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Abstract  The aim of this paper is to propose a novel 
computational technique of applying reliability-based 
design to thermoelastic structural topology optimi-
zation. Therefore, the optimization of thermoelastic 
structures’ topology based on reliability-based design 
is considered by utilizing geometrical nonlinearity 
analysis. For purposes of introducing reliability-based 
optimization, the volume fraction parameter is viewed 
as a random variable with a normal distribution hav-
ing a mean value and standard deviation. The Monte 
Carlo simulation approach for probabilistic designs is 
used to calculate the reliability index, which is used 
as a constraint related to the volume fraction con-
straint of the deterministic problem. A new bi-direc-
tional evolutionary structural optimization scheme is 
developed, in which a geometrically nonlinear ther-
moelastic model is applied in the sensitivity analysis. 
The impact of changing the constraint of a defined 
volume of the required design in deterministic prob-
lems is examined. Additionally, the impact of altering 
the reliability index in probabilistic problems is inves-
tigated. The effectiveness of the suggested approach 
is shown using a benchmark problem. Additionally, 
this research takes into account probabilistic thermoe-
lastic topology optimization for a 2D L-shaped beam 
problem.

Keywords  BESO · Reliability based design · 
Thermoelastic · Topology optimization

1  Introduction

Topology optimization (TO) has become a dynamic 
discipline, thus attracting researchers from differ-
ent fields: mechanical, civil, and aerospace fields. It 
is supposed to be one of the most rewarding methods 
(Li et  al. 2020; Zhou and Rozvany 1991; Zhu et  al. 
2016). Depending on the definition of the design vari-
ables, TO may generally be divided into two groups. 
The density approach falls under the first group. It 
connects each design variable to a finite element and 
uses that connection to determine if a solid material 
is present (1) or not (0). For such category, various 
approaches have been developed such as evolutionary 
structural optimization (ESO) method (Xie and Ste-
ven 1993) and solid isotropic material with penaliza-
tion (SIMP) (Bendsøe 1989). While the second cate-
gory involves design variables related to the structural 
boundaries such as the phase field method (Wang and 
Zhou 2004) and level set method (Sethian 1999).

When structures undergo significant deformations, 
the tangential stiffness matrix may no longer be posi-
tive definite. As a result, various studies have arisen 
in the past two decades that take geometrically non-
linear topology into consideration (Abdi et al. 2018; 
Buhl et al. 2000).
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Examining contemporary researches in the field of 
topology optimization that considers geometrically 
nonlinear, a topology optimization code was devel-
oped by (Chen et al. 2019) where an additive hypere-
lasticity approach is utilized to solve topology optimi-
zation of structures going through large deformations. 
(Zhu et  al. 2021) presented topology optimization 
algorithm by adopting SIMP topology optimization 
method. By converting the strain energy between 
small and large deformation theories, an energy inter-
polation technique was proposed by (Wang et  al. 
2014). Using a nonlinear FE formulation, (Buhl et al. 
2000) addressed the topology optimization of geo-
metrically nonlinear problems by coupling SIMP 
with it. In many circumstances, the solutions from 
the nonlinear modeling are just slightly different from 
the linear ones, as shown by the examples supplied by 
Buhl and his colleagues. Nonetheless, a big disparity 
may emerge, if snap-through effects are at play in the 
issues at hand.

Considering reliability designs might be regarded 
as an important strategy since the engineer should 
deal with the existence of uncertainties in various 
cases including differences in dimensions and mate-
rial properties. Thus, structural topology optimi-
zation is more applicable (Chun et  al. 2016; Logo 
2007; Zhao and Wang 2014). (Jung and Cho 2004) 
proposed reliability based design optimization 
technique by considering probabilistic constraints 
related to displacement using the performance 
measure approach. Based on probabilistic meth-
ods, a robust topology optimization technique was 
proposed to solve problems considering uncertain-
ties by (Meng et  al. 2021). In the study of (Lógó 
2012), probabilistic topology optimization problem 
of continuum structure was proposed by consider-
ing random location of the applied loads. (Dunning 
et al. 2011) considered uncertainties in performing 
topology optimization by randomly assuming the 
value and the direction of the applied forces. A reli-
ability based optimization technique was formed to 
improve the material distribution in the presence of 
microstructure uncertainties in the study of (Gao 
and Liu 2021). Reliability based design optimiza-
tion is also studied by (Ghasemi et al. 2015b), who 
present a probabilistic computational optimization 
technique for internal cooling channels in Ceramic 
Matrix Composite (CMC) subject to thermal and 

mechanical loadings. Moreover, (Ghasemi et  al. 
2015a) proposed an optimization procedure that 
uses two stages and a sequential approach to dis-
cover the best fiber quantity and distribution in solid 
composites while accounting for uncertainty in the 
design parameters.

