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Abstract In this paper a structural optimization 
framework is developed to design three-dimen-
sional periodic lattice unit cells that meets specific 
mechanical requirements. The work is motivated 
by the high design freedom of additive manufactur-
ing technologies, which enable complex multiscale 
lattice structures to be printed. An optimized lattice 
unit cell delivers desired orthotropic elastic material 
properties, providing a tailored metamaterial. The 
design variables are the coordinates of lattice skel-
eton nodes defined within the three-dimensional lat-
tice cell space, and the connectivities between them 
resulting a strut-skeleton. Genetic algorithm (GA) is 
combined with posterior particle swarm optimization 
(PSO) algorithm to establish an integrated topology 

and shape optimization tool. For the calculation of 
the elastic properties of the individual lattice cells, 
an effective Timoshenko beam-based finite element 
calculation method was developed. The novelty of 
the work stems from its free topology optimization 
nature, excluding the strut diameters from the optimi-
zation variables. The method is demonstrated by four 
lattice cell optimization cases, where extreme ortho-
tropic elastic properties were targeted and achieved. 
The tailored lattice cells represent a metamaterial, 
that can be used to build a structural component on 
the macroscopic scale, by stacking the cells peri-
odically together, to fill the macroscopic 3D design 
space. This framework is a strong basis that can be 
extended to meet further nonlinear metamaterial 
requirements, such as energy absorption.

Keywords Lattice cell · Structure · Multiscale · 
Optimization · Structural · Metamaterial

1 Introduction

The paper aims to design tailored metamaterials in the 
form of lattice unit cell structures, which are potential 
to be produced through 3D-printing. Additive Manu-
facturing enables complex lattice structures to be eas-
ily produced, which would not be feasible with other 
manufacturing techniques. This work focuses only 
on the numerical simulation and design optimization 
of periodic lattice cells. The presented approach is 
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independent from the choice of the printed material, 
as well as from manufacturing technology. Therefore, 
a homogeneous and isotropic reference material is 
assumed, which is independent from any 3D printing 
process-induced effects on the material quality and 
properties.

A repeating unit cell of the whole structure, which 
is commonly referred as representative volume ele-
ment (RVE), could be represented through its homog-
enized structural properties. In this work, only beam-
based lattice unit cell geometries are optimized. The 
homogenized properties of the microscopic unit cell 
can then be assigned to a metamaterial, and might be 
used for analysis on the macroscopic lattice assembly 
level. The assembly refers to the cellular component, 
which is built together by stacked repeating unit cells.

The importance of using periodic cellular mate-
rials is constantly increasing, especially in the aero-
space industry (Pantelakis and Tserpes 2020). Pante-
lakis and Tserpes (2020) give an overview of some 
basic unit cells, including their main application area 
and manufacturing techniques. Ashby studied differ-
ent type of lattice and foam unit structures (Ashby 
2006), identifying bending and stretching dominant 
lattice topologies, considering the effect of relative 
density. Similarly, Gibson and Ashby (1997) cluster 
the mechanical capabilities of some typical lattice and 
foam structures.

The traditional construction and optimization of 
periodic lattice structures happen through the com-
monly-used standard cells. Some exemplary standard 
cells are shown in Fig. 1.

The common trend of lattice structure customiza-
tion is rather concentrated to size optimization prob-
lems of standard cell topologies, with predefined 
design variables. However, due to the high design 
freedom of additive manufacturing techniques, almost 
any arbitrary cell topology is feasible to produce. The 
complex microscale unit cells with extreme aniso-
topic properties may be integrated into macroscopic 
structural 3D problems to outperform construc-
tion through standard cells. Such a design workflow 
is presented by Schwahofer et  al. (2022). The novel 
approach aims to optimize topologies with constant 
diameter of the lattice struts.

2  Overview

Various homogenization techniques are available to 
calculate the effective structural properties of a beam-
based lattice representative volume element (RVE). 
These are analytical approaches (Gibson and Ashby 
1997), and numerical approaches such as asymptotic 
homogenization by Arabnejad and Pasini (2013). 
This technique was used by Marschall et  al. (2020) 
for multiscale analysis of 3D-printed lattice sand-
wich structures. Dong et al. summarized the available 
numerical and experimental lattice homogenization 
techniques (Dong et al. 2017).

In this work, finite element-based homogeniza-
tion is used for the elastic characterization of the unit 
cells. FE methods may vary according to the applied 
discretization method of the unit cell, which can be 
meshed as common practice with solid tetrahedral or 
hexahedral elements, and controlled periodic bound-
ary conditions (PBC). In this work, an elastic FE 
beam model was established to reduce the computa-
tional effort of a homogenization. The virtual charac-
terization can be carried out in the six principal defor-
mation directions of the cell. Such a homogenization 
tool was implemented in Abaqus Scripting environ-
ment by Omairey et al. (2019), called easyPBC.

2.1  Homogenization through elastic beam elements

The main motivation behind the beam element-based 
FE modelling is the extremely low computational 

(a) Cube (b) Body-centered cube

(c) Face-centered cube (d) Octet

Fig. 1  Some standard lattice unit cells
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cost, compared to a solid element-based model. A 
slender strut-based lattice unit cell can be discretized 
through a few degrees of freedom. The main difficulty 
is the modelling of the lattice strut-joints (junctions), 
where more material is concentrated.

The homogenization of two dimensional lattice 
structures by elastic elements was first established 
by Tollenaere and Caillerie (1998). Reis et al. (2010) 
analyzed analytically some standard 2D unit cells 
with beam elastic elements. Standard 2D unit cells 
were analyzed through elastic beam elements by Reis 
et al. (2010), Caillerie et al. (2006), and Hutchinson 
and Fleck (2006). Two dimensional beam-based mac-
roscopic lattice structures were analyzed by Vigliotti 
and Pasini (2012a). This was enhanced to a three-
dimensional domain and homogenization of micro 
unit cell (Vigliotti and Pasini 2012b) through sim-
ple Euler-Bernoulli beams neglecting the additional 
stiffness of the junction points. Vigliotti et al. (2014) 
also researched nonlinear constitutive models for a 
2D pin-jointed beam-based lattice. In the study of 
Park and Rosen (2018), as-fabricated modeling was 
applied considering the FFF printing technology and 
semi-rigid joint frame.

This paper targets to achieve a beam-based formu-
lation to approximate reliably the elastic properties of 
an arbitrary 3D strut-based lattice unit.

2.2  Optimization techniques

An overview about cellular material design and opti-
mization was written by several authors (Pan et  al. 
2020; Maconachie et  al. 2019; Plocher and Panesar 
2019). Truss-based ground structure optimization was 
firstly established by Zhang et  al. (2016), where the 
macroelement approach was introduced as popula-
tion-based strut layout optimization schemes.

In this paper, population-based genetic (Singh 
and Choudhary 2021; Kramer 2017; Tao et al. 2020) 
and particle swarm algorithm were selected for the 
fitness-based variation and optimization of unit cell 
topologies. For strut-based application such methods 
were used in several studies. Vaissier et  al. (2019) 
optimized the support structure considering the man-
ufacturability and targeting the least material used. 
In Su et  al. (2009) Su et  al. present a sparse matrix 
encoding scheme for ground structure based strut 
structure topology and sizing optimization with spe-
cially developed crossover and mutation operators. 

Giger and Ermanni proposed an evolutionary algo-
rithm for the optimization of strut structures (Giger 
and Ermanni 2006).

