluation involved eight ML models 
and a few hybrid ML models. Among these mod-
els, XGBoost showed the highest test accuracy with 
a high R2 value (R2 > 0.99), and there was relatively 
low variance between the training and test datasets. 
Additionally, ANN, R.F., and SVM also demonstrated 
good accuracy in both training and test datasets, with 
minimal variance in R2 values. Other hybrid ML 
models achieved high accuracy in both training and 
test results.

Table 1   Previous literature for predicting C.S. and F.S. of concrete materials

Author Problem ML method Training R2 Testing R2

Farouk et al. (2022) Prediction of Interface Bond Strength between UHPC and NSC SVM 0.96 0.884
Li et al. (2022) Estimation of bond strength between UHPC and reinforcing bars ANN 0.97 0.93
Faruk et al. (2022) Predicting uncertainty quantification of ultimate bond strength 

between UHPC and steel bar
IEPANN 0.979 0.973

Abuodeh et al. (2020) Assessment of compressive strength of UHPC ANN 0.801
Jiang et al. (2021) Modelling Shear strength of UHPC SVR 0.98 0.96
Marani et al. (2020) Predicting UHPC Compressive Strength ETR 0.989 0.942
Rahman et al. (2021) Shear strength prediction of steel fiber reinforced concrete 

beams
XGBoost 0.998 0.739

Fu et al. (2021) Predicting the shear strength of C.R.C. beams GBRT 0.98 0.95
Ly et al. (Ly et al. 2020) Prediction of Shear Capacity for Steel Fiber R.C. beams NN-FFA 0.96 0.95
Wakjira et al. (2022a) Flexural capacity prediction of R.C. beams XGBoost 99.3 99.3
Sun et al. (2021) Prediction of Flexural Strength for Waste Glass Cementitious 

Composite
FS 0.98 0.95

Zhang et al. (2020) Shear strength prediction of reinforced Concrete beams (Check 
all)

RF 0.97 0.94

Sarothi et al. (2022) Predicting the bearing capacity of double shear bolted connec-
tions

ANN 0.817 0.563

Dai et al. (2022) Prediction of the moment capacity of cold-formed steel channel 
beams

XGBoost 0.99 0.99

Liu et al. (2021) Shear transfer strength of concrete joints SVR 0.97 0.95
Wakjira et al. (2022b) Shear capacity prediction of FRP RC beam XGBoost 0.994 0.953
Hu et al. (2022) Predicting the Plate-End Debonding of FRP-Strengthened RC 

Beams in Flexure
BP 0.97 0.90

Su et al. (2021) Identification of the interfacial cohesive law parameters of FRP 
strips

ANN 0.99 0.99

Salem et al. (2022) Evaluation of the Strength of Slab-Column Connections with 
FRPs

Boosted SVR 0.98 0.97

Wang et al. (2022) predicting the effective stiffness of precast concrete column SVR 0.98 0.86
Guo et al. (2021) Predicting Mechanical Properties of High-Performance FRCC​ XGBoost 0.993 0.995
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As far as the author knowledge, no previous 
research has been carried out specifically on UHPC 
with GFRP bars using standard country code and 
compared with ML models. To address this research 
gap, the study used four different ML models to 
estimate shear response of I-UHPC GFRP and com-
pared the ML results with conventional country code 
results.

Employing the experimental data collected from 
the literature review, proposed ML models outper-
formed the traditional country code results in predict-
ing the shear response of IUHPC-GFRP. This sug-
gests that the ML models provide greater accuracy in 
predicting shear response of UHPC beams, especially 
in combination with GFRP reinforcement, compared 
to the conventional methods based on standard coun-
try codes.

In summary, the study demonstrates the potential 
of ML models to enhance the accuracy of predicting 
shear behavior in UHPC structures, particularly when 
considering the use of GFRP reinforcement. The 
results provide valuable insights into the application 
of ML techniques for optimizing the design and per-
formance of UHPC structures in practical engineer-
ing applications.

2 � Shear strength models of UHPC beams 
for different codes and proposed equations

Figure  1 depicts the interconnection between the 
maximum force and the central deflection for UHPC 
beams without strips (a) and with stirrups (b). The 
figure displays an ideal model of GFRP UHPC beam 
specimens with and without stripes.

The available design code, such as ACI318M-14 
and Eurocode2, established functional equations to 
estimate the response of the UHPC I-shaped beam in 
terms of material characteristics and geometric range.