Most prior structural optimization research 
focused on externally loaded systems. Nonethe-
less, there is still opportunity to get better con-
cerning instabilities associated with thermoelastic 
problems of structures. Considering thermoelastic 
models in topology optimization can sufficiently be 
useful practice to face the challenges of complex 
design. (Rodrigues and Fernandes 1995) pioneered 
thermoelastic structural topology optimization by 
using a homogenization technique to meet the aim 
of structure compliance reduction under combined 
temperature and mechanical loads. An algorithm 
for optimizing the topology of structures exposed 
to thermoelastic and mechanical loads at the same 
time was described by (Deaton and Grandhi 2016). 
Considering multiple materials structure, (Gao et al. 
2016) suggested a topology optimization technique 
taking steady-state temperature and mechanical 
loads into consideration. An evolutionary technique 
considering thermoelastic problems was developed 
by (Li et  al. 1999) for minimization of displace-
ment. The buckling performance of infill structure 
was considered to propose topological optimization 
algorithm by (Gan and Wang 2022), in which the 
authors made use of the SIMP technique to study 
the thermoelastic coupling effect.

Reliability-based design according to the assump-
tion of volume fraction as a random variable consid-
ering linear and geometrical nonlinearities as well 
as elastic and elastoplastic models were adopted 
by BESO method recently by (Movahedi Rad et  al. 
2021). Consequently, the current paper is a continu-
ation of prior research to propose a novel computa-
tional algorithm by applying geometrically nonlinear 
reliability-based design to thermoelastic structural 
topology optimization in which BESO method is 
developed to fulfill the aim of this research.

The remaining portions of the arrangement of 
this publication are coordinated as: The theoretical 
context of the problem is discussed in Sect.  2. The 
technique of the enhanced BESO approach is dis-
cussed in Sect.  3. This study’s numerical examples 
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are introduced in Sect. 4. In Sect. 5 the work is finally 
summarized.

2 � Topology optimization problem

2.1 � Finite element analysis of geometric 
nonlinearities

Nonlinear Lagrangian FE model is utilized for perform-
ing the analysis of large displacements:

where u stands for point-wise displacement, and i, j 
and k indicate the coordinate axes.

where the displacement vector is represented by U, 
and B is the matrix that transforms the change in dis-
placement dU into the change in strain.

Equation  3 is used to write the Hooke’s law for 
materials of intermediate densities:

In which the second stress defined by Piola–Kirch-
hoff is denoted by sij , the power of penalization is given 
as p , while the Péclet number is represented by pe and 
strains proposed by Green–Lagrange are given as �kl , 
also, solid isotropic material produces a constitutive 
tensor denoted by C0

ijkl
.

Consequently, the residual may be conceptual-
ized as the deviation from the achieved equilibrium by 
following:

where the externally applied load is represented by P , 
and Piola–Kirchhoff stress in this equation is denoted 
by the vector s . Taking into account that when the 
residual equal 0, the state of equilibrium is found. 
Generally, Equation (4) can be iteratively solved by 
adopting Newton–Raphson iterative technique.

where KT indicates the tangential stiffness matrix.

(1)�ij =
1

2

(
ui,j + uj,i + uk,iuk,j

)

(2)d� = B(U)dU

(3)sij =
(
pe
)p
C0

ijkl
�kl

(4)R(U) = P − ∫
V

BT s dV .

(5)KT = −
�R

�U
.