In recent years, a strut-based evolutionary level 
set topology optimization method was explored in 
large-scale crash design applications by Bujny et  al. 
(2018a; b) targeting structural crashworthiness. 
Raponi et  al. conducted research in a similar field 
using a Kriging-assisted level set method (Raponi 
et al. 2019a, b). Fairclough et al. (2021) established a 
2D strut topology design tool that performs a ground 
structure optimization on a predefined 2D discretized 
domain. A projection-based ground structure optimi-
zation method was performed in the work of Deng 
and To (2020) for large-scale problems.

In the work of Chu et al. (2010), a lattice structure 
was optimized with Particle Swarm Optimization 
(PSO) and Least-squares Minimization (LSM) for 
derivation of the optimal size parameters of prede-
fined lattice unit cell. Parameter optimization of strut 
members of a lattice component in the macroscale 
was carried out by Stanković et al. (2015) and Gorgu-
luarslan et al. (2017).

Sigmund (1994) first employed an inverse topol-
ogy homogenization method to tailor 2D materials 
with prescribed constitutive parameters. A compre-
hensive review about multi-scale structural optimiza-
tion was published by Wu et al. (2021). This review 
lists various further inverse homogenization methods 
considering elastic mechanical properties (Andreas-
sen et al. 2014; Wang and Sigmund 2020), as well as 
other physics, such as thermal expansion (Sigmund 
and Torquato 1996), electrical conductivity (Torquato 
et al. 2002), or fluid permeability (Challis et al. 2012). 
Lattice unit cell size optimization on the microscale 
was carried out in recent papers (Imediegwu et  al. 
2019; Nightingale et  al. 2021). These methods only 
tackled predefined beam-based unit cells. With such 
an analysis, tailored elastic properties are obtained. 
Other methods of tailoring elastic properties of lattice 
unit structures were explored by Chen et  al. (2018) 
and Zhu et  al. (2017) through high-fidelity optimi-
zation considering material property gamut. Xia and 
Breitkopf (2015a; b) carried out research in a similar 
field. In these studies, two-dimensional lattice units 
with extreme elastic properties were optimized. Da 
et  al. (2017) published their hybrid cellular automa-
ton method to design 2D micro-metamaterial with 
extreme properties.
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3  Beam‑based homogenization method

In the framework of this paper, only point symmetric 
geometries are considered, built of junction nodes and 
connectivity elements (struts). The unit cell might be 
cubic or a rectangular cuboid. Additionally, the con-
structed lattice skeletons always have a node at the 
eight corner points. The cross section of the skeleton 
members is circular. In the entire analysis framework, 
equal diameters of the beams within the lattice cell 
are considered. The modelling of the lattice cells with 
elastic beams happens through strut section refine-
ment and reinforcement of junction elements.

3.1  Refinement with beam elements

The struts of the lattice cubes are modelled through 
multiple interconnected beam elements. The length 
and properties of the beam elements vary from each 
other. A beam is considered to be a junction element 
if it is positioned at a lattice junction node. The length 
of a junction element is determined relative to the 
smallest closed angle with another junction beam that 
is connected to the same junction point, and the diam-
eter of the struts.

The varying and individually determined junction 
beam length is required to have a more realistic stiff-
ness reinforcement, caused by the additional material 
concentrated at the connecting nodes of the cell. This 
will be revealed in detail in 3.2.

The method for the junction element length deter-
mination is illustrated in Fig. 2. Here a 2D view of a 
strut junction of three intersecting beams can be seen. 
With the knowledge of the smallest closed 3D angle 
and the r radius of the beams, the length of the junc-
tion is calculated through an easy trigonometric Eq. 
(1), where l1 is the length of a junction beam, and �12 
is the smallest closed angle.

3.2  Reinforcement of the junction elements

The refinement of the beam mesh of the cell is fol-
lowed by the reinforcement of the junction beams. 
The junction points require slightly different treat-
ment of inner joints and junctions on the boundary 

(1)l1 =
r

sin(�12)
.

surface of the RVE. In both cases, the collinearity of 
two adjacent beams is checked at every lattice node. 
For junction points on the boundary surface, the 
periodic effect on the RVE boundaries must be con-
sidered. The junction clustering algorithm considers 
therefore the beam skeleton of the adjacent cell next 
to the RVE.

Three exemplary beam crossing nodes are shown 
in Fig.  3, indicating the collinear condition for the 
identification as a junction node. The related beams 
are then selected for stiffness reinforcement.

The junction beam reinforcement can happen 
through Young modulus scaling as in Eq. (2) or 
through beam diameter scaling according to Eq. (3). 
In both cases, a scaling factor ( amat or asec ) is used to 
achieve the desired stiffening effect of the joint area.

(2)Ereinf =Enom ∗ amat.

Fig. 2  The determination of junction beam length and closed 
angles

Fig. 3  Collinear condition for detecting junction nodes
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In this work, both strategies were implemented and 
tested. For linear elastic structural analysis, the result-
ing homogenized properties are similar with both 
material- and section-based junction reinforcement. 
From now on, the material-based reinforcement will 
be used during the analysis.

Similarly to the junction beam length, the rein-
forcement factors of the junction beams may individ-
ually vary. The scaling factor is approximated based 
on the closed angle with respect to the principal 
deformation direction. The three-dimensional homog-
enization of the cells happens with respect to the six 
principal loading directions. These are the three nor-
mal loading directions (xx,  yy and zz) and the three 
shear directions (xy, xz and yz). In every case, all the 
junction beams are assigned to an angle, that is closed 
with the normal plane of the principal deformation 
vector. This is called the orientation angle.

The body centered cube in Fig. 4 demonstrates the 
orientation angle under xx and zz directional normal 
loading. The orientation angle for the shear load cases 
are determined as the resultant vector of the shear 
components. As an example, the orientation direction 
corresponds to [1, 1, 0], in case of xy shearing.

The orientation angle dependent reinforcing model 
is based on the observation of how the differently ori-
ented beams behave elastically during a linear strain 
increment. In horizontally and vertically oriented 
struts, compression or tension deformation seems to 
dominate. Furthermore, in struts with a tilt orienta-
tion, bending deformation may dominate. Due to the 
bending dominant loading, these struts may be inef-
fective in the joint area, as the junction beams are 
barely deformed due to the material concentration at 
the joint. The junction beams of the horizontal and 
vertical struts tend to contribute more to the elastic 
stiffness under pure tension or compression.

This two step discretization through beam refine-
ment and junction reinforcement is demonstrated in 
Fig. 5.

These observations were considered during the 
development of the reinforcement method of the 
junction beams. In order to find the realistic amat 
reinforcement factor depending on the orienta-
tion angle of the junction beam, a numerical cali-
bration was carried out. Five standard lattice cells 
were elastically homogenized with a high-fidelity 

(3)dreinf =dnom ∗ asec.

tetrahedral volume mesh, as well as through the 
presented reduced-order beam-based finite element 
analysis. Furthermore, all the lattice geometries 
were homogenized with different diameter and cube 
length dimensions. The calibration of the beam 
model reinforcement parameter amat was carried 
out in multiple homogenization directions. In this 
regard, the tetrahedral solid mesh-based homog-
enization is considered as a reference, and serves 
for the validation of the developed reduced order 
Timoshenko beam-based formulation.