2.1 � ACI318M‑14

The f ′
c
 is denoted as compressive strength, and the 

longitudinal reinforcement ratio is termed as �s . A, Sw 
and w is regarded as distance of shear span, opera-
tive width, and operative beam depth. Additional 

(1)Vu =

[√
f �
c
+ 120�s

(
d

a

)]bwd
7

+
Asvfyvd

s

parameters include Asv the stirrup’s cross-sectional 
area and its yield strength, and s denoted as stirrup 
spacing.

2.2 � Eurocode 2

Here,

Other values are the same as the ACI318M-14 
specifications. Deviation), StandardScaler was 
adopted to handle the missing data processing in 
3DP-FRC.

3 � Database development

The formation of ML prediction models highly relies 
on constructing an authentic dataset. For this reason, 
a comprehensive literature study was conducted to 
compile information from previously published stud-
ies. Therefore, 54 UHPC beams were collected from 
8 different published literature (Akbar et  al. 2023; 
Yavas and Goker 2020b; Chenggong et  al. 2022; 
Mészöly and Randl 2018; Ashour et  al. 1992; Lee 

(2)VRD =

[
0.18k(100�sf

�
c
)
1

3

]
bwd +

AsvfyvZ

s

(3)k = 1 +

√
200

d

Fig. 1   A model of GFRP-reinforced UHPC beam specimens
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et al. 2012; Bahij et al. 2018; Jin et al. 2020) to under-
stand the shear performance of glass FRP bars rein-
forced UHPC I-shaped beam. The datasets stand for 
varying situations involving shear performance con-
ditions of FRP bars reinforced UHPC I-shaped beam, 
and all the beams ranged from having 0% additive 
to having 2% admixture by weight. The input vari-
ables were used to forecast the shear performance, 
and eleven input variables are comprised in our data-
base, which is also used in predicting shear capacity 
through the county code conventional formula. The 
input parameters are cubic compressive strength (fc) , 
cylinder compressive strength (fcc) , the operative 
width of beam (bw) , the operative depth of the beam 
(d) , ratio of shear span to depth(� ), longitudinal rein-
forcement proportion (�s) , the angle between com-
pressive stress and beam axis (�) , the cross-sectional 
area of stirp (Asv) , stirrup spacing (s) , yield strength 
of stirrup (fyv) and proportion of steel fiber volume 
(pf ) . The final output included in this study’s database 
was the experimental value (Ve) of shear behavior of 
glass FRP bars. Table 2 presents the analytical prop-
erties of the dataset’s input variables, output variable, 
and model performance metrics, in average, standard 
variation, lowest, and hishest values.. The (fc) ranges 
between 108.2 and 193 MPa vary between 96.8 MPA 
and 173.7 MPa while remaining between 225 and 640 
MPA, respectively. Another parameter, such as (�) is 
3.5 and (Pf ) can be added to 4.5%.

Figure  2 demonstrates the correlation matrix (Li 
et al. 2021) between inputs and outputs variables, and 
a small square represents the correlation between the 
parameters on each axis. The same two parameters 

are linked together in those squares; as a result, the 
plot shape becomes symmetrically diagonal. The cor-
relation is calculated in the range of negative one to 
positive one, and no evident linear connection involv-
ing the two variables if the values are closer to zero. 
The correlation drawing nearer to the value of 1 dem-
onstrated that inputs are more closely linked with one 
another. If a specific inputs value rises, another does 
accordingly. Corresponding results can be obtained 
with a correlation nearer to a negative one, but instead 
of both variables increasing simultaneously, one will 
decrease when the other rises.

The highest correlation coefficient’s absolute value 
is about 0.65, thereby revealing that there is a notable 
linear relationship between fc and fcc . The fyv and the 
Asv have a strong positive correlation. Moreover, with 
a correlation value range of -0.87, bw has a negative 
correlation with �.

3.1 � Data preparation and handling the missing value

The entire database undergo z-score normalization to 
standardize the values as experimental data collected 
from multiple origin exhibits diverse unit and range.

The Zln represents the standardized value of xln , 
the nth variable of lth data’s inputs, xn is the average 
value of nth input parameters, and n is the nth disper-
sion measure of nth input parameters.