2.2 � Implementing thermoelastic analysis in topology 
optimization

According to earlier research (Huang and Xie 2009; 
Querin et al. 1998), the topology optimization adopting 
BESO approach may be described as:

where C represents the compliance of the considered 
structure and K represents the tensor of global stiff-
ness. N is the total number of elements allowed in the 
design space, V∗ is the volume of the whole structure 
and Vi stands for element’s volume. Taking into con-
sideration that the binary design variable xi is (1) or 
(0), referring to material and void, respectively. And 
Vf  is the volume fraction. Besides, f  and u are loads 
and displacements vector, respectively. It should be 
mentioned that both mechanical loading fm and ther-
momechanical loading fheat are applied and combined 
in the loading vector as f = fm + fheat . Consequently, 
the displacements measured and shown by the objec-
tive function already account for thermal expansion. 
The semi-coupled thermoelasticity hypothesis is uti-
lized. The temperature field is obtained by first solv-
ing the heat regulating equations. Next, the forces on 
the body caused by the temperature field are added 
to the other applied forces to determine the whole 
response of the elastic body (Ghasemi et al. 2015b). 
According to the Bubnov-Galerkin weak form:

(6)Min.C = uTKu

(7)Subjected to ∶ V∗ −

N∑

i=1

Vixi = 0

(8)xi ∈ {0, 1}

(9)Ku = f ,

(10)
V∗

V0

− Vf ≤ 0,

(11)

∫
Ω

�
(
�(u) − ��(u)

)T
C
(
�(u) − ��(u)

)
dΩ

− ∫
Γt

�uTtΓdΓ − ∫
Ω

�uTbdΩ = 0
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where Ω denotes the domain, Γ represents the bound-
ary condition, � stands for the temperature field, b is 
the body force, tΓ is the traction on the borders, � rep-
resents the arising strain, � the variational operator, C 
is the structural compliance, and u is displacements 
vector.

The w -function is a test chosen from a set of func-
tions for B-splines. They are also used to approxima-
tively model the temperature and displacement fields.

where u represents the vector of nodal displacements 
and � represents temperatures, and the shape func-
tions are represented by N , �, � are the knots, and p, q 
are the degrees of B-spline curve.

Both the strain–displacement and heat flux-tem-
perature gradient expressions may be constructed as:

 and  The elastic and thermal problems are repre-
sented by the matrices Be and Bheat , which store the 
derivatives of the shape functions N.

The matrix form of the discretized system of equa-
tions is obtained by substituting the B-spline approxi-
mation function into Bubnov-Galerkin weak form is 
expressed as:

The heat force vector, fheat , and the local conduc-
tion matrix, Kc , are calculated in the following ways:

The heat conduction matrix, H , is denoted by 
the superscript T  , which denotes transpose. Equa-
tion  (16)’s first and second integrals, represent heat 
conduction (in volume  Ω) and convection (on sur-
face Γ3), respectively.

Finally, the matrix form of the discretized linear 
system of equations for the thermoelasticity issue 
is obtained by plugging in the test function and its 
derivatives into Eq. (11):

(12)u(x, y) =

n∑

i=1

m∑

j=1

N
p,q

i,j
(�, �)ui,j = Nu

(13)�(x, y) =

n∑

i=1

m∑

j=1

N
p,q

i,j
(�, �)�i,j = N�

(14)� = Beu and g = Bheat�

(15)Kc� = fheat

(16)Kc = ∫
Ω

BT
heat

HBheatdΩ + ∫
Γ3

hNTNdΓ3

where K is the  global stiffness matrix  of the elastic 
problem.

The BESO approach is based on concurrently add-
ing and eliminating parts according to its sensitivities, 
resulting in the optimal design of the structure. To 
consider heat conduction (Xia et al. 2018) in the opti-
mization problem, this is how the sensitivity number 
is calculated:

The e − th element’s design variable 
(
Xe

)
 might be 

absent (Xe = �min) or present 
(
Xe = 1

)
 depending on the 

design variable. The sensitivity number, denoted by the 
symbol �k

e
 , of the e − th element in the k − th optimiza-

tion loop is determined by:

Considering f = Ku , K = KT , then f T = KuT , 
therefore, Equ.   18 can be written as:

Based on:

Substituting Equation (20) into Equation (19):

By Ku = f = fm + fheat , we have:

From Eqs 21 and  22, we obtain:

For purpose of avoiding mesh dependency and 
checkerboard patterns, a spatial filtering technique is 
applied (Huang and Xie 2007, 2010) and defined as:

(17)Ku = f

(18)�k
e
=

�C

�Xe

= f T
�u

�Xe

+
�f T

�Xe

u

(19)�k
e
=

�C

�Xe

= uTK
�u

�Xe

+
�f T

�Xe

u

(20)K
�u

�Xe

=
�f

�Xe

−
�K

�Xe

u

(21)�k
e
= uT

�f

�Xe

+
�f T

�Xe

u − uT
�K

�Xe

u

(22)uT
�f

�Xe

=
�f T

�Xe

u

(23)�k
e
=

�C

�Xe

= 2uT
�f

�Xe

− uT
�K

�Xe

u

(24)�e =

∑Ne

j=1
wej�j

∑Ne

j=1
wej
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where wej is the weight which is defined as:

where d(e, j) represents the Euclidean distance 
between centers of the e - th   and  j th  elements and 
the filter radius is denoted by rmin.

In order to figure out how the final results will be 
obtained in BESO method, the target volume for the 
next iteration (Vk + 1) must be provided before any 
changes are made to the existing design (such as the 
removal or addition of elements). The target volume 
in each iteration may drop or rise until the constraint 
volume is attained, depending on whether the volume 
constraint ( V∗ ) is larger or lower than the volume of the 
original estimate design. When expressing the change 
in volume, we may use the expression:

where k is the current iteration number and ER repre-
sents the evolutionary ratio.

Once the volume limit has been met, the follow-
ing formula guarantees that the volume of the struc-
ture will not change in subsequent iterations:

Then, the elements are arranged from most sensi-
tive to least sensitive.

In the case of solid components, deletion will 
occur if:

In the case of void elements, it is added if:

where �th
del

 and �th
add

 are the threshold sensitivity num-
bers of erasing and adding elements, respectively.

In the (BESO) approach, optimization is carried 
out in an iterative process by repeatedly adding and 
removing components until the convergence condi-
tion is satisfied. According to this research, the fol-
lowing criteria for convergence was used:

(25)wej = max
{
0, rmin − d(e, j)

}

(26)Vk+1 = Vk(1 ± ER)

(27)Vk+1 = V∗

(28)�i ≤ �th
del

(29)�i ≤ �th
del

(30)error =

���
∑N

i=1

�
Fk−i+1 − Fk−N−i+1

����
∑N

i=1
Fk−i+1

≤ �

The objective function is denoted by F , the toler-
ance for convergence is denoted by � , the current iter-
ation is denoted by k , and the integer number N that 
yields constant compliance for at least ten iterations.

2.3 � Introducing reliability based design into 
deterministic optimization problem

In this study, for purpose of calculating reliability 
index (�) which is based on probability of failure ( Pf ) 
values, Monte-Carlo sampling method is considered. 
The idea of Monte-Carlo technique generally depends 
on the concept of producing realizations x according 
to X which is random vector of PDF— fX(x) . There-
fore, to calculate Pf  , we compare the number of 
points generated to the total number of points within 
the failure domain (Stanton et al. 2000). By adding a 
Df , indicator function, this idea may be expressed as:

Then Pf  is calculated by:

where �Df
(X) is two-points distribution random 

variable.

where Pf = P
[
X ∈ Df

]
.

To get the mean and standard deviation of �Df (X) , 
compute as follows:

When calculating Pf  , an estimate of the mean value is 
adopted as follows:

(31)�Df
(x) =

{
1 if x ∈ Df

0 if x ∉ Df

}

(32)Pf =

+∞

∫
−∞

...

+∞

∫
−∞

�Df
(x)fX(x)dx

(33)ℙ

[
�Df

(X) = 1

]
= Pf

(34)ℙ

[
�Df

(X) = 0

]
= 1 − Pf

(35)�

[
�Df

(X)

]
= 1 ⋅ Pf + 0 ⋅

(
1 − Pf

)
= Pf

(36)

�ar

[
�
Df
(X)

]
= �

[
�2

Df

(X)

]
− (�

[
�
Df
(X)

]
)2

= P
f
− P

2

f
= P

f

(
1 − P

f

)
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where X(z) are set of independent random vectors hav-
ing fX(x) taking into account that ( z = 1,… , Z).