Next, the strut orientation angle dependent model 
was established. This calibrated model is shown in 
Fig.  6. During the beam reinforcement process, the 
orientation angle is determined for all the junction 
beams, and their elastic modulus is assigned to the 
corresponding amat reinforcement factor.

z

x

(a) xx direction

z

x

(b) zz direction

�4

�2
�1

�3

�4

�2

�1

�3

Fig. 4  The orientation angels of struts with respect to xx and 
zz directional compression
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Beyond the reinforcement factor, the validity range 
of the applied beam-based modelling was also ana-
lysed. During the calibration, the slenderness of five 
standard cells were varied, thus it was possible to 
determine the strut diameter - strut length ratio, where 
the Timoshenko beam-based model delivers accu-
rate elastic properties. Accordingly, the shortest strut 
length of the lattice cell should be at least four times 
larger than the diameter in use. Based on the cali-
bration of the reinforcement factors, any more slen-
der unit structure always shows good approximating 
performance, even though very slender lattice would 
not need a junction reinforcement at all. For such thin 
structures, stiffness treatment of the junctions only 
minorly affects the calculated elastic properties.

3.3  Boundary conditions on beam-based mesh

During unit cell homogenization, periodic boundary 
conditions are desired. In the case of a solid-meshed 
FE model, there are multiple degrees of freedom 
through the cross section of the struts to clearly pre-
scribe the dependencies of the opposing boundary 
edges (Omairey et al. 2019).

However, in case of the beam-based model-
ling, the corner and surface nodes are represented 
through one FE node, which makes it unclear how 
to prescribe the periodic boundary conditions. In 
the frame of this study, an extended boundary con-
dition method for beam elements was implemented 
and tested. This approach prescribes periodic rota-
tion boundary conditions (Eq. (4)) to the boundary 
nodes to consider the effect of the surrounding adja-
cent lattice cells.

where j = x, y, z . The +i,−i superscript indicates the 
opposing boundary surfaces of the unit.

(4)u+i
r,j

= u−i
r,j
,

Another important effect must be handled during 
the cross section assignment of the elastic beams 
that lie on the cell edge or surface. The struts on the 
cube edges have the form of a quarter circle cross 
section, while the beams lying on the cell surface 
are realized as a half circular strut. For this reason, 
the beam-based FE model has to inherit these cross 
section properties as well. With this treatment, it 
is possible to avoid unrealistic additional stiffness 
modelled on the boundary beams, which would lead 
to exaggerating the homogenized properties of the 
lattice cell. Through the implemented reduced-order 
method, the simulation time of a single directional 
homogenization can be reduced between 10 and 150 
times, depending on the complexity of the unit cell 
topology.

The FE analysis is executed as elastic deforma-
tions in the six principal strain directions. The 
whole unit cell is meshed, and it is always points 
symmetric through the triple mirror principle. The 
detailed boundary conditions and equations are doc-
umented in Omairey et  al. (2019). The additional 
constraints regarding the periodic rotations of the 
boundary junctions are stated in Eq. (4).

Fig. 5  Skeletonization 
(left), beam refinement 
(middle) and junction 
reinforcement (right) of 
an exemplary strut-based 
lattice

multiple beamstruss topology stiffness adjustment
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Fig. 6  Calibrated model for the relationship between the ori-
entation angle and reinforcement factor
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4  Optimization method

In this paper, a population-based optimization tech-
nique was selected as it allows for potential exten-
sions to design tailored metamaterial including 
energy absorption, as a response targeting crashwor-
thiness applications. The two-step method firstly uses 
a genetic algorithm to generally optimize the unit cell 
topology. In this context, topology is used to only 
describe the way the separate nodes are connected, 
without considering the specific position of the nodes. 
Nodes can belong to specific domains (volume nodes, 
surface nodes, corner nodes). The result of the GA 
ideally is an optimal topology, with suboptimal node 
position being permissible. Due to the high degree of 
freedom and the difference in paradigm of the contin-
uous optimization for node positions and the discrete 
optimization for topology, having both aspects con-
verge simultaneously is hard to achieve. The impact 
of the possible discrete changes in topology (remov-
ing/adding nodes/beams) is assumed to outweigh the 
impact of the continuous change of node positions 
in each time step. Consequently, the genetic fitness-
based selection operation will favor good topology 
change more than accurate node positions. However, 
simultaneous optimization of the node positions in 
the GA is necessary to achieve a minimum degree of 
node position optimization. This is required so that a 
good or optimal topology with suboptimal node posi-
tions still outperforms worse topologies that happen 
to be closer to their ideal node placement by chance. 
If the cell with superior topology is not optimized far 
enough regarding its node positions the wrong cell 
would be selected for the next step.

Then, a reduced degree of freedom optimization 
is done posterior to the main GA loop in the form of 
a PSO algorithm which will find the optimal node 
position for the specific input topology. The poste-
rior PSO loop can be treated as a shape optimization 
of the prior topology optimization in the GA. The 

approach is implemented in a python script responsi-
ble for genetic operations and optimization, evaluat-
ing each genotype through the beam-based Abaqus-
Python interface (Sect. 3).

4.1  Encoding of cells

Each genotype consists of two lists, with one describ-
ing the nodes and one defining the beams. In Fig. 7, 
the data structure for the topology junctions is dem-
onstrated. Each node is given a unique index, its posi-
tion in cartesian coordinates, an index representing its 
domain, the number of connections that are allocated 
for the node and the actual number of connections of 
the node. The domain describes what location change 
to the node is possible. A “0” indicates a “volume-
node” with free movement, 1–6 are the surface nodes 
constrained to movement on the corresponding sur-
faces of the cuboid unit cell, and 10 are the corner 
nodes that have no free movement. The connections 
or beams are then defined in a list through pairs of 
node indices between which a beam is positioned.

The unit cells are optimized on 1/8th sub-cell, 
which is triple mirrored across the three center planes 
to obtained the targeted periodical and point symmet-
ric lattice unit design (Fig. 8).

4.2  Connection generation

New connections are generated when the allocated 
number of connections for a node is higher than the 
actual number. To find a partner for such a node, 
a list of all other nodes without full connections 

Indexnode xpos ypos zpos Indexsurf numcon goal numcon is
1 0.674 2.384 4.012 0 3 2
...

...
...

...
...

...
...

4 0 1.457 1.329 1 4 4
5 4.326 1.457 0 3 3 2
...

...
...

...
...

...
...

8 0 0 0 10 2 2

Fig. 7  Data structure of nodes

Fig. 8  1/8th Cell mirrored across centre - planes (Blue, Green, 
Red)
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is generated and a potential partner is randomly 
selected. Then the user selectable minimum distance 
to other connections (for this paper: 2 × diameter ), 
and a minimum connection length (for this paper: 
2 × diameter ) is checked to verify if the new beam is 
allowed. These conditions also help to generate struc-
turally more meaningful topologies, furthermore to fit 
to the validation range of the elastic beam calculation 
framework. This process is repeated until no new con-
nections can be found. After this the full internal con-
nectivity of the cell and the minimum number of con-
nections per node (2 connections for volume nodes, 1 
connection for surface and corner nodes) are checked. 
When these conditions are not met, they trigger a 
repair function that removes all connections from the 
nodes and tries to generate a new set of connections 
from the ground up. The connection generation step 
also repairs non-connected graphs and beams that 
have positioned too close or too short through the 
mating and mutation step.