(4)Zln =
xln − xn

�j

Table 2   A detailed 
examination of analytical 
features

Input Unit Mean Standard Minimum Max Operation

fc MPA 145.744 24.155 108.2 193.0 Input
fcc MPA 125.565 25.580 96.8 173.7 Input
bw mm 85.185 38.349 50.0 150.0 Input
d mm 365.00 118.29 225.0 640.0 Input
� 2.433 0.876 1.2 3.5 Input
�s % 3.730 1.710 0.8 6.0 Input
� Degree 38.981 8.852 23.0 67.0 Input
Asv mm2 57.666 65.876 0.0 157.0 Input
S mm 118.750 118.107 0.0 500.0 Input
fyv MPA 272.475 269.124 0.0 594.0 Input
�f % 1.300 1.093 0.0 4.5 Input
Ve kN 353.512 217.141 0.0 845.0 Output
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where D denotes the number of data entries. Z nor-
malization method control the mean of every inputs 
about zero and standard variation about 1.

Numerous difficulties were encountered during 
the data-gathering process, including insufficient 
details and missing data. Several publications address 
the issue of missing values as a critical problem in 
dealing with machine learning models. Few studies 
have been conducted on dealing with missing data 
through statistical approaches(Audet et  al. 2022; Fei 

(5)�j =

√√√√ 1

D − 1

D∑

l=1

xln − xn

et al. 2023; Enders 2022; Memon et al. 2022); other 
scholars have taken different approaches to fill up the 
missing data by replacing missing values with zero, 
mean values, and medians (Enders 2022; Somer 
et al. 2022; Little and Rubin 2019). Several numeri-
cal models were conducted by a few authors, such 
as Chakraborty and Gu (Chakraborty and Gu 2019) 
proposed a mixed numerical model to deal with a 
high percentage of missing values, Wei et al. (2018) 
impended eight imputation models. They compared 
the models for handling different types of missing 
values, and Nazbzul et al. (2020) suggested a general 
framework for adapting insufficient heterogeneous 
missing data.

Fig. 2   Correlation between input and output parameters
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For this study, we used XGBoost to fill up the 
missing data, and XGBoost is a popular machine-
learning model for dealing with missing values before 
normalization. Some other imputation approaches, 
such as K.N.N. and decision trees, are also employed 
to deal with missing data (Emmanuel et al. 2021), but 
XGBoost is more accurate when handling missing 
data (Aydin and Ozturk 2021). Built on the internal 
sparsity-aware algorithm, the XGBoost method can 
handle missing values in a more sophisticated way 
(Chen and Guestrin 2016).

The XGBoost machine learning model will 
estimate the split object  for the non-missing data 
throughout the model training process, choose the 
largest split object, and appoint it as a split node by 
selecting a specified threshold for a specific vari-
able. A sparsity-aware split-finding algorithm can 
efficiently manage missing values. Therefore, only 
non-missing samples are evaluated to determine the 
best direction, reducing the algorithm’s complexity. 
The flow chart in Fig.  3 will graphically illustrate 
the process.

Fig. 3   Flowchart of Handling Missing Data Through XGBoost
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4 � Applying machine learning (ML) model

4.1 � Support vector machine (SVM)

Structured risk minimization approach provides a 
basis for the support vector regression method, where 
the empirical risk needs to be reduced for every sec-
tion of the structure(Awad and Khanna 2015). S.V.R. 
seeks to minimize the generalization error’s rather 
than revealing empirical faults. Let’s presume a data 
set

Input data base x ∈ RG×Z is our devised matrix 
and y ∈ Rn is our designed vector output which 
assigned for training sets. Here, x symbolizes the 
higher dimensional input pattern space. SVM regres-
sion aims to construct a function p(x) with the highest 
error derivation from the actual targets for all training 
data.

The standard equation of the non-linear support 
vector regression function is

Here in Eq.  (7), � is a non-linear transformation 
operator, while w indicates weight, k suggests bias, 
and T indicates transpose vector. W and k are com-
puted using data by reducing the normalized risk 
function of the variables.

The ’regularized term’ is the previous term on the 
right-hand side of Eq. (8) to evaluates the function’s 
flattening. It minimizes  flattens level to a maximum 
extended level. The equation has an empirical error, 
and there has a loss function to calculate this error.

The yi represents the actual value and p(xi) shows 
the estimated value. From Eq. (8), the variable C, also 
known as the regularized constant, is merely a varia-
tion between empirical error and the normalized func-
tion. Together C and � hyperparameter can be speci-
fied by us where the value � determine the training 

(6){G = (x1, y1)........(xn, yn)},where|n = 1.......Z

(7)p(x) = wT�(x) + k

(8)M(c) =
1

2
||W||2 + C

[
1

D

D∑

l=1

L�
(
yi,

(
Pxi

))
]

(9)

L𝜎
(
yi,P(xi)

)
=

{
yi − p(xi) − 𝜎;where, 𝜎 ≤ |yi − p(xi)|
yi − p(xi);where, 𝜎 > |yi − p(xi)|

accuracy. Data sets inside the function are used as a 
support vector. Therefore, the training set doesn’t play 
any role in making decisions.