It is important to note that in probabilistic models, 
Vf  is treated as a random variable. As a result, we can 
calculate its mean value as well as its standard devia-
tion. In addition, its mean is � and its standard deviation 
is �ar . It should be noted that Gaussian distribution 
(Normal distribution) model is utilized in this research 
due to its simplicity, so the entire distribution can be 
indicated by only specifying two parameters: mean 
and variance. To get the estimator’s mean and standard 
deviation, we do the following:

The reliability constraint then can be presented by 
expressing � as:

The method will end when the calculated reliability 
index for each iteration, denoted by �calc , achieves the 
desired value, denoted by �target.

For determining �target and �calc , the following terms 
are used:

for where (1) stands as a sign for the inverse of the 
normal distribution Φ.

Accordingly, the problem of reliability based optimi-
zation is constructed in the presence of reliability con-
straint as:

(37)�E
[
𝜒Df

(X)

]
=

1

Z

Z∑

z=1

𝜒Df (X
(z)) = P̂f

(38)�
[
P̂f

]
=

1

Z

Z∑

z=1

�

[
𝜒Df

(
X(z)

)]
=

1

Z
ZPf = Pf

(39)

�ar
[
P̂f

]
=

1

Z2

Z∑

z=1

�ar
[
𝜒Df

(
X(z)

)]
=

1

Z
Pf

(
1 − Pf

)
.

(40)�target − �calc ≤ 0

(41)�target = −Φ−1
(
Pf ,target

)

(42)�calc = −Φ−1
(
Pf ,calc

)

(43)Min.C = uTKu

(44)Subjected to ∶ V∗ −

N∑

i=1

Vixi = 0

Here, Eqs. (42,  45 and 46) serve the same purpose 
as Eqs.   6, 7, 8 and 9. While Equation 47   displays 
the new circumstances associated with the volume 
fraction reliability limit.

3 � The expanded BESO method

After a short mathematical explanation of the prob-
lem, the approach for the reliability based thermoe-
lastic optimization problem with the given constraints 
adopting BESO method is provided in Fig.  1, the 
technique is summed up as follows:

1.	 Identifying the design domain.
2.	 FEA execution followed by sensitivity calcula-

tion.
3.	 Averaging the sensitivity values.
4.	 Setting the value of targeted volume for the next 

iteration of the process.
5.	 The subtraction and addition of constituent ele-

ments.
6.	 repeat the procedures from the steps (2 to 5) until 

all of the conditions have been met. 

( �target − �calc ≤ 0 , V∗ −
N∑

i=1

Vixi = 0 , V
∗

V0

− Vf ≤ 0 ) 

and convergence criteria.

4 � Numerical examples

In this part, we will look at two different numerical 
examples. The optimization of a linear thermoelas-
tic topology using a probabilistic approach is used 
as a starting point while the second example is con-
sidered for probabilistic geometrically nonlinear 
thermoelastic topology optimization. Thus, the sec-
ond example is considered to show the differences 
between the results of the linear and geometrically 
nonlinear thermoelastic optimum designs. A rectan-
gular plate clamped from both sides is counted as a 
first example, and the results are evaluated against a 

(45)xi ∈ {0, 1}

(46)Ku = f ,

(47)�target − �calc ≤ 0
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set of benchmark problems which were done by (Li 
et al. 1999; Rodrigues and Fernandes 1995) in order 
to establish its viability. This research also includes 
a second numerical example, this time based on 
the L-shaped beam and the geometrically nonlin-
ear thermoelastic reliability it entails. For reliability 
evaluation, Monte-Carlo simulation is used with the 
assumption that Vf  is random to simulate the proba-
bilistic nature.

4.1 � Linear problem: rectangular plate clamped from 
both sides

Initially, an optimization problem for a rectangular 
plate that is clamped on both sides is investigated. 
Figure  2 demonstrates this optimization problem 
where the considered applied loads are (mechanical 
load) which is F = 10 kN and three different (tem-
perature loads) which are ΔT = 0oC, 5oC and 10oC . 
The design is 10mm in thickness. The chosen material 
also has a thermal expansion coefficient of 12 × 10−6 , 
Poisson’s ratio of 0.3 , and Young’s modulus is 
assumed 210000MPa . The considered parameters of 
BESO are ER = 2% ,  ARmax = 1% , rmin = 30mm and 
� = 1% . Considering that Vf  has probabilistic nature 
with mean value = 4 0% and variance = 5% . The 
assumed sample points for probabilistic Monte-Carlo 
simulations are ( Z = 1.0 × 108).