4.3  Mating

In mating different partners are selected to be recom-
bined to form the next generation of cells. The GA 
optimization loop proposed has been tested with and 
without mating where both approaches have been 
successful. When not using mating, the next genera-
tion is created through a fitness proportional selec-
tion (Kramer 2017). To fill the population size with 
selected cells elitism can also be enabled in the GA, 
which allocates a fraction of the population size to a 
selection from the previous best cells of each genera-
tion (Kramer 2017). Mating is implemented as a non-
exclusive two-parent scheme. The parents are picked 
by fitness proportional selection with a child cell 
having the same parent twice being a possibility. To 
include the idea of elitism, an option allows the inclu-
sion of a fraction of the total population of previous 
best cells into the parent pool which in turn allows 
their selection as parents.

For each parent pair to form their child cell, fea-
tures need to undergo crossover. The nodes from 
both parents are matched with each other through an 
assignment optimization where the total euclidian dis-
tance between point pairs is minimized. This assign-
ment approach does not require an equal number of 
nodes in the parent cells and can consider the nodes 
in each domain (volume, surface) separately. To solve 

the assignment problem the weighted frequency 
method by Habr et  al. is implemented (Gottschlich 
and Schuhmacher 2014; Schrage 2016).

After all the possible assignments have been 
made, a uniform random factor is used to choose if 
the excess nodes from the parent with more nodes are 
used or discarded. The crossover of the positions is 
done through the arithmetic mean of both matched 
parent nodes. For the connections as well as the 
allocated number of connections a uniform random 
choice picks one parent from which to inherit.

4.4  Mutation

Mutation consists of a step-by-step method where 
each descriptive trait of the unit cell can be mutated 
according to a user picked probability. Node posi-
tions are mutated with a vector uniformly distrib-
uted in direction and gaussian in length. The nodes 
that are affected are selected by a weighted random 
choice. The movement with the vector is checked 
to ensure the node-to-node minimum distance con-
straints are not broken, and to not leave the external 
dimensions of the cell. In the case of a breach a new 
vector is generated and tried. The number of connec-
tions allocated to each node is also mutated. Each 
node has a weighted random choice applied and if 
selected an integer rounded from a gaussian distribu-
tion is either added or subtracted from the allocated 
connection number. Here a constraint for minimum 
and maximum connections is applied. Each node has 
a random chance of being deleted. The connection list 
is cleaned after deletion where all connections to non-
existent nodes are removed. Then a random chance is 
applied to create a new node respecting the distance 
constraints. Last, a chance for complete re-connection 
of a cell is applied.

4.5  Optimization objective

The general implementation in the fitness functions 
is a weight-based transformation from a multi objec-
tive optimization to a single combined objective. This 
approach works well for the different implemented 
fitness function. The response of each unit cell is 
evaluated based on the homogenized properties of a 
continuous periodic lattice of the specific unit cell.
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4.6  Optimization responses

4.6.1  Cell weight approximation

To approximate the weight specific performance of 
the unit cells the infill percentage is used as a surro-
gate for density. To find the infill percentage all nodes 
are considered as spheres and all connections as cyl-
inders. The volumes of entities on the cell surface and 
edge are counted accordingly. Additionally, the length 
of each beam is reduced by its diameter multiplied by 
an empirical factor compensating for overlap of the 
beams.

4.6.2  Cell infill control

There is no direct method to specify the infill of the 
cells throughout an optimization. However, the infill 
is restricted through the constraints and the connec-
tion number penalty factor ( ccon ) in combination with 
the beam diameter and the unit cell dimensions. The 
complexity constraints, namely minimum connection 
length, minimum node-to-node distance, minimum 
connection-to-connection distance and minimum 
connection-to-node distance, affect how the beams 
can be packed into the space and can reduce the max-
imum possible infill ratio.

An important aspect regarding infill is the fact that 
new nodes and beams can be created or removed in 
the cells in each generation throughout the GA, thus 
changing the infill of the randomly generated initial 
population (which is possible) will have no guarantee 
on the final infill of the best performing cell.

4.6.3  Maximum connection and cell recursion

Without sizing aspect within the optimization, cell 
recursion could occur (Fig.  9). The only difference 
in fitness between the simple full cell and the 1/8th 
sub-cell of the same topology is the beam diameter 
relative to its size. To stop the algorithm from find-
ing increasingly complex recursions of the same cell 
topology a maximum connection number nmax is set, 
which when passed ( nis > nmax ) induces a penalty 
( ccon ) for the fitness ( f = optimization value∕ccon ) 
according to Eq. (5). This stops additional computa-
tional time caused by redundant complex cells, and 
also stops a pseudo sizing optimization from occur-
ring through this recursion.

The specific choice of nmax = 12 for this paper is 
based on the cube recursion example. Where the 
simple cube has 3 beams in the 1/8th cell, the first 
recursion has 12 leading to the choice that this num-
ber would generally allow for enough complexity for 
most optimization goals, while still penalizing the 
expected recursion problem for quite simple cells. 
Because this limit is implemented as a cost function 
as opposed to a hard constraint the other contributing 
factors in the fitness functions can also outweigh this 
factor to find the right cell, with only a bias towards a 
simpler solution.

4.6.4  Stiffness ratio

For this type of fitness function, the stiffness per 
infill percentage in the main optimization direction 
is maximized:

To control the stiffnesses in the other principal axes 
relative to the main axis, a ratio is defined, and the 
cost function shown in Eq. (7) is applied for both 
ratios ( r1,r2).

Different weights ( w1 ) can be applied to change the 
influence of these ratio costs on the weight spe-
cific main axis stiffness. Through this, selected cell 

(5)ccon =

{(
1 +

nis−nmax

10

)3

nis > nmax

1 nis ≤ nmax

(6)fstiffness =
E1

�infill
.

(7)cratio,i =

⎧⎪⎨⎪⎩

�
1 +

Ej∕Ek−ri

ri
× wi

�3

Ej∕Ek > ri�
1 +

ri−Ej∕Ek

Ej∕Ek

× wi

�3

Ej∕Ek ≤ ri

(a) Basic Cell (b) Recursion of Cell

Fig. 9  Possible cell recursion
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properties which are more important to the specific 
application can be encouraged.

The final fitness is then calculated by dividing 
by the costs:

 The formulation of this fitness function with the 
combination of a main goal and cost functions for 
the stiffness ratios as well as the equation itself was 
largely found experimentally. Variations of this such 
as a reduced power ( 1 ≤ exponent ≤ 2 instead of 3) 
also led to successful optimizations but were more 
prone to stagnate in local minima and take more gen-
erations to generate well-fitting solutions if found 
at all. At higher powers ( 4 ≤ exponent ) the selec-
tion of cells with high fitness is dominated by only 
very few candidates due to the stronger scaling with 
ratio distance from the target ratio, leading to poor 
exploration.

The hard geometric constraints such as the mini-
mum node-to-node distance, the minimum beam-
to-beam distance, the minimum beam-to-node 
distance, the minimum connection length and the 
minimum beam-to-beam angle, are all enforced 
outside of the fitness function within the cell alter-
ing operations themselves and will thus never be 
broken.

(8)fcomplete =
fstiffness

ccon × cratio1 × cratio2
.

4.6.5  Poisson ratio

The poisson ratio is implemented as a cost function 
to approach a simple target value. The main optimi-
zation variable is still weight specific stiffness, so 
that an optimum exists. The connection factor cost 
is also used. Each of the 6 poisson ratios from the 
orthotropic material definition �12 , �13 , �21 , �23 , �31 , �32 
can be set to a target and weighted independently by 
a factor wij . Equation (9) describes the cost cij that is 
calculated for each poisson ratio.