The final form of the non-linear Support vector 
regression will be shaped as below:

Here ai and a∗
i
 is Lagrange multipliers, which 

require to satisfy the positive constraints. In certain 
ways, the function depends on the input size and 
input dimension. The k

(
xi, xj

)
 denoted as kernel oper-

ator whose value is determined by the inner product 
�
(
xi, xj

)
 . There are numerous varieties of kernel oper-

ator. Gaussian radial basis function (RBF) stands out 
as one of the most frequently utilized kernel functions 
and appropriate for dealing with non-linear regres-
sion problems as it can translate the training data into 
multi-dimensional space vector non-linearly.

4.2 � Random forest (R.F.)

The Random Forest (R.F.) model combines many 
decision tree nodes with bootstrapping and aggrega-
tion concepts, has been successfully used for deci-
sion tree optimization methods. In this model, often 
known as a random forest, a randomized collection 
of predictor factors determines how each tree devel-
ops. Each tree is constructed using random forests 
employing sample replacement. Let’s assume gener-
ating z tree with tree kz(x) the formula is shown below 
yields the R.F. regression model.

The nonparametric regression method known 
as RF regression utilizes an ensemble to gen-
erate K outputs for every tree within a set of Z 
trees.

{
J1(i), J2(i), .......Jz(i)

}
 where I =

{
i1,i2, ......., ib

}
 

is a vector of Y dimensions that generates an 
output vector of size i for each tree in the for-
est,�i = (i = 1, 2, ......J) . Each decision tree is built 
using a bootstrap sample created by randomly choos-
ing examples from the previous training database in a 
repetition process.

(10)P(x) =

D∑

l=1

(
ai − a∗

i

)
S
(
xi, xj

)
+ b

(11)
U(x) =

l∑
l=1

Kd(x)

d
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The remaining one-third of the training set forms 
the out-of-bag (OOB) sample. A combined amount 
of two-thirds of the training set are used to obtain the 
regression function. A regression tree is built every 
time through a arbitrary chosen training set  taken 
from original database.

When using unknown test data, the built-in valida-
tion features enhance the random forests’ capacity to 
predict more accurately. The random forest prediction 
model’s precision is evaluated based on its accurate 
predictions of unknown test sets.

4.3 � Artificial neural networks (ANN)

To detect patterns, learn from the estimated error, and 
forecast outcomes in higher-dimensional space, arti-
ficial neural networks (ANNs) are complicated data 
processing methods that are successfully performed 
with great accuracy in the research area of classifica-
tion, non-linear regression, and time series forecasting 
analysis. Employing a network of interlinked neurons 
generated from complicated non-linear relationships 

(12)JI
(
kd(xl)

)
= 1 −

n∑

l=1

U(kd(xl), n)
2

between input variables xl , weights function wl , and 
accepted bias bl , in the lth hidden layer with a target 
value of y in nth neuron through nth hidden layer. Each 
neuron’s estimated weights and biases are added to 
generate a network architecture below.

A hyperbolic tangent function was employed to 
improve the output. The formula’s values fall within 
the range of 0 and 1, and its definition is as follows:

The V  is an active function of the output layer, 
which enables the network to extract relevant data 
and control non-linearity to the output layer. Figure 4 
shows the ANN with eight input parameters hidden 
layer and an output layer for predicting Ve (K.N.).

The multilayer perceptron’s weights and biases are 
updated to quantify and minimize the error value of 
ANN. The process is done on each multilayer percep-
tron’s layers until the final layer produces the output 
signal. The network is optimized continuously in the 
training process, which is carried out using various 

(13)N =

D∑

l=1

WlnXl + bl

(14)y = V(N) =
2

1 + e−2N
− 1

Fig. 4   ANN architecture
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optimization algorithms through repetitive training 
samples. The quantity of hidden layers and a total 
number of neuron counted in every layer are the prin-
cipal hyperparameters of ANN. In our model, we 
implemented three hidden layers and the RELU acti-
vation function to control the input weighted sum and 
convert it into an output result.