As previously mentioned, to approve the profi-
ciency of the proposed work, the findings of this 
example are assessed with a benchmark problems (Li 
et al. 1999; Rodrigues and Fernandes 1995).

Table  1 represents the obtained optimal solution 
according to two different values of Vf  . Furthermore, 
for probabilistic design, Table 2 shows the results of 
two different values of �target.

Fig. 1   Flow diagram of the 
proposed algorithm

Fig. 2   Rectangular plate model
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Various topologies are achieved for deterministic 
and probabilistic designs when different thermal loads 
ΔT  are considered, as seen by the layouts produced. 
In addition, by considering each case of the applied 
thermal loads ΔT  , it can be noticed that when Vf  is 
changed, the resulted optimized shape will change too 
for deterministic case. Also, a significant difference 
between the resulted layouts for each thermal load ΔT  
considering different �target by adopting probabilistic 

technique. On the other hand, inserting a reliability 
constraint into a deterministic design clearly affects 
the results, given that the results of deterministic 
designs vary from those of probabilistic designs.

According to the obtained optimal topologies, we 
can say that the filter scheme which discussed ear-
lier in Sect. 2.2 functions as a low-pass filter, remov-
ing non-essential elements of the structure below a 
certain length scale. The optimal topology will no 

Table 1   Linear, deterministic design’s optimal solution

Applied load F 10 kN

ΔT 0oC 5oC 10oC

Linear design from 
BESO- determin-
istic

Vf Optimized layout
0.45

0.40

Table 2   Linear, probabilistic design’s optimal solution

Applied load F 10 kN

ΔT 0oC 5oC 10oC

Linear design 
from BESO- 
probabilistic

�target Optimized layout
5.36

3.13
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longer be sensitive to the mesh sizes, which is a major 
advantage of using this filter method.

All models’ displacements are examined based 
on complementary work. Thus, another comparison 
according to the resulted complementary work for 
deterministic and probabilistic designs are consid-
ered. Figure  3 helps to illustrate that as the applied 
thermal load increases the complementary work 
increases too. For instance, by considering Vf = 45% , 
the complementary work is increased by 59.05% 
from 135.74kJ in case of ΔT = 0◦C to 331.52kJ in 
case of ΔT = 10◦C . Also, by considering Vf = 40% , 
the complementary work is raised by 52.16% from 
143.27kJ in case of ΔT = 0◦C to 299.51kJ in case of 
ΔT = 10◦C.

Complementary work values for probabilistic 
design as a result are represented in Fig. 4 in which 
we can say that the complementary work increases as 

the applied thermal load increases for each value of 
�target . By considering �target = 5.36 , the complemen-
tary work is increased by 62.03% from 128.88kJ in 
case of ΔT = 0◦ to 339.46kJ in case of ΔT = 10oC . 
Besides, by considering �target = 3.13 , the comple-
mentary work is increased by 59.88% from 133.18kJ 
in case of ΔT = 0◦C to 331.87kJ in case of SSSS-
CXSΔT = 10◦C.

4.2 � Geometrically nonlinear problem: L‑shaped 
beam

The second topology optimization problem is geo-
metrically nonlinear optimization of 2D L-shaped 
beam to learn more about how the suggested for-
mulation might be used to the design of nonlinear 
thermoelastic structures. The design space that has 
to be optimized is shown in Fig.  5. The consid-
ered applied loads are (mechanical load) which is 
F = 12 kN and four different (temperature loads) 
which are ΔT = 0◦C,5◦C,10◦C and15◦C . The design 
is 10mm in thickness. Both 45% and 40% of the 
design domain are accounted for by the values of 
Vf  . Furthermore, the chosen material has a thermal 
expansion coefficient of 12 × 10−6 , a Poisson’s ratio 
of 0.3 , and a Young’s modulus of E = 70000MPa . 
The following criteria are taken into account by 
BESO, ER = 1% , ARmax = 1% , rmin = 18mm and 
� = 0.1% . Considering that Vf  has probabilistic 
nature with mean value = 4 0% and variance = 5% . 
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Probabilistic Monte-Carlo simulations assume the 
following number of sample points ( Z = 1.0 × 108).