This cost function can also be used for negative pois-
son values. The final cell fitness is calculated in the 
same way as for the stiffness ratio formulation in Eq. 
(8).

4.7  Population size

The minimum viable population size is very problem 
dependant and cannot be generalized from the amount 
of data collected. In Fig. 10 different exemplary opti-
mization problems with different population sizes can 
be seen. While the smallest population size shows 
signs of no continuous evolution, larger populations 
seem to work well. The population of 60 was also not 
sufficient for the given problem, but still shows con-
tinuous improvement in the cumulative best. If real 

(9)cij =
((|||�ij,real − �ij,goal

||| × wij

)
+ 1

)

Fig. 10  Effects of popula-
tion size on convergence of 
the genetic algorithm
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convergence is desired increasing the population size 
seems effective in eliminating noise and allowing for 
node position evolution concurrently with topological 
evolution. But due to the long runtime large popula-
tion sizes become less feasible with the current imple-
mentation even if they show nicer behaving evolution.

4.8  PSO loop

The discrete topology optimization through GA has 
a high frequency of topology mutation. That makes 
it difficult to achieve smoothly and continuously 
optimized structure modifications. To counteract 
a need for the reduction in mutation rate to a point 
where the GA can find the optimal node position, a 
fast-converging population-based approach (Hem-
becker et  al. 2007) is applied to the reduced degree 
of freedom problem of optimizing node positions 
for an unchanging topology. Here the particle swarm 
optimization is chosen. PSO is a robust algorithm 
that is highly regarded and is applicable to a variety 
of diverse problems (Okwu and Tartibu 2021). It has 
also been generalized that this approach is robust and 
efficient even for difficult problems (Hembecker et al. 
2007). The PSO algorithm is initialized by having a 
population of randomly distributed particles, each at a 
point ( xi(t = 0) ) in the solution space, with an initial 
random velocity vector ( vi(t = 0) ). The movement of 
each particle is defined by its velocity for each time 
step seen in Eq. (10) (Okwu and Tartibu 2021). The 
swarm behavior is introduced through the calcula-
tion of the velocity which includes the positions of 
the global best ( xglobal Best ) and local best ( xlocal Best ). 
The local best denotes the best position that each spe-
cific point has reached across all iterations, with the 
global best denoting the absolute best position found. 
A random factor between 0 and 1 ( r1 , r2 ) and a weight 
( c1 , c2 ) are used to induce exploration of the solution 
space (Hembecker et al. 2007). An inertial mass fac-
tor (w) is also applied to the previous velocity vi(t) to 
set an efficient trade-off between global exploration 
and local refinement of the solution (Shi and Eberhart 
1998). Equation (11) shows the method to calculate 
the velocity for a point for the next iteration (Shi and 
Eberhart 1998).

(10)xi(t + 1) =xi(t) + vi(t)

To apply the PSO principles to the lattice unit cell, 
each node is considered as a separate optimization 
problem with all of them running concurrently with 
their local best taken from the best performing con-
figuration of a unit cell across its own history, and the 
global best position taken from the single best solu-
tion, for all nodes. The initial population is generated 
by importing the cell with the highest fitness from the 
GA loop. Then, a random vector of Gauss distributed 
magnitude and uniform distributed direction is added 
to each node. This process is repeated to form the ini-
tial population of cells.

5  Results and discussion

5.1  Stiffness optimization

In this chapter, the capabilities and performance of the 
developed reduced order elastic beam-based calculation 
tool and structural optimization framework are demon-
strated through four unit cell topology problems, where 
diverse extreme anisotropic stiffness properties were 
targeted.

5.1.1  Stiffness optimization with large strut diameter

The target of the optimization is a weight specific maxi-
mum y-axis stiffness ( Eyy ) with cost functions to con-
trol the other ratios of x/y stiffness ( Exx∕Eyy ) and z/y 
stiffness ( Ezz∕Eyy ). The x directional stiffness was tar-
geted to be 10 percent of the maximized y directional 
stiffness, while one percent in z direction. The design 
space of the 1/8th cell can be seen in Eq. (12), while 
the main objective is stated in Eq. (13). The two ratios 
for the cost functions (Eq. (7)) are indicated in Eq. (14), 
including their weights in Eq. (15). The complete fit-
ness is determined according to Eq. (8).

(11)
vi(t + 1) =wvi(t) + c1r1

(
xlocal Best − xi(t)

)

+ c2r2

(
xglobal Best − xi(t)

)

(12)xi, yi, zi ∈ [0, 5.0]

(13)fstiffness =
( Eyy

�infill

)
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For this optimization the evolution rate seen in 
Fig. 12 is as expected, with the increased slope from 
generations 3 to 10 representing the biggest change in 
the topology by removing insignificant beams. The 
topology optimization however functions well even 
after this point and new topologies are found that are 
better able to match the optimization criteria, which 
can be seen in the sample cells (c) and (d) in Fig. 11. 
Here, the cell complexity is increased from the low 
complexity starting point of generation 10 by incor-
porating two beams in the place of 1 to adjust stiff-
ness by changing the loading direction within the 
cell, so that it becomes possible to fulfill the opti-
mization goal. In this optimization a population size 
of 200 was used, however in evolution chain of the 
best performing cells only a single approach is repre-
sented that is being altered, while all other niches are 
short lived without significant contribution towards 

(14)r1 =
Exx

Eyy

= 0.01 and r2 =
Ezz

Eyy

= 0.1

(15)w1 = 0.2 and w2 = 0.2

the solution. This may suggest insufficient diversity 
within the candidate solutions, possibly due to a lack 
of niches forming due to no additional method used 
to encourage this, as well as aggressive elitism being 
used (Fig. 12).

The particle swarm optimization (Fig. 13) for the 
cell topology from Fig. 11 generation 38, is very con-
vergent both for the best solution as well as for the 
average of all. Thus, it can be inferred that no solu-
tions are trapped in a local optimum and all solutions 
are converging toward the same node positions.

The optimization may have reached the actual 
optimum with the weighting that was used, but as 
can be seen in Table 1 did not fully match the pre-
scribed goal ratio for ratio 2. To show that this is 
the global optimum multiple reruns of the same 
algorithm would be required which was not yet 
tested due to the comparatively high run time of this 
process.

In an attempt to increase this accuracy, parameter 
constraints such as a minimum beam length of two 
times the beam diameter are imposed on the move-
ment of the nodes throughout the optimization, which 

(a)
gen0best

(b)
gen10best

(c)
gen29best

(d)
gen38best

(e) PSObest

Fig. 11  Cell samples from evolution for stiffness ratios (large 
beam diameter)
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Fig. 12  Fitness evolution of genetic algorithm for stiffness 
ratios (large beam diameter)
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Fig. 13  Fitness evolution of particle swarm optimization for 
stiffness ratios (large beam diameter)
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limit the solution space, but are a reasonable trade-off 
for higher accuracy for use with this fast simulation 
method.

Nevertheless, the large strut radius of 0.5 com-
pared to the lattice unit cell size of a 10 × 10 × 10 
cube, leads to the relatively high inaccuracy of the 
beam model results compared to a solid-meshed FEM 
analysis (Table  1). The homogenized elastic proper-
ties through the tetrahedral are considered as refer-
ence values. In the next demonstrated optimization 
problems, in 5.1.2, 5.2.1 and 5.2.2, a strut radius of 
0.1 is used which bring closer agreement between 
the beam and solid-based calculation of the opti-
mized lattice skeletons. With reduced strut diameter, 
it is more likely that the optimizer constructs longer 
struts, that fit better to the validity range of the elastic 
beam model.