4.4 � Extreme gradient boosting (XGBoost)

XGBoost provide exceptional performance for regres-
sion model. The technique use "Parallel boosting" 
concept, that constructs potent learner by amalgam-
ating additive training techniques. XGBoost proves 
invaluable for prediction, as it effectively mitigates 
over-fitting and enhances computational efficiency 
through the integration of regularization terms. By 
minimizing objective functions, it ensures optimal 
processing performance. In practical applications, 
it can be regarded as a soft comprehensive software 
library that synergistically merges distinctive algo-
rithms with the decision tree approach, leading to 
enhanced estimation accuracy. Presume the same 
data base as shown in Eq.  6, the input data set and 
designed vector output which assigned for training 
sets.

The suggested ensemble of trees employs n adap-
tive functions to approximate the system’s behaviour.

The set of regression trees is denoted by T and 
characterized as follows

here, U denotes the tree configurations, J and A indi-
cate leaf node quantities and corresponding values. 
Furthermore, the term fn illustrates the association 
between A and t for the individual tree.

The OA of XGBoost can be reduced as follows,

Here, yn is considered as a measured value, ⌢
yn 

stands as a estimated value and E is utilized as a con-
vex function (loss function) to assess and compare the 
precise and predicted values. The iteration count t is 

(15)
⌢
yl = 𝜙(xl) =

n∑

n=1

fn
(
xl
)
, fn ∈ T

(16)C =
{
f (x) = Ac(x)

}
(t ∶ Rn

→ J,A ∈ Rm)

(17)yz =

n∑

l=1

E

(
yn,

⌢
y
(t+1)

n

)
+ fn(xn) + Q(ft)

employed for error reduction, while Q represents the 
retribution for the regression tree model’s intricacy.

where, r represents for the number of Leaf vector 
ratings, d manages regularization process, while y 
computes the minimum loss required to split the leaf 
node calculated in aforementioned equation.

5 � Results and discussions

5.1 � Hyper‑parameters tuning

Generally, To build an effective machine learning 
model, it is essential to choose the optimal algorithm 
and carefully adjust the hyperparameters to attain the 
most favourable model architecture. (Chen and Gues-
trin 2016). Hyperparameters control the behavior and 
structure of the training period in ML models. A few 
common hyperparameters, for example, the support 
vector machine’s penalty parameter (C), neural net-
work’s learning rate, and kernel type of Support Vec-
tor Machine are applied to optimize the algorithm 
designed and minimize the loss function (Awad and 
Khanna 2015). In this study, Random Search (R.S.) 
methods (Schratz et  al. 2019) are employed to fine-
tune the chosen hyperparameters of models. As possi-
ble hyper-parameter settings, R.S. randomly chooses a 
predetermined samples number from a range between 
the minimum and maximum values. These possibilities 
are subsequently trained up until the budget allocation 
is reached. As per R.S.’s conceptual framework, con-
cerning the configuration space is sufficiently large, it 
is viable to identify global optimums or, at least, close 
approximations (Schratz et al. 2019). The primary ben-
efit of R.S. is that it can quickly assign resources and 
processes parallelly compared with the grid search 
algorithm (Awad and Khanna 2015). When adjust-
ing hyper-tuning, cross-validation is a potential rescal-
ing approach used to regulate prediction accuracy. Out 
of many training and test splits set, this database was 
divided into training and testing group using an 70/30 
split. In this study, five subsets of the data are divided 
into the five-fold cross-validation method, with one 
subset being kept evaluating the trained model after 
every iteration. The training data were divided into 
five segments, with the first segment of every iteration 

(18)F = y j + 1
2
d||r||2
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is being employed for testing purpose while the remain-
ing segments employed to train the model. The ANN, 
SVM, R.F., and XGBoost algorithms given in Table 3 
had their best parameter settings for our database deter-
mined through fine tuning. The average of the predic-
tions is employed to assess the model’s performance. 
This research employs four distinct statistical perfor-
mance metrics, including mean absolute percentage 
error (MAPE), coefficient of determination (R2), root 
mean squared error (RMSE), and mean absolute error 
(M.A.E.).

(19)R2 = 1 −

n∑
l=1

�
yl − ŷl

�2

n∑
l=1

�
yl − y

�2

(20)MSE =
1

n

n∑

l=1

(
yl − ŷl

)2

(21)MAE =
1

n

n∑

l=1

||yl − ŷl
||

where yl is the true value (experimental value) and 
ŷ is the ML predicted value, and y is the arithmetic 
mean of y values.