Similar to what we have done in the previ-
ous problem, a comparison between the obtained 

layouts of deterministic and probabilistic linear 
designs is considered in this example too. Besides, 
a new comparison according to the obtained layouts 

Table 3   The topological results—deterministic linear design

Applied 
load

F 12 kN

ΔT 0oC 5oC 10oC 15oC

Linear 
design 
– deter-
minis-
tic

Vf Optimized shape
0.45

0.40

Table 4   Optimal results—deterministic geometrically nonlinear design

Applied load F 12 kN

ΔT 0oC 5oC 10oC 15oC

Geo-
metrically 
nonlinear 
design – 
determin-
istic

Vf Optimized shape
0.45

0.40
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between deterministic and probabilistic designs 
considering geometric nonlinearities is considered.

Tables 3 and 4 indicate the deterministic results of 
the obtained layouts according to two different values 
of Vf  for linear and geometrically nonlinear designs, 
respectively. When applying the nonlinear topology 
design technique, it is clear that completely differ-
ent solutions are achieved for each thermal load case 
than with the linear design. It has also been discov-
ered that the optimal designs are able to regulate the 
thermal effect to the point that the provided tempera-
ture change can counterbalance the mechanical load, 
even to the point of preventing buckling and nonlin-
ear snap-through behavior. This result stands in sharp 
contrast to linear elastic optimization, where the com-
pliance is temperature-dependent. It can be concluded 
from these optimized shapes that the optimized struc-
tures for greater thermoelastic loads contain mate-
rial layouts with slits and struts, which enhance the 
buckling capacity in areas where the design is vulner-
able to buckling. Moreover, we can say here also that 
the filter scheme approach which discussed earlier in 
Sect.  2.2 functions perfectly to make the optimum 
topologies no longer sensitive to the mesh sizes.

While Tables  5 and 6 indicate the probabilistic 
results of the obtained layouts according to two differ-
ent values of �target . Again, here we can say that intro-
ducing reliability constraint into deterministic design 
will change the optimized layouts of the structures. In 
deterministic design, for each specified applied ther-
mal load, the resulted optimized shapes considering 
geometric nonlinearities are not the same as which 
are obtained in linear design based on Vf  value. Also, 
the resulted optimized shapes indicate that consider-
ing different �target will affect the final optimized lay-
out for each case of the applied thermal load accord-
ing to probabilistic design.

Optimized structures for greater thermoelastic 
loads contain material layouts with slits and struts, 
which enhance the buckling capacity in areas where 
the design is vulnerable to buckling.

All models’ displacements are examined based on 
complementary work here also. Thus, another com-
parison based on the resulted complementary work 
for deterministic and probabilistic designs are con-
sidered. Figure  6 represents the resulted values of 
complementary work considering deterministic linear 

and geometric nonlinearity designs. The nonlinear 
designs are clearly superior to the linear designs in 
terms of performance under the load conditions under 
which they were developed, as seen by the smaller 
magnitudes of the complementary work required by 
each. This highlights the need for a nonlinear topol-
ogy optimization technique for large-displacement 
situations like those incorporating snap-through 
effects, where the complementary work of the linear 
design combining buckling and snap-through effects 
is much greater than for the nonlinear one.

Considering linear and geometric nonlinear 
designs, for each value of ΔT  , as Vf  decreases the 
complementary work increases. Also, the obtained 
complementary work values considering linear design 
are greater than considering geometrically nonlinear 
design if we compare it according to the same value 
of Vf  and ΔT  . Furthermore, by considering linear and 
geometric nonlinear designs, for each value of Vf  , as 
the applied thermal load increases the complemen-
tary work increases too. For instance, by consider-
ing Vf = 45% and linear design, the complementary 
work is increased by 1.37% from 25.92kJ considering 
ΔT = 0◦C to 26.28kJ considering ΔT = 15◦C . Also, 
considering Vf = 45% and a geometrically nonlinear 
design increases the complementary work by 3.2% 
from 25.41kJ when ΔT = 15◦C is considered to 
26.25kJ when ΔT = 15◦C is considered.