The cell is optimized to fit the unique elastic 
behaviour defined through the fitness function. Thus, 
comparing the cell performance with standard cells 
on basis of the fitness function will not be meaning-
ful. The ‘octet’ unit cell (Table  5, Cell (f)) yields a 
fitness of 0.9907 for this function compared to the 
24,120 of the actual result. The strong response of the 
fitness function to the allocated ratios is seen here, 
which is part of the reason why cells are found which 
fit these ratios so closely. This behaviour can be mod-
erated through the weight factor when determining 
the ratio costs ( cratio ), thus a more lenient ratio optimi-
zation goal that leads to cells with the focus more on 
weight specific stiffness, instead of the specific ratios, 
can be defined as well.

5.1.2  Stiffness optimization with reduced strut 
diameter

For this optimization problem the weight specific 
maximum z-axis stiffness was targeted, with cost 
functions of ratio of x/z stiffness (7.9 %) and ratio of 
y/z stiffness (8.8 %). The inputs for the fitness func-
tion are stated in Eqs. (16), (17), (18), (19).

The proposed algorithm was able to find a topology 
which matched the prescribed stiffness rations bet-
ter (Table 2) than for the first stiffness optimization. 
However no claim can be made that either have or 
have not found the absolute optimum, only that a use-
ful unit cell is generated, that suits the application for 
which the fitness parameters were set. In the fitness 
evolution with the GA (Fig. 15) different topologies 
are evolved simultaneously with versions of the topol-
ogy from cell (c) in Fig. 14 and cell (d) co-evolving 
and competing for the highest fitness within each gen-
eration. This is a desired behaviour and is working 
well in this optimization with a population size of 100 
(Fig. 15).

(16)xi, yi, zi ∈ [0, 2.5]

(17)fstiffness =
( Ezz

�infill

)

(18)r1 =
Exx

Ezz

= 0.079 and r2 =
Eyy

Ezz

= 0.088

(19)w1 = 0.667 and w2 = 0.667

Table 1  Performance of 
unit cell stiffness ratio

Exx Eyy Ezz Ratio (z/y) Ratio (x/y)

Goal 0.1 0.01
Weight 1 1
GA

best
19.969 1121.798 85.058 0.0758 0.0178

PSO
best

18.573 1118.901 111.663 0.0998 0.0166
Improvement 23.97% 12.02%
Solid

best
27.096 1177.777 274.937 0.2334 0.0230

Accuracy 31.46% 5.00% 59.39% 57.25% 27.85%
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The topology which ends up with the highest fit-
ness is first tried in generation 36 of the GA and is 
improved until generation 62. Due to the high degree 
of freedom, when allowing topology change and 
node position change concurrently, this process only 
slowly converges on the local or global optimum. 
When comparing this with the convergence of the 
PSO (Fig. 16) where within 6 generations (population 
size 80) the node position converges, the advantage of 
using this joint method is clear. The high randomness 
of mating with different topologies as well as muta-
tion of the topology in the GA will effectively only 

have a few to no cells of the “best” topology being 
solely optimized for node positions within each gen-
eration, which is inefficient, while the PSO can do the 
positional optimization in a more focused manner.

5.2  Poisson ratio optimization

5.2.1  Positive poisson ratio optimization

For the poisson ratio optimization there are poten-
tially more cost functions, if each of the 6 poisson 
ratios were being optimized, which would lead to a 
higher problem complexity, but in this use case only 3 
were chosen by weighting the others with 0. The unit 
cell here is a cuboid with the dimensions 6 × 10 × 20 . 
As a consequence the poisson ratio goal �31 = 2 and 
�32 = 2 need to be achieved.

The space for the design variables as well as inputs 
for the cost functions of poisson ratio-based formula-
tion from Eq. (9) are shown below (Eqs. (20), (21), 
(22)):
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Fig. 15  Fitness evolution of genetic algorithm for stiffness 
ratios (small beam diameter)
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Fig. 16  Fitness evolution of particle swarm optimization for 
stiffness ratios (small beam diameter)

Table 2  Performance of unit cell stiffness ratio

Exx Eyy Ezz Ratio (x/z) Ratio (y/z)

Goal 0.0789 0.879
Weight 1 1
GA

best
1.828 22.361 23.083 0.0792 0.9687

PSO
best

1.853 22.363 23.482 0.0789 0.952
Improve-

ment
0.37% 1.87%

Solid
best

2.106 22.155 23.450 0.0898 0.945
Accuracy 12.03% 0.93% 0.14% 12.15% 0.80%

(a)
gen0best

(b)
gen3best

(c)
gen16best

(d)
gen62best

(e) PSObest

Fig. 14  Cell samples from evolution for stiffness ratios (small 
beam diameter)
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In the fitness evolution of the GA for this optimiza-
tion (Fig.  18) a high randomness and large sections 
of fitness degradation can be seen. This is a problem 
inherent property which is especially visible for the 
poisson ratio optimizations as they are much more 
sensitive to a change in topology. The discrete nature 
of adding or removing beams, even at low mutation 
rates where per generation only a single topology 
element is changed, can lead to a large change in fit-
ness. If this type of fitness decrease due to explora-
tion happens for all the well performing cells within 
a generation a significant fitness decrease is seen. In 
the algorithm elitism is used, meaning that the previ-
ous single best cell is always included in the next gen-
eration, and a random selection of previous well per-
forming cells are added to the mating pool. But due 
to the sensitivity of the cell performance to topology 
change generations of low performance, such as from 
generation 39 to 43 (Fig. 18), this is expected and not 
harmful as the elitism allows for the previously well 
performing population to be reconsidered.

For this complex goal of a poisson ration of 2 
the resulting cell topologies become more complex 
(Fig. 17). Though the same kind of gradual topology 
change through exploration of the solution space as 
was seen with the simple examples can be seen here, 
when from cell c (generation 38) to cell d (genera-
tion 59) (Fig.  17), two beams are removed and one 
is added in an advantageous way over the course of 
21 generations. The convergence of the genetic algo-
rithm is plotted in Fig.  18.  The quick  convergence 
of the particle swarm optimization  (Fig.  19) can be 
observed as usual.

In this optimization the effects of the weights 
of the objectives are evident. The matching of �31 
and �32 to the goal is almost perfectly achieved, 
while the topology that allows this is not able to be 
matched to the goal for �21 , which is regarded less 
by the optimization due to the selected weights. 
The accuracy of the beam-based homogenization 
on the optimized topology shows acceptable accu-
racy with a maximal error of 13 %. The results of 

(20)xi ∈ [0, 3] yi ∈ [0, 5] zi ∈ [0, 10],

(21)�31 = 2 and �32 = 2,

(22)
w12,w13,w23 = 0 , w31,w32 = 20 and w21 = 4.

(a)
gen0best

(b)
gen10best

(c)
gen38best

(d)
gen59best

(e) PSObest

Fig. 17  Cell samples from evolution for poisson ratios
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Fig. 18  Fitness evolution of genetic algorithm for poisson 
ratios
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Fig. 19  Fitness evolution of particle swarm optimization for 
poisson ratios
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the Poission’s ratio optimization are summarized in 
Table 3.