5.2 � Machine learning (ML) model results

The utilized computational environment used in this 
study, involved popular programming languages like 
Python and reliable ML libraries commonly applied 
in the machine learning domain. The ML models’ 
findings show that among various sets of training test-
ing split, one model that employed 70% of the data 
for training while 30% of data employed for testing 
phase produced the best regression accuracy. An in-
depth examination of the model is conducted as the 
performance results improve through hyperparameter 
tuning, enhancing the overall analysis.

Table 4 displays the accuracy of ML models based 
on the R2, M.A.E., RMSE, and MAPE. When the 
error value is reasonably low, it is considered to have 

(22)RMSE =

√√√√1

n

n∑

l=1

(
yl − ŷl

)2

Table 3   Fine-tuned hyperparameters of GFRP reinforced UHPC beam ML model

Models Parameters

ANN Batch size = 10, input neurons = 11, output neuron = 1, Number of hidden layers = 3, Number of neurons = 128, 
activation function = RELU, Output layer activation function = Linear, Optimizer = adam, Number of epochs = 128, 
learning rate = 0.001

SVM C = 500, kernel = RBF,gamma = 0.077,Estimator = SVR,n_jobs = −1,Coef0 = 0.0, tol = 0.001, epsilon = 0.1, max_
iter =—1

XGBOOST Number of estimators = 3730, CV = 5, eta = 0.1, gamma = 900, Learning rate = 0.001, Maximum depth = 8, min child 
weight = 1, sub sample = 1, colsample by tree = 1, colsample by node = 1, colsample by level = 1

RF CV = 5, Number of estimators = 50, Maximum depth = 50, Maximum features = 10, n jobs = −1. Minimum number of 
samples = 2, Minumum number of sample Leaf = 1, Bootstrap samples = True, Minimal cost-complexity pruning = 0

Table 4   ML model’s 
performance

Bold represent the ML models’ predictions are compared to the results obtained from these 
building code standards. According to the findings, the XGBoost model demonstrates the highest 
predictive test performance among the investigated ML models

Model Output Training-70% Testing-30%

ML Strength R2 MAE MSE RMSE R2 MAE MSE RMSE

ANN Vexp 0.9 47.4 6225.2 78.89 0.82 64.2 7068.5 84.07
SVM Vexp 0.8 38.5 9796.6 98.97 0.76 38.5 9555.3 97.75
XGBoost Vexp 1 13.9 312.14 17.66 0.85 57.8 5864.2 76.57
RF Vexp 1 32.7 1993.5 44.64 0.83 68.9 6715 81.94
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a high-performance model. The R2 value demon-
strates the ML model’s ability to evaluate the experi-
mental data. The cost function, usually known as 
the RMSE, is critical to how an ML system learns. 
Parameters of both RMSE and M.A.E. measure the 
precision and quality of fit.

Figure  5 displays the performance of the train-
ing dataset’s ML models with estimated and experi-
mental value. The distance of data points from the 
adjusted curve proved high consistency between 
experimental findings and calculated values across all 

datasets. Among all the predicted models, XGBoost 
predicted most accurately (R2 = 0.99). Other models 
also have high prediction accuracy, such as Random 
Forest has R2 = 0.95, ANN has R2 = 0.87, and SVM 
has R2 = 0.85. Similar results are shown for the test-
ing dataset. Figure  6 displays significant XGBoost 
prediction accuracy for the test dataset with R2 = 0.85 
while R.F., ANN, and SVM have an R2 value 0.832, 
0.823, and 0.762.

Additionally, in Fig.  7, the solid lines evalu-
ates the relationship between predicted value with 

Fig. 5   Performance of the ML model from training evaluation
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the experimental value for train and test data based 
on suggested ML methods. The grey curve depicted 
the shear capacities of 95% overestimation or under-
estimation. These figures show a strong correlation 
between the predictions made by all models and the 
relevant experimental values (average R2 0.81 for all 
models). The machine learning outcome indicated 
that the XGBoost model outperformed all other 
models in estimating shear behavior. The XGBoost 
model’s prediction accuracy and shear capabilities of 
experimental data are strongly correlated, as shown 
by the training and test dataset’s respective lower 
error values of MAE 13.89 KN and 57.80 KN.