Figure  7 represents the resulted values of com-
plementary work considering probabilistic linear 
and geometric nonlinearity designs. Considering 
linear and geometric nonlinear designs, for each 
value of ΔT  , as �target, decreases the complementary 
work increases. In addition, the obtained comple-
mentary work values considering linear design are 
greater than considering geometrically nonlinear 
design if we compare it according to the same value 
of �target and ΔT .

Furthermore, by considering linear and geomet-
ric nonlinear designs, for each value of �target , as the 
applied thermal load increases the complementary 
work increases too. For instance, by considering 
�target = 5.61 and linear design, the complementary 
work is increased by 1.62% from 23.1kJ considering 
ΔT = 15◦C to 23.49kJ considering ΔT = 15◦C . In 
addition, by considering �target = 5.61 and geomet-
rically nonlinear design, the complementary work 
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increases by 1.84% from 23kJ when ΔT = 15◦C 
is considered to 23.43kJ when ΔT = 15◦C is 
considered.

5 � Conclusions

This study aimed to optimize thermoelastic models 
with geometric nonlinearity and randomness using 
extended BESO to achieve reliability based design. 

Table 5   The topological results—probabilistic linear design

Applied 
load

F 12 kN

ΔT 0oC 5oC 10oC 15oC

Linear 
design 
–proba-
bilistic

�target Optimized shape
5.61

3.23

Table 6   The optimal layouts for a probabilistic geometrically nonlinear design

Applied load F 12 kN

ΔT 0oC 5oC 10oC 15oC

Geo-
metrically 
nonlinear 
design – 
probabil-
istic

�target Optimized shape
5.61

3.23
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Also, to examine how thermoelastic loads affect a 
structure’s material distribution.

Throughout the optimization process, for incor-
porating reliability based design, the Vf  was treated 
random. In other words, by applying the reliability 
theory, the proposed method was developed in order 
to get the optimal solution by satisfying the reli-
ability constraint. And Pf  were found by adopting 
Monte-Carlo approach, and therefore the � values. In 
optimization problems, the design-dependent ther-
moelastic stress loads are examined. The suggested 
approach for optimizing the topology of thermoe-
lastic structures may be regarded as an effective tool 

for designers who encounter considerable difficulties 
while minimizing the mean compliance of thermoe-
lastic structures. The findings of the examined bench-
mark illustrate the worth and usability of the offered 
methodology. In addition, the findings of the exam-
ined problems reveal the link between reliability-
bound and objective function.

The following main points can conclude the pro-
posed work:

1.	 When introducing reliability constraint into 
deterministic design, the optimal layouts of the 

Fig. 6   Obtained comple-
mentary work

(a) Linear designs

(b) Geometrically nonlinear designs
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structures are not the same as which are obtained 
in deterministic design.

2.	 By considering a specified value of Vf , as ΔT  
increases the complementary work rises also 
for deterministic designs of both models (linear 
models and models with geometric nonlinearity). 
Furthermore, by considering a specified value of 
�target, as ΔT  increases the complementary work 
rises also for probabilistic designs of both models 

(linear models and models with geometric non-
linearity).

3.	 By considering a specific value of Vf  and ΔT  of 
deterministic problems, models with geometric 
nonlinearities have got less complementary work 
values compared to linear models. Also,

4.	 By considering a specific value of �target and ΔT  
of probabilistic problems, models with geometric 
nonlinearities have got smaller complementary 
work values compared to linear models.

Fig. 7   Obtained comple-
mentary work

(a) Linear designs

(b) Geometrically nonlinear designs
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5.	 As it is shown in the obtained results, by consid-
ering a specified value of ΔT  , there is negative 
relation between the complementary work and Vf  
for deterministic designs of both models (linear 
models and models with geometric nonlinearity). 
Besides, by considering a specified value of ΔT  , 
there is negative relation between the comple-
mentary work and �target for probabilistic designs 
of both models (linear models and models with 
geometric nonlinearity).

The proposed work settles the major concerns that 
emerge by dealing with thermal loads. And therefore, 
it is obvious to see how this is a major step forward 
towards more reasonable framework for thermoelas-
tic topological designs of geometrically nonlinear 
problems under reliability constraint. Future work is 
anticipated to address other topology optimization 
problems by defining extra constraints within prob-
lem formulation.
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