5.2.2  Negative poisson ratio optimization

In this problem, two poisson ratios were targeted to 
reach negative values. The cost function members are 
defined according to Eq. (24) to formulate Eq. (9). 
The weights for the fitness as well as the design space 
are declared in Eqs. (23) and (25).

(23)xi, yi, zi ∈ [0, 5.0]

(24)�31 = −1 and �32 = −1

The convergence of the GA seems to be poor, as can 
be seen from Fig. 21, where after the single peak at 
generation 68 no further improvement occurs. Here 
a saturation of the generations occurs where a strong 
local optimum dominates the candidates. The solu-
tion from the peak however has a high enough poten-
tial that after the optimization with the PSO the goal 
is perfectly met.

From the sample cells in Fig. 20, the variety of dif-
ferent topologies that are attempted, is seen. When a 
problem such as these negative poisson ratios require 

(25)w12,w13,w23,w21 = 0 and w31,w32 = 10

Table 3  Performance of 
unit cell poisson ratio

Exx Eyy Ezz �12 �13 �21 �23 �31 �32

Goal 0.5 2 2
Weight 20 200 200
GA

best
0.595 4.153 30.266 0.122 0.041 0.855 0.273 2.026 2.001

PSO
best

0.608 4.073 30.280 0.129 0.042 0.859 0.268 1.999 2.000
Improvement − 0.85% 1.25% 0.05%
Solid

best
0.652 3.666 28.658 0.143 0.040 0.805 0.269 1.765 2.104

Accuracy 6.80% 11.08% 5.66% 10.19% 3.45% 6.71% 0.55% 13.30% 4.97%

(a)
gen0best

(b)
gen1best

(c)
gen19best

(d)
gen68best

(e) PSObest

Fig. 20  Cell samples from evolution for negative poisson 
ratios
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Fig. 21  Fitness evolution of genetic algorithm for negative 
poisson ratios
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Fig. 22  Fitness evolution of particle swarm optimization for 
negative poisson ratios



943Tailored elastic properties of beam-based lattice unit structures  

1 3
Vol.: (0123456789)

very specific unit cells to even exhibit the wanted 
behavior at all, the exploration of the algorithm is 
shown to be sufficient to find a candidate that can do 
this (Fig. 21).

The way the fitness function is implemented 
responds strongly to small changes in the goal param-
eter, so that the results may converge with high accu-
racy. This leads to the disparity of the GA reaching 
a relatively low maximum fitness, while the PSO 
(Fig. 22) converges at around a forty times higher fit-
ness value than the initial GA.

The accuracy of the beam-based approximation 
is very good for the three normal stiffness properties 
( E11,E22,E33 ) according to Table 4, but seems to be 

less accurate for the negative poisson ratios. Due to 
the complex nature of the deformation under nega-
tive poisson ratio, the reduced order beam-meshed 
model cannot predict the actual poisson number so 
accurately. Nevertheless, the tetrahedral FE calcula-
tions confirmed the negative poisson ratios, which are 
considered as very good results, considering the very 
challenging nature of the demonstrated optimization 
problem. Due to the extremely complex design, the 
manufacturability of this lattice (Fig.  20) would be 
probably not feasible.

All in all, the algorithm performs well for different 
optimization variables between the stiffness optimiza-
tion and the poisson ratio optimization, where the lat-
ter requires much more specific topologies compared 
with stiffness.

Table 4  Performance of 
unit cell: negative poisson 
ratio

Exx Eyy Ezz �12 �13 �21 �23 �31 �32

Goal − 1 − 1
Weight 100 100
GA

best
0.899 1.425 12.903 0.404 − 0.068 0.640 − 0.171 − 1.006 − 1.610

PSO
best

0.953 1.273 12.031 0.549 − 0.077 0.733 − 0.103 − 1.000 − 1.000
Improvement 0.62% 60.97%
Solid

best
1.004 1.265 11.757 0.564 − 0.066 0.710 − 0.117 − 0.777 − 1.09

Accuracy 5.14% 0.63% 2.33% 2.61% 16.28% 3.18% 11.70% 28.75% 8.11%

Table 5  Fitness and properties of standard unit cell for cubic stiffness ratios ( r
1
= 1 , r

2
= 1)

 

fcomplete Infill % Exx Eyy Ezz �12 �13 �21 �23 �31 �32

(a) BCC 34290.87 28.55 3264.38 3264.14 3264.32 0.23 0.23 0.23 0.23 0.23 0.23
(b) BCC + FCC 28515.13 60.21 5724.12 5723.84 5724.28 0.30 0.30 0.30 0.30 0.30 0.30
(c) FCC 31801.58 49.48 5247.00 5246.84 5247.24 0.23 0.23 0.23 0.23 0.23 0.23
(d) Cubic 43547.13 17.83 2588.22 2588.22 2588.22 0.00 0.00 0.00 0.00 0.00 0.00
(e) Dense symmetric 11373.73 86.47 8996.85 8996.70 8996.89 0.36 0.36 0.36 0.36 0.36 0.36
(f) Octet 26373.84 44.28 3893.65 3893.72 3893.52 0.35 0.35 0.35 0.35 0.35 0.35
(g) Octet + Z 2076.94 51.67 4215.06 4215.09 7838.62 0.42 0.19 0.42 0.19 0.36 0.36
(h) Neg poisson ratio 9857.90 29.72 2792.48 2792.48 3678.45 − 0.19 − 0.30 − 0.19 − 0.30 − 0.24 − 0.24
(i) X aligned 0.96 23.78 14867.42 246.17 246.17 0.00 0.00 0.00 0.94 0.00 0.94
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5.3  Repeatability and convergence

5.3.1  Cubic cell optimization

In this section the repeatability of the results from the 
optimization framework is tested for the simple case 
of weight specific cubic cell properties. Main objec-
tive and cost ratios r1 and r2 are set according to equa-
tions below ((26), (27), (28), (29)). The beam radius 
in this optimization is set to 0.75. For the cubic opti-
mization nmax = 10 maximum connection number is 
used in the fitness function from Eq. (8).

(26)xi, yi, zi ∈ [0, 5.0]

In Table  5 the simulation results for standard unit 
cells as well as their respective fitness for this func-
tion can be seen. The cube cell (Table 5, Cell (d)) out-
performs all others in weight specific performance, 
with the intuitive explanation that it has ideal material 
alignment for loading along the major axes when dis-
regarding shear stiffness.

Based on these samples from the solution space 
an indication of convergence is for the GA to find 
the cube cell or a better performing cell. For the two 
attempts at this fitness function, cubic optimization 
1 (Figs.  23, 25) and cubic optimization 2 (Figs.  24, 
26), the GA successfully reached the cube cell. Con-
sequently, some confidence of repeatability and 

(27)fstiffness =
(Exx + Eyy + Ezz

�infill

)

(28)r1 =
Exx

Ezz

= 1.0 and r2 =
Eyy

Ezz

= 1.0

(29)w1 = 0.667 and w2 = 0.667

(a) gen0best (b) gen3best (c) gen7best

(d) gen8best (e) gen9best (f) gen11best

Fig. 23  Cell samples from evolution for cubic goal (simple 
random starting cells)

(a) gen5best (b) gen9best (c) gen17best

(d) gen23best (e) gen27best (f) gen30best

Fig. 24  Cell samples from evolution for cubic goal (complex 
random starting cells)
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Fig. 25  Fitness evolution of genetic algorithm for cubic goal 
(simple starting cells)
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Fig. 26  Fitness evolution of genetic algorithm for cubic goal 
(complex starting cells)
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convergence to the global optimum can be concluded, 
at least for this simple example.