Furthermore, accuracy assessment of the ML 
methods revealed a minimally low variation between 
actual strength capacity and the estimated RMSE 
values. The XGBoost method prediction accuracy 
in training and test stage are between 17.66 KN and 
76.57 KN, respectively. For the SVM, ANN, and 
R.F. models, these values were 98.97 KN, 78.89 
KN, and 44.64 KN for the training dataset and 84.07 
KN, 97.75 KN, and 81.94 KN for the test dataset 
(Table 4). According to Fig. 7 and Table 4, the R.F. 
model acquired second place in predictive ability, 
having the second highest R2 and the comparative 

Fig. 6   Performance of the ML model from testing evaluation
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lowest M.A.E., MAPE, and RMSE value, followed by 
ANN.

Figure  8 illustrates the residual assumption of 
the shear behavior of a glass F.R.P. I-shaped UHPC 
beam. The ML model’s residual dispersion is roughly 
the same across different models along the x-axis of 
λ. All machine learning models display almost the 
same trend and pattern for XGBoost, ANN, SVM and 
R.F.. The model indicates that the mean is normally 
allocated, without significant curvature or non-

normality, showing that the regression model is 
not inadequate.

5.3 � Standard country code resultsV

Figure  9aand b depicted the correlation between 
observed shear capacity and predicted shear force 
using the conventional formula of Eurocode2 and 
AFGC-2013 country codes. These outcomes are cal-
culated in R squared value, while best-fitting data 
values are found in AFGC-2013 between them. The 
regression model is used to assess intensively the 
predicted shear behavior from various models and 
design codes listed in Table  5. Table  5 also shows 
that between the two design codes, ACI318M-14 has 
the highest prediction accuracy (R2 = 0.39), with the 

Fig. 7   Evaluation of training and testing performance based on linear regression analysis
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lowest average of 0.486 where the lowest standard 
variation of 0. 223. ML model results show that the 
average and standard variation for SVM and ANN are 
same, with a value of 0.996 and 0.224, respectively. 
Thus, it demonstrates a strong relationship between 
the predicted value and the suggested ML model in 
this study.

In this dataset, XGBoost demonstrate a mean of 
0.941 and a variance of 0.915, while R.F. models 
have a mean and standard variation of 0.191 and 
0.229. XGBoost for determining shear behavior 
performs better than all other models. The M.S.E. 

and RMSE are also calculated in Table  5 to fulfill 
the robust machine learning model. Therefore, the 
strongest interconnection between the experimental 
and predicted value for training and testing phase 
can be seen in R2 value. Furthermore, the future 
utilization of larger datasets is recommended to 
enhance prediction accuracy, allowing the inte-
gration of hybrid ML algorithms for improved 
forecasting.

Figure  9c and d illustrate the standard residual 
error. The data along the x-axis essentially evenly 
distribute the residual assumption with a consistent 

Fig. 8   Residual analysis of ML model in term of λ
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variation and variability. This figure verifies the 
validity of the assumption model by showing that the 
mean is uniformly distributed and free of any system-
atic curvature or non-normality.

5.4 � Taylor diagram

Figure  10 represents a Taylor diagram that statisti-
cally compares the four-machine learning models. 
The diagram presented a concise statistical evaluation 
of the similarity between trend parameters based on 
correlation, root-mean-square variance, and variation 
proportion. This diagram displays three popular sta-
tistical goodness of fit measurement parameter, such 

Fig. 9   Standard country code prediction results

Table 5   Comparison between standard country code and ML 
prediction results

Compared results Statistical approach

Mean Standard 
deviation

ANN 0.996 0.224
XGBoost 0.941 0.191
SVM 0.996 0.224
RF 0.915 0.229
ACI318M-14 0.486 0.223
Euro code2 1.449 1.270
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as R2, RMSE, and S.T.D to evaluate the accuracy 
among ML model prediction result with experimental 
values of shear behavior. As observed in the figure, 
all machine learning models have a higher rate of pre-
diction accuracy (higher R2 value) along with lower 
RMSE, and XGBoost shows the best prediction accu-
racy among all models with the highest correlation 
value (0.928) and least RMSE (74.627) value. The 
ANN demonstrated the lowest prediction accuracy 
in a correlation coefficient around 0.877, identical to 
SVM with the same high RMSE (96.461) value. The 
R.F. model showed satisfactory prediction accuracy 
while maintaining a position between the best and 
least accurate model. However, with considerable 
accuracy, all four ML models can generally predict 
the shear behavior of glass F.R.P. bars-reinforced 
ultra-high-performance concrete I-shaped beams.

5.5 � SHAP analysis

The Shapley Additive explanations (SHAP) algo-
rithm is used to determine the relative importance of 
the factors that affect the shear strength behavior of 
UHPC computed by XGBoost. As a result, it is pos-
sible to statistically analyze the input–output correla-
tions that are inherently hidden in the conventional 
machine learning model. According to the analysis 

of this study, the XGBoost model has shown higher 
accuracy than other ML models. Therefore, the 
SHAP value may be used to evaluate the XGBoost 
predictions in various ways. It shows the significance 
of each parameter and quantifies how each parameter 
affects each-others for determining model prediction 
accuracy. Figure  11 provides the input parameters’ 
feature importance, which illustrates each feature’s 
overall influence on the model predictions.

It can be comprehended from Fig. 11a that Stirrup 
Spacing (S) significantly influences the shear behav-
ior of glass FRP bars reinforced UHPC, while they 
fyv are of the minor importance. fcc also affects the 
shear behavior but the significance is much less than 
�f  and slightly higher than d . Among all other param-
eters, � , fc and θ has an inadequate amount of influ-
ence on output results, and other remaining variables 
have very poor effects as well. A SHAP summary 

Fig. 10   Taylor Diagram presents a statistical assesment 
among various ML models

Fig. 11   SHAP summary plot and parameter significance dis-
tribution results
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plot of the features is shown in Fig.  11b through a 
beea swarm plot. The distribution plot demonstrated 
the SHAP values for every feature with underlying 
influence patterns to demonstrate density and dots 
piled up along every feature sequence. The figure 
shows the individual SHAP value on the x-axis and 
the input parameters ranked in order of importance 
on the y-axis. The database’s outcome results are 
represented in a violin plot, and the color warm indi-
cates the rising or decreasing of a particular value in 
input  features, and values range from small to large 
in colors blue to red. The plot demonstrates that, on 
average, stirrup spacing (s) is the most significant fea-
ture. Consequently, the summary plot provides infor-
mation about which feature is highly essential and 
how one feature affects another, determining shear 
behavior. The general observation from the figure 
shows that the shear strength of glass fiber I-shaped 
UHPC will rise with an increase in the features of 
�f  , fcc and d . On the other hand, shear strength leans 
to decline as parameters for features like � and θ 
increase in values.

6 � Conclusions

This research’s main driving force and motivation 
is utilizing the soft computing method to predict the 
shear behavior of UHPC I-shaped glass bars. Based 
on experimental data from eight pieces of literature, 
this study made a machine-learning model to pre-
dict the shear strength and performance behavior of 
UHPC I-shaped beams and compared the ML results 
to traditional country code results. This study looked 
at how well four machine learning models, such as 
ANN, XGBoost, and SVM, could predict the shear 
strength of a glass FRP UHPC I-shaped beam. The 
results show that the integrated machine learning 
approach is very good at predicting UHPC shear 
behavior, and we conclude that ANN, R.F., SVM, and 
XGBoost can all be used to figure out how an R.C. 
beam is sheared. The results of the study led to the 
following conclusions.

1.	 During the training phase, the ideal hyperparam-
eters of ML-based models were chosen using 
a hybrid search with fivefold cross-validation. 
Comparing with experimental results revealed 
that the four ML-based approaches with input 

features and appropriate hyper-parameters can 
predict the shear behavior of a glass FRP-rein-
forced UHPC I-shaped beam.

2.	 XGBoost was the most reliable and efficient 
model with an R2 = 0.99, RMSE = 17.66 KN, 
and M.A.E. = 13.89 KN among all other machine 
learning models used in this study.

3.	 In addition, this study incorporates current design 
criteria and empirical methods, which were 
developed to evaluate the shear behavior of glass 
FRP UHPC I-shaped beams. Consequently, the 
machine learning model can predict the actual 
strength with greater accuracy and reliability than 
conventional design code models such as Euroc-
ode2 and ACI318M-14.

4.	 The SHAP algorithm was implemented to show 
the feature dependency of ML results and indi-
cate feature importance in shapely values. It 
shows that stirrup spacing(s) is the most signifi-
cant feature among all input parameters.

5.	 The findings of this study indicated that all of 
the essential design factors that affect the shear 
behavior of glass F.R.P. bars-reinforced UHPC 
I-shaped beams should be considered to improve 
the empirical model and standard equations’ abil-
ity to estimate the shear behavior.

6.	 UHPC is a relatively new material with limited 
tests done so far; therefore, future limitations and 
challenges will need further study.
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