The initial population for optimization 2 uses 
more complex (higher number of nodes and number 
of beams) cells to start the optimization, as can be 
seen in cells (a) and (b) in Fig. 24, compared to the 
relatively simple cells from optimization 1 in Fig. 23. 
This is reflected in the number of generations, with 
optimization 1 (Fig.  25) requiring 11 generations 
in contrast to the 30 generations of optimization 2 
(Fig. 26). Here the extra generations are required for 
enough discrete changes (beam and node deletions 
and creations) to derive the cube from the complex 
starting point.

While there is some indication that in a ’suffi-
ciently large, long running’ optimization the algo-
rithm could be perfectly convergent, this argument 
is essentially not important for the proposed method. 
The definition of population size and generation 
count to be sufficient is unclear for each problem and 
is likely to become prohibitively large, thus the gen-
eral goal in the sample optimizations throughout this 
paper is to find a good solution for the posed fitness 
function with no consideration if it is optimal or not.

In contrast to a ground structure optimization 
nodes and beams can be both created and removed, 
which should mean that with enough generations any 
solution should be able to be transformed into any 
other solution. This further supports the idea that 
the starting population is not relevant in determining 
whether the GA finds the optimum only how long it 

will take as the method of mutation and mating lim-
its the changes possible per generation. When look-
ing at the changes to the cells in cubic optimization 
1 (Fig. 23), for the best cells in each generation only 
small changes like adding and removing 1 or 2 beams 
occur. This is not indicative of the exploration of the 
algorithm. In Fig. 27 6 randomly selected cells from 
generation 11 in cubic optimization 1, where the 
cube cell was found, are shown. The intra generation 
variability displayed here is very high showing good 
exploration of the solution space.

5.3.2  General remarks

Based on other observed cell optimizations, conver-
gence to the same result takes place, when the objec-
tive was moderately complex and the same geomet-
ric complexity constraints were used. With differing 
geometric complexity (not initial complexity but 
constraints such as minimum connection length and 
beam diameter allowing for more nodes and beam to 
fit into the cell) the optimal design will differ if there 
is a topology that fulfills the fitness function more 
closely. However, simple solutions such as the cube 
cell from Sect. 5.3.1 will always be contained in the 
solution space even when more complex topologies 
are also considered. The fitness function is formu-
lated in such a manner that it is insensitive to com-
plexity (apart form the maximum connection number) 
as an expected increased stiffness due to more beams 
is compensated by the increased infill ratio.

However, for very complex objectives (such as 
negative passion ratio from the paper), the final 

(a) gen11pop17 (b) gen11pop39 (c) gen11pop40
Fitness: 7585.5 Fitness: 9150.3 Fitness: 31.0

(d) gen11pop57 (e) gen11pop70 (f) gen11pop77
Fitness: 9376.4 Fitness: 24580.9 Fitness: 19.1

Fig. 27  Cell samples from cubic goal (simple starting cells, 
generation 11)

Fig. 28  Periodic continuation of the unit cell from the stiff-
ness optimization from 5.1.1
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design is probably not exactly optimal and a repeated 
run could converge to different but similarly perform-
ing unit cell solutions, even if the same geometric 
complexity is applied.

The question of convergence is much simpler for 
the PSO results due to the good convergence for the 
best cell as well as a general tendency for all other 
cells in the population (average line) to move to the 
optimum (unclear if local or global) being evident 
(Figs.  13, 16, 19, 22). The PSO is irrelevant to this 
cube cell test as all nodes in the best cell are corner 
nodes that cannot be moved.

5.4  Periodic continuation of a cell

Figure  28 shows the periodic continuation of the 
converged cell from the first stiffness optimization 
problem from 5.1.1. Due to the constraints within 
the algorithm to have minimum distances to each 
boundary surface, this continuation can be done 
for all the cells and give reasonable results, that are 
usable in a real application. Therefore, a compo-
nent can be built by filling its design space with the 
optimized cells, representing the orthotropic elastic 
metamaterial, that was designed by the optimizer. 
This lattice assembly was also 3D-printed with a 
commercial SLA printer using resin (Fig. 29).

6  Conclusion

6.1  Summary

In this work, a beam-based calculation framework 
was presented that approximates the effective prop-
erties of microscopic strut-like lattice unit structures. 
Within a certain validity range of strut diameter and 
strut length ratio, the homogenized properties through 
the beam-based simulation shows good accuracy. In 
the finite element models of the lattice cells, a per-
fectly isotropic material was assumed, neglecting 
process-induced effects on the material properties. 
The highly reduced order beam-based calculations 
are used to calculate the design responses in a com-
bined GA-PSO structural optimization loop. The 
optimization tool can design a lightweight lattice unit 
cell, providing a desired orthotropic elastic and light-
weight metamaterial.

The optimization goals that were set for the exam-
ples are quite extreme and the proposed approach can 
still generate a topology to mostly match them.

Through the introduced optimization method, 
three-dimensional and 3D-printable orthotropic lat-
tice unit cells can be tailored. Similar research for 
unit cells was performed only in Chen et al. (2018), 
Zhu et al. (2017) and Xia and Breitkopf (2015a). As it 
is summarized in Sect. 2.2, meta-heuristic optimiza-
tion methods were often used in literature mostly for 
nonlinear structural cases, but was not yet explored 
for such microscopic unit cell problem. The promis-
ing linear elastic cell tailoring results are encouraging 
to add nonlinear responses to fully benefit from the 
method to find ideal elastoplastic properties of the tai-
lored metamaterial.

6.2  Outlook

The algorithm performs well for different optimiza-
tion variables between the stiffness optimization and 
the poisson ratio optimization. Thus it is extendable 
to other quantifiable structural properties such as uni-
directional strength and energy absorption, enabling 
crash worthiness as an objective on the macroscopic 
component to be considered. The main motivation 
behind using a genetic algorithm is the easy expan-
sion to nonlinear structural responses under plastic 
deformation. The integration of other non-structural 

Fig. 29  3D-printed demonstrator of the tailored cell from 
5.1.1
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responses might also be possible, such as wave propa-
gation or thermal properties. Such an approach would 
enable a compact multidisciplinary formulation of the 
metamaterial optimization through strut-like lattice 
cells.

An application-specific unit cell from this 
approach could outperform conventional unit cells, 
when it is integrated into a macroscopic structural 
problem. The enhancement of this framework for the 
integration of 3D macroscale problems is revealed in 
Schwahofer et al. (2022).

The ability to explicitly control and optimize the 
relative density of a tailored cell is not available at 
the moment. An adjusted fitness with infill objective 
could be formulated, but the pseudo-discrete material 
allocation through constant strut diameter could lead 
to convergence difficulties.

Further development of the optimization method 
by neighborhood mating in the GA could increase 
niching in the candidate solutions providing more 
complex topologies, while a PSO integrated GA 
could also bring convergence benefits.

Some of the optimized cells in Sect.  5 have con-
verged to an extremely complex topology. Manufac-
turing such objects would lead to printability issues. 
However, the manufacturability constraints of the 
optimization algorithm were in this paper deacti-
vated, as the exploration of capabilities of the numeri-
cal method was in focus. More advanced lattice cells 
could be derived by removing the triple-symmetry 
constraint and introducing a periodic geometrical 
hard constraint on the 3D unit domain, allowing free 
inner topology.
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